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ABSTRACT
In this study, we investigate the possibility of applying a

continuous-time ARMA (CARMA) model to radio-frequency

ultrasound signals. We consider the effect of the discretiza-

tion process on the parameters of the continuous system, and

we take into account the exponential nature of the autocor-

relation function of the model to derive continuous-domain

information from the parameters of the discrete ARMA pro-

cess. We validate the effectiveness of the CARMA model

parameters for the characterization of ultrasound tissues on

a sequence of phantom images that represent various con-

centrations of scatterers. We also compare the proposed

CARMA coefficients and the traditional ARMA parameters

on the basis of their performance in discriminating between

phantom tissues. We show that working in the continuous

domain brings additional useful information to characterize

the imaged materials.

Index Terms— ARMA, CARMA, ultrasound, tissue

characterization, exponential spline

1. INTRODUCTION

In ultrasound diagnostic, the acquired image is a rich source

of information pertaining to the imaged tissue, even though

some of it is not directly accessible for human visual inspec-

tion. To reveal this hidden information, it is necessary to

resort to computer-aided tissue characterization to capture

several features carried by medical sonography and to corre-

late them to the state of the imaged tissue. In particular, the

statistical modeling of discrete ultrasound signals has been

widely employed to derive interesting properties from esti-

mated model parameters that are useful in the context of tissue

characterization. Among them, shift-variant autoregressive

moving-average (ARMA) processes were found suitable to

model the ultrasound signals and images and to make the

acquisition more robust in its estimation of the uncorrupted

tissue response [1, 2]. More recently, 2D ARMA modeling

was proposed to improve computer-aided detection of breast

tumors [3, 4].

Although continuous-time ARMA (CARMA) stochastic

processes have been successfully exploited for image mod-

eling [5, 6], the continuous-domain approach has never been

investigated in the processing of ultrasound images. In this

study, we consider the radio-frequency (RF) ultrasound sig-

nal as a sampled CARMA process and recover its CARMA

parameters from the traditional ARMA coefficients through

an indirect approach.

The ARMA coefficients are easily computed by mini-

mizing the prediction error [7]. Then, the CARMA param-

eters can be estimated from their discrete-domain counter-

part by mapping the ARMA model back in the continuous

domain [8]. In doing so, both the exact discretization of

CARMA model and the exponential properties of the auto-

correlation function in the discrete and continuous domains

must be taken into account. As was shown in [9], the exact

link between ARMA and its corresponding CARMA model

can be established, provided one is willing to interpolate the

discrete signal by exponential B-splines specific to the con-

sidered model [10, 11]. In situations where a sufficiently high

sampling frequency is employed, it is beneficial to exploit the

dependence of the exponential B-spline on the ARMA pa-

rameters of the sampled model. This, along with a numerical

optimization scheme, allows for the accurate estimation of

the continuous-domain model parameters.

Here, we analyze the CARMA parameters of ultrasound

signals in terms of their ability to capture information about

the concentration of scatterers in imaged materials. For this

purpose, we have created ultrasound images of phantoms

with various concentrations of scatterers. The validation of

CARMA and ARMA models in terms of discrimination per-

formance shows that our continuous-based approach is more

efficient than the traditional one. We believe that our un-

conventional ultrasound modeling is robust with respect to

the effects of the system and has a good potential for tissue

characterization.

We present the CARMA model for ultrasound signals in

Section 2, and describe the indirect method for estimation of

CARMA parameters in Section 3. The results of the com-

895978-1-4244-4128-0/11/$25.00 ©2011 IEEE ISBI 2011



parative analysis between CARMA and ARMA coefficients,

performed on phantom images, are collected in Section 4. We

conclude and discuss future perspectives on CARMA model

for ultrasound images in Section 5.

2. CARMA AND ARMA MODELING

We assume that the spatial dependence of the effects of the ac-

quisition system is weak. This allows us to focus on a segment

of the ultrasound image and to consider that its characteristics

are locally shift-invariant [12]. Then, the 1D discrete-time ul-

trasound signal y[k] can be modeled as a spatially invariant

sampled CARMA process y(t), where the continuous-time

Gaussian white noise w(t) with variance σ2 represents the in-

novation signal.

For a CARMA model of order (n,m), the spectrum of

y(t) is expressed as

Φ(jω;π) = σ2

∣∣∣∣
∏m

i=1 (jω − βi)∏n
i=1 (jω − αi)

∣∣∣∣
2

= σ2

∣∣∣∣∣
∑m

i=0 bi (jω)
i∑n

i=0 ai (jω)
i

∣∣∣∣∣
2

, (1)

where π = (α,β) = (α1, . . . , αn, β1, . . . , βm) is the collec-

tion of parameters that contains the poles αi and the zeroes

βi of the system, while ai and bi are the related polynomial

coefficients.

In [9], it was shown that the sampling of the model (1)

leads to a discrete ARMA model of order (n, n− 1). For the

sake of simplicity, in the sequel we consider a unit-sampling

interval. The discrete spectrum is then given by

Φd(z;π) = λ2 Hd(z;π)Hd(z
−1;π), (2)

where

Hd(z;π) =

∏n−1
i=1

(
1− δi z

−1
)∏n

i=1 (1− γi z−1)
=

∑n−1
i=0 di z

−i∑n
i=0 ci z−i

. (3)

The sampled ultrasound signal, which represents the avail-

able data, is thus modeled as a discrete ARMA (n, n − 1).
In this context the autocorrelation function of (1) is derived

from its discrete samples thanks to interpolation by shifts of

the exponential B-spline function η(−π:π)(t) [10], where the

symbol “:” indicates the union with additional opposite poles

and zeroes, and where

ηπ(t) = F−1

{
n∏

i=1

1− eαi−jω

jω − αi

m∏
i=1

(jω − βi)

}
(t). (4)

For this reason, the zeroes of the ARMA filter in (3) are the

roots of the z-transform of the exponential B-spline samples

B(−π:π)(z) =
∑

k∈Z
η(−π:π)[k] z

−k that are located on the

unit circle:

B(−π:π)(z) = λ2
n−1∑
i=0

di(π) z
−i

n−1∑
i=0

di(π) z
i. (5)

Algorithm 1 Estimation of CARMA parameters

• Discrete-domain estimation of parameters

Estimate (ĉi, d̂i) and (γ̂i, δ̂i) by minimizing the prediction error from y[k]

Set λ̂2 = VAR{y[k]}
• Continuous-domain estimation of parameters

Set α̂i = log(γ̂i) ⇒ α̂

Set β̂ = argminβ

�
�
�d̂ − d(α̂,β)

�
�
�

2

Set σ̂2 = λ̂2

η(−π̂:π̂)[1]
∏n−1

i=1
−1

δ̂i

∏n
i=1

eα̂i
[9]

These expressions present a useful link between the discrete-

and continuous-domain ARMA models, and describe the

mapping required to extract CARMA parameters from ARMA

coefficients.

3. CARMA MODEL ESTIMATION

When the sampling frequency is high enough, the estima-

tion of the CARMA parameters through indirect methods is

efficient [8], and there should be no need to consider ap-

proaches focusing on several bands [9]. Fortunately, high-

frequency sampling operations are prevalent in ultrasound di-

agnostic. Thus, the derivation of a CARMA model by the in-

verse mapping of ARMA parameters offers good estimation

performances.

We assume here to know the ARMA model orders, which

can be selected empirically providing a good fitting of the

model to the signal power spectrum. In this selection it is

necessary to respect the constraint that the relative order of the

discrete-time model must be 1 for the signal to be a sampled

CARMA process. The CARMA model order n is constrained

to the ARMA orders, while order m can be fixed to provide an

equal number of parameters for CARMA and ARMA models.

The ARMA parameters (ci, di) and (γi, δi) can be com-

puted by the standard minimization of the prediction error [7],

which provides the estimated values (ĉi, d̂i) and (γ̂i, δ̂i).
While the link between the continuous-domain poles αi and

the discrete-domain poles γi is a trivial exponential mapping

(in high-frequency sampling conditions), the expression of

the discrete-domain zeroes δi is a complicated function of

both continuous-domain poles and zeroes, as can be seen

from (5).

Since B(−π:π)(z) depends solely on the CARMA param-

eters, it is possible to estimate the zeros βi by the numerical

minimization of the distance between the estimated ARMA

coefficients d̂i and the function di(π). The latter can be ex-

pressed as di(α,β), which highlights the separation between

the collection of poles α and the collection of zeroes β. The

parameters di(α,β) can be built from the coefficients of the

polynomial that corresponds to the roots of B(−π:π)(z) on

the unit circle. The collection of coefficients is indicated by

d. Likewise, the collection of estimated coefficients of the

numerator of the ARMA model numerator is d̂.

Setting λ̂2 as the variance of the RF signal samples y[k],
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we can estimate σ2 from the link between the variances of

the discrete and continuous innovation signal reported in [9].

The indirect method for CARMA model estimation is sum-

marized in Algorithm 1. We used this algorithm to compute

ARMA and CARMA parameters from a sequence of phan-

tom images with various concentrations of scatterers. The

two models were compared in terms of classification perfor-

mance, as described in the next section.

4. EXPERIMENTS AND RESULTS

The ultrasound images were realized using as scatterers ul-

trafine polyamide particles (Orgasol c©, Arkema, France) of

diameter 10 ± 2μm and density 1030 kg/m3. The tissue-

mimicking phantoms were prepared by mixing a specific con-

centration of Orgasol c© particles with distilled water. A mag-

netic agitator preserved the solution homogeneous through-

out the acquisition. In our experiments, we used five different

mixtures having Orgasol c© concentrations of 0.5%, 0.75%,

3%, 6%, and 12%. Low and high concentrations mimic ran-

dom and dense mediums respectively.

The RF signal was acquired by a high-resolution ultra-

sound scanner (Vevo 770, Visualsonics, Toronto, Canada) at

a central frequency of 30MHz and at a sampling frequency of

500MHz with 8-bit resolution. For each phantom three video

acquisitions were made. A selection of 90 scanlines from the

central frame of each video sequence was used (about 300
samples per concentration). Along each scanline, the RF sig-

nal was used to compute the ARMA and CARMA param-

eters, as explained in Section 3, except that we found it is

more convenient to numerically optimize real polynomial co-

efficients, as opposed to complex poles and zeros.

In order to ensure a good fit of the available data, the

orders of the CARMA model were chosen as m = 2 and

n = 4. This provides an ARMA(4, 3) which has been shown

a good model for ultrasound signal [3, 4]. Without loss

of generality, we constrain the first polynomial coefficients

to take a unit value, so that a0 = b0 = c0 = d0 = 1.

The process is thus characterized by the four pole param-

eters a = (a1, a2, a3, a4), two zero coefficients, and the

variance of the innovation signal, which we represent by

the collection b = (b1, b2, σ
2). The orders of the ARMA

model are constrained because of the sampling process per-

formed on the continuous-time model: the number n = 4 of

poles is the same, while there are n − 1 = 3 zeroes. The

ARMA model parameters are represented by the collections

c = (c1, c2, c3, c4) and d = (d1, d2, d3). Finally, the full set

of parameters is a seven-attribute vector for both models.

The Mahalanobis distance along a single feature provides

information about the individual discrimination power of the

considered feature for distinguishing between two concentra-

tions of scatterers [13]. We show in Table 1 the Mahalanobis

distance projected onto the direction corresponding to the co-

efficients on the rows belonging to the two analyzed models.

Table 1. Mahalanobis distance for various concentrations.

Model J[.5%,.75%] J[.75%,3%] J[3%,6%] J[6%,12%]

CARMA a4 14.01 10.55 2.13 4.44
b2 11.30 39.18 5 · 10−4 0.17

ARMA c4 0.56 5.22 0.33 0.37
d3 2.73 12.02 0.19 0.08

We chose the most significant coefficients, separately for each

model. The columns of the table represent the binary classi-

fication task of two consecutive concentrations of scatterers,

where J[x,y] is the Mahalanobis distance between the sample

clusters with concentration x and y. From this first analysis,

it is possible to observe that (i) the higher the concentration of

the scatterers, the more difficult the discrimination by a sin-

gle coefficient; (ii) the CARMA coefficients clearly provide

higher distances, which eases the classification task.

To extend these results to the classification of joint param-

eters, we performed several multiclass discrimination experi-

ments where all available parameters were involved, for both

models. The learning scheme used was a support-vector ma-

chine with Gaussian kernel, whose parameter had been tuned

by cross-validation, separately for each classification model.

We report in Table 2 the rate of misclassification (averaged on

20 experiments) for the four multiclass discrimination prob-

lems listed in the first column. The classifier was first trained

on CARMA and ARMA pole coefficients a and c. Then, it

was trained on the zero coefficients and variances b and d of

both models. Finally, the learning was performed on all the

available coefficients for each model.

The classification results show that the proposed CARMA

coefficients are more sensitive to differences in the concentra-

tion of scatterers, above all when the discrimination is multi-

class. Continuous-domain parameters favour a better recog-

nition score and represent tissues of different concentrations

in more compact and better discernible clusters, as illustrated

in Figure 1. The seven-dimensional samples in these scatter

plots are normalized and projected onto a plane where they

have, at the same time, maximum inter-class distance and

minimum intra-class variance [13]. The bivariate distribution

of samples is described by a 2D Gaussian fitting for each cat-

egory, whose ellipse at a probability density function of 80%
is shown in the figures. We observe that the clusters are better

defined in the space of CARMA coefficients than in the space

of the traditional ARMA parameters.

The difference of performances between CARMA-based

and ARMA-based classifiers of the last two columns in Ta-

ble 2 is also verified by resampled paired t-tests. These statis-

tic tests, performed on the misclassification errors obtained

in 20 experiments, indicate in all the four classification prob-

lems an increment in performance of CARMA-based classi-

fier respect to ARMA-based classifier at a 5% significance

level. The improvement of performance is significant and en-

courages the application of continuous-time models on in vivo
images for the characterization of ultrasound tissues.
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Table 2. Rate of misclassification: [mean value ± standard deviation] of 20 experiments (1CARMA model, 2ARMA model).

Features for classification
Classes poles zeroes all parameters

Concentration a1 c2 b1 d2 (a,b)1 (c,d)2

[0.5%, 0.75%] 0.007 ± 0.005 0.024 ± 0.006 0.013 ± 0.005 0.008 ± 0.003 0.007 ± 0.003 0.010 ± 0.003
[0.5%, 0.75%, 3%] 0.010 ± 0.003 0.024 ± 0.004 0.008 ± 0.003 0.032 ± 0.006 0.003 ± 0.002 0.012 ± 0.003
[0.5%, 0.75%, 3%, 6%] 0.116 ± 0.006 0.127 ± 0.006 0.156 ± 0.007 0.270 ± 0.008 0.069 ± 0.006 0.113 ± 0.006
[0.5%, 0.75%, 3%, 6%, 12%] 0.126 ± 0.007 0.135 ± 0.006 0.273 ± 0.009 0.368 ± 0.010 0.085 ± 0.006 0.122 ± 0.006

5. CONCLUSIONS

We presented a continuous-time ARMA model for RF ul-

trasound signals and proposed an indirect approach to com-

pute CARMA parameters based on the properties of expo-

nential B-splines. This work includes a comparative study

of the proposed CARMA coefficients and of the traditional

ARMA parameters that are widely used for the analysis of

ultrasound images. We performed experiments on phantom

images specifically designed with various concentrations of

scatterers. We focused on the comparison of CARMA and

ARMA features in terms of discrimination performances. The

experimental results reveal that the new CARMA features are

able to capture more efficiently the information about the con-

centration of scatterers. Thus, it can be extremely useful for

the characterization of in vivo ultrasound tissues.

Fig. 1. Scatter plots of normalized CARMA parameters in (a) and
ARMA coefficients in (b) for several scatterer concentrations.
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