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ABSTRACT

The combination of wavelength multiplexing and spectra¢iferometry allows for the encoding of multidimensional
information and its transmission over a mono-dimensiohahael; for example, measurements of a surface’s topograph
acquired through a monomode fiber in a small endoscope. Ta¢ depth of the imaged object is encoded in the local
spatial frequency of the signal measured at the output diltee-decoder system. We propose a procedure to retrieve the
depth-map by determining the signal’s instantaneous &requ First, we compute its continuous, complex-valuedghe
transform (CWT). The frequency signature at every posisorontained in the resulting scalogram. We then extract the
ridge of maximal response by use of a dynamic programmingrighgn thus directly recovering the object’s topography.
We present results that validate this procedure based drsbotlated and experimental data.

Keywords: Continuous wavelet transform, dynamic programming, ridgeaction, spectral interferometry, wavelength
multiplexing, temporal holography, optical coherence agnaphy

1. INTRODUCTION

Recently, a new setup for imaging surface topography basdgti@encoding and transmission of the local depth infor-
mation by means of wavelength multiplexing and spectral interferomettywas proposed. Because the local depth
information is encoded such that it may be transmitted ouwaioao-dimensional channel (e.g. a monomode fiber) this
method is of highest interest for endoscopy. Indeed, ateulgpth measurement is crucial for both diagnostic and-trea
ment of tracheal and bronchial stenoses. In this paper, agoge a new method for retrieving the sample’s local depth by
digitally processing the decoded signal.

We use the following definition of the Fourier transfoifitv) of a function ()
f0) = F1w) = [ (@) exp(-2imtv) (1)

fty=F'f@t) = / h f(v) exp(2imwt) d. 2)

With this definition,|| f| = || f]-

2. SETUP AND MODELLING

The experimental setup, depicted in Fig 1, can be modelekeasteed in the block diagram of Fig. 2. A pulsg) emitted
from a white light femtosecond source is sent through the,fibbganded, and reaches a grating. Two lenses mapthe
diffraction orders onto the sample and a reference mirempectively. The combination of the grating-lens system ca
be modeled by a temporal Fourier transform that maps eagnérey (or wavelength) of the pulse to a specific spot on
the sample. The sample’s local depth and reflectivity intceda phase shift in the signal at the corresponding position
(or equivalently wavelength). The object (and referenagais follow a reverse path into the fiber. The process can be
approximated by a filtering operation with a filtefz) = a(x) exp(i¢(z)). The recombined signal is transmitted over the
fiber and decoded by another grating-lens system and finelgcted (square-law detection).
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Figure 1. Optical setup for wavelength multiplexing spectral inbedmetry imaging. BS: beam-splitter, G1, G2: gratings.
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Figure 2. Block diagrams of (a) Acquisition and encoding (b) Transiois and decoding.

3. ALGORITHM
3.1. Measured Signal

The interference pattern measured on the CCD is of the form

f(x) = A(z) + B(x) cos[¢(x)]. ®)

The signalf(z) has a local phaseé(x) that is directly related to the local depth of the sample astba varying enve-
lope B(x) and DC componenti(z). In order to retrievep(z), we take advantage of the continuous wavelet transform
formalism® 6 The latter has proven to be effective for many time (or spé®guency applications, including some in
optics”*



3.2. Continuous Wavelet Analysis

A wavelet is a function) € L?(RR) with zero average

/ Y(x)dz = 0. 4)
It is normalized such thaty|| = 1 and centered in the neighborhoodsof= 0. A family of time-frequency atoms is
obtained by scaling by s and translating it by::
1 T —u
Q/Ju,s(x) - E ( S ) ) (5)
with |1, s|| = 1. The wavelet transform of € L?(R) at positionu and scales is
o 1 ,(xz—u
Witws) =) = [ 0520 (5 o ©
We construct an analytical (complex-valued) wavelet by ulaiihg a Gaussian window
9 \ /4
P(x) = <—2> exp(2invo) exp (—2°/0?). (7
o
Its Fourier transform, A
b(v) = (2m0®) ! exp [-720® (v — 1)?] (8)

is analytical forvy > 0.
The CWT of a real signal using an analytic wavelet has thegntgphat the derivative of a point on the ridge vanishes

0V
Js

We take advantage of this (sufficient) condition to extrhetridge.

(u,s) =0, Uys(u,s)=argWy(u,s)). 9)

3.3. Ridge Extraction via Dynamic Programming

After the signal's CWT has been calculated, the problem afifig the depth at every is isomorphic to that of finding

a ridge of maximum response through the scalogram. We aglthissproblem by using a dynamic programming algo-
rithm.!® It was shown that algorithms based on that technique ardynhédtective for that purposé! One such method

has been utilized in the context of a CWT-based Moiré imggéthnique? Here, to improve accuracy, we rely on two
criteria to ensure that the right frequency is chosen. Wepegena new image based on the absolute value and phase of the

signal's CWT:
) dv ;(u, s)(z,
i(z,y) = Wr(z,y)l v (%) : (10)
wherevy(u) is a weighting function that penalizes pixels that do nas$athe ridge condition (9)
1—u/um i Ju] <upm
= 11
7(w) {O otherwise, (11)

with w,,, a user specified threshold.

Based on the combined informatiofr,y) € R of the CWT's amplitudéV;(z,y)| and phaserg(Wy(z,y)), we
proceed in three steps that conduct to the extraction ofidge () (see Fig. 3).
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Figure 3. The three steps of the dynamic programming ridge extragtionedure.

Forz =0,..., N, —1, we compute a merit functio®(z, y, y,) and store the position of the predecessor pjyét, y)
that yielded the maximal value of the merit function (see Bi@)), viz.
Qr —1,y,) +i(z,y) — uo(y,y if >0
Qz,y,yp) = 1 . ( p) i) W) _ 12)
i(z,y) ifx=0
Q(z,y) = max Qx,y,yp), x=0,...,N;—1 (13)
ypE{ysin;~~~7ymax}
gp('rvy) :arg max Q(Iayvyp)v I:O,,Nm—l (14)

ype{ysin-,---yymax}

Ymin = max(y — w,0) andymax = min(y +w, N, — 1). The functioro (y,y,) = ||y — y, ||, weighted with a facton > 0,
penalizes large leaps. With high probability, the maximunigs. (13) and (14) is unique. WhéNx, y) andg,(z,y)
have been calculated for glt, y), the abscissg. (initialization, see Fig. 3(b)) is chosen such that

.= AN, — 1,y). 15
y argye{of}éﬁy_l}Q( y) (15)

The curve that maximizes the criterion is then recoveredrsaegely (from right to left, see Fig. 3(c)), i.e.

y(z) =gp(x+1,y(x+1)), z=N,—2,...,0. (16)

3.4. Computational complexity

The computational complexity of the CWT algorithms, thasian FFT internally, i©(N log N), whereN is the number
of considered signal samples. The dynamic programmingigthgo has a linear complexity in the number of computed
wavelet coefficients.

4. RESULTS

In Fig. 4, we show the different steps that lead from the ousgnal f(¢) measured on the CCD to the extracted ridge
y(z). We have evaluated the procedure on synthetic (Fig. 4(d)gaperimental (Fig. 4(b)) data. For the synthetic data, the
agreement between the gold standard step function anddbeanred ridge is excellent (see bottom of Fig. 4(a)). Owing t
the fact that the wavelet transform is local, the techniguebust and not affected by local defects in the measuredlsig

In Fig. 4(b), the sample—an inclined plane—is well reprogtliby the ridge as well.
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Figure 4. (a) Simulated data set. (b) Experimental data set.

5. CONCLUSION

We have proposed a CWT and ridge extraction algorithm toeketrthe local depth from spectral interferometry data.
Using both simulated and experimental data, we have shoatrthifs technique is suitable for this imaging application.
Moreover, the method is suitable for the decoding of seVieeguencies at a single position, which is not possiblegisin
other methods that rely solely on frequency analysisnd should permit its future extension to extract sevetatiaces

in depth.
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