
 
 

  
Abstract—The micro array are an experimental technique 

for parallel determination of molecular concentration. The 
image analysis is an important, time consuming and error 
prone step of the process. We describe here an automatic 
procedure able to analyze the micro array data and to 
accurately provide the level of concentration for each 
microRNA (miRNA). The proposed method has the advantage, 
compared to commercial products, to minimize the user 
interaction, leading to a more reproducible data analysis  

I. INTRODUCTION 

ICROARRAY is a technology that enables whole 
genome studies for gene expression and genotyping. 

Microarrays combine two technologies: miniaturization and 
parallelization. Miniaturization in the sense that the size of 
the individual experiment is on the order of 5 to 50 mm and 
parallelization in the sense that the same protocols are 
simultaneously applied to one thousand to one million 
individual experiments. This approach was first developed 
by Pat Brown [1] for DNA/ DNA hybridization. It was then 
extended to protein-protein interactions [2] and recently to 
microRNA [3].  The method requires the generation of 
arrays of thousands to millions of probes printed or 
synthesized on a solid surface. 

 
The experiment consists in the recognition of a labeled 

target by a specific probe on the array. The intensity of the 
readout at a specific location will give information about the 
concentration of the target. For example, in order to assay 
the accumulation of transcripts,  a typical microarray 
experiment will consist in extracting and purifying the total 
RNA of the samples, reverse transcribing the mRNA into 
cDNA, labeling the cDNA via in vitro transcription, then 
hybridizing the solution of targets to the arrays of  probes. A 
direct comparison of two samples can be achieved either by 
hybridizing each sample onto individual arrays (single color 
arrays; e.g. Affymetrix, Illumina) or by labeling the two 
samples with two different dyes such as Cy3/Cy5 or Alexa3/ 
Alexa5 and cohybridizing them onto a single array (dual 
color arrays; e.g. Agilent, custom arrays). After 
hybridization, fluorescence measurements are made for each 
dye separately. The measurements are subsequently 
processed in order to evaluate the level of expression of a 
specific transcript on single color arrays, or the ratio of 
expression when dealing with a co-hybridization experiment 
on dual color arrays. The principle of producing an image of 
multiple, variable spots is one of the common features 
shared by many microarrays technologies. The acquisition 
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of the fluorescent image can be obtained by different 
methods such as confocal laser or CCD camera scanning. 
The digitization process will produce an image that will 
contain the signal intensity representing the total fluorescent 
in a small region (a square of 5 x 5 μm for Affymetrix, a 
bead of 3 μm diameter for Illumina, a spot of 50 to 100 μm 
diameter for most dual color systems). The next step is to 
extract the information for each area where a probe has been 
printed, and then to evaluate the expression levels.  A major 
issue is to accurately and reproducibly quantify spot 
intensities and shapes. This is particularly critical for arrays 
showing low degrees of reproducibility between batches. 
The segmentation of the raw image into individual probes is 
either completely automatic in large (more 106 probes) 
commercial arrays such as Affymetrix, Agilent or Illumina, 
or manual with the help of commercial softwares such as 
Imagene™, ScanArray™, GenePix™ for custom arrays or 
commercial low density arrays. The semi automatic 
procedure usually present in image analysis softwares for 
microarray feature extraction encounter problems such as 
being time-consuming and user-dependent. The variability 
of the results mostly depends on how much time the user 
will spend inspecting the data and the same user will often 
produce different results at different sittings. 

Several methods using different segmentation algorithms 
have been developed to automatically extract signals from 
arrays [4-7], recently summarized in an evaluation study [8].  

 Here we present a signal extraction method that relies 
on mathematical morphology operators. This approach has 
been applied to extract signals from miRNA microarrays 
from Invitrogen (NCode™ Multi-Species miRNA 
Microarray). This particular type of microarrays are 
designed for the detection of microRNA in different species 
including human, rat, mouse, C. Elegans, drosophila, 
zebrafish on a single microarray. This design implies a high 
number of blank spots and cross-hybridizing spots, in 
addition to the usual problems of microarrays artifacts such 
as scratches, doughnut-shaped spots that are usually present. 
We have developed a program that requires as little human 
intervention as possible to limit subjective variability, using 
information on the general design of the array as input and 
in particular the presence of references spot (anchors) at 
each corner of the sub-array in order to initially position the 
grid. The output created is a tab delimited file with the 
signal and the background for each spot.   

II. MICRO ARRAY DATA 
NCode™ miRNA arrays contains 16 grids arranged in a 

layout called meta grid. An artificial miRNA image is shown 
in figure 2 left. The upper left corner of each grid can be 
identified and are named Upper Left Corner (ULC) spot as 
visualized in figure 2 right. Each grid contains several 
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hundreds of quasi circular spots. The intensity of each spot 
are very diverse and reflect the concentration of miRNA. 
Due to the experimental process, the image suffers two 
major drawbacks. First a geometrical distortion due to the 
mechanical printing process. Second, the background noise 
intensity is not homogeneous and has to be estimated locally 
for each spot. Note: the method has been developed using 
NCode arrays as a template. However, it can be modified at 
whish for the analysis of other formats of microarrays. 

III. METHODOLOGY 
The methodology developed to identify each spot and to 

compute their average internal and external intensity is 
divided into three steps. First, the rough localization of the 
meta grid (this grid contains 16 grids). Second, the precise 
detection of each grid. Finally, within each grid, the 
detection of each spot and the computation of the average 
inner and outer intensity.  

A. Meta grid detection 
This section describes the algorithms used to roughly 

align the data to an artificial meta-grid. To do so, a global 
rotation is applied to the data in order to align as well as 
possible the ULC spots to an artificial Cartesian grid. The 
idea used here is to project the data on a vertical axis and to 
iteratively apply a rotation to the data, using a step of 
0.1[deg], until the projected variance is minimum. This 
optimization algorithms is depicted in figure 1 

 
Fig. 1. Evolution of the projected variance as a function of the rotation 
angle. The maximum is obtained for θ = -1 [deg]. 
 

To have a complete localization of the meta-grid, the 
ULC spots have to be individually detected. This is achieved 
using four criteria, the intensity, the shape, the size and the 
position. First an open-close [9] operation is performed to 
get rid of the noise (shape criterion). Second, a non critical 
manual threshold is applied to detect the very bright spots 
(intensity criterion). Third, a binary area opening [10] is 
applied to get rid of the too small clear noise (size criterion). 

Finally, based on the information contained in a file 
regarding the ULC spots position and on the horizontal and 
vertical projections of the processed data, the Region Of 
Interest (ROI) in which the ULC spots have to be located is 
computed. This file, called GAL describes block and 
feature-indicator positions and geometry. 
 

 
 
Fig. 2 Artificial image made of 9 blocs before and after the three first steps. 
More than nine spots have been detected by the image analysis method and 
the information contained in the GAL file is required in order to select the 
ULC spots. 

B. Single grid detection 
The goal of this procedure is to create an artificial grid 

adapted to each bloc. This final grid will be used in the 
following section as a marker to precisely locate each spot. 
This procedure is made of 4 steps which are respectively the 
edge preserving noise cleaning, the binarization of the 
numeric de-noised image, the matching between an artificial 
grid and the detected spots and finally, an affine mapping of 
the artificial grid on the real data. 

First, the noise has to be decreased by using a leveling 
filter. This auto-dual filter [11] consists in applying an auto-
dual reconstruction from a marker image into a mask image. 
The marker image is a filtered version of the original image 
and has the advantage of having a very small noise and the 
disadvantage of having mislocalized boundaries. This image 
is obtained by applying a very strong median filter (20x20), 
about the size of a spot, to the original data. The mask image 
is, in this case, the original image itself. 

Second, the denoised numeric image is binarized by 
applying a Rank Hit Or Miss Transform (RHMT) [9]. This 
filter uses both shape and intensity description of the spot 
and of the background to individually detect each spot. 

Third, an artificial grid is computed based on the spatial 
information contained in the GAL file and on the location of 
the ULC of each grid. The center of mass of each detected 
spot is computed. Based on the fact that most of the spots 
have a very low intensity (noise level), there is not a one to 
one match. The candidates are obtained by performing the 
intersection between the artificial grid and the dilated 
version of the centers of mass computed on the real data. 
The radius of the structuring element is based on the inter-
spot distance given in the GAL file. 
Fourth, an affine transform is applied to the artificial grid to 
best match, in the least square sense, the position of the 
detected spots in the original data. 
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Figure 3 illustrates the describe aligment procedure. 
 

 
Fig. 3 Alignment procedure applied to a geometrically distorted grid. (A) 
original image, (B) overlaid by the grid dots, (C) overlaid by affine 
transformed grid dots, (D) measure masks for the object and the background  
 

C. Spot detection 
Each single grid having being detected, the last task to be 

achieved is to detect, every spot in order to compute the 
mean intensity within the spot and to compare it with the 
mean intensity of the environment (noise). To do so, two 
alternatives have been investigated. The first, using the 
HMT Opening [9], which is based on the a priori shape 
knowledge. The second, using the watershed transform [12] 
does not use this a priori shape knowledge, and relies only 
on the real data information. The marker image of the 
watershed transform is obtained by the centers of the 
detected spots after grid alignment. The segmentation 
function is computed by applying a morphological gradient 
[9] to the de-noised image obtained by the leveling 
described in the previous section. The de-noising step is 
useful in order to prevent any leakage in the watershed 
process as illustrated in figure 4. 
 

 
Fig 4. Illustration of the advantage of using a data-based detection 
(watershed), on the left, compared to a method based on an a-priori 
knowledge of the shape (opening HMT), on the right. In this figure, 
artificial data made of spots with linear growing intensity are segmented 
using the two approaches. 

D. Evaluation of the performances by using artificial data 
In order to evaluate the performance of the above-

mentioned algorithms, the artificial micro array image 
shown in figure 5 containing four blocks, each block 
containing 100 spots which intensities varying linearly 
between 5000 and 50000 (16 bit) has been created. This 
image was rotated by 0.6 [deg] in the clockwise orientation, 
and a separate affine transform was applied to each bloc. 
Furthermore, noise was added to the image so that 30% of 
the spots fall in the noise range. 
 

 
Fig 5. Test image used as ground truth to evaluate the performance of the 
proposed method. 

The detected rotation angle is 0.7 [deg], the average error 
position for the ULC spots is 1 pixel and, after having 
performed the affine transform on each grid, the average 
error position between the artificial grid and the real one is 
of 1.28 pixel. Figure 6 describes the very good agreement 
between the theoretical and detected mean inner intensity. 

 
Fig. 6 Scatter plot obtained by analyzing the data presented in figure 5. The 
x-axis is the true value intensity whereas the y-axis is the measured intensity 
provided by our algorithm. 

E. Evaluation of the performances by using real data 
The algorithms described in this paper have been applied 

to real data and a comparison was made between the inner 
average value of the spots computed by the ImaGene© 
commercial software and by our own software (Fig. 7).  
Globally we observed a very good correlation between the 
two methods for the vast majority of the data.  
 

 
Fig. 7 Scatter plot comparing the results produced by the two softwares. The 
x-axis is the estimated intensities measured by ImaGene© software and the 
y-axis is the estimated intensities measured by our algorithm. 

 
Because of the absence of ground truth, it is impossible to 

decide which solution performs the best. Nevertheless, by 
carefully examining each spot for which the inner average 
value is sensibly difference, it is possible to get an insight 
about the reason of this difference (Fig 8). 
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Fig. 8 Illustration of some strangely shaped spots observed on real data 
images. 
 

To explain these differences, our hypothesis is that the 
ImaGene© software is using a fixed template to compute the 
inner average value whereas, in our solution,  the watershed, 
a more shape adaptive method, has been used.  

IV. CONCLUSION 
The use of Mathematical Morphology as the paradigm for 

data analysis provides the following advantages. First, 
because of the strong mathematical foundation, it leads to 
reproducible results. Second, the choice of every parameter 
used in the algorithms is motivated by physical 
measurements such as shape and dimensions. The last point 
allows easy customization of the program for each 
commercial micro array. 

In our approach, we choose to analyze each spot by 
segmenting them instead of assuming a perfect circular 
shape. We believe that this improves the quality of the 
results because of the high variability of the shapes we have 
observed. 

We have applied the method to miRNA microarrays 
image (4000x4000 16 bits pixels) and compared the data 
obtained with a commercial microarrays analysis software 
(ImaGene©). Our initial evaluation demonstrates that the 
software developed performs extremely well for estimating 
the signal intensity. In addition, the whole analysis can be 
conducted with minor input from the user and most 
importantly, with very good control of subjective variability. 
We thus feel confident that this new software will be a 
valuable tool for extraction of signals from microarrays 
images. 
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