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Abstract: We present a fast algorithm for fully 3D regularized X-ray to-
mography reconstruction for both traditional and differential phase contrast
measurements. In many applications, it is critical to reduce the X-ray dose
while producing high-quality reconstructions. Regularization is an excellent
way to do this, but in the differential phase contrast case it is usually applied
in a slice-by-slice manner. We propose using fully 3D regularization to im-
prove the dose/quality trade-off beyond what is possible using slice-by-slice
regularization. To make this computationally feasible, we show that the
two computational bottlenecks of our iterative optimization process can be
expressed as discrete convolutions; the resulting algorithms for computation
of the X-ray adjoint and normal operator are fast and simple alternatives
to regridding. We validate this algorithm on an analytical phantom as well
as conventional CT and differential phase contrast measurements from
two real objects. Compared to the slice-by-slice approach, our algorithm
provides a more accurate reconstruction of the analytical phantom and
better qualitative appearance on one of the two real datasets.

© 2016 Optical Society of America

OCIS codes: (100.3190) Inverse problems; (100.3010) Image reconstruction techniques;
(110.7440) X-ray imaging.
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1. Introduction

In X-ray computed tomography (CT), the images of slices of an object (a tomogram) are re-
constructed from a set of X-ray images of the object taken from different angles [1]. This tech-
nique has found applications in a broad range of areas including materials science engineering,
archaeology, biology, and medicine [2, 3]. Because X-rays can have harmful effects on living
tissue, it is crucial in biomedical applications to keep the X-ray dose low; however, doing so
generally degrades the quality of signal used for reconstruction [4].

In conventional (absorption contrast) X-ray CT, contrast in the X-ray images comes from
the X-ray intensity attenuation of the sample. One alternative to absorption contrast is phase-
contrast imaging (PCI), where contrast is created by changes in the phase of the X-ray beam
induced by the sample. The advantage of PCI is that, for some biologic samples, the X-ray
absorption is smaller than the induced phase shift, meaning that PCI offers improved contrast.
The challenge of PCI is that phase information is more challenging to measure than intensity.
As a result, X-ray PCI measurements require special physical setups. These include analyzer-
based [5-7], free space propagation [8—10], and interferometric methods [11-13]. See [14, 15]
for more information on the theory of X-ray PCI.

Our focus in this paper is grating interferometry, which produces three complementary con-
trasts: absorption contrast, phase contrast, and dark field measurements. This makes grating
interferometry suitable for a broad range of applications, such as material sciences (e.g., ma-
terial testing), biomedical research (e.g., monitoring drug effects), or even clinical diagnostics
(e.g., mammography). The phase measurement is linked to the derivative of the X-ray transform
of the real part of the refractive index map of the object and is therefore a type of differential
phase contrast (DPC) imaging. It has been applied successfully to biological samples such as
insects [13, 16], rat-brain tissue, and human breast tissue [17].

In a separate line of research, iterative reconstruction methods involving regularization have
been developed that can produce high-quality reconstructions from fewer and noisier images
than unregularized methods (see [18] for a review). Broadly, regularization works by including
prior knowledge about the object into the reconstruction process, promoting, e.g., the piecewise
smoothness of the reconstruction. There have been several recent efforts to use these techniques
for DPC CT reconstruction: [19] explores 3D unregularized iterative reconstruction; [20] uses
algebraic iterative reconstruction with no regularization for 3D reconstruction; [21] and [22] use
regularized iterative reconstruction in 2D; and [23] and our own [24] perform 3D regularized
iterative reconstruction slice-by-slice, where the reconstruction (including the regularization)
occurs on a series of 2D slices, which are then concatenated to form a 3D reconstruction.

Slice-by-slice reconstruction is attractive when the X-ray projection angles vary around a
fixed axis, as is the case in [23] and [24], because any given X-ray travels only within a sin-
gle slice. Thus the 3D tomography reconstruction problem naturally decomposes into a set of
2D tomography reconstruction problems. The slice-by-slice paradigm also has roots in light mi-
croscopy, where the axial resolution is significantly worse than lateral, which means it is natural
to treat data as a stack of slices. Finally, slice-by-slice reconstruction methods are practical to
implement: when individual views are one megapixel images, the complete tomographic recon-
struction is on the order of a gigavoxel volume, an unwieldy size. The slice-by-slice approach
never requires storing this complete reconstruction in memory.

As an alternative to slice-by-slice reconstruction, we propose performing X-ray reconstruc-
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tion in 3D. The main benefit of fully 3D reconstruction is that regularization can then be defined
in 3D as well. For example, total variation (TV) regularization applied in a slice-by-slice way
promotes each slice to be piecewise constant, while TV applied in 3D promotes the reconstruc-
tion volume to be piecewise constant. Or, the Hessian Schatten-norm regularization [25] can be
used to penalize second-order derivatives. This should enable the 3D reconstruction to achieve
a more favorable trade-off between dose reduction and reconstruction quality. The challenge of
fully 3D reconstruction is that it requires the entire reconstructed volume to fit in memory and
can be computationally slow.

Finally, we note that there is ongoing work on creating fast methods for X-ray CT reconstruc-
tion across a variety of scan geometries and problem formulations, including, e.g., [26], [27],
and our own work, [28]. Broadly, these either propose faster optimization methods or accelerate
the computations necessary for each iteration, including forward projection (H), back projec-
tions (H'), and the normal operator (H? H). Our approach here is of the latter type. Distinct
from the regridding of [28], we instead follow the lead of [29], where the quantities are com-
puted using discrete convolutions and lookup. We extend this approach to 3D and to the DPC,
providing fast, simple, and accurate algorithms for back projection and the normal operator.

In summary, we propose a fast regularized reconstruction algorithm for parallel-beam X-ray
CT. This algorithm is applicable to both DPC and conventional X-ray tomography and works
both in 2D and 3D; and, to our knowledge, it is the first to reconstruct DPC tomograms in full
3D, including 3D regularization. The speed of the method comes from our proposed extension
of the convolutional versions of back projection and the normal operator from [29] to 3D and
to DPC.

The structure of the paper is as follows. In Section 2, we formulate the X-ray tomography
problem for both the conventional and DPC setting. In Section 3, we present our reconstruction
algorithm, including our discretization technique, optimization scheme, and fast implementa-
tion methods. In Section 4, we present experiments on the speed and accuracy of our proposed
fast algorithms. We then show reconstructions of synthetic and real data using our method in
both a slice-by-slice and fully 3D setting. We conclude in Section 5.

2. Problem formulation

In this section, we fix our notation and formulate the CT reconstruction in general terms, both
in the traditional absorption contrast setting and for DPC CT.

2.1. CT reconstruction

We begin with the definition of the X-ray transform. Let f be function of R¢, f : RY — R (usu-
ally with d € {2,3}). The X-ray transform of f, denoted H2y {f}, computes the line integrals
of f along the direction specified by a unit vector 6 € R?,

Do {f}(y /f (19+P .y (1)

where Pg | is ad x (d — 1) matrix that has as its columns an orthogonal basis for the tangent
space of 8 and y is a vector in that tangent space specifying the offset of the line. See Fig. 1 for
a diagram of the geometry of the X-ray transform.

We will rely on two properties of the X-ray transform, linearity,

Polof+Bgh(y)=aPe{f}(y)+BZPe{g}(y), 2)

and projection translation invariance,
Po{f(-—=x0)}(y) = Po{f}(y —Pyix0). )
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(a) f(x), XX view (b) f(x), Xox] view
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Fig. 1. Geometry of X-ray projections. (a)-(c) A function of 3D space, f, (grey-green)
and an X-ray projection plane spanned by the columns of Pg . (pink), shown from two
orthogonal views and in perspective. (d) The X-ray projection of f onto the pictured plane
plotted in the coordinate system specified by Pg . . In this geometry, x; =y;.

Both of these can be verified via Eq. (1).

In the computed tomography reconstruction problem, we are given a set of measurements,
g, called a sinogram, that corresponds to samples of &g {f} (y) at known locations and with
known projection directions. We aim to discover f from g. If g has N elements, then we can
summarize the measurement process as the operator H : L,(R?) — R" and write g = H f. The
challenges in this problem are that the measurements are corrupted by noise and may cover
only a small number of 0s. The result of these is that instead of solving for f directly, we need
to solve the optimization problem

f*:arg;nian—HfH-i—‘P(f)a )

where W is a regularization function that encodes the desirable properties of f*, e.g., piecewise
smoothness, nonnegativity, etc.
2.2. Differential phase contrast X-ray tomography

Our formulation so far has been for conventional CT, but it easily generalizes to DPC CT. In
DPC CT, what is measured is not the phase contrast, but the derivative of the phase contrast
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along a direction perpendicular to the projection direction (i.e. along a direction in the projec-
tion plane). Thus the DPC X-ray transform of f is

Pou{f}(y) = W,VZe{f}(¥)), (5

where u € R4~ is a unit vector that specifies the direction of the derivative and V is the gra-
dient operator. The key fact about this definition is that the DPC X-ray transform is linear and
projection translation invariant (Eqgs. (2) and (3)), just like the conventional X-ray transform.
Therefore our subsequent discussion holds equally for both transforms. We continue with the
understanding that each expression can be generalized to DPC CT by replacing &% {f} with
Po.u{f} and applying Eq. (5). As the next section will show, doing this will only require know-
ing the derivative of the X-ray transform of the discretization function used.

3. Fast 3D reconstruction algorithm

We now describe our fast, fully 3D reconstruction algorithm. While the discretization and op-
timization steps are standard in the literature, the fast algorithms for H' g and H He in Sec-
tion 3.3 are new.

3.1. Discretization

The immediate problem with Eq. (4) is that it is an optimization over the continuous quantity
f; in order to store f, we need a discrete, finite-length representation of it. To this end, we
represent f by a sum of shifted kernels:
fx) =) clk]o(x—Ask), ©)
ket

where % is a finite set of integer multi-indexes and Ay is a d x d diagonal matrix containing
the sampling step in each of d dimensions. This discretization allows the continuous function
f to be represented by Ay, the values c[Kk] for k € ¢, and a formula for ¢. Common choices
for ¢ include voxels, splines [30-32], or other blobs. Also note that, in practice, we store the
values of ¢ and (at least in the isotropic case) its X-ray projection in lookup tables, thus there
is no computational overhead for rigorously discretizing.

Combining Eqgs. (1) and (6) along with the linearity and projection translation invariance of
the X-ray transform,

Ze{f}(y)= Y ck]Z6{p}(y—Py.AK). (7)
ke
This makes intuitive sense: the X-ray transform of f is just a sum of the X-ray transform of
each ¢ shifted to the correct locations in the projection domain. We let g be a sampled version
of this to complete our discrete forward model,
Hem] =gm| = P {f} (Aym) = Z ck] Zg {0} (Aym — P, Ask), (8)
ket
where, paralleling Eq. (6), m € ./ is a finite set of integer multi-indexes, and Ay is a (d —1) x
(d — 1) diagonal matrix containing the sampling step of the projection domain in each of d — 1
dimensions. Note that we do not include a detector model (i.e. we have point measurements of
the sinogram); this is for simplicity and because Eq. (6) is enough to restrict the sinogram to
be bandlimited as will be required later. A detector model can be added without affecting the
algorithms we present.

In practice, g will consist of measurements of the X-ray transform of f from more than one
projection direction, {GV}L/;O'. For now, we describe our scheme for one 6. The extension to
multiple s is simple due to the linearity of the X-ray transform; we give the corresponding
formulas in the pseudocode for the algorithm in Fig. 2.
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3.2.  Optimization scheme

After this discretization, we rewrite Eq. (4) as a discrete optimization problem,

¢" = argmin||g — He|| +¥(c), )
c

where H is defined as in Eq. (8) and ¥ now represents the discrete version of the regularization
function.

We approach the optimization problem, Eq. (9), using the alternating direction method of
multipliers (ADMM) [33] (now ubiquitous in medical image reconstruction), which gives a
recipe for solving difficult optimization problems via solving a sequence of simpler subprob-
lems. Specifically, we separate the regularization term ¥(c) into its quadratic and non-quadratic
parts so that ¥(c¢) = ¥;(c) + ¥, (Lc), where L is the regularization operator. We perform vari-
able splitting to arrive at

¢" =argmin llg —He|| + A1 ¥1(¢) + 1,2 (u),
¢ (10)
subjectto u = Le.

We then form the equivalent augmented Lagrangian,
1
Z(c;u,a) = S|lg—Hel* + 4% (¢) + 1% (u) + & (Le —u) + %HLC —ul?, D

and solve via the cyclic update

¢ argmin 2 (c,u¥, o) (12)
C

u ! argmin 2 (K u, of) (13)
u

o ok (L — k. (14)

Update Eq. (12) is a quadratic optimization in ¢ with gradient
k
a
V.Z(c,uf, af) = (HTH+uL'L+ 1, V¥ )c — (HTg+ uL” (uk - “) ) . (15)

We solve it iteratively using the conjugate gradient algorithm [34]. Update Eq. (13) is solved us-
ing the proximal map associated with W», which is known for the popular regularizers including
total variation (TV).

3.3.  Fast algorithms

The bottleneck of our optimization scheme is Eq. (12), and specifically the computation of
H" Hc and H g in the conjugate gradient step, Eq. (15). The computation of H He is especially
important as it happens once per iteration of the conjugate gradient. The value of H g can be
computed once and stored, but the straightforward implementation remains prohibitively slow
(on the order of days for 3D reconstructions with a large number of projections on a consumer-
level laptop).

In the following sections, we describe our algorithms for these two computations, which
extends the approach of [29] to 3D. In both cases, we uncover a discrete convolution and com-
pute it with the FFT. Though we do use the Fourier transform and lookup/interpolation, our
method is distinct from the class of regridding techniques (used both in CT [28] and widely in
MRI [35]) which rely on the Fourier slice theorem and interpolation in the Fourier domain. We
provide code for these methods on our website, http://bigwww.epfl.ch/algorithms.html.
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33.1. H'g

We write the space-domain version of H' g using the properties of the ¢ inner product,

(H"g,c) = (g,He) (16)
= Y gm] ) ck]Z {9} (Aym—PyiAk) (17)

meA# ket
=Y ckl Y gm]P{g}(Aym—PyiAk) (18)

ke me#

and thus
H'g) k= Y gm]Z{¢}(Aym—P, Ak). (19)
meA

Computing H” g via Eq. (19) is slow. To compute H g on a K x K x K cubic grid, (k € # =
Z?() with measurements from an M x M square grid (m € .# = wa) the computation requires
O(K3M?) operations per view. If %9 {¢} has non-zero support with width W < M, then the
cost is reduced to O(K3W?). We can, instead, approximate Eq. (19) using a lookup table for its
entire right hand side. The lookup table is generated by a discrete convolution of g (optionally
upsampled) and a sampled version of % {¢}, which can be computed (either via FFT or in
space) on any grid that has a step size that is an integer fraction of Ay. The computation then
requires O(M>log M) + O(K?) operations for the convolution and the lookups, respectively.

For comparison, the regridding [28] approach to the same problem uses O(M?logM) +
O(W3M?) (where W is the width of the kernel used in the Fourier domain) per view, plus a
3D FFT, O(K>log K). Whether our convolution-based approach is faster than gridding depends
on the specific implementations used and number of views (gridding is more advantageous
when the number of views is large because the cost of the 3D FFT is amortized). In practice,
our method is of comparable speed (or slightly faster) with the advantage of simple implemen-
tation and parameter selection. It also offers easy parallelization, either across the views or the
locations k € ¢ . Finally, it works for DPC simply by replacing Zg {¢} with Zg , {@}, while
it is not immediately clear how to extend regridding to DPC.

3.3.2. HTHc

We now turn our attention to computing H” He. To arrive at the space version, we combine Egs.
(8) and (19), giving

H'He)k| = Y Y c[K]Z {0} (Aym—PyiAK) P {0} (Aym—PyiALk). (20)
meZ kK et

Computing (H' He) using Eq. (20) directly is slow. For k € Z3 and m € Z2,, the computation
requires O(K>M?) operations per view (the sum of the number of operations in Egs. (8) and
(19)). And, as before, this cost is reduced to O(K>W?) if P4 {@} has non-zero support with
width W < M.

Instead of using (20) directly, we manipulate it to uncover a discrete convolution. We first
interchange the sums, giving

HHo)K = Y K] Y Zo{o}(Am—Py AK) P {0} (Aym—PyiAk). (21)
Kex me./

We note that for bandlimited functions f and g, we can show using the sampling theorem [36]
that

1
Y, f(Am)g(Am) = f(x)g(x)dx, (22)
mezd det(A) Rd
#261788 Received 6 Apr 2016; revised 7 Jun 2016; accepted 8 Jun 2016; published 20 Jun 2016

© 2016 OSA 27 Jun 2016 | Vol. 24, No. 13 | DOI:10.1364/0OE.24.014564 | OPTICS EXPRESS 14571



so long as the sampling rate specified by A is higher than the Nyquist rate of f and g. Using
this fact, we have

@ c[K'] /
Q= keZ/ det(Ay) /R[H P {9} (v~ Py Ak) P {0} (y — P, AK)dy  (23)
@ C[k/} ‘ / / N go!
iy det(Ay) ./nw1 Po {0} (y —PyiAx(K'—K)) P {0} (v)dy (24)
= Z C[k/](yg{(p}*ﬂg {(p}(_))(Pele(k/—k)) (25)
Kex
. det(Ay) (cxr)[K] 6

where (a) holds only when % {¢} is bandlimited and the sampling rate specified by Ay is
higher than the corresponding Nyquist rate; (b) results from the change of variables y' =y —
P, Axk;

rlk] = (Zo {0} Zo {0} (—))(PyAxK); @7

and (c) also relies on Py { @} being bandlimited.

Equation (26) expresses H” He as a discrete convolution between the current discretization
values, ¢, and a discrete kernel, r, which is a sampled version of the autocorrelation of %y {¢}.
Thus, using the FFT, computing H” He requires O(K?> log K) operations, plus the one-time cost
of computing r[Kk] for k € .#". Depending on the choice of ¢, we may have an easy-to-compute
analytical expression for each r[k], resulting in O(K?) operations. If not, we can approximate
r by computing a discrete autocorrelation of a finely sampled version of %2y {¢@} and then
interpolating to find the necessary values, resulting in O(M?1logM) + O(K?>) operations for the
autocorrelation and interpolation, respectively.

The straightforward way to compute H H with regridding would require double the time
of H, so again O(M?*logM) + O(W3M?) per view, plus two 3D FFTs, O(K>logK). Thus,
the cost of computing the kernel in our method is again comparable in speed to regridding,
with the faster method determined by implementation and the specifics of the problem. But,
once the kernel is computed, the proposed method offers a clear improvement in runtime over
regridding, because it requires only a 3D filtering operation for each subsequent computation.

3.4. Algorithm summary

We now combine the above results and present the complete proposed algorithm, including
more implementation details and pseudocode (Fig. 2).

The input of the algorithm is a set of V sampled X-ray projections (or views), {g, L/;ol and the
description of the physical setup of those projections, comprising the corresponding projection
matrices, {P,. } and the sampling grid, .# and Ay.

There are three sets of parameters for the algorithm:

1. The reconstruction grid, £ and Ax. We typically set ¢ and Ay so that {Axm : m € ¢}
is an isotropic grid with dimensions ranging from 80 x 80 x 80 to 300 x 300 x 300, that
covers approximately the same area in space as the input projections, {g,}. Note that
our discretization scheme has the advantage of decoupling the size and resolution of the
reconstruction from the size and resolution of the input, which is useful in practice.

2. The discretization function ¢. In this work, this is fixed to be an isotropic generalized
Kaiser-Bessel window (KBW) [37] with m = 2, a = 10.45, and a spatial support, a,
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1: procedure RECONSTRUCT({g, }, {Py. },M,Ay)
2: for all views do ‘
3: compute H g, > via Eq. (19)
4 end for
5. H'g«YyHg,
6: for all views do
7: compute r, > via Eq. (27)
8: end for
9: r<yY,r,
10: while not converged do
11: ¢ +— ADMM update > via Eqgs. (12)-(14) and with H”Hc via Eq. (26)
12: end while
13: return ¢

14: end procedure

Fig. 2. High-level description of the proposed algorithm.

equal to 4 times the sampling step in space. (We pick these values based on our analysis
in [38], which shows that they improve the approximation properties of the kernel. We
choose the KBW window over, e.g., splines, because using an isotropic window gives
a computational advantage and because in the high noise/low views regime we expect
approximation errors to be negligible compared to other sources of error.) One subtlety
of our algorithm is that our adjoint calculation Eq. (19) is fastest when ¢ has small spatial
support, while our kernelization Eq. (26) only holds with equality when ¢ is bandlimited.
Our choice of ¢ thus means Eq. (26) is an approximation, but it is highly accurate because
¢ is nearly bandlimited.

3. The optimization parameters from Eq. (11): A1, W1, A2, ¥2, a, and u. The choice of
the regularization functions ¥ and ¥, is application dependent, but here we use the
popular total variation regularization, which corresponds to ¥;(¢) = 0 and W»(Lc) =
|ILe||1, where Le[k] computes the derivative of f(Axk) in each of the spatial dimensions.
The parameters o and u can be reduced to a single parameter by writing the ADMM
in the scaled form [33] and only affect the convergence speed of the optimization; we
therefore fix this value and use enough ADMM iterations that all our reconstructions
converge satisfactorily. Finally, A, controls the strength of the regularization relative to
the data fit term and we set it via a parameter sweep.

The output of the algorithm is ¢, which is the set of coefficients used in the discretization Eq.
(6). For display purposes, it is necessary to compute the values of f(x) at discrete locations; we
choose to use the same locations as the reconstruction grid, i.e. {Axm: m € J¢'}.

4. Experiments

We now present our experiments. In the first set of experiments, we examine the speed and
accuracy of our fast algorithms for H’ g and H” He as compared to the exact implementation
of the same. In the second set of experiments, we compare our proposed fully 3D reconstruc-
tion algorithm to a slice-by-slice algorithm on a digital phantom, a physical phantom, and a
biological specimen.
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4.1. Datasets

We use three datasets to evaluate the proposed reconstruction algorithm:

1. The Shepp3D dataset comes from an analytical phantom comprised of ellipsoids. Specif-
ically, we use nine of the ellipsoids from the 3D version of the Shepp-Logan phan-
tom [39]: the ten corresponding to the original 2D Shepp-Logan phantom minus the
skull, shown in Fig. 1. We select these for their familiarity and ease of visualization. We
generate a sinogram, g, from this phantom by computing Eq. (1) analytically on a 601
x 401 grid for 1,201 angles spaced evenly from O to 7, inclusive. We then add zero-
mean Gaussian noise to the sinogram so that the signal-to-noise ratio (SNR, defined as
1010g,0(Xm |g[m][?>/ Lm [n[m]|?) dB, where g is the signal and n is the noise) is -10dB.
The resulting measurements have values in the range [-0.0164, 0.0120] and the noise
has a standard deviation of 0.0106. The Shepp3D phantom is piecewise constant and
therefore a good fit for TV regularization.

2. The phantom dataset comes from a physical phantom composed of a tube and three
cylinders containing liquids with different refractive indices. Each view has dimensions
1642 x 537, and the views were collected for 1,1201 angles spaced evenly from O to 7,
inclusive. For this dataset, we have both conventional and DPC sinograms.

3. The rat brain dataset comes from a rat brain embedded in liquid paraffin at room tem-
perature. Each view has dimensions 1493 x 377, and the views were collected for 721
angles spaced evenly from O to 7, inclusive. For this dataset, we have both conventional
and DPC sinograms.

In all three cases, the X-ray projections are collected around a fixed axis, as shown in Fig. 1.
Specifically, the y, axis is the same as the x» (or, equivalently, the second column of Pg L s

[001]7.) As a result, each projection can be described by a single angle rather than three, as
would be the case in general in 3D. We use fixed-axis projections to facilitate comparison be-
tween our fully 3D approach and the slice-by-slice approach, but we stress that our formulation
and algorithm apply to all parallel-ray geometries.

4.2.  Speed and accuracy of proposed fast algorithms
42.1. HT

To assess the speed and accuracy of our algorithm for H g, we use the Shepp3D dataset and
calculate H g using two methods: (1) The exact method implements Eq. (19) by looping over
k and m using a precomputed lookup table for evaluating P {@} (v). It is written in C and
compiled into a MATLAB MEX file. Because the lookup table used is 1D and can therefore be
very fine, we take this method to be the ground truth for computing H' g. (2) The fast method
computes a lookup table for the entire right hand side of Eq. (19) using discrete convolution as
we proposed in Section 3.3.1. It is written in MATLAB. The upsampling rate of the grid used
for this convolution is a parameter of the method, with an upsampling rate of ¥ meaning the
lookup table is computed on a grid with step Ay /u. For both methods, the width of the spatial
support of ¢ was 7 pixels of the reconstruction grid.

We compare these methods across several problem sizes, where a problem size of K x K x K
corresponds to a reconstruction grid of size K x K x K and a sinogram of size 4K x 4K
with 101 views. At each problem size, we measure the time each method takes and the SNR
(1010g;¢(Lm |gm]|?/ L |&[m]|?) dB, where g is the exact adjoint and & is the estimate). These
and all other times we report come from running the code on a single CPU without paralleliza-
tion.
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The results show that our fast algorithm is highly accurate, achieving over 70dB SNR com-
pared to the exact method when the upsampling rate is 2 (Fig. 3 left). Our method is also an
order of magnitude or more faster than the exact method (Fig. 3 right). The asymptotic analysis
in Section 3.3.1 suggests the exact method should grow like K> (because W is fixed) and the fast
method should grow like K2 log K or K>, depending on whether the lookup or convolution dom-
inates. The experiment roughly supports this analysis and suggests that the lookup in the fast
method is negligible here. Comparison to the exact method on larger problems is impractical
because it is prohibitively slow, but for reference we note that our fast algorithm can compute
H” g on a grid of size 401 x 401 x 401 from a sinogram of size 801 x 801 with 101 views with
output in approximately 2 minutes.

SNR (dB)
120

100
80
60
40
20

0 L
9 177 33 65 9 1B 33 65
problem size (px) problem size (px)

Fig. 3. Accuracy (left) and computation time (right) vs problem size for our fast algorithm
for H' g with upsamping rates of 1, 2, and 4 (left to right bars). On the right, K3 4+ C
(dashed) and K?logK + C (dotted) are plotted for comparison. Our method is a highly
accurate and consistently faster than the exact implementation.

422. H'He

We perform a similar experiment for HY He: Using a random initialization for ¢, we calculate
H” Hc using two methods: both an exact implementation of and the fast implementation Eq.
(26). (1) The exact method computes Eq. (20) by looping over m and k’ followed by m and
k, again using a precomputed lookup table for evaluating &2y {@} (y), and again written in
C and compiled into a MATLAB MEX file. We take this implementation to be the ground
truth. (2) The fast method computes the kernel, r, via a discrete convolution, Eq. (27), and
interpolation, then uses it to compute H” He via Eq. (26). It is written in MATLAB with a MEX
file to handle the interpolation. The upsampling rate for the calculation of r is a parameter of
the method.

We compare these methods across several problem sizes, where a problem size of K X K x K
corresponds to a reconstruction grid of size K x K x K and a sinogram of size 5K x 5K with
101 views.

Again, the results show that our algorithm is highly accurate, achieving greater than 70 dB
SNR even with no upsampling (Fig. 4 left). It is also much faster and scales better than the exact
implementation (Fig. 4 right). Again, the asymptotic analysis in Section 3.3.1 suggests the exact
method should grow like K3 and the fast method should grow like K?logK or K3, depending
on whether the lookup or convolution dominates. The experiment supports this analysis for the
exact method, but suggests for the fast method that runtime is dominated by overhead, which is
not surprising given the computations last for less than a second and involve MATLAB.
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The speed difference is even more pronounced in practice, since our optimization algorithm
requires repeated application of H H and the fast method computes a kernel once and reuses it
for each computation. As is the case with the adjoint, comparison on larger data is impractical
due to the poor scaling of the exact method. Again, we note for reference that computing the
kernel, r in Eq. (27), with ¢ of size 401 x 401 x 401, and a sinogram of size 801 x 801 with
101 views takes approximately 1 minute and thereafter a single computation of H” He takes
approximately 17 seconds.

SNR (dB)
150
100
50
0 - L] 1
93 173 33 653 93 172 33 65
problem size (px) problem size (px)

Fig. 4. Accuracy (left) and computation time (right) as functions of input/output size for our
fast algorithm for HY He with upsamping rates of 1, 2, and 4. On the right, K> 4 C (dashed)
and K2 log K 4 C (dotted) are plotted for comparison. Our method is highly accurate and is
much faster and scales better than the exact implementation.

4.3.  Fully 3D versus slice-by-slice reconstruction

We now compare the fully 3D reconstruction algorithm presented above with a slice-by-slice
version of the same.

To perform a slice-by-slice reconstruction, we set the kernel in Eq. (6) to be an isotropic
KBW in the xox; plane multiplied by a box in the x, direction. For each slice of the recon-
struction, we average the corresponding measurements in the sinogram along the y; direction,
creating a new, one dimensional sinogram, which we use to compute a 2D reconstruction. This
2D reconstruction uses the algorithm described in Section 3 with dimension d = 2. Once the
2D reconstructions are complete, we concatenate the resulting 2D c¢s along the x, direction
to complete the reconstruction. The main differences between the slice-by-slice and fully 3D
methods are therefore that (1) the regularization in the slice-by-slice reconstruction is com-
puted only within and not between slices and (2) the discretization kernel in the slice-by-slice
reconstruction is anisotropic.

4.3.1. Shepp3D dataset comparison

We first compare the slice-by-slice and fully 3D methods using the Shepp3D dataset. To eval-
uate the robustness of the methods to missing projection angles, we create downsampled ver-
sions of the sinogram containing 1201, 301, 101, 51, 26, and 13 projections. For each of these
sinograms and for each method, we compute a 161 x 161 x 101 reconstruction for a range of
8 different regularization strengths, A, = 0,a2',a22,...,a2’ with a chosen experimentally to
cover the range between too little and too much regularization (see Fig. 5 for an example). We
compute an SNR for each of these reconstructions using the analytical values of the phantom as
the oracle and report the SNR for the unregularized and the best of the regularized reconstruc-
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(a) 9.60 dB (b) 11.19 dB (c) 12.42 dB (d) 13.82 dB

N

(e) 14.32dB (f) 13.19dB (g) 11.96 dB (h) 10.99 dB

Fig. 5. Example parameter sweep from low (a) to high (h) regularization strength using the
physical phantom dataset.

tions. When using all 1201 views, these reconstructions take approximately 40 minutes for the
slice-by-slice method and 58 minutes (7 min for HTg, 5 min for r, and 100 x 27 s = 45 min )
for the fully 3D method.

Figure 6 shows a plot of SNR versus number of views for both methods with and without
regularization. In general, decreasing the number of views reduces the SNR. Regularization
greatly improves the SNR of both methods; note that this improvement comes both from noise
removal and from artifact removal as the number of views decreases, see Fig. 7 for examples.

When the number of views is high, the regularized methods perform similarly well, while
in the unregularized case, the fully 3D method gives an improvement of 3.5dB over the slice-
by-slice. This underscores that the difference between the methods is not only the 3D regu-
larization, but also that they use different discretization kernels. In this example, the isotropic
discretization kernel of the fully 3D method offers beneficial smoothing that helps remove noise
in the absence of regularization.

As the number of views decreases, the gap between the regularized methods increases, which
suggests that the fully 3D regularization better handles low-view artifacts. Qualitatively, the
difference is most apparent in the x;x; cross section (Fig. 8), where the slice-by-slice method
shows significant variability between slices. (We also note the slight improvement of the unreg-
ularized methods at low numbers of views. At such low SNR, we don’t believe these differences
are meaningful; qualitatively all the low-view unregularized reconstructions are equally bad.)

4.3.2. Phantom dataset comparison

We repeat the comparison using the phantom dataset. Again, we create (angularly) downsam-
pled versions of the sinogram containing 1201, 301, 101, 51, 26, and 13 projections and perform
a parameter sweep over 8§ regularization strengths. The phantom dataset contains both absorp-
tion and DPC measurements, so we perform reconstructions for each separately. The output
reconstructions were 417 x 417 x 135 and took approximately 180 minutes for the slice-by-
slice method and 300 minutes (35 min for HTg, 31 min for r, and 100 x 145 s = 240 min ) for
the fully 3D method when using all 1201 views.
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Fig. 6. Reconstruction quality versus number of views for the slice-by-slice and fully 3D

reconstruction methods. Reducing the number of views negatively impacts both methods,
but regularization mitigates the effect.

(a) 1201 views, effect of regularization (b) 13 views, effect of regularization

Fig. 7. Representative slices of the fully 3D reconstruction of the Shepp3D dataset. (a)
When the number of views is large, regularization only reduces noise in the reconstruction
resulting from noise in the sinogram. (b) When the number of views is small, regularization
also reduces the consequent line artifacts.

Because the phantom dataset comes from a physical phantom, we do not have access to a
ground truth for the reconstruction, as we did in the case of the analytical Shepp3D phantom.
To solve this problem, we compute the SNR for each reconstruction using the fully 3D recon-
struction with 1,201 views and no regularization as the oracle. We take this value as a measure
of the stability of the methods with respect to reduced number of views rather than as iron-
clad measure of reconstruction quality. In the absence of a known ground truth, we argue that
the best measure of the reconstruction quality is ultimately the qualitative, visual differences
between the reconstructions.

Quantitative results for this experiment are shown in Fig. 9. The same trend from the digital
phantom applies here: as the number of views decreases, so does the quality of the recon-
struction. Again, regularizing the reconstruction reduces this effect; this is intuitive since the
physical phantom is approximately piecewise constant. And again, the fully 3D reconstruction
provides a higher SNR than the slice-by-slice reconstruction for each number of views. We
provide qualitative illustration of this in Figs. 10 and 11. The two reconstruction methods are
similar when viewing XoX; cross sections, but the x| X, cross sections reveal that the 3D method
enforces better consistency between the slices than the slice-by-slice method.
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(a) slice-by-slice (b) fully 3d

Fig. 8. Representative slices of the slice-by-slice and fully 3D reconstruction of the
Shepp3D dataset from 101 views with regularization. The fully 3D achieves superior results
by enforcing consistency in all three dimensions.
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Fig. 9. Phantom dataset results.

4.3.3. Rat brain dataset comparison

Finally, we compare the slice-by-slice and fully 3D methods using the rat brain dataset. We
use the same experimental setup as for the phantom dataset, except with the number of views
being 721, 181, 61, 31, 16, and 8, and the reconstructions having size 381 x 381 x 95. Each
reconstruction took approximately 205 minutes for the slice-by-slice method and 375 minutes
(14 min for H' g, 12 min for r, and 100 x 209 s = 348 min ) for the fully 3D method when
using all 721 views.

The results (Fig. 12) are similar to the phantom experiment: the fully 3D method consis-
tently outperforms the slice-by-slice method, indicating that the fully 3D method provides a
more consistent reconstruction as the number of views decreases, but this difference has a
smaller magnitude. Qualitatively, there is not much difference between the slice-by-slice and
fully 3D reconstruction (Fig. 13). We hypothesize that this is because the TV regularization is
relatively less effective on the rat brain because it is more complex (less piecewise constant)
than the other datasets and because (compared to the Shepp3D dataset) it has a small amount
of measurement noise. We believe these results could be improved by taking measurements
with a smaller pixel size (thereby making the reconstruction more piecewise constant) or by
trying another regularizer, e.g., the Hessian Schatten-norm [25], wavelets [40], curvelets [41],
or dictionary learning [42].
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(c) 1201 views, x|x; cross section
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(a) 1201 views, xox; cross section  (b) 13 views, XX cross section (d) 13 views, XX, cross section

Fig. 10. Representative slices of the slice-by-slice reconstruction of the phantom dataset
with regularization. When the number of views is low, there is an inconsistency between

the slices apparent in the x;x; cross section (d).

(c) 1201 views, XX, cross section

\
(a) 1201 views, xox; cross section  (b) 13 views, XX cross section (d) 13 views, XX, Cross section

Fig. 11. Representative slices of the fully 3D reconstruction of the phantom dataset with
regularization. The reconstruction is of reasonable quality even with only 13 views.

5. Conclusions

We have presented an algorithm for the X-Ray tomography reconstruction problem. Our math-
ematical formulation includes a generalized discretization step and applies equally to conven-
tional CT and DPC in any number of dimensions. We provide fast, accurate algorithms for
computing the X-ray adjoint and normal operators which allow large (417 x 417 x 135 with
1,201 views) reconstructions to finish in under six hours in MATLAB. We stress that, while
our formulation was developed with fully 3D reconstruction in mind, it can also be used to
describe the more familiar slice-by-slice approach to reconstruction. In both cases, the speed of
the reconstruction benefits from our fast algorithms.

In our experiments, we compare slice-by-slice and fully 3D reconstruction. Results on a
piecewise constant analytical phantom show that fully 3D reconstruction can provide more ac-
curate reconstructions with fewer views than the slice-by-slice method. This difference comes
from the fact that the fully 3D regularization uses information from vertically adjacent slices
to reduce noise, while the slice-by-slice regularization does not. Results on a physical phantom
show the same trend. Results on a biological sample did not show a clear qualitative difference
between the methods, which we attribute both to the increased complexity of the sample and
to the relatively small amount of noise in the measurements (as compared with our analytical
phantom dataset). From this, we conclude that the fully 3D reconstruction provides superior
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reconstructions when noise is high and the number of views is low, which corresponds to the
ray dose regime. When the desired reconstruction will not fit in memory, or when the re-
construction cannot benefit from fully 3D regularization, slice-by-slice reconstruction remains
the better alternative. In either case, our formulation and fast algorithms provide a principled

low X-

SNR (dB SNR (dB
35 (@5 40 (@B

30 35
25 slice reg. 3( slice
==IE \

20 slice 25
15 20
10 15

5 L) T T T T 1 10 L) T T T T 1

721 181 61 31, 16 8 721 181 61 31, 16 8

number of views number of views
(a)CT (b) DPCI

Fig. 12. Rat brain dataset results.

VAR A

(a) 721 views, slice-by-slice (b) 61 views, slice-by-slice

1T

(c) 721 views, fully 3D (d) 61 views, fully 3D

Fig. 13. Representative x1x, slices of the slice-by-slice (top row) and fully 3D (bottom
row) reconstructions of the rat brain DPC dataset. For this complex sample with low-noise
measurements, regularizing in full 3D does not visually improve the reconstruction quality.

and efficient way to solve the reconstruction problem.

Acknowledgments

This work was funded (in part) by the Center for Biomedical Imaging of the Geneva-Lausanne
Universities and EPFL, as well as by the Foundations Leenaards and Louis-Jeantet and ERC

grant agreement No 267439 - FUN-SP.

#261788

© 2016 OSA

Received 6 Apr 2016; revised 7 Jun 2016; accepted 8 Jun 2016; published 20 Jun 2016
27 Jun 2016 | Vol. 24, No. 13 | DOI:10.1364/0OE.24.014564 | OPTICS EXPRESS 14581





