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ABSTRACT

Optical diffraction tomography (ODT) can be described using the scattering process through an inhomogeneous
media. An inherent nonlinearity exists relating the scattering medium and the scattered field due to multiple
scattering. Multiple scattering is often assumed to be negligible in weakly scattering media. This assumption
becomes invalid as the sample gets more complex resulting in distorted image reconstructions. This issue becomes
very critical when we image a complex sample. Multiple scattering can be simulated using the beam propagation
method (BPM) as the forward model of ODT combined with an iterative reconstruction scheme. The iterative
error reduction scheme and the multi-layer structure of BPM are similar to neural networks. Therefore we refer
to our imaging method as learning tomography (LT). To fairly assess the performance of LT in imaging complex
samples, we compared LT with the conventional iterative linear scheme using Mie theory which provides the
ground truth. We also demonstrate the capacity of LT to image complex samples using experimental data of a
biological cell.

Keywords: Optical tomography, Mie scattering, Nonlinear optics

1. INTRODUCTION

The accurate modeling of the physics that govern the light scattering process is crucial in modern optical
imaging modalities, especially in 3-D imaging. Recently, machine learning (ML) has received a lot of attention
for post-processing of images for classification and segmentation outperforming conventional algorithms which
are explicitly designed by humans. Therefore, it has motivated us to apply ML not only in post processing but
also in modeling the underlying physics of the imaging system.1

Specifically we explore in this paper optical diffraction tomography (ODT). ODT is a powerful tool for imaging
the 3-D refractive index (RI) distribution providing useful information such as cell structure and quantification
of specific molecules.2,3 However, there are open problems to be resolved. First of all, ODT is generally an ill
posed problem because of the limited numerical aperture meaning that we can only acquire partial data. This
missing cone problem causes the underestimation of RI values and distorts RI tomograms along the optical axis.
More importantly, there exists an inherent nonlinearity. Conventionally, multiple scattering is neglected and
reconstruction methods based on single scattering are used (Born and Rytov approximations). However, with
the increase of complexity of sample, the single scattering approximations break down.4,5 Especially, when there
are multiple objects, even if each object is a week scatterer, multiple scattering among them makes the single
scattering assumption invalid.6

To resolve those issues, there has been recently proposed many approaches.7–13 We have focused on LT, a
machine learning approach for ODT.8,14 In the present contribution, we show the capacity of LT in imaging
complex objects consisting of multiple cylinders using the analytical solution provided by generalized multiparticle
Mie (GMM) theory,15 which serves as the ground truth. More importantly, we confirm it by applying LT on
real experimental data.
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2. THEORY

2.1 Optical diffraction tomography

The scattering in an inhomogeneous medium is governed by the Helmholtz equation,

∇2Us(r) + k2Us(r) = −4πF (r)U(r), (1)

U(r) is the total electric field which is the sum of the incident field, Ui(r), and the scattered field, Us(r). The
difference between the RI of the sample and the medium, ∆n(r) = n(r)− n0 generates the scattering potential,

F (r) = k2

4π

(
n(r)2

n2
0

− 1
)
. The optical wavelength in free space is λ resulting in wavenumber, k = 2πn0

λ . The

integral solution of Eq. (1) can be obtained using the homogeneous Green’s function resulting in

Us(r) =

∫
V

F (r′)U(r′)G(r− r′)dr′, (2)

where G(r − r′) = eik|r−r′|

|r−r′| is the Green’s function of the 3-D Helmholtz equation, Eq. 1. Conventionally, to

make Eq. 1 linear, the total electric field is approximated to be equal to the incident field resulting in the first
order Born approximation. We can further approximate it by simply replacing Us(r) with the first order Taylor

expansion, Us(r) = Ui(r)(
U(r)
Ui(r)

− 1) = Ui(r)(e
log(

U(r)
Ui(r)

) − 1) ≃ Ui(r) log
U(r)
Ui(r)

. It results in the first order Rytov

approximation which has been widely used in the field,

Ui(r) log
U(r)

Ui(r)
=

∫
V

F (r′)Ui(r
′)G(r− r′)dr′. (3)

We usually calculate the left term of Eq. 3 at z = 0 which is usually set to the center of the sample.

2.2 Learning tomography

One of the successful learning algorithms is based on convolutional neural networks (CNN). In general, each layer
of a CNN is represented as xj+1 = D[L[xj ∗ h]] where h is the convolution kernel, L is a nonlinear operator (ex.
ReLU) and D is the down sampling operator for input xj and output xj+1. There has been a recent research
on combining a physical system of optical microscopy with the structure of CNN.16 It is also possible to draw
an analogy between the BPM and CNN where h is the fixed diffraction kernel and L is the z-slice dependent
refraction operator without any down sampling. BPM consists of two sub steps, diffraction followed by refraction.
Given the envelope of the electric wave as S(x, y, z) for U(x, y, z) = S(x, y, z)eikz, BPM can be written as

S(x, y, z +∆z) = Rz[S(x, y, z) ∗ d(x, y)]. (4)

d(x, y) = 1
(2π)2

∫∫
e−i(k2

x+k2
y)/(k−

√
k2−k2

x−k2
y)dkxdky is a 2-D diffraction kernel andRz[f(x, y)] = eik0∆n(x,y,z+∆z)∆zf(x, y)

is a 2-D refraction operator decided at z-th section where k = 2πn0

λ , ∆n is the contrast between RI of the sample,
n(x, y, z), and RI of the medium, n0. We use the notation r = (x, y, z) and k = (kx, ky, kz) for the spatial and
frequency coordinates. Using the BPM as the forward model, we can define the cost function combined with a
sparsity based regularization, TV, as follows,

C(∆n(x, y, z)) =
1

2L

L∑
i=1

||M (i) −B(i)(∆n(x, y, z))||22 + τTV (∆n(x, y, z)), (5)

where Bi : RN → CM represents the BPM with a certain i-th illumination, M ∈ CM is the measurement at
z = K (U(x, y,K) in this case) and τ is a regularization parameter. We minimize the cost function using a Fast
Iterative Shrinkage-Thresholding Algorithm (FISTA) with stochastic gradient decent (SGD).17 In this paper,
in order to fairly compare the performance of the BPM, we also minimized the cost function using the single
scattering propagation model using the Rytov approximation. This can be done by propagating using the right

term of Eq. 3 in stead of the BPM. Then, we can use the propagated field of Ui(r) log
U(r)
Ui(r)

to z = K using the

propagation kernel18 as M (i) in Eq. 5 and it results in follows,
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F−1[F [Ui(r; z = 0) log
U(r; z = 0)

Ui(r; z = 0)
]eikzK ] =

∫
V

F (r′)Ui(r
′)G(r; z = K − r′)dr′, (6)

where F and F−1 represent 2-D Fourier and inverse Fourier transform respectively.

3. METHOD

3.1 Experimental setup

The experimental setup consists of a Mach-Zehnder interferometer. To record off-axis digital holograms, the
signal and reference arm are recombined at an angle of 1.43 degrees before the detector. The light source is a
continuous wave laser diode at 406 nm. The light was spatially filtered and collimated. The effective numerical
aperture of the system is 1.3. The image of the spheres was projected on an S-CMOS camera (Andor Neo) with
an effective magnification of 111. In this study, we considered a single yeast cell as the sample. The sample was
immersed in water and illuminated with plane waves through the illumination objective at different incidence
angles. This could be achieved by placing two galvo-mirrors (one for the X and the other one for the Y direction)
in conjugate image planes of the sample. We acquired 160 views equally spaced on a circle in the k x,y plane at
an angle of 42 degrees from the optical axis (effective angle on the sample).

3.2 Reconstruction setup

The computational space was sampled with step size (∆x = ∆y = ∆z) of 0.08 µm (multiple cylinders) or 0.0856
µm (yeast cell). We manually set the regularization parameter, τ , by trial and error (τ = 0.1 for multiple
cylinders, 1e− 4 for yeast cell). For both models, we reduced the step size after every iteration, γk+1 = 0.985γk.
The iteration numbers for TV and FISTA are 20 and 200, respectively. For both of propagation models, the
stochastic gradient method was used with 8 randomly chosen angles out of the total recorded angles at each
iteration. In each case, the reconstruction obtained with direct inverse scattering based on the first order Rytov
approximation was used as the initial condition. PUMA algorithm was used to unwrap the phase.19 The PUMA
algorithm could not properly unwrap the phase for several projections and these phases were not used in the
reconstruction to get rid of artifacts from phase unwrapping and directly compare propagation models.

4. RESULTS

4.1 Multiple cylinders

We acquired simulated measurements using Mie theory for a single cylinder which induces phase delay of π. The
RI contrast of the cylinder can be referred to as ∆n0 (Fig. 1(a)). After that, we placed four equal cylinders
whose RI contrasts are ∆n0/2 as in Fig. 1(b) so that the overall induced phase delay is similar with the single
cylinder case. Then we acquired synthetic measurements using GMM.15 By applying the same principle, a set
of N cylinders whose RI contrasts are ∆n0/

√
N can be generated. Therefore, the structural complexity of the

sample can be controlled and we can investigate the performance of the single scattering model and the multiple
scattering model in capturing the structure of complex sample. Figure 1 tells us that both of the single scattering
and multiple scattering model break with the increase of the complexity showing smearing between cylinders.
However, the LT generally shows more identical cylinders. To numerically evaluate it, we used the metric defined
as

Error(nrecon, ntrue) =
||nrecon − ntrue||22
||ntrue − n0||22

, (7)

where nrecon is the reconstruction result (RI) and ntrue is the ground truth (RI) used in the Mie simulation. By
comparing the Error of two propagation models tell us how one model is better than the other and we call it
Relative Error.

Relative Error(nsgl, nmlp, ntrue) =
Error(nsgl, ntrue)

Error(nmlp, ntrue)
, (8)

where nsgl and nmlp are solutions acquired from the single scattering and multiple scattering propagation models,
respectively. Figure 2 (a) shows that the Error of LT is lower than the single scattering tomography. By

Proc. of SPIE Vol. 10503  105031T-3
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 13 Mar 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



ait71EirRIwwemwAw
411041t

0

∆n

X

Z

X

Z

X

Z

X

Z

(a) 1 (b) 4 (c) 9 (d) 16 (e) 25 (f) 36

T
ru

th
M

u
lt
ip

le
S

in
g

le
R

y
to

v

Figure 1. XZ cross sections of RI tomograms of multiple sets of multiple cylinders. From the left to the right, the RI
contrast of each cylinder varies according to ∆n0/

√
N where ∆n0 = 0.0142 and N is the total number of cylinders in a

set. From the first row to the fourth row, Rytov, single scattering, multiple scattering, and the ground truth. Scale bars
are 5 µm.

comparing the Errors for the other cases, we get the Relative Errors as shown in 2 (b) showing values bigger
than 1 for every case at the end of iteration cycle. In other words, the performance of LT is numerically
confirmed over the single scattering tomography. The end points of the Relative Errors are plotted in Fig.
2 (c). In the plot, the graph shows increase followed by plateau then slight decrease with the increase of the
complexity (number of cylinders). There is a certain range where the performance of LT gets maximized. This
is because the BPM used in LT provides an inadequate estimate for the scattered field by the object due to the
neglect of reflections and the vectorial nature of the optical field. However, we would like to stress that the LT
still outperformed the single scattering tomography in the simulation meaning that the LT provides us a very
powerful tool to image complex objects.

4.2 Single cell

A very important issue is whether the Mie theory results obtained for multiple cylinders tell us something about
how well we can image a biological sample. There has been prior research on applying Mie theory on spheroidal
scatterers such as cell nuclei in biological materials.20 We can roughly think of cellular structures of a biological
cell as aggregation of multiple spheres or cylinders. To test the capacity of the LT in imaging a complex sample,
we reconstructed RI tomograms of a single yeast cell which has complex intracellular structures using the LT and
compared it with images obtained with single scattering tomography. We concluded that the LT is more accurate
in handling multiple scattering which dominates over the single scattering with the increase of complexity of
sample. Figure 3 experimentally confirms this. Figure 3(b) clearly distinguish intracellular structures which are
barely seen in Fig. 3(a) in the transverse (xy) plane. When it comes to the axial (xz, yz) planes, the effect gets
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Figure 2. (a) Errors of the single scattering and multiple scattering models for a single cylinder. (b) Relative Errors for
various sets of cylinders which differ in the complexity. (c) Converging points of Errors and Relative Errors.

pronounced and we attribute it to the fact that the LT handles multiple scattering in addition to the missing
cone problem.
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Figure 3. RI tomograms of a single yeast cell using two different propagation models (a) : single scattering, (b) : multiple
scattering. Scale bars are 2 µm.

5. CONCLUSION

We demonstrated the superior performance of LT in imaging complex objects and compared it with the single
scattering tomography. We acquired simulated measurements for multiple cylinders using GMM providing the
ground truth. The number of cylinders were controlled to vary the degree of structural complexity of the object.
It was shown that both models degrade with the increase in complexity but still the LT outperforms the single
scattering tomography in each case. There is an intermediate level of sample complexity where the performance
of LT gets maximized. In addition, we applied the LT to a single yeast cell which has intracellular structures.
The results of the LT show clearly structures which are hard to observe using the conventional model.
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