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Optical projection tomography (OPT) is a powerful tool
for three-dimensional (3D) imaging of mesoscopic sam-
ples. While it is able to achieve resolution of a few tens of
microns over a sample volume of several cubic centime-
ters, the reconstructed images often suffer from artifacts
caused by inaccurate calibration. In this work, we focus on
the refractive-index mismatch between the sample and the
surrounding medium. We derive a 3D cone-beam forward
model of OPT that approximates the effect of refractive-
index mismatch. We then implement a fast and efficient
reconstruction method to correct for the induced seagull-
shaped artifacts on experimental images of fluorescent
beads. © 2022 Optica Publishing Group

https://doi.org/10.1364/OL.457144

Since its invention by Sharpe in 2002 [1,2], optical projection
tomography (OPT) has become a powerful tool for obtaining
three-dimensional (3D) images of biological tissues at the meso-
scopic scale [3–5]. Due to its significant penetration depth [6], it
can image whole animals at a resolution of a few tens of microns
[4] with molecular specificity [3,4]. Often referred to as the opti-
cal analog of x ray computed tomography [7], OPT works with
non-ionizing light, thereby minimizing radiation damage and
facilitating studies of a broad range of diseases that include
Alzheimer’s [8] and gastrointestinal pathologies [4].

Regrettably, one frequently observes various artifacts in OPT
images for a range of different reasons. For instance, mechanical
errors in the imaging system may result in a misaligned rotation
center that will generate double-edged or circular artifacts in
the reconstruction [9–11]. Instabilities such as fluctuations of
illumination and variations of the sensitivity of the detector will
cause smear and ring artifacts [9]. Finally, deviations from the
physical model may arise such as the finite depth-of-field of the
imaging system [2] or a refraction that perturbs the propagation
of light [6,12]. All these artifacts come from a mismatch between
the OPT model and the actual physical realization. They strongly
degrade the final resolution and quality of the reconstructed OPT
images but can be computationally corrected once they have
been properly identified [9,10].

During an OPT experiment, the sample is typically embed-
ded in a cylindrical gel phantom that is immersed in an

index-matching liquid [2,13,14], in an attempt to limit the refrac-
tion of light at the interface of the agarose gel and the embedding
liquid [13–16]. Despite their best effort, OPT practitioners still
observe seagull-shaped artifacts suspected to be caused by a
residual mismatch in the refractive indices (RI) between the
sample and its embedding medium [4]. A previous study had
already reported similar artifacts, mostly located around the edge
of the sample, and proposed a computational method to compen-
sate for the RI mismatch [6]. However, as this method requires
volumetric alignment, it remains computationally expensive.

In this work, we propose instead a simple ray-optics model
to remove artifacts induced by the RI mismatch between the
cylindrical gel and the surrounding liquid. Our contributions are
twofold: study of this type of RI mismatch and its interpreta-
tion as a virtual cylindrical lens; approximation of the virtual
lensing effect with the help of a cone-beam model. We discuss
the validity of our model and point out the importance of the
displacement of the rotating cylinder. We then design a compu-
tationally efficient algorithm that leverages our model to correct
the artifacts on experimental images of fluorescent beads. In an
OPT experiment, the sample is rotated to a series of angular
positions to produce a set of two-dimensional (2D) projections.
Before the experiment, the rotation axis is carefully adjusted to
be perpendicular to the optical axis, so that the projection data
of one slice of the volume are recorded in a row of pixels on the
detector [2]. When there is no refraction, diffraction, scattering,
or defocusing, the emitted light propagates through the sample,
the index-matching liquid, and the telecentric lens system in
parallel straight lines (see Fig. 1). Accordingly, the standard for-
ward model for OPT is the Radon transform [17,18], which in
three-dimensions is typically inverted in a slice-by-slice fashion
using the filtered backprojection (FBP) algorithm [2,17].

In reality, when the RI of the sample does not match the RI of
the embedding liquid, the path along which the light propagates
is altered so that the parallel-beam assumption no longer holds.
Consider a 2D transverse slice of the sample in the liquid bath as
depicted in Fig. 1. We denote the refractive index of the agarose
gel and the liquid bath as n1 and n2, respectively, and the radius of
the cylinder as R. When n1 = n2, the light follows parallel straight
lines as it travels through the sample, the liquid bath, and finally
the flat wall of the cuvette (see the green lines in Fig. 1). When
n1<n2, the light will be refracted at the interface that separates
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Fig. 1. OPT geometry in the ideal case and in the non-ideal case when the RIs do not match. (a) Emission OPT viewed from the top. The
sample, fixed in agarose gel of RI n1, is placed inside a glass container filled with an embedding liquid of RI n2. The fluorophores inside
the sample emit light that propagates through the object-space telecentric lens system and gets recorded by the camera. More details about
the experimental system can be found in Ref. [4]. (a) Ideal case (green) and RI mismatch (blue). Only rays parallel to the optical axis are
considered due to the low-numerical-aperture fluorescence collection in OPT. The RI n1 of the agarose differs from the RI n2 of the embedding
medium. This creates a lensing effect, with a virtual focus at position O′ on the optical axis.

the agarose cylinder from the liquid bath. The propagation of
the refracted light is illustrated by the blue lines in Fig. 1. The
extended incident rays (blue lines inside the cylinder in Fig. 1)
intersect at a point O′ on the optical axis (dotted lines in Fig. 1).
Hence, the front wall (close to the detector side) of the cylinder
can be thought of as a diverging lens whose virtual focus O′

is on the optical axis. The rays inside the cylinder can then be
approximated by a fan beam the origin of which coincides with
the virtual focus.

Such a picture is based on two assumptions, common in ray
optics, to keep our model computationally tractable. First, we
make the paraxial assumption; namely, that the point emitters
are close to the optical axis. Second, we consider the difference
in RI to be small (∆n = |n2 − n1 | ≪ n1), so that the resulting
origin of the fan beam is far away from the cylinder. Under these
assumptions, the location y0 of the origin O′ of the converging
beam depends on the radius R of the cylinder and the RI (n1, n2)
according to

y0 =
n1

n2 − n1
R. (1)

A detailed derivation of Eq. (1) based on the ray geometry of
Fig. 1 is provided in Supplement 1. Note that the dimensionless
quantity y0/R is not affected by the magnification of the imaging
system.

Therefore, when n1 ≠ n2, this physical model differs from
the one typically used for reconstruction with a parallel-beam
geometry. Yet, the proposed virtual-lens model is a better
approximation of the actual physics. We are going to show
that it is capable of reproducing and eventually correcting for
some of the reconstruction artifacts. This 2D analysis corre-
sponds to a fan-beam model; we can extend it to a cone-beam
model when the height of the volume is sufficiently small.
Cone-beam geometries are common in other tomographic appli-
cations, which allows us to leverage efficient implementations
and reconstruction algorithms.

While Eq. (1) provides a good approximation of the beam
origin in an idealized setting, two additional challenges arise
in practice. First, the RI of the agarose gel evolves to match
that of the surrounding liquid (e.g., BABB) due to molecular
diffusion. This process may extend over the standard clearing
protocol time, making it difficult to measure the value of n1

and thus to calculate the origin using Eq. (1). Second, there is
another physical effect to consider: the cylinder is displaced as
it rotates because of an experimental offset between the axis of
rotation and the axis of the cylinder. Despite their best effort,
instrumentalists have not yet been able to calibrate their setups
accurately enough to avoid this offset [18–20]. For example, the

seagull artifacts in Ref. [4] [cf. Fig. 2(f) therein] can be reduced
by decreasing the offset between the axis of the cylinder and the
axis of rotation. In Supplement 1, we show that the cone-beam
geometry remains a good approximation under these conditions,
but with an origin that is closer to the sample than Eq. (1).

To tackle both challenges at once, we propose a method to
automatically determine the optimal origin of the cone beam by
minimizing an heuristic loss metric. More details are provided
in the section presenting experiments on real data. To validate
our model of the RI mismatch, we simulate the setup of a real
emission OPT experiment for the imaging of fluorescent beads.
We use the cone-beam model to generate projections with an
origin position y0 defined by y0/R = 5. We then reconstruct with
the FBP algorithm. Our phantom consists of 13 beads, each
of unit intensity and of size (5 × 5) px (one pixel is 2.45 m)
embedded in a slice of a cylinder with radius R = 1024 px
contained in a square cuvette of length 2048 px. Moreover, it
is important to consider that the depth of field in OPT usually
covers only half of the sample, in contrast with x ray tomography.
To approximate the out-of-focus phenomenon of the other half,
we implement rotation angles over both [0, π) and [0, 2π).

All simulations have been performed using the Tomosipo tool-
box [21], which is a wrapper for the tomographic-reconstruction
library ASTRA [22]. We have adapted a cone-beam geome-
try as this modality is common in tomography [23] and has
already been implemented efficiently in Tomosipo. It enables
us to accelerate the computations on central processing units
(CPU) and graphics processing units (GPU) and to use the
already implemented Feldkamp–Davis–Kress (FDK) algorithm
for cone-beam reconstructions [24] in stacks of slices of size 2
to obtain the 3D volume. This is crucial in OPT because a time-
and memory-efficient reconstruction algorithm is required to
perform the high-resolution imaging of mesoscopic samples and
to process huge datasets (1200 projections of (2048 × 2048) px
each for the experiment presented below). Accurate models such
as Ref. [6] hit computational bottlenecks and become infeasible
for temporal and spatial imaging at high-resolution.

We show in Fig. 2(a) a vertical section of the reconstruc-
tion of a bead sitting at the exact center of the image. This
ground-truth image is free of artifacts. As the distance of the
bead to the center of the image increases, the seagull artifacts
become more pronounced, which is reflected in the size of their
“wings”. We give a close-up view of a non-centered bead with
strong seagull artifacts in Figs. 2(b) and 2(c). More precisely, its
reconstructions using the rotation angles in [0, π) and [0, 2π) are
shown in Figs. 2(b) and 2(c), respectively. The magnified ground
truth image is provided in Fig. 2(a) as a reference. In agreement
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Fig. 2. “Seagull” artifacts due to mismatched RI with rotation
angles [0, π) (b) and [0, 2π) (c), compared with the ground-truth
fluorescent bead (a).

with our model, the FBP-based reconstruction of a mismatched
experiment introduces similar artifacts to those observed in real
data.

Next, we show how to mitigate the “seagull” artifacts on exper-
imental data of fluorescent beads. Fluorescent FITC-labeled 1 m
microspheres based on melamine resin (90305-5ML-F, Sigma)
were used as specimen, in accordance with the preparation pro-
cedure described in Ref. [4]. Approximately 0.01 mL of particle
solution was mixed to 10 mL of 1.5 % agarose before molding
to achieve a nearly colloidal solution. The acquisition was per-
formed shortly after preparation to avoid fluorescence quenching
of the signal. The RI n2 of BABB in our experiment is 1.56. The
RI n1 of the agarose changes over time, but the mismatch between
the two materials is initially of the order of 0.1.

Before reconstruction, we first compensate for the misaligned
rotation center. However, because the fluorescent beads are very
sparse compared with an actual biological sample, they carry
too little information for one to apply the standard method based
on the maximum variance of a reconstructed slice [4,11,19].
Instead, we perform a grid search and determine the best esti-
mate of the center of rotation when the “circle”-shaped artifacts
caused by the wrong rotation center vanish.

Fig. 3. Reconstructions of a 3D volume of fluorescent beads integrated along the z-axis using (a) a parallel-beam model and (b) a cone-beam
model. (c) Energy loss of five beads over a range of origin guesses. The red point on each curve indicates the minimum. Same slice of the
3D reconstructions of a bead using (d) parallel-beam and (e) cone-beam models. The square in panel (e) is the region Ωin used to compute
the energy loss. (f) Intensity profiles along the direction of maximum variance of the bead in panels (d) and (e). The blue and orange lines
represent the intensity profiles for the parallel-beam and cone-beam models, respectively. The dashed blue and orange lines represent the
fitted Gaussian point-spread functions.

As discussed before, another step is to determine the optimal
origin of the cone beam. We do this automatically by minimizing
the loss metric

Eloss = 1 −

∑︁
k∈Ωin Ik∑︁

k∈Ωtotal
Ik

, (2)

where Ωtotal is a square region that fully encloses the whole
“seagull” artifact, Ωin is a smaller square region enclosing only
the central part of a bead [see Figs. 3(b), 3(d), and 3(f)], and
Ik denotes the intensity at pixel k. The quantity Eloss hence indi-
cates how concentrated the distribution of intensity is around the
center of a bead. The smaller Eloss is, the less energy is spread
outside the true location of the bead, and the better the recon-
struction is. We provide in Fig. 3 the energy loss of five different
beads at varied locations in the field of view. We observe that the
energy loss behaves similarly for all five beads and achieves its
minimum at approximately the same value of each curve. This
means that the optimal origin guesses are consistent over several
beads, which confirms the robustness of the proposed automatic
calibration. We thus adopt the average value µ = y0/R = 4.4 as
the optimal origin y0 for all the beads in the reconstruction. Com-
pared with µ, the theoretical value of y0/R = 15 derived from
Eq. (1) highlights the importance of performing this automatic
calibration to account for the origin shift discussed in Supple-
ment 1. The 3D reconstruction of a 2048 × 2048 × 1024 volume
and grid search to find the optimal origin over 200 points for
one bead takes 95 seconds and 108 seconds on CPU and GPU,
respectively.

In Fig. 3, we compare the reconstructions using the parallel-
beam model or our approach. We can observe the clear radial
dependence of the size of the seagull artifacts. Our proposed
cone-beam model successfully mitigates the artifacts, especially
for the beads identified by boxes. To quantify the improve-
ment of our method, we provide the intensity profiles along the
direction of maximal variance of the uncorrected and corrected
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reconstructions in Fig. 3(f). The full-width half-maximum along
the direction of maximum variance, calculated based on the
Gaussian fit, is 47 m and 22 m for Figs. 3(d) and 3(e), respec-
tively. This means that our corrections lead to a 52 % increase
in resolution.

To conclude, this work models mismatching RI in emission
OPT as a virtual lens. Using the corresponding cone-beam
model, we can reproduce in simulations the “seagull” artifacts
observed in real emission OPT experiments. To achieve best
performance in practice, we propose a fast approach that auto-
matically determines the optimal origin of the cone beam. We
perform reconstructions based on the cone-beam model and
validate our methods on experimental data of fluorescent beads.
Our results show that the cone-beam model, with an optimized
origin, successfully mitigates the seagull-shaped artifacts and
increases the resolution of the reconstruction in the directions
perpendicular to the optical axis. Future research directions
include the design of a better model of the finite depth-of-field
and of the rotating cylinder. This work could be extended to
transmission OPT by taking into account the RI mismatch on
both sides of the sample. Finally, cone-beam reconstructions
could be applied to non-pointwise samples.
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