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Grid-Free Localization Algorithm Using Low-Rank
Hankel Matrix for Super-Resolution Microscopy
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Abstract— Localization microscopy, such as STORM/PALM,
can reconstruct super-resolution images with a nanometer reso-
lution through the iterative localization of fluorescence molecules.
Recent studies in this area have focused mainly on the localization
of densely activated molecules to improve temporal resolutions.
However, higher density imaging requires an advanced algo-
rithm that can resolve closely spaced molecules. Accordingly,
sparsity-driven methods have been studied extensively. One of
the major limitations of existing sparsity-driven approaches is the
need for a fine sampling grid or for Taylor series approximation
which may result in some degree of localization bias toward
the grid. In addition, prior knowledge of the point-spread
function (PSF) is required. To address these drawbacks, here we
propose a true grid-free localization algorithm with adaptive PSF
estimation. Specifically, based on the observation that sparsity in
the spatial domain implies a low rank in the Fourier domain,
the proposed method converts source localization problems into
Fourier-domain signal processing problems so that a truly
grid-free localization is possible. We verify the performance of
the newly proposed method with several numerical simulations
and a live-cell imaging experiment.

Index Terms— Super-resolution microscopy, annihilating filter,
low-rank matrix completion, matrix pencil, source localization.

I. INTRODUCTION
OCALIZATION microscopy such as STORM/PALM
[1]-[3] can achieve super-resolution (SR) imaging
beyond the diffraction limit with far-field optics. This break-
through in the resolution results from the following: 1) the
localization precision of a single molecule is not diffraction-
limited, and 2) fluorescence molecules can be activated
sparsely at each time frame by separating molecules in space
and time. Accordingly, non-overlapping activated molecules

Manuscript received May 27, 2016; revised December 13, 2016, August 9,
2017, and January 21, 2018; accepted May 17, 2018. Date of pub-
lication June 6, 2018; date of current version June 27, 2018. This
work was supported by the National Research Foundation of Korea,
under Grants NRF-2016R1A2B3008104, NRF-2015M3A9A7029734, and
NRF-2017M3C7A1047904. The associate editor coordinating the review of
this manuscript and approving it for publication was Prof. Gustavo K. Rohde.
(Corresponding author: Jong Chul Ye.)

J. Min was with the Department of Bio and Brain Engineering, KAIST,
Daejeon 305-701, South Korea. He is now with Samsung Electronics Co.,
16677 Suwon, South Korea.

K. H. Jin was with the Department of Bio and Brain Engineering, KAIST,
Daejeon 305-701, South Korea. He is now with the Bio Imaging Group, Ecole
polytechnique fédérale de Lausanne, 1015 Lausanne, Switzerland.

M. Unser is with the Bio Imaging Group, Ecole polytechnique fédérale de
Lausanne, 1015 Lausanne, Switzerland (e-mail: michael.unser@epfl.ch).

J. C. Ye is with the Department of Bio and Brain Engineering, KAIST,
Daejeon 305-701, South Korea (e-mail: jong.ye@Xkaist.ac.kr).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2018.2843718

can be localized to the nanometer accuracy by detecting
their centroids. After repeating this process until enough
molecules are localized, a final SR image is constructed.
However, conventional low-density acquisition schemes are
associated with long acquisition times required to collect
numerous non-overlapping fluorescent molecules. This com-
promise between the spatial and temporal resolutions rep-
resents the imaging limitation of conventional localization
microscopy systems for live-cell imaging.

In order to improve the temporal resolution, high-density
(HD) imaging techniques have been developed [4]. They
acquired raw data with higher molecular densities such that
more molecules can be localized within a time frame, resulting
in an accelerated temporal resolution. However, the localiza-
tion task becomes more difficult because a raw image frame
is likely to contain many overlapping PSFs. Several localiza-
tion methods [4]—-[12] have been proposed to resolve closely
spaced molecules with overlapping PSFs. These algorithms
are mostly based on the use of sparsity in the image domain.
For example, multi-emitter fitting methods [4], [5] fit multiple
PSFs to the data by increasing the sparsity in a greedy manner.
On the other hand, one method [6] used image deconvolution
by imposing sparsity-priors such as the Laplacian prior, and
another [7] considered more precise statistical models of the
camera noise and photo-physics of fluorescence molecules.
These deconvolution methods have shown better localization
results than previous greedy methods: however, one of the
main limitations of the sparsity-driven reconstruction meth-
ods is that spatial resolution is limited to the reconstruction
grid.

Instead of relying on a finely sampled grid, one study [9]
proposed what was termed the FAst Localization algorithm
based on a CONtinuous-space formulation (FALCON) for
high-density SR microscopy data with the Taylor series
approximation of PSFs on a coarser grid. Although these meth-
ods can address the problem of high density (HD) localization,
there are still many remaining technical issues. For example,
FALCON relies on the accuracy of the initial estimation on a
fixed grid to establish accurate Taylor series approximations.
Therefore, bias remains on the estimated offset, as will be
shown later in actual experiments. Second, most existing 2D
localization methods use a fixed PSF model which is usually
estimated from additional low-density data containing iso-
lated PSFs [6]-[9], [11]. During the early days of localization
microscopy, experiments were usually performed on the total
internal reflection fluorescence (TIRF) where a single 2D
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PSF model was usually applied to process all of the camera
frames. However, more recently, localization microscopy is
often implemented using a modified type of TIRF microscopy
with the longer depth of field [13]. In addition, there has been
growing demand for super-resolution imaging with various
experimental protocols, including live-cell imaging. Due to the
spatial fluctuations of cells in live-cell imaging, it is expected
that the focused region may vary in terms of space and time.
Accordingly, the need for localization microscopy data with
varying PSF estimations exists to deal with imaging conditions
not well-represented by a fixed 2D PSF model [6]-[9], [11].
In addition, for better reconstruction at a low SNR typical
in live-cell imaging, a suitable noise and signal model beyond
the Gaussian may be incorporated with the imaging algorithm.
Finally, there exist inter-frame correlations due to the stochas-
tic physics of the fluorescence probe, which can be exploited
to increase the localization accuracy.

In order to address these problems, here we propose a
truly grid-free 2D localization algorithm with data-driven
local PSF estimation as a penalized maximum likelihood
estimator (MLE) under Poisson loglikelihood that can also
exploit the temporal correlation of probes. The algorithm
is based on the recently proposed annihilating filter-based
low-rank Hankel structure matrix approach [14]-[16], which
has been successfully applied to many imaging applications,
such as MRI [15], [17]-[21], image in-painting [22], image
de-noising [23], and nuclear magnetic resonance (NMR)
spectroscopy [24], as well as others [25], [26]. This algorithm
exploits the special structure of the Fourier spectrum of a
signal with a finite rate of innovation (FRI) [27], [28].

More specifically, if the spectral data of the FRI signals is
lifted to a Hankel-structured matrix with a suitable weighting,
the matrix has a low rank [14], [15], [29]-[32]. Because the
fluorophores can be considered to have an infinitesimal size,
they can be modeled as delta functions, which are a typical
example of FRI signals. Accordingly, the sparsity of activated
fluorophores at the nanoscale resolution can be exploited as
a low-rank constraint of a Hankel-structured matrix in the
spectral domain, which can be used efficiently to deconvolve
the data in the Fourier domain. More specifically, the PSF
estimation problem can be converted into a spectral weighting
estimation problem that finds a parameter that leads to the
structure with the lowest rank. Patch-by-patch processing can
therefore be performed to track the spatio-temporal variations
of PSFs. In contrast to most existing localization algorithms
operating on a discrete image grid, our algorithm directly
recovers the Fourier coefficients of a sparse signal in a con-
tinuous domain. Therefore, the estimation of the fluorescent
probe location can be done in a truly grid-free manner using
a harmonic retrieval method. Specifically, we estimate spatial
positions from the recovered Fourier coefficients by applying
a subspace-based harmonic retrieval algorithm known as alge-
braically coupled matrix pencils (ACMP) [33]. This converts
the MLE problem into an all-Fourier-domain formulation
under low-rank structured-matrix constraints. Moreover, this
Fourier-based approach allows the collaborative reconstruction
of multiple consecutive data frames, resulting in higher recon-
struction performance.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 10, OCTOBER 2018

We are aware of a recent work, which is also based on
Fourier-domain processing [11]. Specifically, Hua [34] recov-
ered the Fourier spectrum via direct inverse filtering with a
given PSF and then estimated the probe locations by applying
a matrix pencil algorithm known as matrix enhancement and
matrix pencil (MEMP). Although this method is computation-
ally fast, it is sensitive to noise, as direct inverse filtering
generally enhances high frequencies. In addition, it uses a
fixed PSF model. In contrast, our method fully utilizes the
noise model and adaptively estimates the PSFs, making it more
general and more robust.

The paper is organized as follows. We begin with the
theory and problem formulation of localization microscopy in
Section II. The proposed algorithm is presented in Section III.
Then, numerical and experimental results are shown in
Section IV. Finally, we discuss several issues and conclude
the paper.

II. MATHEMATICAL PRELIMINARIES
A. Notation

Throughout the paper, the bold lower-case character
(e.g. x,y) represents a vector. The i-th elements of a vector x
is represented by x[i] or x;. Moreover, x' and x j correspond
to the i-th row and the j-th column of matrix X, respectively.

A Hankel-structured matrix generated from an n-
dimensional vector x = [x|---x,]7 € C" has the following
structure:

x[1] x[2] x[d]
x[2] x[3] x[d +1]
H(x) = . .
x[n—d+1] x[n—d+2] x[n]
(1)
We denote the space of this type of Hankel structure matrices
as H(n,d).

A stream of Dirac impulses is defined by

K
x(t) =D sdlt — 1),
k=1
where d0(-) denotes the Dirac delta function, and {#;} are the
locations of the Dirac impulses. Then, we define its /p-counting
function ||x||o by counting the number of Dirac impulses.

B. Forward Model

For the noiseless case, the measurement u(r), r € R4 d=
2, or 3 for two- or three- dimensional problems, respectively)
on the image plane M through an objective lens can be
described by the integral equation:

u(r) =/ dr'a(r,r)x ("), re M, )
@]

where x(r’) denotes a specimen on the object space O, and
a(-, r') is the point-spread function (PSF) from an infinitesimal
source at r’. In addition, for fluorescence imaging, x(r’),
r’ € O can be described by

x(') = sex () () 3)
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where u,,(r") denotes the optical flux at the excitation wave-
length of the fluorophore, and 7(r’) is the fluorescent yield.

In super-resolution microscopy, fluorescent probes are com-
monly viewed as infinitesimal point light sources distributed
over cell organelles. Therefore, if we consider K-sparse flu-
orescent probes, the unknown fluorescent distribution can be
modeled as a stream of Dirac impulses:

K
() = D 5o’ — 1), @)
k=1
where s; denotes the fluorescent intensity. Note that (4) is a
special case of FRI signals (see [14], [27] for more details).
In the super-resolution microscopy experiments, several tem-
poral frames are acquired, as the fluorescent intensity {si}
changes with the temporal frames.

Thus far, the measurements at all spatial coordinates of
the detector plane M have been modeled. However, in the
presence of pixelation, the acquired data consist of the number
of detected photons at each pixel. If we consider a pixelated
detector with M pixels, the data model describing image
acquisition by the m-th detector is then given by

u,ﬁ/ dr/ dr'a(e,f)x(t'), m=1,--- .M (5
m O

where C,, denotes the m-th detector area on M.

C. Existing Penalized Maximum Likelihood Approaches

In most existing approaches, the object space O is dis-
cretized into N voxels so that x € RV becomes a discretized
unknown fluorophore distribution vector. Additionally, Eq. (5)
is approximated as

N
Uy = Zamjxj (6)
j=1
where
amj :/ a(r,r’)dr, x; :x(r})
CIVI

and r} denotes the j-th voxel location on the object space.
Suppose, furthermore, that y € RM denote the detector
measurements, and A = [a; ]]lelzv |- Then, the negative loglike-
lihood function from Poisson intensity measurements is given
by:

L(x) = 17 (Ax + b) — y” log(Ax + b) (7

where b is the background fluorescent distribution originating
from the autofluorescence, 1 denotes a vector with elements
of ones of an appropriate size and log(-) is treated as an
element-by-element operation. Subsequently, the conventional
estimation task can be formulated as the following minimiza-
tion problem:

mxin J(x) where J(x) = L(x) + pen(x), )

where the function pen(x) imposes a penalty to guide the
reconstruction.

One of the technical difficulties related to minimizing
L(x) in Eq. (7) is the non-separability of the likelihood
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term, i.e. log (Ax). Figueiredo and Bioucas-Dias [35] pro-
posed the PIDAL (Poisson image deconvolution by augmented
Lagrangian) algorithm using the alternating direction method
of multipliers (ADMM) without approximating the Poisson
loglikelihood. In PIDAL, the PSF matrix was assumed to be
spatially invariant, allowing the fast Fourier transform (FFT) to
be used for rapid computation of matrix vector multiplications.

However, existing deconvolution approaches have limita-
tions on super-resolution microscopy. Firstly, accuracy of the
approximation (6) is strongly dependent on the sampling grid,
meaning that very fine discretization is required. Secondly,
existing approaches usually adopt spatially invariant PSF,
which is typically obtained from an additional PSF measure-
ment experiment. Accordingly, these methods cannot take into
account the fact that a PSF can vary with the spatial location
and time due to the extended acquisition time, movements
of the sample, and the instability of the sample holders.
Accordingly, the accuracy of existing reconstruction methods
can deteriorate.

Below, we use the variable splitting technique of PIDAL
for our all-Fourier domain optimization. However, variable
splitting is not our main contribution. Specifically, any type
of variable splitting method beyond those of PIDAL can
be incorporated into our all-Fourier formulations to address
the aforementioned problems. For example, the algorithm
can be combined with a Poisson ML estimator using a
concave-convex procedure (CCCP) [8].

ITI. THEORY
In order to solve the above-mentioned limitations, we pro-
pose a Fourier-domain formulation of a penalized ML using
the adaptive PSF estimation technique, which allows truly
grid-free localization. For the sake of simplicity, we derive
the algorithm using a 1-D signal model; the 2D formulation
will be discussed later.

A. Fourier-Domain Formulation of Penalized ML

In our approach, (7) is solved in a patch-by-patch manner.
However, by estimating the PSF for each patch, a spatially
varying PSF can be addressed. Without a loss of generality,
the detector pitch is assumed to be 1. Hence, pixelated detector
measurement on the m-th detector is modeled by

= (pxax*x)(m)= /O/Odrdr/p(m —ra(r —rHx(@’),

where * denotes a continuous-domain convolution and p(r) is
a rectangular function given by

o) = [1, Il <1/2,

0, otherwise.

Therefore, with u = [u;---up]’, the penalized ML estima-
tion problem for the estimation of the stream of K- Dirac
impulses becomes:

min 17 (u +b) — y” log(u + b)
u
subject to u,, = (pxa*xx)(m), m=1,--- M

lxllo = K ©)

where ||x|lp denotes the number of Dirac impulses.
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The minimization problem in (9) is solved using ADMM,
as is done in PIDAL [35]. Specifically, the associated
Lagrangian is given by

L(s,u,A) =17 (u+b) — y" log(u + b)

M
+3 Z‘i i — (p @ x)(m) + il lxllo < K
m=

with the corresponding subprograms then as follows:

20 = (pxaxx®)m) - 1P

ung_l) = arg min {Mm — Ym 1Og(um + bM)
Um>—bm
a
+5|um - Z,(,],{)lz} (10)
1 ®) 1 ) 1 2 4ym
= - |z, —bm——+ m +bm__ + —
2 a a a
M
x®*D = arg min Z Iu,(,]fH) —(p*xaxx)(m)+ i,(,lf)lz (11)
xllxllo=K ,, =
/1%{4_1) _ uf,fH) —(p*xaxx®Dym) + /1211{). (12)

Although we use variable splitting in a manner similar to
that in PIDAL for Poisson noise, the main difference of the
proposed algorithm is that the purpose of the present task
is to recover a continuous-domain signal composed of Dirac
impulses. Hence, a method to solve subprogram (11) without
discretization is required. Accordingly, rather than solving sub-
program (11), we convert it to an equivalent Fourier-domain
problem. Toward this, we need the following result:

Proposition 1: Suppose that y, has finite support, i.e.
Ym = 0 when m € Z \ [1,---,M] and the detector pitch
is 1. Then, we have

()

M
gwm—(p*a*x)(mnz:%/h

2
— Z plw+2xn)a(w + 2rn)x(w + 27rn)‘ do. (13)
nez

where y (ej “’) is the discrete time Fourier transform (DTFT) of
the sequence y,; and p(w), a(w), and X (w) are the continuous
time Fourier transform (CTFT) of p, a and x, respectively.
Proof:  Since the detector pitch is 1, the normalized
frequency in DTFT is equal to the frequency in the CTFT
domain. Therefore, the effect of the sampling for (pxa*x)(z)
is a 2z periodization in the frequency domain. The final step
of the proof is to use the Parseval’s relationship in DTFT. This
concludes the proof. (]
If we also assume that the modulation transfer function a(w)
is bandlimited, then the 2z periodic copies do not overlap and
Eq. (13) is further simplified to

M
z |ym - (p *a *x)(m)|2
m=1

1

S 2n 27

. 2
ﬁ(efw)—ﬁ(a))fz(w))?(w) do. (14)

Given the bandlimited PSF, even if the spectrum of the stream
of Dirac impulses is not bandlimited, (14) still holds. Next,
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because the y,, signals are assumed to be finite-supported,
we can sample the Fourier grid at the Nyquist sampling rate
so that

M M )
D v = (praxx)(m)> = A |91kl — plklalkIz[k]
m=1 k=1

5)

where J[k], plk]l, alk] and x[k] are sampled value of
f}(ejw) , p(w), a(w) and x(w) at @ = 2xk/M, respectively.
Note that the constant A comes from the frame bound of
the sinc interpolation kernel, which is tight. This instance
of spectral domain discretization is equivalent to the impo-
sition of the periodic repetition onto the image-domain signal.
This creates the stream of Dirac impulses periodic with a
period of M, which is a mandatory step in the FRI signal
model [27]. At this stage, the next question concerns how to
impose the continuous-domain constraint ||x|jop < K in the
Fourier domain. To do this, we need the following key result
from [14]:

Theorem 2 [14]: Let K + 1 denotes the minimum size of
annihilating filters that annihilate the discrete Fourier data
X[k]. Assume that min(n —d + 1,d) > K. Then, for a given
Hankel-structured matrix 7€ (X) € H(n, d) constructed using
X = [x[1],---, x[n]], we have

RANK (/£ (X)) = K, (16)
where RANK(-) denotes a matrix rank.

Specifically, for the stream of Dirac impulses in (4), the
minimum-length annihilating filter h[k] has the following
z-transform representation [27]:

K K—1
h@) = hine' = [[a—e 77 an
1=0 j=0

whose length is K + 1. Therefore, the associated Hankel
matrix should have rank K from Theorem 2. By combining
all of these components, the spectral domain formulation of
the subprogram (11) is

g&+D — arg min ak+h — poOaOx+ ):(k) 1
)A(ECH
+ARANK (A (X)),

where Cp denotes the set of Hermitian symmetric spectra
because the image-domain counterpart should be real-valued.

Because direct rank minimization is a non-convex opti-
mization problem, we will relax the constraint by minimizing
the nuclear norm of this matrix. In this paper, we employ a
factorization-based rank minimization algorithm [36] that does
not involve the singular value decomposition. The algorithm
is based on the following observation [37]:

: 2 2
[Alx =~ min NJUlE+ IVIE,
u,v vH

(18)

where U € C—d+)xr 'y ¢ C4%7 and r > K Hence, (11) can
be reformulated as the nuclear norm-minimization problem
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under the matrix-factorization constraint:

min
xeCpy,U,

subject to (X)) = UVH,

19 - oA + 4 (I +1VIE)
v 2 2 F F
(19)

where § = a%tD 4+ A% With an additional step of
ADMM [38], we have the following cost function:

L(UV)EA)'—EHA—A Ao+ Ulz + VI3
VLR A) = SIIY poOaoX| +2 WUIE+11VIE

+§||%(ﬁ) —UVH 4 A% (20)

One of the advantages of the ADMM formulation is that
each subproblem is simply obtained from (20). More specifi-
cally, x"+D_ y@+D and v+ can be obtained, respectively,
by applying the following optimization problems sequentially:

. A
X(n+1) — mln §||y_p®a®X”2

xeCpy

+SIA G = UOVOT L A
A
Ut = argmin U + S12/& D)
2
—_yymH A(n)”F
A
y D) — argm‘jn E||V||%v + %”%(ﬁ(nﬂ))

—ythyH L A2 21)

with the Lagrangian update then given by
A(n+1) _ %(ﬁ(n-f—l)) _ U(n+1)v(n+1)H + A(n).

It is easy to show that without the constraint of Hermitian
symmetry, the step in (21) results in the following intermediate
step

@LT LTSN +u Py (% (UMVOH — AM))
|ali1plil1> + u Pi (A (e;)) '

where e; denotes the unit coordinate vector where the i-th

element is 1, and P; is the projection operator of the i-th coor-

dinate. Then, by imposing the Hermitian symmetry constraint,
£+ is given as

Fornii

&(n+1) — PH(f'(lH»l))’

where Pp is the projection operator on a space of matrices
with Hermitian symmetry.

The subproblems for U and V are easily solved by taking
the derivative with respect to each matrix, and thus we have

Uyt — U (%(ﬁ(lﬂrl)) + A(ﬂ)) vy (i] + ,uV(”)HV(”))_l
yon — (%(ﬁ(n+l))+A(n))H yth

% (/“ +ﬂU(n+l)HU(n+l))—1

Note that the computational complexity of our ADMM algo-
rithm is dependent on these matrix inversions, whose com-
plexity is determined by the estimated rank of the structured
matrix. Therefore, even when the structured matrix is large,
the estimated rank can be much smaller, which significantly
reduces the overall complexity.
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In summary, the original ADMM formulation for the penal-
ized ML formulation can be equivalently converted to the
Fourier-domain formulation as follows,

2® = 71 (f) caox® — x(k)) (22)

kit = % 2P — bm—é ﬂ/(zfé" + b — é)z + 42’"
23)
gD arg min lnﬁ(k"rl) —-poaox
xeCy, ' (x)=UVH
AP+ 2 (i +iviz) (24)
A — @k _poaos®h 419 (25)

Here, except for the second step, the remaining deconvolution
steps are done in the Fourier domain.

Note that the alternating direction method of multipli-
ers (ADMM) is widely used to solve large-scale linearly
constrained optimization problems, convex or nonconvex,
in many engineering fields. Specifically, the convergence of
the ADMM algorithm to minimize the sum of two or more
nonsmooth convex separable functions has been well-studied,
and Hong and Luo [39] proved the linear convergence of
a general ADMM algorithm with any number of blocks
under linear constraints. However, (19) is not convex due
to the bi-linear term for Hankel matrix factorization using
U and V. Therefore, we cannot directly use the results by
Hong and Luo [39]. For nonconvex problems, we are aware
that Hong et al. [40] and Li and Pong [41] showed that the
ADMM algorithm converges to the set of stationary solutions,
but our problem does not fit this setting. Therefore, rather than
claiming a convergence guarantee in relation to our problem,
here we rely on our empirical results, which consistently show
the convergent behavior. The rigorous proof of the convergence
is important but beyond the scope of the current paper.

B. Advantages of Fourier-Domain Formulation

There are several important advantages when using the
Fourier-domain formulation of a penalized ML. First, if there
are variations of 2D PSF functions with small z-directional
fluctuations in the fluorophore distribution, we can easily
estimate the varying 2D PSF by means of spectral domain
processing. More specifically, the most widely used 2D
PSF model is Gaussian function. Specifically, a symmetric
Gaussian function is used so that different PSFs can be created
by adjusting a single parameter o. Accordingly, the Gaussian
PSF model is given with the following approximation:

he ~ px*xa

where the single parameter ¢ is determined by an optical
set-up as well as a slight variation of axial locations of probes.
In noiseless case, the Fourier domain spectrum X, [k] can
be then obtained by applying an inverse filter
folk) = 251,
he k]

(26)
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where fza [k] denotes the Fourier spectrum of &,. As we have
already shown, the sparsity of the continuous-domain signal
x(r) can be equivalently represented by the low-rankness of
the Hankel matrix, which is constructed from spectral domain
samples. Therefore, we search the parameter ¢ that minimizes
the rank of the Hankel matrix J7{X,}:

0, = argmin RANK (%{f{a }) , 27)

a>0
which provides the optimal parametric PSF estimation.

The second advantage of the Fourier-domain formulation
is that the initialization of the U and V matrices can be
readily combined with the PSF estimation. In (20), the column
dimensions of U and V represent the upper-bound of the
rank of the Hankel matrix. Therefore, they should be properly
estimated. For the initialization of the U and V matrices,
instead of using an inverse filter as in (26), a Wiener filter is
used to avoid noise boosting in order to estimate the denoised
spectral data:

.
P AL U

lho, K112 + €
with an appropriate value of ¢ > 0. The initial U and V
matrices are then obtained as a low-rank factorization of
A{X,,} by monitoring its singular-value spectrum.

Lastly, after the deconvolution, the algorithm provides an
accurate localization model and an optimization framework,
enabling truly grid-free localization. Unlike FALCON, which
relies on the accuracy of fixed grid guesses to make accurate
Taylor series approximations, the proposed localization steps
using the matrix pencil method are accurate without the need
for precise initialization. Specifically, when a complete set of
Fourier coefficients is returned by means of deconvolution,
the remaining task corresponds to the harmonic retrieval
problem [33], [34], [42], [43]. For example, 1-D harmonic
retrieval can be handled by a subspace-based method such
as ESPRIT (estimation of signal parameters via rotational
invariant techniques) [42] by exploiting the inherent Vander-
monde structure of a Hankel matrix constructed using X. This
Vandermonde structure, in general, can be extended to higher
dimensions as well. For the 2D problem, the MEMP (matrix
enhancement and matrix pencil) algorithm [34] can be used.
The MEMP algorithm solves rank deficiency problem by con-
structing a lifted matrix, i.e. Hankel matrix [34]. Specifically,
it divides the problem into different sequential 1D harmonic
problems with matrix pencils, after which it pairs two sets of
harmonics in each dimension. Given that this pairing requires
an additional minimization step, the use of what are known
as algebraically coupled matrix pencils (ACMP) [33] has been
proposed to solve the pairing issue. Thus, the ACMP algorithm
is used in this paper. As a result, our method can significantly
improve the localization accuracy, especially in experimental
conditions with low SNRs. Confirmation of this benefit is
augmented later in the paper, specifically in the experimental
section.

IV. ALGORITHM IMPLEMENTATION

Based on the theoretical derivation in the previous section,
we now provide a more detailed implementation of the
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Fig. 1. Schematic representation of the proposed method.

algorithm for our 2D super-resolution microscopy problem.
As shown in Fig. 1, a raw frame is initially divided into
several overlapping patches of 45 x 45 pixels, where the
outermost five pixels of each patch overlap the neighboring
patches (the localization results from the overlapped region
are excluded from the final results). The following three steps
are then applied to each patch: 1) PSF estimation using a
low-frequency signal, 2) spectral domain deconvolution to
retrieve Fourier data X under a Poisson noise model, and
3) fluorophore location estimation using the harmonic retrieval
approach. Additional details pertaining to each step are given
below.

A. Parametric PSF Estimation

As noted earlier, we use the simple 2D-symmetric Gaussian
[ir)?

model /,(r) = e 22 with the parameter o to describe
the shape of the 2D PSF. The validity of using Gaussian
PSF approximation under our experimental set-up is discussed
in Appendix. Because the measurement y is contaminated
by noise, we need two small modifications to increase the
degree of noise robustness. First, to apply the inverse filter
as in (26), we only use the low-frequency part of y[k] to
improve the signal-to-noise ratio of our filtering procedure.
Specifically, we took 17 x 17 coefficients for all our numer-
ical and experimental calculations. Second, due to the noise
contaminations, 77{X, } becomes a full rank matrix regardless
of the parameter o. Hence, instead of using (27), we rely on
a Schatten-p quasi-norm as a rank surrogate:

0, = arg min ’|%{&a}’|§, 0<p<l, (28)

after normalizing the MTF function ||ﬁg ll2 = 1. We recall that
the Schatten-p matrix norm of a matrix A is defined as the
[p-norm for singular values:

1AL =" a7,
n

where A, denotes the n-th singular value of A. Here, the
Schatten p-norm is used as an alternative measure of rank in
order to find the o value which gives the norm with the lowest
value. When p < 1, the Schatten p-norm is concave and can
therefore be used as a better rank surrogate function than the
nuclear norm. Because (28) accomplishes single-variable non-
linear optimization, it is solved efficiently by using the built-in
MATLAB function fminbnd.
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B. Deconvolution Step

1) Construction of 2D Hankel Matrices: In the previous
section, the deconvolution formula for the 1D signal was
derived for simplicity. Nevertheless, the formula for the 2D
signal case can easily be extended with a few minor modifica-
tions. Let us assume that the variables of z, p, X in our algo-
rithm are lexicographically ordered vectors. For example, X is
a lexicographically ordered vector from the 2D spectrum X:

X =[&, - ,%] %=vec(X).
In this case, the remaining task is to redefine J7(X)
as a 2D Hankel matrix of X. As described in several
works [15], [17], [18], the 2D low-rank Hankel matrix orig-
inates from 2D annihilating filters; accordingly, for a given
annihilating filter of size d,, x d,, the associated 2D Hankel
matrix is given by

(1) (o) AR,
. H(X2) H(X3) o HRdy+1)
H(X) = : : - : ’
HGotys1) Gy 22) A (&y)
29)

where J7(X;) € H(m,dy,,) is defined in (1). Then, we can
use the same formulation (22)-(25) by replacing the Hankel
matrix with the 2D one in (29).

In practice, the background autofluorescence signals by,
should be estimated before the deconvolution step. Here,
we use the iterative wavelet threshold method proposed in
FALCON [9]. Specifically, assuming that the background sig-
nal is spatially smooth, the method finds, at each itera-
tion, a low-resolution image of background autofluorescence
by means of a multi-level wavelet transform operation and
then subtracts the intensities of the raw image through the
low-resolution image. Details pertaining to this step are
available in [9].

The values of the parameters 4, a, u in this step are fixed
as follows: 1 = 20, o = le~2, and u = le~. For a better
upper bound of the rank of the Hankel matrix, we undertake
the factorization of U™, V(™ from the estimated .7 (X™)
and its singular value distribution at every 30 iterations.

2) Extension to Multi-Frame Formulation: In localization
microscopy, fluorescence molecules can be activated in sev-
eral consecutive frames due to the stochastic photo-physics.
In other words, activated fluorescent probes have the common
supports in these successive frames [44]. This joint sparsity
can be also incorporated in our deconvolution framework to
improve the quality of the reconstruction. In particular, we can
impose joint sparsity by minimizing the rank of the 2D Hankel
matrices concatenated side by side [15], [17], [18]. Due to
the existence of inter-channel annihilating filters originated
from the joint sparsity condition, the rank of the concatenated
matrix is small such that we can exploit the low-rankness
characteristic. Additional details are given in [15].

This multi-frame version of the problem is nearly identical
to that discussed earlier, except for the low-rank regularization
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term. Specifically, (20) is reformulated as:

T

. |
LUV, R}, A) =D Eny(,)—p@a@xmnz
t=0

A 2 2
+5 (10 +1viE)
7 .
+5 17 (Ro))=) = UV + Al
(30)

where T is the number of adjacent frames to be processed
simultaneously, (-)(t) denotes a variable at frame ¢, and the
concatenated 2D Hankel matrices is given by

AR ) = [ Ray), - ARy

Here, the update of X is modified as:

A(n+l) p(n+1)
Xoy = Puly ),
D)

1)

@l z]*ﬁ[i]*m[i]) +uP i (A (UMY
lali1plil|? + u Pr i (A% (e;))
In this equation, P;; is the projection operator for the i-th
coordinate at frame 7.
When we apply the multi-frame deconvolution to raw
frames, patches of consecutive 7 frames are selected in a

sliding-window manner. The regularization parameter A is set
to A =20/T.

A)

C. Grid-Free Source Localization Using the
Matrix Pencil Method

Once the entire Fourier spectrum X is restored, the remain-
ing task is to extract the harmonics from the Fourier spectrum
from which the spatial locations can be computed. Specifi-
cally, let (xg, yx), k = 1,---, K denote the locations of the
K -harmonics. The discretized Fourier data is then given by

zskpk >

where pr = e IOk qr = e~/®_Then, the matrix of Fourier
coefficients X € C"™*" can be decomposed as follows:

X =rso’,

mn]

where SK*K  — diag{sy,--- ,sx} is a diagonal matrix.

P e C"*K 0 e C"*K are Vandermonde structured matrices:

1 1 1
P1 p2 PK
P = . . o,
.1 —1 ‘71
Ll Py P
! 1 1
q1 q2 qK
0 = .
Lai ™ T g

If there are common harmonics in each dimension, we can-
not obtain the individual harmonics directly from X because
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the rank of X is less than K. The ACMP [33] algorithm
also applies the matrix pencil technique to Hankel-structured
matrices to avoid the rank deficiency problem. The MEMP
algorithm uses a doubly block Hankel matrix as the lifted
matrix, but doing so requires an additional pairing step. The
ACMP algorithm solves this pairing issue by constructing a
simple block Hankel matrix Z € C (m=dn)xdn(n1=dn) from X,
as

faH e b )

£ g2 R n.2)
Z= :

Rdn) R (2udn) R )

where the block component Z;; = X/ is a sub-matrix of X
given by X (/) as shown at the bottom of the next page.
The block Hankel matrix Z is decomposed as

Z=pPCcO",
where P € Cdn(m=dm)xK and O e CIm(=d)*K 4150 have the

Vandermonde structure:

D T T dn—1 pT T
P = [PM*dm’ WQmedm’ T WQ medm] ’

~ d—1

0=100 4, WpQ 4., W 0] _,1".
The diagonal matrices Wp = diag{pi, p2,---, px} and
Wo = diag{q1, g2, - - - , gk} contain all harmonic components

in each dimension, respectively. Py, _g4, € Cm—dm)xK 414
Qn_q, € C=d*K are given by

P1 P2 DK
Pn—a, = : : - : ’
mf.dmfl mf.dmfl . mf.dmfl
L P P> Pk
q1 q2 qK
Qn_dn = . . .
n—;in—l n—;in—l n—.d,,—l
L 41 4> 4k

In order to utilize this Vandermonde structure, the three
sub-matrices Z'!, Z'" and Z% e Cdn(m—dn—Dxdn(n—d=1) of
Z are constructed by omitting the outermost column and row
of every block of Z. For example, the (i, j)-th block of Z'!
is equal to the top-left sub-matrix of Z;;:

tl
Zij = Zijl;

where (-)| and (-) are operations which function to delete
the last column of (-) and the last row of (-), respectively.
In a similar manner, the top-right Z'" and bottom-left Z%' are
defined. Due to the Vandermonde structure, the following two
matrix pencils; Z'" — aZ', ZP' — pZ', have the following
properties:

bl _

where a, f are scalar values. The ACMP algorithm estimates
the diagonal matrices Wp and Wy from these matrix pencils,
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Fig. 2. Performance analysis of the parametric PSF estimation. (a) The values
of Schatten norm |27 {f(a}llz with p = 0.6 are plotted along different PSF
widths in terms of FWHM ( >~ 2.35¢). The dotted vertical black line denotes
the true FWHM. (b) Averaged estimation errors are plotted along different
PSF widths (300 — 400 nm) under three SNR conditions (5dB, 15dB, 30dB).
The error bars indicate standard deviations of the errors. For each simulation
setting, the analysis was repeated 30 times.

after which the locations {xk}f:1 and {yk}f:1 are found from
Wp and Wy, respectively.

In our implementation, in order to reduce false-positive
localizations, the rank of Z is determined by its singular value
distribution; in particular, small singular values less than 5%
of the maximum are discarded.

V. RESULTS

We analyzed the performance of the proposed algorithm
using both numerical and actual experimental results. For a
fair comparison, the proposed method was evaluated with
two recently developed localization algorithms for the HD
imaging: FALCON [9] and DeconSTORM [7]. For a quanti-
tative evaluation, we used several metrics which are regularly
used in [9], [10], [45], and [46]. Note that localization-based
analysis measures such as the recall rate are not sufficient
to evaluate localized results in HD imaging, as localized
particles have matching ambiguities. In particular, we observed
that the scores for the recall rate and localization errors
were not simply converted to the quality of reconstructed
super-resolution image. Thus, as in [9], [10], [45], and [46] we
also used image-based analysis such as peak-signal-to-noise
ratio (PSNR).

A. Numerical Experiments

First, the numerical performances of the parametric PSF
estimation were verified, as shown in Fig. 2. Here, we pro-
duced HD images of 45 x45 pixels, where 35 randomly placed
molecules were convolved with a given PSF with the back-
ground signals of 20 photons added. To meet the requirements
of Poisson noise model, the brightness of the fluorescent
molecules was properly adjusted according to the signal-to-
noise ratio (SNR). For each simulation setting, 30 simulated
images were used. From the simulated images with a given
PSF, we measured values of the Schatten p-norm |77 {f(,,}||§
with p = 0.6 and various values of o. As expected, the true
value of o led to the minimum values of the Schatten norm
when no noise was present in the measurement. In addition,
the algorithm was still robust to noise, as shown in Fig. 2 (a).
The accuracy of the method was also quantitatively investi-
gated under different noise levels and PSF widths, as shown
in Fig. 2 (b). Estimation errors were calculated for three
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Localization performances of the proposed method compared to FALCON along a wide range of imaging densities (1 — 7 um_z). The simulated

images were generated with random distributions of molecules. The results were evaluated by means of recall rates (a,c) and localization errors in terms of
root mean square (rms) (b,d). (a,b) correspond to the results in the higher photon-emission case (500,200), and (c,d) correspond to the lower photon-emission

(300,150) in terms of (mean, std).

different SNR conditions (5dB, 15dB, and 30dB) within a
typical range of PSF widths (300—400 nm) used in localization
microscopy. The results showed that most estimation errors
were below 20 nm in terms of the full width at half maxi-
mum (FWHM), which is an acceptable level in localization
microscopy.

We then evaluated the localization performance of the
proposed algorithm over a wide range of imaging densi-
ties. For this analysis, HD images of 80 x 80 pixels were
generated where K molecules were randomly placed in a
central 70 x 70 area. Here, a fixed PSF was used. In order to
consider realistic live-cell imaging conditions, the simulation
images were generated at two different photon-emission rates
(or brightness) of activated molecules: 500/200 and 300/150 in
terms of the mean/standard deviation of log-normal distribu-
tions. Additionally, 50 background fluorescent photons were
added at every pixel. By assuming a state-of-the-art camera
such as an EMCCD (Electron multiplying charge-coupled
device) or a sSCMOS (scientific complementary metal oxide
semiconductor) camera, we initially generated camera shot
noises following Poisson distributions, after which small
Gaussian noises with variance of 1 were added as camera
readout noise.

We measured localization errors with respect to the root
mean square (rms), and recall rates (= %), where Karch
is the number of the matched positions and K is the total
number of locations. In the analysis, the localized particles
with the error exceeding 300 nm - the FWHM of the sim-
ulated PSF - were excluded from the analysis. The pro-
posed algorithm was evaluated in comparison to FALCON.
DeconSTORM was not included in this analysis because it
only provides deconvolution images rather than the localized
positions.

The results of the numerical experiments in Fig. 3 show
that the proposed algorithm offers significant improvements in
the recall rates with comparable accuracy levels. Specifically,
the improvement of the recall rates in the case with the lower

SNR case shown in Fig. 3 (c-d) is more distinct. While
FALCON showed noticeable decreases in the recall rates with
lower SNRs, the proposed method retained its good detection
capability. The proposed method resulted in lower accuracy in
a low-density range because it detected many molecules with
low brightness levels.

The final spatial resolution is determined not only by
localization errors but also by recall rates. For a better
understanding of this effect, we analyzed the performances
of the proposed method on two specific geometric structures,
as shown in Figs. 4 and 5. First, we produced a radial phantom
consisting of equi-angular spaced lines with an angular period
of 20°. For each simulated image frame, 15 molecules were
newly activated on these lines. Moreover, to impose temporal
redundancy of the molecules, the probability of deactivation
in the next frame was set to 0.5. In other words, the average
activation length of the molecules was two frames. The
photon emission rates was set to 500/200 in terms of the
mean/standard deviation, and 50 background photon were
added. Three localization methods were used to reconstruct
the 6000 frames simulated here. Moreover, we measured line
profiles for a more quantitative evaluation. The line profiles are
averaged for each angular period. As shown in Fig. 4 (g-h),
the proposed multi-frame deconvolution algorithm provided a
better resolution of a smaller gap between two adjacent lines as
compared to the other algorithms. The results also confirmed
that using joint sparsity increases the reconstruction quality,
which results in the highest PSNR value.

We also conducted experiments with a honeycomb-
structured sample, as shown in Fig. 5 (a). In order to simulate
the effect of a sample moving along the axial direction,
we controlled the widths of the PSF according to a sinusoidal
profile as shown in Fig. 5 (f). For this analysis, 1000 HD
frames were generated and 50 activated molecules were ran-
domly distributed on the sample in each frame. The photon-
emission rates were adjusted in the same manner used in
the previous numerical study of the radial phantom, but the

Xli, j
26y _ X[i+1,;]

Xli+m—dy—1,j]--

Xli,j+n—d,—1]
Xli+1,j+n—d,—1]

Xli4m—dn—1,j+n—d,—1]
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Fig. 4. Performance analysis for a phantom with equi-angularly spaced lines. The angle between two neighboring lines is 20 degree. 6000 high density images
were generated where an average of 30 molecules are activated in each frame. A mean activation length of the molecules was set to 2 frames. (a) An SR
image generated from true particle distributions. (b) A conventional diffraction-limited image with a single simulated image. (c) An SR image reconstructed
by DeconSTORM. (d) An SR image reconstructed by FALCON. (e-f) SR images reconstructed by the proposed method using single frame deconvolution and
multi-frame deconvolution, respectively. (g) Line profiles as measured from the solid lines in (a, c-f). (h) Line profiles as measured from the dashed lines in
(a, c-f). (g-h) The measured line profiles are averaged at every angular period (=20 degree), and colors of the profiles correspond to the colors of the circles
in (a,c-f), respectively. Scale bars in (a-f) are 500 nm.
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Fig. 5. Performance analysis for a honeycomb structured phantom. 1000 high density images were generated with 50 particles randomly distributed on
the phantom for every frame. The PSF width varies along the frames with a sinusoidal profile. (a) An SR image of the phantom. (b) A conventional
diffraction-limited image with a single simulated image. (c) DeconSTORM image. (d-e) SR images reconstructed by FALCON and the proposed method,
respectively. (f) Results of our PSF estimation, where the black line denotes true PSF widths and the red circles corresponds to the estimated values. Scale
bars are 500 nm in (a-e).

temporal redundancy was not considered here. DeconSTORM
and FALCON used a fixed PSF corresponding to the average
width, while the proposed method used the PSFs estimated in a
frame-by-frame manner. These results show that the proposed
method accurately estimates variations of the PSF while also
retaining the fine details of the structure. On the other hand,
FALCON had many false positive localizations and the SR
image of DeconSTORM was blurred. The evaluation of the
PSNR also confirmed the superiority of our approach.

B. Live-Cell Experiments

The same algorithms were also applied to experimen-
tal live-cell imaging data. Specifically, U20S cells were
prepared, and the nuclei of the cells were labeled with
Picogreen (1:500 dilution from the original stock of Quant-iT
PicoGreen; Invitrogen). dSTORM imaging [47] was per-
formed on an inverted microscope (Axio Observer.D1; Zeiss)
equipped with a Total internal reflection fluorescence (TIRF)
module. To extend the imaging depth, the system was slightly
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Fig. 6. Experimental results of live-cell imaging data. U20S cells was prepared, and the nuclei of the cells were labeled with Picogreen. (a) A conventional
diffraction-limited wide-field microscopy image constructed by accumulating 2000 raw frames. (b) A DeconSTORM image. (c-d) SR images reconstructed
by FALCON and the proposed method, respectively. Scale bars are 2 um in (a-d).

modified using the HILO illumination [13], [48]. This results
in PSF variations within the depth of focus that needed to be
corrected, and the validity of correcting PSF variation using
the Gaussian PSF model is discussed in Appendix. A 488 nm
laser (Sapphire 488 50, Coherent, Santa Clara, CA) used to
excite the Picogreen was focused on the back focal plane of
the oil-immersion objective (alpha Plan-Apochromat, 100x,
NA = 1.46; Zeiss). The fluorescent light collected by this
objective then was projected onto an EMCCD camera (iXon+;
Andor, Belfast, UK). Additional lenses resulted in a final
image pixel size of 100 nm. In this setup, 2000 raw images
were acquired at a camera acquisition of 33.3 Hz rate with
a laser excitation intensity of 15 kW ¢m ™2, resulting in high
molecular activation.

The live-cell data was processed by the proposed algorithm
for comparison with the other two HD localization algorithms.
For the proposed method, locally estimated PSFs were used,

and every two consecutive frames were processed together in
the deconvolution step. Because the other two methods used
the fixed PSF model, the average FWHM of the PSFs was
applied to these methods. Moreover, we ran DeconSTORM
while also assuming that the average activation length of the
molecules is two frames.

The reconstructed SR images are shown in Fig. 6.
We found that the proposed method detected 30% more
probes than FALCON and also provided better SR imaging
than the other methods. Particularly, it retained the connected
structure, as highlighted by the blue and white dotted cir-
cles in Fig. 6 (a-d), while other methods missed this part.
Moreover, the proposed method and FALCON were quan-
titatively compared by using a method based on Fourier
ring correlation (FRC) [46], which was developed specifi-
cally for resolution assessment in localization microscopy.
Because the image-based DeconSTORM approach is not
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Fig. 7. Results of adaptive PSF estimation with live-cell imaging data. (top)
High-density raw camera images acquired during 60 seconds, and (bottom)
the widths of locally estimated PSFs in terms of FWHM. PSFs were estimated
at each local patch. Scale bars are 2 ym in (a-d).

compatible with this evaluation method given the require-
ment of localized positions, it was excluded. In the FRC
analysis, it was shown that the proposed method leads to
improved spatial resolutions by 20% compared to those by
FALCON.

In order to demonstrate space-time varying PSFs in live-cell
image data, our adaptive PSF estimation was applied. Specifi-
cally, the width of PSF was locally estimated from each local
patch of 45 x 45 pixels. In Fig. 7, the estimated widths
of the PSFs were visualized in terms of the FWHM. The
results showed slight spatio-temporal variation of the PSFs.
Considering the prolonged acquisition time approximately
60 seconds, the relatively large nuclei stained by PicoGreen
and the longer depth of field of our modified TIRF setup,
it was deemed reasonable to expect z-directional fluctuations
of the fluorophore locations around the nuclei area due to
the cell mobility. We also observed that the widths of the
PSFs decreased after 60 sec. This may have originated either
from algorithmic bias due to the lower data SNR from pho-
tobleaching or changes in the imaging environments from the
movement of the cell nuclei or from a stage drift. However,
considering the resolution improvement in Fig. 6 by the
proposed method, we conjecture that the PSF estimation was
useful in this experiment.

To evaluate grid-free localization specifically, the pro-
posed method was compared with another grid-free method
FALCON using Taylor approximation of the PSF. For this
analysis, every localization location was converted into the
relative displacement toward the center of the nearest pixel,
which is displayed as a histogram, as shown in Fig. 8. This
shows that the histograms of the proposed method have more
uniform distributions than those of FALCON. In particular,
the non-uniformity observed in the FALCON reconstruction
is distinct at every one third of the pixel position, which is the
size of sub-pixel grid of FALCON. This occurs because Taylor
approximation errors in FALCON induce local bias, resulting
in the non-uniformity of the histograms. In addition, the Taylor
approximation errors increase when an inaccurate PSF model
is used. Finally, the counts in the histogram of Fig. 8§ clearly
show that more probes are detected by the proposed method
compared to FALCON.
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Fig. 8. Histograms of relative localization offsets. Each localization location
was converted relative to the center of nearest pixel in (a) x-direction, and (b)
y-direction, respectively.

VI. DISCUSSION

Note that there are several hyper-parameters in the proposed
algorithm, which includes 4, a, u as well as a re-initialization
parameter. However, in our experiments, we found that the
algorithm was not overly sensitive to a, i or a re-initialization.
Specifically, we found that the proposed method works prop-
erly in our experiments for o € [1073,107!] and u €
[1072,10~*]. Thus, we choose the default values of o and
u (1072 and 1074, respectively). However, we found that the
regularization parameter A was important. Because the regular-
ization parameter A in the deconvolution step determines the
sparsity level, the sensitivity of this parameter was analyzed
in various imaging conditions by varying the brightness of
the photons and the fluorophore density. Specifically, with
the simulated data sets in Fig. 3, we measured localization
accuracy with several values of A in terms of the recall
rates, localization accuracy, and false-positive ratio, as shown
in Fig. 9. The results showed that 4 = 20 was a good choice to
balance the detection ability and localization accuracy of the
data set. Moreover, it was relatively insensitive to the SNR of
the data because it showed the similar trends in both low- and
high- SNR conditions. Moreover, it can be adjusted according
to user preference between recall and precision.

Poisson modeling should be used with special atten-
tion paid to preprocessing and converting the analog-digital
units (ADUs) into physical photon units. While this can
often be omitted in routine experiments, without careful scale
calibration the data may not follow the Poisson-like noise
statistics, resulting in poor reconstruction. Therefore, in this
paper, the gain of the camera was carefully calibrated to recon-
struct and analyze HD data. Note that this gain calibration is
also important for other HD algorithms using Gaussian noise
model.

Because the proposed method has been specifically devel-
oped for the 2D imaging problem, it is basically limited
to shallow imaging whose PSF can be still modeled by
Gaussian. Accordingly, it is recommended to work with mod-
ified TIRF-based systems [13], [48]. However, our method
can be extended to 3D SR imaging techniques such as the
astigmatic [49], biplane imaging [50] or hybrid [10] type.
In such case, the deconvolution should be performed in the 3D
Fourier space and more realistic PSF model, and 3D harmonic
retrieval [51], [52] should be considered.

In terms of computational complexity, our grid-free localiza-
tion algorithm is formulated in a smaller dimension compared



MIN et al.: GRID-FREE LOCALIZATION ALGORITHM USING LOW-RANK HANKEL MATRIX

4783

)

Localization error rms (nm

False Positive rate

S~

1 2 3 4 5 6 1 2 3

Molecular density um>

Molecular density um’>

Localization error rms (i

3|
1

I

v

\

\

1

|
!

False Positive rate

T 2 3 0 5 g 7 T E] 3
2
Molecular density um

Fig. 9.

Molecular density um>

Molecular density um>

Parameter (1) sensitivity analysis on high and low SNR simulated data. (a) Molecular recall rates, (b) localization accuracy, and (c) false positive

localization ratio with 4 of 10, 15, 20, 25, 30 for the high SNR simulated data. (d) Recall rates, (e) localization accuracy, and (f) false positive localization

ratio with respect to 4 of 10, 15, 20, 25, 30 for the low SNR simulated data.

to existing HD localization methods using a fine sub-pixel
grid with a downsampling factor of 3x or 5x. Specifically,
the proposed method uses the same grid of raw camera data
such that the dimension of the problem can be reduced down to
the square of the down-sampling factor. Unfortunately, we do
not claim that the current implementation is computationally
advantageous compared to some existing softwares. For exam-
ple, our algorithm has a processing time similar to that of
DeconSTORM, but it is not as fast as FALCON. Specifically,
our independent Matlab implementations of three methods
on a graphic processing unit (GPU) (Nvidia GTX Titan,
Maxwell architecture), the proposed method, DeconSTORM
and FALCON took 45 msec, 48 msec and 4 msec, respectively,
to reconstruct a um? area. The processing times of all three
methods are mostly determined by the sizes of processed
regions, not the density level of the activated molecules.
Two-frame processing of the proposed method has a slightly
longer run time of 52msec/um?. Although there is also room
for improvement by optimizing the implementation, the main
computational bottleneck of the proposed algorithm is the rank
minimization step for relatively large-scale Hankel matrices.
However, we expect that this problem will be mitigated by
integration with the latest development in rank minimiza-
tion from the optimization community. For example, we can
directly use an annihilating filter [53] rather than using the
high-dimensional Hankel matrix.

VII. CONCLUSION

In the present work, we proposed a new grid-free super-
resolution microscopy algorithm using annihilating filter-based
low-rank Hankel structure matrix approach. The algorithm was
developed based on the observation that sparsity in the image
space is directly linked to a low-rank property in the Fourier
domain. Accordingly, we converted our multiple source local-
ization problem into a harmonic retrieval problem by initially
undertaking the deconvolution in the Fourier domain and then
extracting the frequency harmonics, from which the spatial
locations are directly calculated.

Moreover, we proposed a parametric PSF estimation method
for 2D deconvolution using the low-rank property of the
weighted Hankel matrix, with the method validated by numeri-
cal studies. Furthermore, our deconvolution algorithm not only
utilizes a realistic Poisson noise model but also the temporal
redundancy of the signal by imposing a low-rank on the
concatenated Hankel matrices of several frames. In addition,
the matrix pencil-based harmonic retrieval algorithm allows
for truly continuous localization. The entire process was done
in a patch-by-patch manner, resulting in spatially adaptive
localizations.

The proposed method was validated using simulated and
experimental high-density dSTORM data for live-cell imaging.
Specifically, the ability to detect molecules in a low-SNR
environment was significantly enhanced compared to previous
HD algorithms. In addition, the localization accuracy was sig-
nificantly improved quantitatively in both numerical and exper-
imental studies by applying our true grid-free localization,
data-adaptive PSF estimation and multi-frame deconvolution.
Therefore, we believe that the proposed method will be a
very powerful tool for those conducting quantitative biological
research in the area of live-cell imaging.

APPENDIX

Generally, PSFs in  biological  samples vary
spatially [54]-[56] and temporally [57], [58] due to induced
aberrations and light scattering within the samples. The
aberrations are induced not only by the refractive index
mismatch between a sample and the imaging medium, but
also by intrinsic variations of the sample. Accordingly,
PSF model such as Gibson and Lanni (GL) model [59]
has been often used, since it considers the aberrations.
Specifically, GL PSF model takes into account refractive
index mismatches between the immersion, cover-slip and
sample layers, so we believe it is a realistic model. Thus,
we validated the effectiveness of our Gaussian PSF model
compared to GL model PSF (GL PSF). Specifically, we have
generated GL PSFs over a large axial range from —1um to
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Gaussian PSF error analysis: (a) visualization of Gibson & Lanni PSF (GL PSF), Gaussian PSF, and GL PSFs at two SNR levels. The Poisson

noises are added by assuming that the intensity of a source and background signal (N, bg) are (2000,100) in the case of high SNR and (500,50) in the case
of low SNR. (b) The FWHMs of the Gaussian PSFs that best fit the GL PSFs. (c) The least-square fit errors between Gaussian PSF and GL PSF. (d) Relative
localization error of Gaussian PSF with respect to GL PSF at two SNR levels. (e) Peak intensities in noisy GL PSFs of (a).

1um using the Image] plugin [60]. In Fig. 10(a), GL PSFs
and Gaussian PSFs are visualized with the width of each
Gaussian PSF chosen to minimize the least squares error
toward the corresponding GL PSE. With the camera noise,
we could not find the difference between the two models
in their forms. Moreover, Fig. 10(b) shows that the width
of Gaussian PSF in the focus range (—400nm ~ 400nm)
varies slightly and increases rapidly in the out-of-the focus
area. In Fig. 10(c), we also plot the fitting error between the
normalized Gaussian PSF and the GL PSF, which has peaks
around £500nm. To analyze how much this model mismatch
affects localization performance, we conducted simulation
studies under shot noise and GL PSF model at two noise
levels. Specifically, for a high SNR simulation we assume
source intensity and background signal are (2000,100), while
they are set to (500,20) in the case of a low SNR. Then,
localization was performed using GL PSF and Gaussian PSFE.
In the relative error plot in Fig. 10(d), we can see that the fit
error using Gaussian PSF was slightly larger than the fitting
error by the true one (GL PSF). However, the relative error
is only up to 5% in the case of high SNR, while it is less
than 1% in the case of low SNR. This suggests that the effect
of the model mismatch between Gaussian and GL PSFs has
limited effects on localization accuracy. Considering other
physical properties such as scattering, the mismatch can
be negligible. Therefore, we believe that the Gaussian PSF
model with varying width is sufficiently accurate for our
purpose.

In our setup that uses HILO illumination, the illumination
thickness is about 3um [61], and the depth of focus of our
objective lens is approximately 700 nm. In spite of this,

we claim that our experimental setup is adequate for 2D
single molecule imaging within the depth of focus. In order
to prove that the tilted HILO illumination in our setup poses
no problems, we performed an additional numerical study to
examine the peak intensity value of PSFs located around the
focal plane. To that end, we considered noiseless GL-PSFs
weighted by the source intensity to which we added the
background signal. Then, we plot the peak intensity value of
the PSFs as solid lines with the corresponding background
signal as dashed lines in the case of low and high SNR images.
The results were recorded as red at high SNR case and blue at
low SNR case. In Fig. 10(e), we can see that the peak intensity
becomes quickly smaller than the background, especially at
low SNR. This suggests that the signatures of PSFs from
out of focus area are negligible and undistinguishable from
the background signal. Therefore, we believe that despite the
HILO illumination, our localization mechanism only picks
up the point sources situated within the depth of focus: that
is, those for which the Gaussian PSF model is adequate.
Therefore, we believe that our Gaussian PSF model is good
for 2D localization under HILO illumination.
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