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ABSTRACT
In this paper we propose a new, interactive technique for the
segmentation of elongated structures in images. It is based
on the so-called live-wire segmentation paradigm and uses
a newly developed steerable filter for computing local ridge
strength and orientation. We describe the principles of our
segmentation technique and present the results of prelimi-
nary experiments demonstrating its potential for the tracing
of neurites in fluorescence microscopy images.
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1 Introduction

Segmentation of elongated structures is a key problem in
several image processing and analysis applications. Exam-
ples include the detection of roads and valleys in satellite
images [1], the extraction of blood vessels from retinal [2],
magnetic resonance [3, 4], computed tomography [5, 6], or
X-ray angiography [7] images for the purpose of quantifi-
cation or visualization, and the tracing of neurons in three-
dimensional (3D) confocal microscopy images for histo-
logical studies [8, 9].

In cellular biology the problem arises, for example,
when studying the axonal and dendritic outgrowth of cor-
tical neurons under influence of different promoting and

inhibiting factors [10–13]. Since a cell in culture grows
approximately in a single cell layer, these processes are
usually studied by means of fluorescence microscopy. In
contrast with confocal microscopy, this imaging modality
results in two-dimensional (2D) images. While effective
in showing a cell’s outgrowth in its entirety, the images
frequently contain ambiguities regarding the branching or
crossing of neurites and the linking of fragmented neurite
segments. Such deficiencies make it virtually impossible
to develop fully automatic tracing techniques for this pur-
pose. This is why, to date, biologists have resorted to man-
ual delineation—a very time consuming process resulting
in highly operator-dependent segmentations.

In this paper we propose a new, semiautomatic trac-
ing technique that exploits the expertise of the biologist in
removing ambiguities, but that greatly improves the accu-
racy and reproducibility and reduces the burden of delineat-
ing more clearly visible neurite segments. The technique
is based on the live-wire segmentation paradigm [14–17],
which we have tailored to the tracing of elongated image
structures. To this end we have developed a new steer-
able filter for ridge detection, as well as a new function
for translating local ridge strengths and orientations into
costs maps, as required by the graph-searching algorithm
involved in live-wire segmentation. We describe the princi-
ples underlying our interactive tracing technique and show
the results of preliminary experiments demonstrating its
potential for the mentioned application.



2 Ridge Detector

In gray-level landscape representations of images, elon-
gated structures manifest themselves as ridges. First-order
differential operators are inadequate for detecting this type
of structures, since they result in a double response in the
transversal direction, whereas a single response is desir-
able. This suggests the use of second-order operators.

A frequently-used example of such an operator is the
second-order directional derivative of the Gaussian kernel,
(r · ∇)2G, with r the normalized direction vector and G
the Gaussian kernel. This operator can also be expressed in
terms of HG, the Hessian of G, as

rT ·HG · r, (1)

and is a steerable filter [18]. The local principal ridge di-
rections at any point in an image f are those r for which
the application of (1) yields a maximum and a minimum
response, respectively. These directions are given directly
by the eigenvectors of Hf∗G, the Hessian of the Gaussian-
smoothed version of the image. Due to the symmetry of
this matrix, these eigenvectors are orthogonal, with the
eigenvector corresponding to the smaller absolute eigen-
value pointing in the longitudinal direction of the struc-
ture. Comparison of the eigenvalue magnitudes thus allows
for discrimination between elongated versus non-elongated
image structures—a fact that has recently been exploited
for vessel analysis in angiography [3–5].

We now propose to modify the filter so as to make it
even more sensitive to elongated image structures. Specif-
ically, we propose to increase its flatness in the longitudi-
nal direction near the origin. To this end we add to the
original filter an α-fraction of the second-order derivative
in the direction orthogonal to r. This leads to the filter
{(r · ∇)2 + α(r⊥ · ∇)2}G, or

rT ·H′
G · r, (2)

where H′
G = HG +αRT

π/2HGRπ/2, with Rθ denoting the
matrix representing a rotation with angle θ. For the relation
between the eigenvectors v′

i and vi, and the eigenvalues λ′
i

and λi, of H′
G versus HG, we find{

v′
1 = v1,

v′
2 = v2,

and

{
λ′

1 = λ1 + αλ2,

λ′
2 = λ2 + αλ1,

(3)

which shows that the orientation of (2) is the same as that
of (1). The desired improvement in sensitivity can be trans-
lated into the flatness criterion

lim
x→0

(r⊥ · ∇)2
(
rT · H′

G · r) (x) = 0. (4)

Since the left-hand side is equal to (1 + 3α)‖r‖4/σ4, with
σ the standard deviation of the Gaussian kernel, it follows
that the optimal value for the free parameter is α = −1/3.
Working out the details, it follows that both (1) and (2) are
linear combinations of Gxx, Gxy , and Gyy , which implies

Figure 1. Impression of the shapes of the filters rT ·HG · r
(left) and rT · H′

G · r (right), in this case with r = (1, 0)T .
Clearly, the latter filter is more elongated and therefore
more sensitive to ridge-like image structures.

that they have practically the same computational cost. A
visual comparison of the shapes of the filters (1) and (2) is
provided in Figure 1.

As a measure of “ridgeness” we could now simply
take the largest absolute eigenvalue of H ′

f∗G, which we
denote by |λ′

1|. In our application, however, we are inter-
ested only in bright ridges on a dark background, for which
λ′

1 < 0. A further discrimination is thus obtained by ignor-
ing structures for which λ′

1 ≥ 0. The longitudinal direction
of the ridge is given by v′

2, the eigenvector correspond-
ing to λ′

2, the modified eigenvalue with smallest magnitude.
This provides additional information that can be exploited
when linking adjacent ridge pixels, as described next.

3 Tracing Approach

For the linking of adjacent ridge pixels we have adopted the
live-wire segmentation paradigm [14–17], which consists
in the selection of a starting point by the user followed by
the application of a graph-searching algorithm to find the
“shortest paths” from that point to all other points in the
image according to a predefined cost function. Once com-
puted and stored, the paths can be displayed in real time as
the user moves the cursor, allowing for the selection of the
next point along the path of interest.

A key component of this approach is the function em-
ployed to assign costs to pixels and nearest-neighbor direc-
tions. So far, live-wire techniques have been used mainly
for the extraction of object contours, with cost functions
based on edge descriptors. In order to make the technique
suitable for tracing of elongated image structures, we have
developed a new cost function based on the ridge detector
introduced in the previous section.

Let λ = λ′
1 and v = v′

2. The cost of linking any pixel
p to an eight-connected neighboring pixel q in the image
is computed in our algorithm as

C(p,q) = γCλ(q) + (1 − γ)Cv(p,q), (5)

where γ ∈ [0, 1] is a user-defined parameter determining



the relative weight of the two normalized cost components,
Cλ and Cv. The former of these is computed from the
eigenvalues at q as

Cλ(q) = 1 − ρ(q), (6)

with

ρ(q) =

{
λ(q)/λmin if λ(q) < 0,

0 if λ(q) ≥ 0,
(7)

where λmin denotes the smallest λ over all pixels, which in
practice will always be less than zero. The second compo-
nent is computed from the eigenvectors at p and q as

Cv(p,q) = 1
2

{√
1 − ϕ(p,q) +

√
1 − ϕ(q,p)

}
, (8)

with
ϕ(p,q) = |w(p) · d(p,q)|, (9)

where w(p) = v(p)/‖v(p)‖ is the normalized eigenvec-
tor at p, and d(p,q) = (q − p)/‖q − p‖ the unit “link
vector” from p to q. Note that (8) shows a similar nonlin-
earity with respect to the inner products as earlier proposed
functions [14,15], but is considerably less computationally
expensive due to the absence of trigonometric functions.
Also note that since we are taking the absolute value of
inner products, the outcome is invariant under vector rever-
sion. Example results with our ridge strength and direction
measures ρ and w are given in Figures 2 and 3.

The graph-searching technique used is an implemen-
tation of Dijkstra’s shortest-path algorithm based on a dis-
cretization of cost values and the use of a circular priority
queue [14,15,17]. Accurate placing of starting points is fa-
cilitated by applying “local snapping”: the point indicated
by the user is moved to the locally lowest cost point in a
small window around that point. The smoothness of the
paths computed by the algorithm is improved by applying
uniform postfiltering to the coordinates of the path vertices.
In cases where the user is not completely satisfied with the
paths presented, which might occur in regions with very
low contrast-to-noise ratios, we provide the possibility of
switching to manual delineation.

4 Experimental Results

The described technique was implemented in the Java TM

programming language [19] in the form of a plugin for use
with ImageJ [20]. After initial experimentation the param-
eters were fixed to γ = 0.7 (giving somewhat more weight
to the eigenvalue-based cost component), σ = 2.0 pixels
(reflecting the average diameter of neurites in the images),
a snap-window size of 9 × 9 pixels, and a half-window
size of 5 vertices for uniform path smoothing. The time
required for the precomputation of cost values and, after
each mouse click, the recomputation of shortest paths is, of
course, dependent on image size and processing platform.
On our 2.4GHz Pentium IV computer, both are in the order
of 1 second for an image of size 800 × 800 pixels.

Figure 2. Example of ridge detection using the described
filters. Left: a neurite with a small gap, superimposed on
a background with noise characteristics and intensity vari-
ations as in real fluorescence microscopy images. Mid-
dle: the ridgeness ρ as computed from H ′

f∗G. Right: ρ
from Hf∗G. Note that the proposed filter is somewhat bet-
ter at bridging the gap. Also note the suitability of using
a second-order operator: background variations are sup-
pressed without resulting in notable edge responses.

Figure 3. Example of the vector field w (superimposed
white dashes), which we have modulated here by ρ to sup-
press the vectors in the background.

To date, the technique has been applied successfully
by biologists in our departments to several hundreds of real
fluorescence microscopy images. Based on their experi-
ences we conclude that the proposed approach is a major
improvement in speed, accuracy, and reproducibility over
currently used, fully manual tracing tools. Two representa-
tive example results of tracing using our technique are pre-
sented in Figures 4 and 5, which give a visual impression of
the accuracy and robustness against noise and intensity dis-
continuities. We note that obtaining these results required
about 25 mouse clicks in both cases. Taking into account
the total number of about 15 start, end, and branch points
in both cases, which require a mouse click anyway, this is



Figure 4. First example of neurite tracing using the described technique. Top-left inset: original fluorescence microscopy
image of size 1070 × 511 pixels showing a cell body (middle-right spot) and its outgrowth. Middle: a low-brightness version
of the same image with the tracing result (white curves) superimposed. Right: zoom of a region nearby the center of the image
showing how well the tracings follow the neurite centerlines.

not too much. It will be clear that fully manual delineation
of all the wiggles with similar precision would require con-
siderably more time and effort.

5 Discussion

In this paper we have presented a live-wire based segmenta-
tion technique for the tracing of elongated image structures
and have demonstrated its potential for the semiautomatic
delineation of neurites in fluorescence microscopy images.
The technique is computationally inexpensive and exploits
the expertise of the user in solving ambiguities. The un-
derlying algorithm contains surprisingly few parameters,
which we have found may easily be kept fixed, yet is very
robust. The results of a preliminary evaluation by expert
biologists are promising.

We are currently undertaking a more elaborate, quan-
titative validation study, which should reveal the precise
gain in terms of interaction, accuracy, and reduced intra-
and inter-observer variability of the described semiauto-
matic tracing technique compared to currently employed
fully manual delineation approaches. To this end the tech-
nique has been worked into a full-fledged software tool,
which allows the user also to perform measurements and
statistical analyses. The tool will be made freely available
on the internet upon publication of our results.
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