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ABSTRACT

Localization microscopy such as STORM/PALM can achieve a nanometer scale spatial resolution by iteratively
localizing fluorescence molecules. It was shown that imaging of densely activated molecules can accelerate
temporal resolution which was considered as major limitation of localization microscopy. However, this higher
density imaging needs to incorporate advanced localization algorithms to deal with overlapping point spread
functions (PSFs). In order to address this technical challenges, previously we developed a localization algorithm
called FALCON1,2 using a quasi-continuous localization model with sparsity prior on image space. It was
demonstrated in both 2D/3D live cell imaging. However, it has several disadvantages to be further improved.
Here, we proposed a new localization algorithm using annihilating filter-based low rank Hankel structured matrix
approach (ALOHA). According to ALOHA principle, sparsity in image domain implies the existence of rank-
deficient Hankel structured matrix in Fourier space. Thanks to this fundamental duality, our new algorithm
can perform data-adaptive PSF estimation and deconvolution of Fourier spectrum, followed by truly grid-free
localization using spectral estimation technique. Furthermore, all these optimizations are conducted on Fourier
space only. We validated the performance of the new method with numerical experiments and live cell imaging
experiment. The results confirmed that it has the higher localization performances in both experiments in terms
of accuracy and detection rate.

Keywords: Annihilating filter, Low-rank, Hankel matrix, Matrix pencil, Localization, Microscopy, Super-
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1. INTRODUCTION

Localization microscopy such as STORM/PALM3–5 can achieve super-resolution imaging over diffraction-limit
using a field optical system. This resolution breakthrough attributes to the facts: 1. localization precision of a
single molecule is not diffraction-limited, 2. fluorescence emission events of molecules can be controlled to spread
out in time by harnessing non-linear photo-physics of fluorescent molecules. Specifically, fluorescence molecules
are sparsely activated at each time frame, separating molecules spatio-temporally. Then, the activated molecules
are localized, which can be done up to nanometer scale. After repeating this process until enough molecules are
localized, a super-resolution(sr) image is constructed in the form of a histogram or a Gaussian-rendered image.
However, this conventional low-density acquisition generally leads to a long acquisition time for a single sr image
in order to collect numerous locations of molecules. Actually, this can be seen as trade-off between the spatial
resolution and the temporal resolution. Thus, the conventional localization microscopy has limitations on live
cell imaging due to the slow temporal resolution.

To deal with the issue of slow temporal resolution, a high-density imaging can be used. Literally, it acquires
raw data at a higher molecular density, so that more molecules can be localized, accelerating a temporal resolution.
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However, the localization task is not trivial because a raw image frame contains many overlapping point spread
functions (PSFs). Several localization methods1,2, 6–8 have been proposed to resolve the overlapping PSFs. For
example, multi-emitter fitting methods6,7 fit multiple PSFs to the data in a greedy manner. In other approach,8

localizations are performed by image deconvolution of the raw data. Specifically, it imposes sparsity-priors such as
l1 norm on a sub-pixel discrete grid to recover a sparse sub-pixel image. This approach has been demonstrated
to recover more localizations than the greedy approach. However, since it has intrinsic localization artifacts
due to its discrete formulation, the deconvolution should be performed in a very fine scale sub-pixels, which
leads to huge computational cost. To overcome this disadvantage, we introduced a localization algorithm called
FALCON1,2 using quasi-continuous localization model. Specifically, it combines a sparse deconvolution with
Taylor approximation of PSF to assimilate a PSF, shifted from the grid point. This off-grid technique can reduce
not only localization artifacts but also computational cost significantly. FALCON was also demonstrated in 3D
localization2 with a modified imaging system, combined with astigmatic and biplane imaging.

Although our previous works had addressed many localization issues in the high-density imaging, there is still
room for improvement. First, the image deconvolution based approaches1,7, 8 commonly require prior knowledge
of PSF that is usually estimated from an additional low-density training dataset. To take the training dataset is
usually counted as additional burden on experiments. More importantly, a predefined single PSF model cannot
be fully fitted to the data because PSF generally varies spatio-temporally during acquisition of data in live cell
imaging. Thus, PSF should be locally estimated from the raw data frame. Furthermore, our previous work
on quasi-continuous localization model using off-grid technique does not fully assimilate real continuous space.
Moreover, it still needs a coarse sub-pixel grid to minimize Taylor approximation errors of off-grid PSF. In
addition, this first-order Taylor approximation is affected by imperfection of pre-estimated PSF.

Here, we proposed a new localization algorithm using annihilating filter-based low rank Hankel structured
matrix approach (ALOHA) which was recently proposed by our group for MR imaging9 and image inpainting.10

According to these works,9,10 sparsity prior in image space can be interpreted as existence of a rank-deficient
Hankel structured matrix in Fourier space. Based on this fundamental duality, our new algorithm fully utilizes
this low-rankness, allowing data-adaptive and grid-free localizations in Fourier domain. Specifically, the algorithm
is locally applied to several image patches. First, PSF is independently estimated from each patch by a parametric
optimization, and then, entire Fourier spectrum of each patch is recovered by using Fourier-based non-blind
deconvolution. Finally, a matrix pencil based harmonic retrieval algorithm called ACMP is applied to the
spectrum for the truly grid-free localizations. All these optimization steps are processed on Fourier space only.
We validated the performance of the new method with numerical experiments and live imaging of mitochondria
experiment. The results confirmed that it is more robust to the high-density imaging, showing higher scores of
performance measures in terms of accuracy and detection rate.

2. BACKGROUND

2.1 Principle of Annihilating Filter-based Low rank Hankel Structured Matrix Approach

In general, we can describe a K sparse signal f(ρ) ∈ R2 as follows,

f(ρ) =

K∑
k=1

ckδ(ρ− ρk), (1)

where ρk is the position of the k-th source and ck is its signal intensity. It is easy to show that there always
exists an annihilating function a(ρ) which has a distinct support set from f :.

a(ρ)f(ρ) = 0 . (2)

Thus, it directly implies that the corresponding annihilating filter â(ω) := F{a(ρ)},ω = (ωx,ωy) also exists in
Fourier domain:

â(ω) ∗ f̂(ω) = 0 . (3)

For discrete signal case, this convolution Eq. (3) can be rewritten as a matrix-vector form:

H {F̂}vec(Â)
∨

= 0, (4)
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where F̂ = [f1, · · · , fN ] ∈ RM×N and Â = [a−n, · · · ,an] ∈ R(2m+1)×(2n+1) are the matrices containing Fourier

coefficients, and the annihilating filter coefficients, respectively. H {F̂} is the block Hankel matrix constructed

from F̂, vec(Â) is the vectorized annihilating filter and ∨ is order reversal operator. This the block Hankel

structured matrix H {F̂} is simply generated by partitioning and stacking operations:

H {F} =


H{f1} H{f2} · · · H{f2n+1}
H{f2} H{f3} · · · H{f2n+2}

...
...

. . .
...

H{fN−2n} H{fN−2n+1} · · · H{fN}

∈ R(M−2m)(N−2n)×(2m+1)(2n+1) . (5)

where H{fi} is defined by

H{fi} =


fi(1) fi(2) · · · fi(2m+ 1)
fi(2) fi(3) · · · fi(2m+ 2)

...
...

. . .
...

fi(M − 2m) fi(M − 2m+ 1) · · · fi(M)

 ∈ R(M−2m)×(2m+1) .

Importantly, it is known9,10 that rank of H {F̂} is given by

rankH {F̂} = min{K,M − 2m+ 1} (6)

Thus, the sparse image can be directly inferred to as existence of a rank-deficient Hankel structured matrix,
which is low-ranked. This fundamental duality between the sparsity and low-rankness can be utilized for the
reconstruction of any continuous sparse signal, not limited to discrete domain.

2.2 Imaging Model of Localization Microscopy

In localization microscopy, K active fluorescent molecules at a given time instant can be also described as
a collection of ideal point sources like Eq. 1. Here, measurements; camera images, are obtained through a
conventional wide-field microscopy which is a band-limited system. Thus, the camera image is represented as
the following convolution form with additive noises:

g[ρ] ∼
K∑
k=1

ck h(ρ− xk) + n[ρ] (7)

where h is the PSF of the microscope and n represents random noise perturbations including background aut-
ofluorescence and camera noises. Accordingly, it can be written as

Ĝ[ω] = Ĥ[ω]F̂ [ω] + N̂ [ω], (8)

where Ĝ[ω],Ĥ[ω] and F̂ [ω] are corresponding discrete Fourier coefficients of g, h and f , respectively. Because
the fluorescent probes can be regardless as infinitesimal points, in noiseless case, we can well approximate F̂ as
sum of K frequency harmonics:

F̂ [ω] =
Ĝ[ω]

Ĥ[ω]
'

K∑
k=1

cke
−j2πωk , ωk =

(xk
M
,
yk
N

)
∈ Ω, (9)

where Ω is a passband of the PSF Ĥ[ω] whose values are non-zero. This implies that localizations of point
sources can be considered as a conventional harmonics retrieval problem.11,12

3. PROPOSED LOCALIZATION ALGORITHM

In this section, we explain our new localization algorithm based on ALOHA principle. The algorithm starts
to divide a raw image frame into several patches as shown in Fig.1. This patch-based approach allows more
data-adaptive localization. Specifically, the algorithm consists of following three steps: 1. data-adaptive PSF
estimation, 2. deconvolution of Fourier spectrum, 3. grid-free localization using a matrix-pencil based harmonic
retrieval algorithm. The details of each step are illustrated in the following sections.
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Figure 1. Schematic illustration for the proposed method.

3.1 Parametric PSF Estimation

In most of the localization microscopy, PSF is modelled as a 2 dimensional symmetric Gaussian function hσ(ρ) =

1
2πσ2 e

(
− ρ2

2σ2

)
. In this assumption, PSF estimation problem is nothing but a single parameter estimation in terms

of σ. Furthermore, according to ALOHA principle, we already know that a sparse signal can be transformed

as a low-rank Hankel matrix of its Fourier spectrum F̂ [ω]. Accordingly, a Hankel matrix H { Ĝ[ω]

Ĥσ[ω]
} has the

lowest rank if the Ĥσ[ω] is equal to the true PSF spectrum Ĥ[ω]. Therefore, PSF can be estimated by finding

the parameter σ∗ to make the minimum rank of H { Ĝ[ω]

Ĥσ [ω]
} . Specifically, the estimation is done by minimizing

Schatten-p norm of the Hankel matrix as follows:

σ∗ = min
σ

∥∥∥∥∥(H { Ĝ[ω]

Ĥσ[ω, ]
}

∥∥∥∥∥
p

, ω ∈ Ω, 0 < p ≤ 1. (10)

This single-variable non-linear optimization can be performed very quickly by golden section search. More
specifically, we used a built-in MATLAB function ”fminbnd”.

3.2 Deconvolution of Fourier spectrum

After PSF estimation, it then recovers the Fourier spectrum F̂ from the band-limited Ĝ by using non-blind
deconvolution. Based on the duality of sparse signal, the spectrum can be retrieved by minimizing a penalized
least-squares with a low-rank penalty of Hankel matrix H {F̂}. Moreover, in Fourier domain, the cost function
can be simplified as follows:

min
F̂

‖Ĝ− Ĥ � F̂‖2F + λ‖H {F̂}‖∗,

s.t. f ∈ R (11)

This nuclear norm minimization problem can be efficiently tackled by using a variable-splitting method such as
ADMM.13 By using ADMM, the Eq. 11 is rewritten as an alternating minimization form:

min
F̂ ,U,D

‖Ĝ− Ĥ � F̂‖2F + λ‖U‖∗ + µ‖U −H {F̂}+D‖2F ,

s.t. f ∈ R (12)

In this form, the data fidelity term and the penalty term can be handled separately. As a result, the full Fourier
spectrum F̂ is recovered by updating these three variables alternatively. The update rules are summarized in
the following box.
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Deconvolution of Fourier spectrum

F̂i+1[ω] = P
(Ĥ∗[ω]Ĝ[ω] + µH ∗{Ui +Di}[ω]

|Ĥ[ω]|2 + µWH [ω]

)
, (13)

Ûi+1 = SVDth
(

H {F̂i+1} −Di,
λ

µ

)
, (14)

Di+1 = Di + Ui+1 −H {F̂i+1} (15)

Here, P is a Hermitian-symmetry projection operator to impose “real” signal constraint, SVDth is an operator
of soft singular value thresholding, and the matrix WH is defined as

WM×N
H = H ∗{H {1M×N}}

where 1 is a matrix whose entries are all one. Since all updates are performed on Fourier-domain, the spectrum F̂
is efficiently updated in point-wise manner. In fact, the most computation complexity is attributed to updating
U because of high-computational cost of the singular value decomposition. However, since the rank of K is
usually sparse, this computational complexity can be quite reduced by using matrix factorization techniques10

or randomized SVD methods.14

3.3 Grid-free localization using Matrix Pencil method

After deconvolution of Fourier spectrum, finally locations of sources are extracted from the spectrum. As we
mentioned above, this process is nothing but the conventional harmonic retrieval problem. Here, we used a
matrix pencil based algorithm called ACMP (algebraically coupled matrix pencils). A basic ACMP algorithm
will be briefly explained.

Under assumption that harmonic components in each dimension are distinct, F̂M×N having K harmonics
can be represented as follows,

F̂M×N = PCQT ,

where P,Q are Vandermonde structured matrices and C = diag{c1, · · · , ck} is a diagonal matrix. Specifically,
P,Q are defined:

PM×K =


1 1 · · · 1
p1 p2 · · · pK
...

...
. . .

...

pM−11 pM−12 · · · pM−1K

 , QN×K =


1 1 · · · 1
q1 q2 · · · qK
...

...
. . .

...

qN−11 qN−12 · · · qN−1K

 .
For example, in our localization microscopy case, harmonic pair (Pk, Qk) corresponds to (e−j2π

xk
M , e−j2π

yk
N ) and

ck is an intensity of k-th signal at (xk, yk). Vandermonde structure is the most important property, used in this
harmonic retrieval. In order to utilize Vandermonde structure, four sub-matrices Ftl, Ftr, Fbl, Fbr are constructed
by omitting out-most column and row of F̂ :

F̂tl = F̂ | , F̂tr = F̂ , F̂bl = F̂ | , F̂br = |F̂ .

For example, F̂
(M−1)×(N−1)
tl is a top-left sub-matrix of F̂M×N . Then, ACMP algorithm constructs two type of

matrix pencils which are written as follows,

Horizontal : F̂tr − αF̂tl = PC(Wp − αI)QT , F̂br − αF̂bl = PC(WP − αI)QT ,

Vertical : F̂br − βF̂tr = PC(WQ − βI)Q
T
, F̂bl − βFtl = PC(WQ − βI)QT ,

WK×K
P = diag{p1, p2, · · · , pK}, WK×K

Q = diag{q1, q2, · · · , qK}.
All these matrix pencils have full rank except α or β is equal to the one of harmonics pk or qk, respectively.
Based on this fact, ACMP can recover diagonal matrices WP and WQ whose diagonal components correspond
to pk and qk, respectively.
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Basic ACMP Algorithm Summary
1. compute SVD of Ftl

Ftl = U · Σ · V H

2. multiply two type of matrix pencils on the left by UH and on the right by V

UH (Ftr − αFtl)V = Ctr − Σ

UH (Fbl − αFtl)V = Cbl − Σ

3. compute eigenvalue decomposition of

Σ−1Ctr = G−1WPG

4. apply eigentransformations G to

G
(
Σ−1Cbl

)
G−1 = WQ

4. EXPERIMENTAL RESULTS

We analysed the performance of the proposed algorithm using both numerical experiments and real live-cell
PALM imaging.

4.1 Numerical experiments

First, we validated our parametric PSF estimation method. For the analysis, high-density image patches were
generated under various signal to noise ratio (SNR). Since signal power is mostly concentrated in a low-frequency
band while noise power is widely distributed, Fourier coefficients only from a low-frequency band are used to

construct a Hankel matrix H { Ĝ[ω]

Ĥσ [ω,]
}. Based on Eq. (10), we plotted the values of Schatten norm (p = 0.6) of

‖H { Ĝ[ω]

Ĥσ [ω,]
}‖p along various PSF widths in terms of the parameter σ. This is repeated 30 times for every SNR.

As shown in Fig 2., the minimum value of the Schatten norm is close enough to the true value. This tells us that
the method can provide reliable estimation results.

Figure 2. Performance analysis of PSF estimation: values of Schatten norm (p = 0.6) of ‖(H { Ĝ[ω]

Ĥσ [ω,]
}‖p are plotted along

various widths σ. The dotted black line denotes the true width.

We also evaluated general localization performances of the proposed algorithm in comparison to our previous
algorithm FALCON over wide imaging densities. For this simulation study, two set of simulated images were
generated under realistic low SNR live imaging conditions of localization microscopy. Specifically, the two
photon-emission rates (or signal intensity statistics) of molecule are (300,150) and (150,50) in terns of (mean,
standard deviation). Performance analysis was performed by matching each localized one with the closest true
molecule within 150 nm range, and then measuring 3 performance scores:15 recall rate (A∩BB ), Jaccard index

(A∩BA∪B ), localization error (root mean squared). Here, A is the number of localizations, B is total number of true
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Figure 3. Localization performances of the proposed method in comparison with FALCON along wide range of imaging
densities. The simulated images were generated with random distribution of molecules. (a,d) recall rate, (b,e) Jaccard
index, (c,f) localization error (r.m.s). (a-c) corresponding to photon-emission (300,150) and (d-f) corresponding to photon-
emission (150,50)

molecules. The proposed algorithm shows distinct improvements in recall rate and Jaccard index as shown in
Fig. 3., inferring that it localizes more molecules with lower false positive localizations. In the lower SNR case,
the improvement is even more distinct.

4.2 Live cell experiments

Finally, the algorithm was experimentally demonstrated with live mitochondria cells on division. We labelled
fluorescence probes (“Mitotracker”) to the inter-membrane space of the mitochondria, which results in block
matrix structure, called cristae. Mitochondria are extremely light-sensitive organelles. Typical irrandiances (10
kW/cm2) used for localization microscopy lead to sparse photoswitching and high photon yields per molecule,
which ultimately results in high spatial resolution. Applying these conditions to the mitochondria over extended
periods of time (as short as 60 s) would cause blebbing and almost immediately freeze their motility: this of
course, leads to mitochondrial death and perturbs biologically interesting processes. Thus, it is necessary to
apply lower irradiances, which leads to lower SNR and higher density dataset. The new method and FALCON
algorithm were used to reconstruct the dataset. In fig. 4., the proposed method shows improvement of a spatial
resolution as compared to FALCON, preserving clearer cristae structure.

5. CONCLUSION

In this paper, we introduced the new localization algorithm using annihilating filter-based low rank Hankel
structured matrix approach. According to ALOHA principle, sparsity property in image space directly infer that
a low-rank Hankel matrix can be constructed from its Fourier spectrum. This duality allows the new algorithm
to perform data-adaptive PSF estimation, deconvolution, and grid-free localization all in Fourier domain. The
method not only can be working as stand-alone without any training dataset for PSF estimation, but also provides
truly continuously localization results, which overcomes the limitations of our previous algorithm. Moreover,
the method is computationally efficient because all optimizations are conducted in Fourier domain only. The
efficacy of the proposed method have been well demonstrated in numerical and experimental study both. These
experiments confirmed that the proposed method is more robust to low-SNR and high-density data. Thus, it
enables super-resolution imaging with the faster temporal resolution.
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Figure 4. Experimental results of live mitochondria imaging. An wide-field image (a) constructed from 300 raw frames.
Super-resolution images reconstructed by FALCON (b) and the proposed method (c). The proposed method preserves
the matrix-like structure of cristae, denoted in red circle.
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