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Background: For the investigation of the molecular
mechanisms involved in neurite outgrowth and differen-
tiation, accurate and reproducible segmentation and quan-
tification of neuronal processes are a prerequisite. To
facilitate this task, we developed a semiautomatic neurite
tracing technique. This article describes the design and
validation of the technique.
Methods: The technique was compared to fully manual
delineation. Four observers repeatedly traced selected
neurites in 20 fluorescence microscopy images of cells in
culture, using both methods. Accuracy and reproducibil-
ity were determined by comparing the tracings to high-
resolution reference tracings, using two error measures.
Labor intensiveness was measured in numbers of mouse
clicks required. The significance of the results was deter-
mined by a Student t-test and by analysis of variance.
Results: Both methods slightly underestimated the true
neurite length, but the differences were not unanimously

significant. The average deviation from the true neurite
centerline was a factor 2.6 smaller with the developed
technique compared to fully manual tracing. Intraob-
server variability in the respective measures was reduced
by a factor 6.0 and 23.2. Interobserver variability was
reduced by a factor 2.4 and 8.8, respectively, and labor
intensiveness by a factor 3.3.
Conclusions: Providing similar accuracy in measuring
neurite length, significantly improved accuracy in neu-
rite centerline extraction, and significantly improved
reproducibility and reduced labor intensiveness, the
developed technique may replace fully manual tracing
methods. © 2004 Wiley-Liss, Inc.
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The development of the nervous system is an intri-
cate process involving many different factors (1). The
molecular mechanisms regulating neurite outgrowth,
differentiation, synapse formation, and plasticity are
still being vigorously studied. In order to cope with the
ever-increasing amount of image data generated for
such studies, accurate and user-friendly image analysis
tools are indispensable. Of particular importance is the
ability, prior to morphometric analysis, to make accu-
rate representations of the neuronal processes present
in the images. Early attempts to automate this task were
not very successful, and since then neurite tracing has
been done primarily by the labor-intensive process of
manual delineation (2). During the past decade, despite the
considerable progress in computer technology, only a hand-
ful of renewed efforts toward automated neurite tracing have
been published. Notable techniques developed recently are
those based on vectorial tracking (3), reminiscent of earlier
techniques for tracing chromosomes (4), or retinal vascula-
ture (5), and multiscale feature analysis (6). Both techniques
were developed for application to 3D confocal microscopy
image stacks.

In this article, we are concerned with the problem of
accurately detecting and tracing individual neurites in
two-dimensional (2D) fluorescence microscopy images of
cells in culture. Whereas the computational cost of digital
image processing techniques for this task can be expected
to be smaller in 2D than in 3D, from a morphological
perspective the problem is, in fact, more complicated.
The reason for this inherent to 2D imaging of 3D struc-
tures is that the images may contain ambiguities regarding
the branching or crossing of neurites. In addition, the
neurites may sometimes be out of focus, have very low
contrast, or even contain large gaps. And when composed
of several scans to increase the field of view, the images
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may show discontinuities in background intensity, as illus-
trated in Figure 1. It is clear that automated procedures
based on intensity thresholding and skeletonization (7–
10) would fail to yield correct results for such images.
Several investigators have abandoned tracing altogether
and have resorted to heuristic approaches to estimate the
morphometric features of interest (11–13). An alternative,

vectorial-tracking technique, published just before com-
pletion of our manuscript, was successfully applied to
images of retinal explants (14); however, it does not
address the just mentioned problems seen in our type of
images.

Because of the complexity of the problem, it is not
surprising that in practice nothing much has changed

FIG. 1. Representative example of the type of images aimed at in the present study. The image shows a hippocampal neuron in culture and was compiled
from multiple fluorescence microscopy scans to capture all of the neuron’s outgrowth. Typical features include ambiguities regarding the branching or
crossing of neurites (as in the regions indicated by the letter A), discontinuities in background intensity (as in the regions indicated by B), and varying
neurite contrast (compare the segments indicated by C). The former problem makes it virtually impossible to develop fully automated approaches to
neurite tracing for such images. Problems such as noise and varying neurite contrast and background intensity are tackled by the technique described in
this article.
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since the early days, as our recent literature survey re-
vealed. A search in the PubMed database (National Library
of Medicine, Bethesda, MD) for papers published from
2001 until the present containing, in the title, the key-
word “outgrowth” combined with any of “neuron,” “neu-
rite,” “axon,” “dendrite,” or their adjectives, yielded 190
responses. Of these 190 papers, we studied 102 that were
electronically accessible through our library and in which
it was stated explicitly that neurite length was measured.
In 64 of these, no details whatsoever were given as to how
the measurements were carried out or what image analy-
sis tools were used, and it seems reasonable to suspect
that neurites were traced fully manually. In 20 cases, use
was made of commercial image analysis software tools,
with a total of 10 different tools mentioned. In the remain-
ing 18 cases, use was made of personally developed or
public domain image analysis software, with NIH-Image
(National Institutes of Health, Bethesda, MD) and its vari-
ants being by far most popular. To our knowledge, none
of the reported software tools, whether commercial or
not, provides an automated and scientifically validated
neurite tracing facility.

Based on this observation and our own experiences
with the burden and poor reproducibility of fully manual
approaches, we conclude that there is still a great need for
image analysis tools that facilitate neurite tracing and pos-
sibly leading to more accurate and more consistent mea-
surements. It will be clear, from what has just been said,
that the design of fully automated techniques for our
purpose will remain a difficult problem, and it seems
likely that some form of user interaction will always be
required to resolve ambiguities. Accepting this fact and
attempting to meet at least part of the needs, we have
developed an interactive neurite tracing technique. It ex-
ploits the expertise of the user in resolving ambiguities
but greatly simplifies the task of tracing long stretches of
manifest neurites. In the present study, we describe the
design of our technique and present the results of valida-
tion experiments revealing the potential improvement in
accuracy and reproducibility and the reduction in user
interaction of the technique compared to fully manual
delineation.

MATERIALS AND METHODS
Tracing Technique

Neurite tracing using our technique consists of (1) a
detection phase, in which every individual pixel in the
image is assigned a value indicating its likelihood of be-
longing to a neurite; and (2) the actual tracing phase, in
which consecutive pixels that are most likely to represent
the centerlines of the neurites are linked together to
constitute the tracings. The former is a preprocessing step
and is carried out fully automatically; the latter requires
user interaction. In the present study, we outline the
respective algorithms developed for performing the two
tasks. Details are given in the Appendix.

Our approach to detection is based on the observation
that in fluorescence microscopy images, neurites are

bright, elongated structures superimposed on a dark,
noisy background. When representing images as gray-level
landscapes, such structures manifest themselves as ridges.
It is known (15–18) that ridge-like image structures are
well detected by means of second-order differential oper-
ators. Specifically, the local principal ridge directions at
any point in an image are given by the eigenvectors of the
second-derivative matrix computed from the intensity val-
ues around that point. Because of the symmetry of this
matrix, the eigenvectors are orthogonal, with the eigen-
vector corresponding to the smaller absolute eigenvalue
pointing in the longitudinal direction of the ridge. Com-
paring the eigenvalue magnitudes, the algorithm com-
putes for each pixel in the image a measure of “neurite-
ness.” In addition, it stores for each pixel the local ridge
orientation as indicated by the mentioned eigenvector.
The output of this detector, when applied to the image in
Figure 1, is shown in Figure 2.

Our approach to linking of consecutive ridge pixels
derives from the so-called live-wire segmentation para-
digm (19–22). It consists of the selection of a starting
point by the user followed by the application of a search
algorithm to find the optimal paths from that point to all
other points in the image, where “optimal” means having
a globally minimal cumulative cost according to a pre-
defined function. Once computed and stored, the paths
can be displayed in real time as the user moves the cursor
toward the end of the neurite of interest, until the pre-
sented path starts to deviate too much from what is
considered the optimal tracing by the user. The tracing
can then be fixed up to that point by a single mouse click,
after which the algorithm proceeds by presenting optimal
paths from that point. The process is iterated until the
entire neurite has been traced and can be repeated to
trace multiple neurites. In cases where the user is not
completely satisfied with the paths presented, which may
sometimes occur in regions with very low neurite con-
trast, it is possible to switch to manual delineation.

Cell Images

The images used for the validation of our neurite tracing
technique were taken from a previously published study
(23) into the involvement of the neuronal sec1, or murine
unc18a (nSec1/Munc18a) protein in neurite formation. In
brief, this study was carried out in culture by overexpres-
sion of nSec1/Munc18a and of Munc18b in PC12 cells
followed by nerve growth factor differentiation, and in
primary hippocampal neurons prepared from postnatal
day-zero rats. For details regarding the experimental pro-
cedures, we refer to the mentioned paper. Fluorescence
images of the cells after immunostaining for the trans-
fected proteins (in the case of GFP-tagged proteins, their
intrinsic fluorescence was used) were acquired by using a
10� objective on an Axioplan microscope (Carl Zeiss,
Germany) in combination with a DC100 digital camera
(Leica Microsystems, Germany). For many cells, to in-
crease the field of view, multiple images were taken to
capture all the cell’s outgrowth. In these cases, composite
images were created by matching the individual images
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FIG. 2. Output of the neurite detection algorithm applied to the image in Fig. 1. The top image shows, for every pixel, the “probability” of belonging
to a neurite, as computed by the algorithm, where bright and dark values correspond to a high and a low probability, respectively. The bottom image shows
a zoom of a region in the middle-lower part of the top image, superimposed with the local neurite orientations (white dashes) computed by the algorithm.
The algorithm is designed to suppress dark line-like structures and background intensity discontinuities. Moreover, it is tunable to neurites of specific width
while it also reduces noise.
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visually, using Photoshop (Adobe Systems, San Jose, CA).
From a total of about 170 cell images, we selected, prior
to our validation experiments, 20 representative sample
images, one of which is shown in Figure 1. Per image we
selected a single neurite or neurite segment of interest.
The neurites were chosen to include all potential sources
of tracing errors, such as varying noise and contrast, back-
ground intensity discontinuities, and complexities in
shape.

Validation Setup

The neurite tracing technique was implemented in the
Java programming language (Sun Microsystems, Santa
Clara, CA) in the form of a plug-in for ImageJ (National
Institutes of Health, Bethesda, MD), the computer-plat-
form independent public domain image analysis program
inspired by NIH-Image. After initial, visual experimenta-
tion with the technique applied to a small number of cell
images, not included in the sample set used for the vali-
dation, the different parameters of the detection and trac-
ing algorithms were fixed to the values given in Table 1.
As a representative instance of the fully manual tracing
methods encountered in the literature we used the “seg-
mented line selections” tool of ImageJ. Similar to our
semiautomatic technique, this tracing tool requires indi-
cating points on the neurite of interest. Contrary to our
technique, however, the points are connected simply by
straight lines.

Four observers (two expert cell biologists and two ex-
pert computer scientists) participated in the validation
experiments, which consisted of three sessions. The ses-
sions were carried out separately and independently by
the four observers. In the first session the observers traced
the neurites of interest by means of the usual fully manual
method. The start and end positions of the neurites were
indicated by cross-hair pointers, the coordinates of which
were loaded automatically along with the images. Upon
completion, the tracings were stored automatically along
with information on the amount of user interaction re-
quired. The session was carried out three times to allow
for variability analyses. In the second session, also carried
out in triple, the observers repeated the experiments, but
now using the described semiautomatic neurite tracing
technique. For both sessions, the observers were asked to
minimize user interaction, as measured by the number of
mouse clicks, while at the same time attaining a sufficient

degree of tracing accuracy, according to their own visual
judgment.

To obtain accurate reference tracings, required for the
quantitative analyses described hereafter, high-resolution
versions of the original images were generated by scaling
up with a factor 10 using a high-quality interpolation
method: cubic spline interpolation (24,25). In the third
session, the observers were asked to perform fully manual
tracing once again to delineate the neurites of interest in
these high-resolution images. The motto for this session
was to be as accurate as possible, regardless of the amount
of interaction required. After completion of this session,
the resulting tracings were mapped back to the original
images to yield reference tracings with a precision of
1/10th of a pixel. It will be clear that this approach to
neurite tracing is infeasible in practice due to the 100-fold
increase in the required storage capacity as well as a
substantial increase in user interaction. For this study,
however, the extra efforts allowed us to obtain very pre-
cise reference tracings, which we believe may reliably be
taken as the “gold standard” in the quantitative analyses.

Quantitative Analyses

The accuracy of the tracings from the first two sessions
was determined by comparison with the corresponding
reference tracings from the third session, using two dif-
ferent error measures. As a first measure, we used the
difference in length between the tracing and the actual
neurite, as given by the reference tracing, divided by the
length of the latter. A value larger or smaller than zero for
this ratio indicates, respectively, an over- or underestima-
tion of the true length. While relevant for studies measur-
ing neurite length only, this measure does not, however,
give an indication of how well the tracings really follow
the neurite, since any two tracings may have the same
length and yet be completely different. As a second, com-
plementary measure, therefore, we used the average de-
viation of the tracing from the neurite, as given by the
reference tracing, over the full length. Specifically, this
measure was computed by adding the areas spanned by
the segments of the tracing and the reference tracing
between any two subsequent intersections of the tracings,
and dividing by the length of the reference tracing.

For each of the 480 tracings (4 observers � 2 sessions �
3 rounds � 20 neurites), the values for the two error
measures were computed by comparing the tracing to
each of the observers’ reference tracing for the corre-
sponding neurite. For each of the two measures, the
resulting four error values were averaged to yield a con-
sensus error. The variability in the consensus errors was
computed both per observer and between observers. Denot-
ing by �(o, s, r, n) the consensus error (either length differ-
ence ratio, �L, or average deviation, �D) for any observer (o),
session (s), round (r), and neurite (n), we computed the
intraobserver variability from the three rounds as

VARintra
� (o, s, n) �

1

3 �
i � 1

3 �
j�i � 1

3

��(o, s, ri, n) � �(o, s, rj, n)�.

Table 1
Parameters of the Neurite Detection and Tracing Algorithms

and Their Values As Used in the Validation Experiments*

Parameter Value Description

� 2.0 Gaussian smoothing scale
� 0.7 Cost components weight factor
w 9 Snapping window size
p 5 Path coordinates postfilter size
s 5 Path coordinates subsampling factor

*The parameters are listed in the order of their first appearance
in the Appendix.

171A TOOL FOR NEURITE TRACING AND ANALYSIS



The interobserver variability was computed by comparing
the consensus errors (again, either length difference ratios
or average deviations) from the three rounds of all four
observers as

VARinter
� (s, n) �

1

54 �
k�1

4 �
l�k�1

4 �
i�1

3 �
j�1

3

��(ok, s, ri, n)

� �(ol, s, rj, n)�.

The labor intensiveness of semiautomatic versus fully
manual tracing was analyzed by comparing the number of
mouse clicks required per tracing.

Finally, the statistical significance of the outcome of
each comparison of the two techniques was determined
by means of a two-sided paired Student’s t-test (26). Spe-
cifically, for each of the measures separately, the test was
applied to the corresponding 20 pairs of figures resulting
from the 20 neurites (n) traced in each of the two sessions
(s). Except for the interobserver variability, which com-
bines the effects of all observers, the test was carried out
separately for each observer (o). For the accuracy and
labor intensiveness measures, the figures per neurite were
first averaged over the three rounds (r). The null hypoth-
esis for the test was that the two techniques would give
similar results. The probability of this hypothesis being
true was analyzed at levels P � 0.05, P � 0.01, and P �
0.001. To assess the overall significance of the different
factors involved, we applied a full-factorial univariate anal-
ysis of variance (ANOVA), with “sessions” as fixed factor
(corresponding to the two techniques being compared)
and “observers,” “rounds,” and “neurites” as random fac-
tors. The analyses were carried out using the statistical
software package SPSS (SPSS, Chicago, IL).

RESULTS
The results of the validation experiments are presented

graphically in Figure 3. The graphs show, for each mea-
sure of comparison and for each of the observers, the full
range and the mean of the observed values, as well as the
statistical significance of the differences between the re-
sults of fully manual tracing and our semiautomatic tracing
technique according to the paired t-test. From the results
with the length difference ratio measure, shown in the top
left graph, it follows that both techniques tend to under-
estimate the true neurite length—our semiautomatic tech-
nique even slightly more so than the fully manual method.
Averaging over all observers, we found that the deviation
from the true length was about �1.0% for the fully manual
method and about �1.5% for our semiautomatic tech-
nique. The differences between the two techniques were
not unanimously significant, however, suggesting that
overall, our technique performs comparable to fully man-
ual tracing when it comes to measuring lengths only.
Indeed, the results of ANOVA indicated that the factor
“sessions” was not significant (P 	 0.05) for this measure.
Nor were any of the other main factors significant. We did,
however, find a significant interaction between “sessions”

and “observers” (P � 0.01) and between “sessions” and
“neurites” (P � 0.001), which suggests that the accuracy
of length measurements with our technique is dependent
on the user and also on the shape of the neurites being
traced, as was to be expected.

All other measures of comparison yielded values larger
than or equal to zero, in accordance with their definitions,
with smaller values indicating better performance. From
the results noted with these measures, presented in the
remaining graphs of Figure 3, it follows that our semiau-
tomatic technique outperforms the fully manual method.
In virtually all cases, the differences between the two
techniques were found to be very significant (P � 0.001)
according to the paired t-test. This is in agreement with
the results of the ANOVA, which indicated that with the
average deviation and labor intensiveness measures, the
factor “sessions” had a very significant effect (P � 0.001)
on the outcome. Here too, we found significant interac-
tions between “sessions” and “observers” (P � 0.05) and
between “sessions” and “neurites” (P � 0.001). In addi-
tion, with the latter measure, we found a significant effect
for the main factors “observers” (P � 0.05) and “neurites”
(P � 0.001), as well as for the three-way interaction
between “sessions,” “observers,” and “neurites” (P �
0.001), which confirms that with our technique, the
amount of interaction required depends on the user and
on the neurites being traced.

The improvement ratio per measure and per observer
can be deduced from the mean values indicated in the
graphs. Alternatively, computing the ratios on a per-neu-
rite basis and then taking averages over all observers, we
found that the reduction in errors with our semiautomatic
tracing technique compared to fully manual tracing was a
factor 2.6 for the average deviation measure, a factor 6.0
and 23.2 for the intraobserver variability of, respectively,
the length difference and average deviation measure, and
a factor 2.4 and 8.8 for the interobserver variability of the
respective measures. User interaction was reduced by a
factor 3.3. To compare, the interaction was a factor 15.5
less than what was required for creating the high-resolu-
tion reference tracings.

DISCUSSION
From the validation results, we conclude that the semi-

automatic neurite tracing technique described in this ar-
ticle yields a significant improvement over fully manual
tracing methods in terms of true neurite centerline repre-
sentation, reproducibility, and user interaction. In terms
of length measurement, however, it follows that, overall,
the differences between the two are not significant. Ana-
lyzing the tracings afterward, we found that the underes-
timation of length may be ascribed to the fact that both
techniques tend to shortcut strongly wiggling or sharply
bending neurites. With fully manual tracing, shortcutting
is inevitable when trying to limit the amount of user
interaction. With our semiautomatic technique, shortcut-
ting occurs mainly when the contrast is relatively low,
which causes shorter “routes” to have a lower cumulative
cost. In both cases, the influence on the results is user
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controllable. The results suggest that the observers were
not biased toward either technique in performing the
experiments: while showing significantly larger variabil-
ity, the results with fully manual tracing were on average
quite accurate. Note that, incidentally, this latter observa-
tion seems to justify the use of fully manual tracing meth-
ods in studies involving large numbers of neurite measure-

ments, a result that, to our knowledge, has never been
demonstrated before in the literature.

Because our technique employs a so-called global opti-
mization algorithm and second-order image feature analy-
sis, it is very robust against noise, varying or discontinuous
background intensities, and varying or even locally dimin-
ishing neurite contrast, as illustrated by the sample trac-

FIG. 3. Graphic presentation of the results of the validation experiments comparing fully manual tracing (solid bars) and our semiautomatic tracing
technique (dotted bars). The graphs show, from top left to bottom right, the length difference ratio (�L), the average deviation (�D), the intraobserver
variability for �L and �D, the interobserver variability for �L and �D, and the amount of user interaction required (see the main text for details on these
measures). The bars show the full range of observed values for each of the observers, with the black circle around the middle of each bar indicating the
mean value. The four observers (denoted by O1, O2, O3, and O4, where the first two were cell biologists and the latter two computer scientists) are
indicated at the bottom of the graphs. The asterisks on top of each graph indicate for each observer the probability for the null hypothesis of equivalence
to be true based on the paired t-test applied to the data presented. The different levels of probability considered are P � 0.001 (***), P � 0.01 (**), P �
0.05 (*), and any probability larger than 0.05 (no asterisk).
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ings in Figure 4. As a result, it can be applied to a wide
range of images without changing its parameters. The
number of parameters to be set by the user is very small.
More importantly, the parameters do not in any way
represent hard thresholds—the algorithms are free of us-
er-controllable binary decisions. A disadvantage of the
technique is that it still requires user interaction, which

limits its applicability to images containing manageable
amounts of neurites only. Although, for reasons men-
tioned in the Introduction, it seems impossible to elimi-
nate all user interaction, it remains a challenge to auto-
mate the technique further and to investigate its potential
for other applications. One possibility to reduce the number
of mouse clicks, for example, would be to automatically

FIG. 4. Representative sample neurite tracings (red curves) from the validation experiments, illustrating the performance of our technique in the case of high
(top left) or low (top right) neurite contrast, background intensity discontinuities (middle left), very low neurite contrast and the nearby presence of bright spots
(middle right), and wiggling (bottom left) or sharply bending (bottom right) neurites. In the latter two types of cases, the tracing algorithm has the tendency to
shortcut, resulting in an underestimation of the true neurite length. The problem may be reduced to some extent by decreasing the parameters pertaining to the
path coordinates smoothing filter (the last two rows of Table 1). Alternatively, the problem can be avoided simply by additional user input. The magenta cross-hairs
in the top left and middle right images are examples of the pointers used in the experiments to indicate the start and end positions of the neurites of interest.
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compute landmarks to serve as input for the optimization
algorithm. Since the algorithm appears to have no problems
with tracing neurite segments whose orientation changes
only gradually from point to point, a logical approach would
be to choose high-curvature and branch points for this pur-
pose. This will be a topic for future research.

To facilitate the use of our technique, we have worked
the algorithms into a full-fledged software tool. Because of
our choice for the specific programming language and
image processing environment described earlier, the tool
is, in principle, computer-platform independent. By opti-
mizing the implementation of the algorithms we have
been able to achieve acceptable processing speeds, even
when using a normal personal computer: for an image or
region of size 800 � 800 pixels, the preprocessing time
required for detecting the neurites and computing their
orientations, and the time required for recomputing opti-
mal paths after each mouse click, are both in the order of
1 second with a 2.4-GHz Intel Pentium IV processor. By
analogy with its hosting application, we have named our
tool NeuronJ. Apart from implementing the necessary
ways and means to interact with the mentioned algo-
rithms, the tool also provides the possibility to label and
color tracings, to store them to and load them from disk,
and to compute and display the dimensions of individual
tracings as well as the statistics of measurements on se-
lected or all tracings. At our institutes, NeuronJ has been
received very positively and has replaced the labor inten-
sive fully manual tracing tools. The software is freely
available for noncommercial purposes from http://www.
imagescience.org/meijering/software/neuronj/.
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APPENDIX: DETAILS OF THE NEURITE
DETECTION AND TRACING ALGORITHMS

In the implementation of our neurite detector, the re-
quired second-order image derivatives are computed by
convolution with the second-order derivatives of the
Gaussian kernel (27). Mathematically this means that if f
denotes the image and G the normalized Gaussian, we
compute

fij(x) � (f � Gij)(x), with Gij(x)


� � �2

�i�j
G�(x),

where * denotes spatial convolution, x � ( x, y) denotes
the pixel position, and the derivative directions i and j can
be x or y. The eigenvectors and eigenvalues are computed
in our algorithm, not from the standard second-derivative
matrix, but from the slightly modified matrix given by

H�f (x) � � fxx
x� � �fyy
x� 
1 � ��fxy
x�

1 � ��fxy
x� fyy
x� � �fxx
x� � ,
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where � is a parameter whose optimal value will be given
in the sequel. Denoting the normalized eigenvectors of
this matrix by v�i(x) and the eigenvalues by ��i(x), we
compute them as

� v�1(x) � v1(x)
v�2(x) � v2(x) and � ��1(x) � �1(x) � ��2(x),

��2(x) � �2(x) � ��1(x),

where the vi(x) and �i(x) are, respectively, the normalized
eigenvectors and the eigenvalues of the standard second-
derivative matrix, or Hessian (28), at pixel position x.

The suitability of the matrix H�f for neurite detection
can be appreciated by analyzing the filter implicitly used
in the computations. It is a fact from linear algebra (28)
that �i � vi

T � Hf � vi, where the right-hand side is equal
to f * (vi � �)2G, the second-order image derivative in the
direction vi. From the relations just given and the orthog-
onality of the eigenvectors, it follows that, implicitly, the
eigenvalues are computed as ��i � f * h�i, where the h�i are
instances of the filter h� � {(r � �)2 � �(r� � �)2}G
corresponding to r � vi, which are the directions of
maximum and minimum response. The parameter � is
chosen in our algorithm such that h�, which happens to
be a steerable filter (29), is maximally flat in its longitudi-
nal direction. This translates into the criterion

lim
x3 0

(r� � �)2 h�
x� � 0.

Working out the details, we find that the left-hand side
of this equation is equal to (1 � 3�)�r�4/�4, with � the
standard deviation of the Gaussian kernel, from which it
follows that the optimal value for the free parameter is
� � �1/3. Visual impressions of the shape of the filter are
given in Figure 5.

Based on the eigenvalue analysis described above, the
algorithm assigns to each pixel in the image a measure of
“neuriteness” according to the formula

�(x) � � �(x)/�min if �(x) � 0,
0 if �(x) � 0,

where � is the larger in magnitude of the two eigenvalues
and �min denotes the smallest � over all pixels, which in
practice will always be smaller than zero. In addition, the
algorithm stores for each pixel the local ridge orientation

as indicated by v, the normalized eigenvector correspond-
ing to the smaller absolute eigenvalue. Note that dark
line-like structures, for which � � 0, are ignored by the
detector. Also note that since we are using a second-order
detector, responses to first-order structures, such as back-
ground intensity discontinuities, are suppressed. More-
over, since the Gaussian kernel involved in the computa-
tions is a scalable function, with scale parameter �, the
detector can be tuned to neurites of specific width, while
at the same time suppressing noise.

In our implementation of the live-wire segmentation
algorithm, the function used for computing the cost of
moving from any pixel x to an eight-connected neighbor-
ing pixel y is computed as

C(x,y) � �C�(y) � (1 � �) Cv(x,y),

where �� [0, 1] is a user-defined parameter determining
the relative weight of the two normalized cost compo-
nents, C� and Cv. The former of these is computed from
the eigenvalues at y as

C�(y) � 1��(y).

The second component is computed from the eigenvec-
tors at x and y as

Cv(x,y) �
1

2
�	1��(x,y) � 	1 � �(y,x)�,

where �(x, y) � �v(x) � d(x, y)� with d(x, y) � (y � x)/�y �
x� the unit “link vector” from x to y. By taking the absolute
values of the inner products, the algorithm ignores the
actual directions of the eigenvectors and considers only
their orientations. Optimal paths based on this cost func-
tion are computed by a version of Dijkstra’s shortest-path
algorithm (30) based on a discretization of the cost values
and the use of a circular priority queue (19,20,22). The
placing of starting points is facilitated by applying “local
snapping,” which implies that the cursor is always moved
to the locally lowest cost point in a small window, of size
w � w pixels, around the actual cursor position. The
smoothness of the paths computed by the algorithm is
improved by application of a uniform postfilter, of size
2p�1, to the subsequent coordinates of the path pixels,
after which they are subsampled with a factor s.

FIG. 5. Visual impressions of the
steerable convolution filter implicitly
used in our neurite detection algo-
rithm. On the left, the filter is displayed
in vertical orientation and at arbitrary
scale as an image, in which the inten-
sity at the borders corresponds to zero,
brighter intensities correspond to posi-
tive and darker intensities to negative
values. The graph on the right depicts
the same filter as an inverted landscape.
The filter is more elongated than the
filter normally found in the literature on
detection of line-like image structures.
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