
Fast Continuous Wavelet Transform Based on B-Splines

Arrate Muñoz, Raphaël Ertlé and Michael Unser
Biomedical Imaging Group,

Swiss Federal Institute of Technology Lausanne
CH-1015 Lausanne EPFL, Switzerland

ABSTRACT

The Continuous Wavelet Transform (CWT) is an effective way to analyze nonstationary signals and to localize and
characterize singularities. Fast algorithms have already been developed to compute the CWT at integer time points
and dyadic or integer scales. We propose here a new method that is based on a B-spline expansion of both the signal
and the analysis wavelet and that allows the CWT computation at arbitrary scales. Its complexity is O(N), where
N represents the size of the input signal; in other words, the cost is independent of the scale factor. Moreover, the
algorithm lends itself well to a parallel implementation.

1. INTRODUCTION

The Continuous Wavelet Transform (CWT) of a signal f with the wavelet ψ is defined as

Wψf(a, b) =
1√
a

∫ +∞

−∞
f(x)ψ

(
b− x

a

)
dx =

1√
a

〈
f(·), ψ

(
b− ·
a

)〉
. (1)

It can be interpreted as the correlation of the input signal with a time-reversed version of ψ rescaled by a factor
a. Typical applications of the CWT are the detection and characterization of singularities,1 fractal analysis,2 noise
reduction3 and the analysis of biomedical signals.4

Fast algorithms have already been developed to compute the CWT at integer time points and dyadic2 or integer
scales.5 Despite their speed, these methods may not be fine enough for some applications because a dyadic scale
progression is associated with an octave subband decomposition. Our purpose here is to develop a novel and fast
B-spline-based algorithm for the computation of the CWT at any real scale a and integer time-localization b.

2. FAST CONTINUOUS WAVELET TRANSFORM

2.1. Description

Our method takes advantage of the convolution properties of B-splines. Both the mother wavelet and the input
signal are represented in a spline basis. The wavelet at scale a is
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where βn1 denotes the centered B-spline of degree n1. Likewise, the continuous input signal f(x) is represented
by its spline interpolant which is in a one-to-one relation with the discrete input samples f(k). Thus, we have

f(x) =
∑
k∈Z

ckβ
n2(x− k), (3)

where the interpolation coefficients ck are calculated as shown elsewhere.8

Here, we only describe the algorithm without giving its derivation, since the latter is already available in.9 Our
method provides an exact evaluation of the convolution integral (1) when the wavelet and the signal are given by (2)
and (3), respectively. The intuitive idea is that one can convolve a signal with a B-spline (of arbitrary size) by first



computing its (n1 + 1)-fold integral, and then by taking the (n1 + 1)th finite differences of the result. The fist step
of the algorithm is to calculate the (n1 + 1)-fold integral of the interpolation coefficients ck

g = ∆−(n1+1) ∗ c, (4)

where ∆−1 is the inverse finite-differences operator defined as ∆−1 =
∑
n≥0 δ(x− n).

The second step is to compute the inner products
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where
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is a filter mask (which we can store in a look-up table); io = �b− a(k + l) + τ − n1+n2+2
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In practice, we are typically interested in the values of b that correspond to the time locations of the original
samples, that is, for integer b. Then, we can use the fact that wa,b = wa,0 to reduce the dimension of the look-up
table. The algorithm given in (5) is then equivalent to a discrete convolution. The filter wa can be seen as a kind of
modified ’à trous’ filter. The CWT computation consists in filtering the coefficients gi with (2K + n1 + 2) ‘clusters’
of length (n1 + n2 + 2), each cluster being separated from its neighbors by a distance a.

2.2. Fast Implementation
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Figure 1. Schematic representation of the fast wavelet transform. (bn2)−1: Computation of the interpolation
coefficients c. ∆−(n1+1): Calculation of the (n1 + 1)-fold integral of c. wai

(k, i): Look-up table calculation where
k ∈ [−K,K + n1 + 1], i ∈ [0, n1 + n2 + 1] and ai ∈ [a1, aN ]. N is the number of scales. wai

: Filtering with the mask
calculated for each scale. Wψf(ai, b): Wavelet transform of f for scale ai at position b.

Let us describe now the fast algorithm based on the expansion (5). In the initialization step, the B-spline expansion
coefficients ck of the sampled signal f(x) are calculated, and the running-sum operator ∆−1 is applied (n1 + 1)-times
for implementation details see.10 The intermediate result gi does not depend on the scale a. For a given scale a, we
compute the weights wa and store them in the 2-D matrix of dimensions (2K+n1 +2)×(n1 +n2 +2) (look-up table).
These values are then convolved with the precomputed sequence gi. The values wa and the inter-cluster distance for
the filtering depend on a, but the computational complexity is constant and does not depend on a. Note that the
independence between scales allows for a straightforward parallel implementation (see Figure 1).



3. RESULTS AND DISCUSSION

Here, we discuss the implementation of our fast CWT algorithm and compare its execution time with a FFF-based
implementation. As example of application, we show the analysis of biomedical signals.

3.1. Comparison with FFT-Based Computation
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Figure 2. Comparison in computational time between the FFT and our B-spline-based method to calculate the
CWT.

As mentioned in the introduction, the FFT has an overall O(N logN) complexity and is therefore asymptotically
slower than our method which has an O(N) complexity. This can be observed from the experimental comparison
of the computation time shown in Figure 2. We see that, for long input signals, our method is indeed faster. The
interpolation degree for the input signal was zero. The CWT was computed over four octaves with 12 scales per
octave. The wavelet was the second derivative of the quintic, quartic and cubic spline, respectively (see Figure 3).
The FFT-based method used a radix-2 algorithm when the signal length was a power of 2 and a mixed-radix method
for other signal lengths (MATLAB’s FFT algorithm). The time required to compute the wavelet in the time domain
before its FFT computation was neglected. A parallel implementation for the scale-dependent part of each algorithm
would speed up the computations.

3.2. Example of Application

We have applied our method to the analysis of bowel movements. A magnetically active capsule was swallowed and
its gastrointestinal transit was monitored. The measures consisted in its three spatial coordinates and the angles
that describe its orientation.11

Figure 4 (a) corresponds to the x-coordinate of the stomach signal. The sampling time was 70 ms. We have
analyzed it using both real (Figure 4 (b)) and complex CWT (Figure 4 (c)) for cubic spline interpolation of the
input signal. In this application, the wavelet used was the second derivative of a quintic spline (Figure 3 (a)). There,
we observe mainly the band around the scales 36 − 40 corresponding to the breathing of the patient. We choose to
calculate the complex CWT an extension of the method proposed for Unser et al.12 for integer scales. The analysis
wavelet is the Gabor-like wavelet β3(x)e−4πxj (Figure 3 (b) and (c)). Using complex analysis (Figure 4 (c)), we have
discovered three relevant frequency bands: First, the breathing with a period close to 3 s; then, two more bands with
periods of 12 and 20 s due to the contractions of the stomach.
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Figure 3. (a) Second derivative of the quintic spline wavelet. Gabor-like wavelet: β3(x)e−4πxj (b) real component;
(c) imaginary component.

4. CONCLUSION

We have presented a novel B-spline-based CWT algorithm that is able to compute the CWT at any real scale, making
it possible to use an arbitrary scale progression. Its complexity is O(N), where N represents the size of the input
signal, the same complexity as with the most efficient wavelet algorithms for dyadic or integer scales. The overall
operation count only depend on the wavelet shape and on the degrees of the B-splines basis on which the wavelet
and input signal are described, but is independent of the value of the scale. Moreover, the algorithm lends itself well
to a parallel implementation as it is not iterative across scales. The price to pay for the generality of this algorithm
is that the leading constant of the O(N) complexity can be large. Thus, it only really starts paying off when the size
of the signal is large; say (N ≥ 1000 samples). For smaller sizes, it may be preferable to use a simpler FFT-based
approach.
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Figure 4. (a) Signal of the displacement of a magnet within the digestive track. (b) Real CWT using the wavelet
in Figure 3-(a). (c) Complex CWT using the Gabor-like wavelet shown in Figures 3 (b)-(c).


