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Abstract

This thesis focuses on the development of novel multiresolution image approxi-
mations. Specifically, we present two kinds of generalization of multiresolution
techniques: image reduction for arbitrary scales, and nonlinear approximations
using other metrics than the standard Euclidean one.

Traditional multiresolution decompositions are restricted to dyadic scales.
As first contribution of this thesis, we develop a method that goes beyond this
restriction and that is well suited to arbitrary scale-change computations. The
key component is a new and numerically exact algorithm for computing inner
products between a continuously defined signal and B-splines of any order and of
arbitrary sizes. The technique can also be applied for non-uniform to uniform
grid conversion, which is another approximation problem where our method
excels. Main applications are resampling and signal reconstruction.

Although simple to implement, least-squares approximations lead to artifacts
that could be reduced if nonlinear methods would be used instead. The second
contribution of the thesis is the development of nonlinear spline pyramids that
are optimal for �p-norms. First, we introduce a Banach-space formulation of
the problem and show that the solution is well defined. Second, we compute
the �p-approximation thanks to an iterative optimization algorithm based on
digital filtering. We conclude that �1-approximations reduce the artifacts that
are inherent to least-squares methods; in particular, edge blurring and ringing.
In addition, we observe that the error of �1-approximations is sparser. Finally,
we derive an exact formula for the asymptotic Lp-error; this result justifies using
the least-squares approximation as initial solution for the iterative optimization
algorithm when the degree of the spline is even; otherwise, one has to include
an appropriate correction term.

The theoretical background of the thesis includes the modelisation of images
in a continuous/discrete formalism and takes advantage of the approximation
theory of linear shift-invariant operators. We have chosen B-splines as basis
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functions because of their nice properties. We also propose a new graphical
formalism that links B-splines, finite differences, differential operators, and ar-
bitrary scale changes.



Résumé

Le sujet de cette thèse est le développement de nouvelles approximations
multiéchelle d’image. Plus précisément, nous présentons deux types de
généralisation de techniques multiéchelles: réduction d’image par un facteur
arbitraire, et approximations non-linéaires basées sur des métriques qui diffèrent
de la métrique euclidienne habituelle.

Les décompositions multiéchelle traditionnelles se limitent aux échelles
dyadiques. Comme première contribution de cette thèse, nous développons
une méthode qui surmonte cette restriction et qui s’adapte bien aux calculs
de changement arbitraire d’échelle. L’élément clef en est un nouvel algorithme,
numériquement exact, pour le calcul du produit vectoriel entre un signal défini
continûment et des B-splines de tout ordre et de taille arbitraire. Cette
technique peut aussi s’appliquer à la conversion d’une grille non-uniforme
en une grille uniforme, qui est un autre exemple d’approximation où notre
méthode est particulièrement performante. Les applications principales sont
le ré-échantillonnage et la reconstruction de signal.

Bien qu’elles soient simples à implémenter, les approximations au sens des
moindres carrés conduisent à des défauts qui pourraient être réduits si elles
étaient remplacées par des méthodes non-linéaires. La seconde contribution
de cette thèse est le développement de pyramides non-linéaires, basées sur des
splines, et optimales en normes �p. Tout d’abord, nous formulons le problème
dans un espace de Banach et nous montrons que la solution est bien définie.
Ensuite, nous calculons l’approximation au sens �p grâce à un algorithme itératif
d’optimisation construit à l’aide de filtres numériques. Nous concluons que les
approximations au sens �1 réduisent les défauts liés aux méthodes des moindres
carrés; en particulier, perte de netteté des contours et tintements. De plus, nous
observons que l’erreur des approximations au sens �1 est moins dense. Enfin,
nous déduisons une formule exacte pour l’erreur asymptotique au sens Lp; ce
résultat justifie de l’usage d’une approximation au sens des moindres carrés
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comme solution initiale de l’algorithme itératif d’optimisation.
Le contenu théorique de cette thèse inclut la modélisation d’images dans

un formalisme continu/discret et tire parti de la théorie d’approximation
d’opérateurs linéaires à invariance de phase. Nous avons choisi des B-splines
comme fonctions de base en raison de leur propriétés élégantes. Nous proposons
en outre un nouveau formalisme graphique qui relie B-splines, différences finies,
opérateurs différentiels, et changements arbitraires d’échelle.
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Chapter 1

Introduction

1.1 Contributions of the thesis

This thesis focuses on the development of novel multiresolution image approxi-
mations. Our goals are twofold:

• Extend multiresolution techniques to arbitrary scales.

• Construct non-linear multiresolution schemes that are artifact-free and
more robust than their least-squares counterparts.

The theoretical background of the thesis includes the modeling of images
in a continuous/discrete formalism and takes advantage of the approximation
theory of linear shift-invariant operators.

1.2 Motivation

1.2.1 On the limitations of the discrete representation

Figure 1.1 shows a construction done with Lego bricks. These bricks have several
colors (here: dark and light). Together, the disposition of bricks forms a nice
pattern that we interpret as writing the word ”Muñoz”. By design, Lego bricks
can occupy only specific locations on the plastic substrate; it is not possible to
set a brick halfway between two sites. When such a situation occurs, that is,
when only a limited set of locations is available, the system is called discrete. A
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Figure 1.1: Discrete image constructed with Lego bricks.

Figure 1.2: Can you guess the word?.

typical setting that produces discrete data is a digital camera, where each pixel
contains a number that codes the intensity of light impinging on the sensor at
that particular location.

A common problem to digital cameras and to the Lego world of Figure 1.1
is that of resizing. Suppose we want to reduce the size of the text in Figure 1.1.
Because there are only discrete admissible sites, it is difficult to come up with
a solution that would be still easily readable, but that would take, say, half the
size. Figure 1.2 gives an example of a failed attempt. Similarly, it is not trivial
to resize a picture once it is discretized. In general, this problem is pervasive in
many areas of digital signal processing, for example in the context of numerical
printers and photocopy machines, and applies to reduction and magnification
as well.

The standard solution to this problem is based on the introduction of a
continuous image model (interpolation) followed by a resampling step. In this
thesis, we use the same type of interpolation model, but we will formulate the
resizing as a minimization of a cost function.
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1.2.2 What is multiresolution?
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Figure 1.3: Haar scaling function.

When performing image magnification, the number of pixels that represent
the digital image increases. Nevertheless, the information content of the re-
sulting image remains nearly the same. The dual operation is image reduction
which results into a decrease of the number of pixels. Consequently, we lose some
amount of information, the magnitude of which depends on the image content,
on the value of the scale, and on the method applied for the computation.

All digital images, in particular those we are able to store and process in
a computer, are discrete. To construct a continuous version out of a discrete
image, we make use of the box function represented in Figure 1.3, which is
commonly called the Haar scaling function, and of all its integer translates.
We apply it to both columns and rows, in separable fashion. The process of
fitting a continuous model to a discrete image is called interpolation. In the
present example, the resulting image is a bar graph—it is locally constant, with
possible discontinuities at the integers. This interpolation model is the simplest
one may think of; more sophisticated ones will be considered in this thesis.
Figure 1.4 illustrates the effect of reducing by successive powers of two the
image of cells shown on top. The left column corresponds to the progressive
reduction of images. The crudest way to achieve a reduction by a factor two—
to represent the function with only a quarter of the bars—is to throw three
bars out of four. This leads to a large approximation error. Obviously, we can
reduce it if we substitute each block of four bars by their average value. In
the present example, the squared approximation error would reach its minimum
(least-squares approximation).
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Figure 1.4: Multiresolution decomposition of the image of cells shown on top.
The scale reduction from one level to the next is two (from one level to the
next, the total number of pixels gets divided by four, that is, by two in each di-
mension). Left column: Reduced images. Center column: Version of the coarse
images that is expanded back to the original size. Right column: Difference
between the image in the left column expanded by a factor two and the one
above it.
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We can evaluate qualitatively the amount of information lost at each step by
expanding back the reduced images to the original size and by examining them
visually. The result of this operation corresponds to the images shown in the
center column. We observe that the cell membranes disappear early. For larger
reductions, it becomes more and more difficult to perceive the nuclei of the cells.
At the coarsest level, the dark wall separating cells, that was clearly visible in
the images with moderate reduction, is now barely discernible; it is the last
and coarsest feature left. Another striking element is the blocking appearance
of the images which is due to the use of a piecewise constant model for the
interpolation.

At each resolution level, the size of the square blocks is proportional to the
number of pixels of the original image that are transformed into a single pixel in
the reduced images. The right column corresponds to the difference between the
image in the left column expanded by a factor two and the one above it. This
difference is a quantitative measure of the amount of information lost at each
reduction step. To recover an image with more details, it is sufficient to add
the difference image expanded back to the original size to a coarse image; by
proceeding recursively, one can recover the initial image (perfect reconstruction
condition).

From this example we can easily conclude that natural images contain in-
formation not at one but at several scales or resolutions.

The membranes, the nuclei, and the dark wall for example, are structures
of different size. When performing the reduction, we are losing at each level
details of a size comparable to that of the factor of reduction. Consequently,
we need several resolutions to analyze an image. Multiple-resolution descrip-
tions of the type shown in Figure 1.4 are called multiresolution, or hierarchical
descriptions [62].

1.2.3 Why multiresolution is important?

Multiresolution image decompositions have many applications in image process-
ing. Figure 1.5 gives an example of image registration [78]. The two MRI images
at the top belong to the same patient and were taken a few months apart. The
radiologist needs to compare them to detect or quantify the changes that might
have taken place in-between acquisitions. To be able to do so, he must align
the images; in other words, a geometric correspondence function must be found
to warp one of them. It is evident that a registration algorithm working at
coarse resolution (fewer number of pixels) will speed up computations and will
converge more easily since the contribution of noise and details is reduced. The
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rough solution for the correspondence function obtained at a given level of the
pyramid can be propagated to higher-resolution images, where only a slight
additional nudge is all what is needed to perfect the registration.

Reference. Original.

Registration algorithm working at coarse resolution.

Figure 1.5: Example of a multiscale registration algorithm. Top: Reference to
which an original image must be aligned. Bottom: Illustration of a multiscale
registration method that starts by aligning only the large-scale features of the
data at a coarse-resolution level. At finer levels, only small corrections for
progressively finer details are necessary.

Multiscale processing has numerous applications in image processing and
computer vision. Some examples related to the biomedical field are: image
registration and warping [71, 92, 121], reconstruction of the electrical activity of
the brain from electroencephalogram and magnetoencephalogram signals [46],
and snake algorithms for the detection of parametric contours [25].

From another point of view, least-squares pyramidal decompositions provide
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Figure 1.6: Detail Haar function (Haar wavelet).

a sparse or efficient representation of images. A representation being sparse
means that the essential information is captured in just a few components. In
other words, the error images are composed mainly of very small values and only
few large ones. This key property is the basis for the success of multiresolution
decompositions in coding and denoising applications [79, 114, 135].

A nice point in favor of these multiresolution constructions is that physi-
ological experiments found analogies between multiresolution schemes and the
hierarchical organization of the human primary visual cortex [63]. The human
visual system takes advantage of very efficient (sparse) representations of the
visual input to speed up the process of interpreting and modelling the informa-
tion. In addition, this may achieve a minimization of the energy consumption
since the essential information is captured with a minimum number of excited
neurons [47].

1.2.4 On the limitations of standard multiresolution tech-
niques

Dyadic scales

Restricting the admissible reduction factors to powers of two is typical of a
special type of multiresolution analysis: the wavelet transform. Wavelets are
basis functions that provide an efficient encoding of the difference of images
between two resolutions. The wavelet that corresponds to the Haar example
of Figure 1.4 is shown in Figure 1.6 [79]. Note that this Haar wavelet can be
easily constructed by a combination of two Haar functions that involves shifting,
negating and scaling operations on the function shown in Figure 1.3. Wavelet
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Figure 1.7: Experimental set-up: R stands for reduction. E stands for expansion.

transforms are least-squares approximations that ensure perfect reconstruction.
They are non-redundant approximations that are represented with the same
number of pixels than the original signal. They can be computed with fast
algorithms, which is one of the main reason why the use of wavelet transforms
is widespread.

For applications such as posting a picture on the Web, we would like to be
able to choose its size freely, while keeping a reasonable quality, for example
like that given by a least-squares approximation. In the thesis, we propose
such a least-squares method to resize an image by an arbitrary scale factor.
Its implementation is easy as the algorithm only requires digital filtering and
matrix multiplications.

Artifacts

We will now review the artifacts that affect common linear approximations:
blocking, blurring, and ringing [120]. To illustrate them, we have performed
the experiment shown schematically in Figure 1.7: First, we select a cell which
is part of Figure 1.4-top. Second, we produce a reduced version using one of
the numerous linear approximation methods available. Third, we expand back
the reduced image to recover its initial size. Finally, we compare it with the
original. We have done the experiment for two different scale factors: four, and
eight.

Blocking We have already encountered in Figure 1.4 an example of the use of
a piecewise-constant interpolation model. Its advantage is to be the simplest
model one can think of, and one of its disadvantages is that it produces a
pixelized appearance upon magnification. For example, when the scale factor is
two, whole blocks of four bars in the magnified image depend on just a single
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Figure 1.8: Blocking of piecewise constant model. Left: Reduction/Expansion
by four. Center: Original. Right: Reduction/Expansion by eight. The pix-
elized appearance of the image is called blocking which also results in shape
deformations.

Figure 1.9: Blur of bilinear model. Left: Reduction/Expansion by four. Center:
Original. Right: Reduction/Expansion by eight. The blur gives an out-of-focus
appearance to the resulting image.

bar of the image to magnify. This mechanism results in the square blocks that
are apparent in Figure 1.8. This defect also deforms the shape of the structures.

Blurring The blocking effect disappears when we use a more complicated model
for the interpolation, for example, piecewise linear. This is shown in Figure 1.9,
where the smooth regions of the image are reasonably well approximated. Never-
theless, when performing reduction, the edges will get heavily smoothed, which
gives an out-of-focus appearance to the resulting image. Moreover, a more
detailed analysis reveals some distortion and some folding in the frequency do-
main; this phenomenon is called aliasing and was also present in the case of the
piecewise-constant interpolation model.

Ringing The approximation methods that use very simple interpolation mod-
els, such as those illustrated in Figures 1.8 and 1.9, have the advantage of
creating no spurious oscillations. Thus, they are adequate to handle smooth
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Figure 1.10: Ringing. Left: Reduction/Expansion by four. Center: Original.
Right: Reduction/Expansion by eight. The oscillations caused by ringing result
in the creation of an incorrect spot of lighter intensity in the center of the cell
nucleus of the left image and a texturized appearance of both-left and right-
images.

regions. Unfortunately, in the regions where the image is insufficiently smooth,
this type of approximations is unsuccessful and may be significantly improved
by using higher-order polynomial models. In turn, these better approximations
have the inconvenient of introducing Gibbs oscillations [79], because they are
not capable of correctly representing discontinuities (i.e., the contours). These
oscillations are visually disturbing as shown in Figure 1.10.

The types of artifact we just described generally reduce the performance and
limit the range of applications of approximation methods. The speed of conver-
gence and the robustness of multiscale algorithms is also negatively affected.

When calculating a coarse-resolution approximation, we would like to keep
in the coarse resolution the largest possible amount of descriptive information
and to avoid creating artifacts. It follows that most entries in the correspond-
ing detail—or error—image should vanish (i.e., the detail image should be very
sparse). To achieve this, we would tend to prefer high-order polynomial inter-
polation models (i.e., cubic degree), while taking into account the compromise
between reduction of the blurring and the computational complexity. Unfortu-
nately, the ringing effect is contaminating these types of approximation. As this
artifact is exacerbated by the least-squares method, we propose in this thesis
to minimize other measures of the error that are more appropriate to preserve
shapes and to reduce oscillations.

A typical example of the type of improvement that can be obtained with our
nonlinear approximations is shown in Figure 1.11. When comparing Figure 1.10
and 1.11, we can appreciate that the images in the latter case do not present
spurious textures, even though the image model (cubic spline) is the same in
both cases. In this thesis, we explain in detail how to obtain the much better
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Figure 1.11: Our nonlinear method. Left: Reduction/Expansion by four. Cen-
ter: Original. Right: Reduction/Expansion by eight. The improvement in the
quality of approximation by our nonlinear method is impressive.

result of Figure 1.11.

1.3 Related work

Mallat’s multiresolution theory makes the connection between the wavelet trans-
form in harmonic analysis, and filterbanks in discrete signal processing [76, 84].
Such a connection allows the wavelet transform, initially defined in the contin-
uous domain, to be computed with fast algorithms based on filterbanks [114].
Nevertheless, wavelet multiresolution theory is limited to scale changes that
are powers of two. Blu [17] and Kovačević et. al [69] have shown that ratio-
nal scale changes were possible by relaxing the shift-invariant condition on the
multiresolution theory. The drawback is a very complicated filter design.

Another tool to construct multiresolution image decompositions are pyra-
mids. The pyramid scheme was introduced by Burt and Adelson [27] for coding
applications. Classically, both types of scheme (wavelets and pyramids) are im-
plemented with linear filters. In the recent years, the use of nonlinear filters
has become commonplace to treat some problems related to images process-
ing, whenever linear approaches are not really appropriated. The most relevant
families into which nonlinear filters can be classified are median filters [14],
morphological filters [54, 109], and order-statistic filters [10, 90, 91].

The pyramid scheme seems to be specially well-suited for extending lin-
ear methods into nonlinear ones. Redundancy gives flexibility in the choice
of the filters which can be nonlinear operators [135]. For example, techniques
that construct nonlinear multiresolution approximations can be obtained by re-
placing linear filters by median [12, 42, 81, 83, 111], morphological operators
[31, 51, 95, 122], and rank-order filters [88].
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For applications such as coding, the class of nonredundant (or maximally-
decimated) decompositions are preferred. Therefore, some extensions of this
class to nonlinear filter banks have been considered. They often follow novel
design and implementation methods which were initially designed for linear sub-
band decompositions, such as the ladder structure [26] and, more recently, the
lifting scheme [52, 115, 116]. From the literature of critically decimated non-
linear filterbanks, we can cite useful methods such as morphological subband
decompositions and filterbanks [36, 45, 53], order-statistics-based subband de-
compositions and filterbanks [11, 15, 104], and morphological wavelet decom-
positions [32, 43, 44, 51, 55].

1.4 Thesis outline

The thesis is organized as follows: In Chapter 2, we review some concepts of
approximation theory which are fundamental tools for the next chapters; in
particular, we examine the question of characterizing the approximation error
as a function of the sampling step. We give a mathematical description of our
continuous/discrete image model and of the interpolation and approximation
operators.

In Chapter 3, we establish a catalog of mathematical operations; by pre-
senting them in a graphical form, we aim at easing the design of our approx-
imation algorithms. We also present B-splines as the basis functions that we
consider most appropriate for developping our continuous/discrete formulation.
We present a novel and numerically exact algorithm for computing inner prod-
ucts between a continuously-defined signal and B-splines of any order and of
arbitrary sizes.

The next chapters are devoted to practical applications of the theoretical
methods presented in the previous two chapters. In Chapter 4, we generalize the
spline-resizing algorithm of [73] to splines of any order. In Chapter 5, we develop
an original least-squares nonuniform to uniform grid-conversion algorithm.

In Chapter 6, we introduce spline pyramids that are optimal for �p-norms
as an alternative to the traditional multiresolution linear methods. We present
a Banach-space formulation of the problem and show that its solution is well-
defined. Then, we develop an iterative algorithm based on digital filtering.
To conclude, we show that the corresponding reduction operator for values of
p close to 1 reduces the blurring and the ringing artifacts inherent to linear
pyramids. We also characterize quantitatively the increase in sparsity of �1 over
�2 approximations.
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The main contribution of Chapter 7 is to characterize the error of the Lp-
approximation when the sampling step tends to zero. This result justifies that
the least-squares approximation be used as initial solution for the iterative op-
timization algorithm when the degree of the spline is even; otherwise, one has
to include an appropriate correction term.

The appendix is dedicated to another application of the mathematical for-
mulation presented in Chapter 3: the continuous wavelet transform. We develop
a fast algorithm based on a look-up table to speed up the computations. Finally,
we demonstrate the convenience of using this algorithm in the analysis of bowel
movements.
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Chapter 2

Sampling and Linear
Approximation in L2(R)

In some areas of applied mathematics (i.e., finite elements), the problems formu-
lated in the continuous domain are commonly solved using numerical methods.
In that case, it is necessary to find a reasonable discrete representation of the
initial continuous function. In digital signal processing (DSP), most of the re-
search is made with data already discretized. Here, the concern is to reconstruct
a continuous function from its uniformly taken samples which is an unavoidable
step when continuously-defined operators such as derivatives need to be imple-
mented.

In approximation theory, a general approach to approximate is to project
the continuous function onto a linear and shift-invariant space. An important
parameter to describe the space is its scale which determines the quality of the
approximation. One of the simplest form of projection is interpolation. This
method enssures that the value of the initial function and its approximated
version are the same at the sample positions. It is important to characterize
the approximation error since the adequacy of the fit between continuous and
discrete data needs to be controlled.

In this chapter, we will review the approximation properties of linear op-
erators that approximate continuous functions into some scaled shift-invariant
subspace. We are specially interested in the polynomial preserving operators
interpolative and projective. In addition, we will review how to characterize
the approximation error in function of the scale parameter when the function
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to approximate is sufficiently regular.

2.1 Approximation space

The main goal of approximation theory is to find a reasonable approximation at
scale T which we denote fT (x), of a finite energy function f(x) ∈ L2. A widely
used approach considers fT (x) belonging to the class of functions generated
from the integer translates of an appropriate template.

The resulting approximation space is T -integer shift-invariant and can be
defined as

VT = span
k∈Z

{
ϕ
( x
T
− k
)}
∩ L2, (2.1)

where ϕ(x) is some specified basis function with acceptable space and frequency
localization.

The function f(x) is approximated at scale T by fT (x) which is defined as

fT (x) =
∑
k∈Z

ckϕ
( x
T
− k
)
, (2.2)

where the ck’s are coefficients that depends linearly on f(x) and specify the
approximation model. A discussion on the different methodologies to calculate
the value of the coefficients ck is the object of the next section.

We require that VT is a closed subspace of L2 and that each of its functions
fT (x) ∈ VT have a unique and stable representation in terms of the coefficients
ck. These conditions are satisfied if {ϕ(x− k)}k∈Z is a Riesz basis of V1. Math-
ematically, this means that there exist two constants 0 < A,B <∞ such that

∀c ∈ �2, A · ‖c‖�2 ≤
∥∥∥∥∥∑
l∈Z

clϕ (x− l)
∥∥∥∥∥
L2

≤ B · ‖c‖�2 .

The proposed formulation covers many signal representation models from the
bandlimited one to spline and wavelet-like expansions [5, 77, 133]. The model
can be easily extended to multidimensional functions by using tensor-product
basis function.
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2.2 Approximation methods

We describe in this section how to get the coefficients ck in (2.2) so that the
approximation function, fT (x) = QT f(x) is a reasonable representation of some
desired function f(x).

The standard approach consists in prefiltering and sampling thereafter. The
method can be described by the inner product integral

ck =
∫
f(ξ)ϕ̃

(
ξ

T
− k
)
d
ξ

T
(2.3)

where ϕ̃(x) is called the analysis (or sampling) function.
The linear and shift-invariant approximation operator QT is defined as

QT f(x) =
∑
k∈Z

[∫
f(ξ)ϕ̃

(
ξ

T
− k
)
d
ξ

T

]
ϕ
( x
T
− k
)
. (2.4)

The most critical choice is the synthesis function ϕ(x) because it determines
the approximation space VT . An important property of ϕ(x) is the order of
approximation which is related to the rate of decay of the approximation er-
ror as a function of the sampling step. We will explain this property and its
implications in more detail in the next section.

Once this choice has been made, we need to determine the function ϕ̃(x)
such that the approximation scheme performs appropriately. A widely use cri-
terion is the biorthornomality condition specified by 〈ϕ̃(x − k), ϕ(x)〉 = δk. A
direct consequence of this constraint is that the approximation operator be-
comes a projector: i.e., QTQT = QT , which ensures the exact reproduction of
any function f(x) ∈ VT . Wavelet-like multiresolution approximation operators
are examples of such projectors. The standard interpolation scheme corresponds
to ϕ̃(x) = δ(x). Note that the biorthonormality property is equivalent to the
standard interpolation condition ϕ(k) = δk, which ensures that the expansion
coefficients ck are the values of the function at the grid points. The least squares
approximation which minimizes the sum of the squares of the error, is obtained
when ϕ̃(x) and ϕ(x) are biorthogormals along with the additional constraint
ϕ̃(x) ∈ V1. The corresponding function ϕ̊(x) is called the dual of ϕ(x) and is
defined in the Fourier domain as

ˆ̊ϕ(ω) =
ϕ̂(ω)
âϕ(ω)

(2.5)

where âϕ(ω) =
∑

k |ϕ̂(ω + 2kπ)|2 is the Fourier transform of the sampled au-
tocorrelation of ϕ(x). This optimal scheme provides an orthonormal projection
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which is denoted by PT instead of QT . A special case of this type of approxima-
tion operators corresponds to the Shannon’s reconstruction formula for a ban-
dlimited signal being ϕ(x) = ϕ̊(x) = sinc(x) [110]. We can gain some flexibility
by eliminating the constraint ϕ̃(x) ∈ V1 while keeping the biorthonormality con-
dition. The price to pay is an increase of the approximation error which can
be negligible depending on the angle between the analysis and synthesis space.
This suboptimal approximation operator corresponds to an oblique projection.

Finally, we describe a special class of approximation operators: the quasi-
interpolators. Very often, in digital signal processing, we make the assumption
of ideal sampling in the sense that our discrete signal values represent the true
samples fk = f(kT ) of a bandlimited signal f(x). The sampling functions that
allow us to stay discrete are a linear combination of Diracs. The corresponding
sampling function is

ϕ̃(x) =
∑
k∈Z

pkδ(x− k)

which corresponds to the continuous-time representation of the digital filter pk.
In [21], one can find a clear description of how to calculate the weights pk for
different design criterions. An interpolation operator is the one that satisfies at
the same time the quasi-interpolation and the projection conditions.

2.3 Approximation error

Lth-order of approximation. An important concept in approximation theory
is the order of approximation which describes the rate of decay of the error as
the sampling step goes to zero.

We say that the function ϕ(x) is of order L iff{
ϕ̂(0) = 1
ϕ̂(l)(2πk) = 0, k ∈ Z, k �= 0 for l = 0, ..., L− 1

where ϕ̂(ω) is the Fourier transform of ϕ(x) and ϕ̂(l)(ω) its lth-derivative with
respect to ω. These equations are often referred to as the Strang-Fix conditions
of order L [113].

A relevant implication of the order property is the fact that a function ϕ(x)
of order L is able to reproduce polynomials of degree 0 to L−1. This connection
can be established with the help of Poisson’s summation formula; for instance,
the first-order Strang-Fix condition with ϕ̂(0) = 1 is equivalent to the partition
of unity:

∑
k ϕ(x − k) = 1. In that sense, we can rewrite the Strang-Fix

conditions of order L as
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{
1 =

∑
k∈Z
ϕ(x− k) (Partition of unity)

xl =
∑

k∈Z
λ
(l)
k ϕ(x− k) for l = 0, ..., L− 1.

where the λ(l)k are suitable coefficients.

Lth-order generating function. We call an Lth-order generating function a
continuous function ϕ(x) ∈ L2 that forms a Riesz basis and has a Lth-order
of approximation. Note that the generating functions considered here are not
necessarily compactly supported [21].

Least-squares approximation error. We are interested in evaluating the quan-
tity

εf (T ) = ‖f −QT f‖L2 =
(∫

|f(x)−QT f(x)|2 dx
) 1

2

.

The approximation error εf (T ) can be expressed as a main term plus a
perturbation as was demonstrated in [21]. The dominating component can be
computed exactly by integration of |f̂(ω)|2 against the kernel

E(ω) = 1− |ϕ̂(ω)|
2

âϕ(ω)
+ âϕ(ω)| ˆ̃ϕ(ω)− ˆ̊ϕ(ω)|2. (2.6)

Obviously, the second term of the kernel vanishes for a least-squares approxi-
mation (i.e., ϕ̃(x) = ϕ̊(x)).

The approximation error εf (T ) is then, given by

∀f ∈W r
2 , εf (T ) =

[
1
2π

∫
E(Tω)|f̂(ω)|2dω

] 1
2

+ e(f, T ) (2.7)

where the correction term e(f, T ) is bounded as

|e(f, T )| ≤ KT r‖f (r)‖L2 ,

where r is the Soboled regularity of f(x) and K is some known constant [22];
‖f (r)‖L2 is the L2-norm of the rth derivative of f(x) which is given by

‖f (r)‖L2 =
[
1
2π

∫
ω2r|f̂(ω)|2dω

] 1
2

.
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The correction term e(f, T ) can take positive or negative values and becomes
very small if the function f(x) is sufficiently smooth.

The result can also be interpreted as a sampling theorem. For the partic-
ular case, ϕ(x) = sinc(x) and ϕ̃(x) = δ(x), we recover Shannon’s sampling
theorem [110].

Averaged approximation error. Suppose that we are approximating a shifted
version fu(x) = f(x − u) of the function f(x). The resulting error is a T -
periodic function of the shift increment u, i.e., εfu+T

= εfu
, due to the T -

integer shift invariance of the approximation space. As the first term in εf (T )
(equation (2.7)) is shift-invariant, the influence of the phase factor only appears
in its second error component.

We can obtain a delay-independent version of the approximation error by
averaging ‖fu −QT fu‖L2 over the period interval T

η2f (T ) =
1
T

∫ T

0

‖fu −QT fu‖2L2
du.

This quantity was computed exactly in [21] and reduces to the first term in
equation (2.7). The averaged approximation error ηf (T ) corresponds to

η2f (T ) =
1
2π

∫
E(Tω)|f̂(ω)|2dω. (2.8)

This is also the expected approximation error if we consider the initial phase of
the sampler random and uniformly distributed.

Asymptotic approximation error. We will use the expression for εf (T ) to char-
acterize the behavior of the error as the sampling step gets sufficiently small.
The main purpose here is to indicate a simple and accurate way of predicting
the error so that we can select the interpolation function and the sampling step
according to our quality requirements.

We see that as the sampling step tends to zero, we have

εf (T ) = ηf (T ) + o(T r).

Blu et al. in [21] have shown that it is possible to expand the approximation
error in a power series of T by taking the Taylor series expansion of the symmet-
rical kernel E(ω) around the origin ω = 0. The first nonzero coefficient gives the
asymptotic rate of decay of the error εf (T ) as a function of T . Specifically, if
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ϕ(x) and ϕ̃(x) are quasibiorthonormal of order L: ϕ(x) satisfies the Strang-Fix
conditions of order L and the moments of ϕ̃(x) and ϕ̊(x) are equal up to the
order L (i.e.,

∫
xkϕ̃(x)dx =

∫
xkϕ̊(x)dx for k = 0, ..., L − 1). Then, the error

will have the characteristic form

εf (T ) = ‖f −QT f‖L2 = CL‖f (L)‖L2T
L

as T → 0, where the asymptotic error constant is

CL =

√
E(2L)(0)
(2L)!

. (2.9)

This is precisely to what we refer to when we speak of an Lth-order ap-
proximation scheme. This result specifies a whole class of linear T -integer shift
invariant approximation procedures in VT that provide an O(TL) error decay
rate. Instances of these approximation operators are quasi-interpolators, inter-
polators and orthonormal and oblique projectors. All these methods with the
same rate of decay differ in the value of the approximation constant. For exam-
ple, if ϕ(x) satisfies the Strang-Fix conditions of order L, ϕ̃(x) is biorthonormal
to ϕ(x) and ϕ̃(x) satisfies the partition of unity then

CL =
1
L!

√∑
k �=0

|ϕ̂(L)(2kπ)|2

as was stated in [124].

Maximum Order Minimal Support functions. The quality of the approxima-
tion of f(x) depends strongly on the order L of the interpolator and no so much
on the size of its support Nϕ. Nevertheless, Nϕ determines the computational
cost. The functions that minimize the support Nϕ for a given order L are lin-
ear combinations of B-spline derivatives which specifies the MOMS (Maximum
Order Minimal Support) class of functions

ϕ(x) =
L−1∑
k=0

γk
dk

dxk
βL−k(x) (2.10)

where βL−k denotes the B-spline of degree (L − k − 1). The reader is referred
to the next Chapter 3 for a formal definition of a B-spline. In particular, the
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B-splines of degree n are the smoothest functions for a given order of approxi-
mation (L = n+ 1). The asymptotic approximation constant CL given in (2.3)
can be minimized within the MOMS class and the resulting functions are called
O-MOMS, where “O” stands for optimal [18]. Among all the ϕ(x)’s of support
size L, the O-MOMS of order L yields the smallest asymptotic approximation
error εf (T ) independly of the function f(x). They can be determined recur-
sively as indicated in [18, 20]. The cubic O-MOMS, which has approximation
order L = 4, is given by

ϕ3(x) = β3(x) +
1
42
d2

dx2
β3(x).

The O-MOMS are continuous but not differentiable for even orders, and even
only piecewise continuous for odd orders. So, they are continuous at best. The
conclusion is that regularity is not as strong a determinant for the approximation
performance as is commonly believed. The value of the asymptotic constant for
the cubic B-spline is C4,β3 = (240

√
21)−1; for ϕ3(x) we have C4,ϕ3 = 5040−1, so

that we may expect an 13.22 dB asymptotic improvement when using the cubic
O-MOMS instead of the cubic spline[20].

2.4 Summary

In this chapter, we have reviewed some basic concepts in linear approximation
theory. All of them will be useful to us later on. More precisely, in digital
image processing, there are two major issues related to this topic. On the one
hand, signal reconstruction from discrete samples which is commonly achieved
by interpolation. On the other hand, projection of a continuously transformed
signal onto an appropriate approximation space prior to sampling. In Chapter
7, we will study other aspect of approximation theory, the characterization of
the asymptotic approximation error for the more general class of Lp-projections
on spline spaces.
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Chapter 3

A New Graphical Formalism
for Splines

In this chapter, we define a new operator formalism for splines and for multi-
rate signal processing which facilitates the computation of inner products and of
convolutions in which B-splines are involved. Thanks to these tools, we are able
to simplify many of the derivations for spline-based continuous signal processing.
This presentation is meant to be self-contained and may serve as an introduction
to the attractive area of splines.

The chapter is organized as follows: First, we present the basic building
blocks for our graphical formalism (sampling, scale change and convolution).
Second, we derive the graphical representation of some relevant convolutional
operators. Third, we introduce the B-splines. These specific basis functions
have been chosen due to their remarkable properties. Finally, we apply the
graphical formalism we just developed to B-splines, which offers a framework
that leads itself naturally to the easy derivation of useful additional relations.

3.1 Basic operators

We consider that all our signals are functions of the continuous space variable
x. We modify them using a combination of basic operators which are of three
types: sampling, scale change, and convolution. Their definition is as follows:
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Sampling. Sampling is the key operation that transforms a continuously de-
fined function f(x) into a discrete signal specified by the samples at the integers
f(x)|x=k = fk. It is modeled by a multiplication with a train of Dirac distribu-
tions. It is represented as:

✐×❄
P
k δ(x− k)

⇐⇒ f(x) �→ fδ(x) =
∑

k fkδ(x− k).

Note that the resulting discrete sequence fk is mapped in our formalism to
the distribution fδ(x), which is still defined continuously with respect to x.

Scale change. The magnification-operator is represented as:

✒✑
�✏
%a ⇐⇒ f(x) �→ f

(
x
a

)
.

Thanks to this operator, we can easily model a change of sampling rate by
rescaling the signal prior to sampling.

Convolution. A common operator in signal processing is the convolution. In
our graphical representation, all the boxes denote impulse responses:

g ⇐⇒ f(x) �→ g ∗ f(x).

The distribution formalism depending on the input and on the filter type
the convolution can be implement either a full continuous, a semidiscrete or a
full discrete convolution.

3.2 Relevant convolutional operators

We devote this section to the graphical representation of relevant convolutional
operators for our formalism. Our tools are the basic operators that were de-
scribed in the previous section.

Convolution with an arbitrary shift. The linear operator corresponding to
an arbitrary shift (i.e., non-integer) is represented as δ(x− b) . Figure 3.1
illustrates the rule for concatenating two shifts and for permuting a shift with
a magnification. The proofs are not included because they are trivial.
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δ(x− b1) δ(x− b2) = δ(x− b1 − b2)

(a)

δ(x− b) ✒✑
�✏
% a = ✒✑

�✏
% a δ(x− ab)

(b)

Figure 3.1: Shift by b: (a) Concatenation rule. (b) Permutation with a magni-
fication.

f 1
a
h
�
x
a

�
g = f ✒✑

�✏
%

1
a h ✒✑

�✏
%a g

Figure 3.2: Graphical equivalence of the convolution with an expanded signal.

Convolution with an expanded signal. The convolution of a continuous sig-
nal f(x) with an expanded version of another continuous signal h(x) deserves
to be defined explicitly. The left-hand side of Figure 3.2 corresponds to the
convolution

g(x) = f(x) ∗ 1
a
h
(x
a

)
=

1
a

∫
f(τ )h

(
x− τ
a

)
dτ.

If we make the change of variable u = τ
a ,

g(x) =
∫
f(aτ)h

(x
a
− τ
)
dτ.

we obtain the expression on the right-hand side. This is a key equivalence that
facilitates the manipulations when modelling the convolution of a continuous
signal with an expanded B-spline.

Convolution with an arbitrary spaced sequence. Closely related to the equiv-
alence defined above is the definition of the mixed convolution of a continuous
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v pδ,a g = v ✒✑
�✏
%

1
a

pδ ✒✑
�✏
%a g

Figure 3.3: Graphical equivalence of the convolution with an arbitrary spaced
sequence.
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∑
k∈Z
pkδ(x− ak)

∗

v(x)

=

g(x)

Figure 3.4: Graphical interpretation of the mixed convolution between a dis-
crete sequence pk and a continuous signal v(x), with a = 4.

signal v(x) with a discrete sequence pk with constant intersample distance a.
The reason is that the convolution of a continuous function with an expanded
B-spline can be expressed as a mixed convolution, as will be demonstrated later.
It is given by

g(x) =

(∑
k∈Z

pkδ(x− ak)
)

︸ ︷︷ ︸
pδ,a

∗v(x) =
∑
k∈Z

pkv(x− ak),

(3.1)

where pδ,a corresponds to a sampling distribution pδ with a distance a between
the samples. It is modelled in our formalism by the rescaling of pδ as shown
in Figure 3.3. The intuitive illustration of this formula is given in Figure 3.4.
The mixed convolution is a weighted sum of shifted replicates of the signal v(x)
separated by a distance a.
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f ✒✑
�✏
% 1

a
ϕ̃r ✐×❄

P
k δ(x− k)

ϕ ✒✑
�✏
%a Qaf

Figure 3.5: Linear shift invariant approximation operator. The symbol ϕ̃r
denotes the reverse time version of ϕ̃: ϕ̃r(x) = ϕ̃(−x).

Linear shift-invariant approximation operator. As was presented in Chap-
ter 2, the linear shift-invariant approximation operator is defined as

Qaf(x) =
∑
k∈Z

[∫
f(ξ)ϕ̃

(
ξ

a
− k
)
d
ξ

a

]
ϕ
(x
a
− k
)

(3.2)

Its graphical representation is given in Figure 3.5, uses the equivalence given
in Figure 3.2 and illustrates the flexibility of our formalism.

3.2.1 Differential operators

In this section, we assume that all signals f(x) are compactly supported and
that all discrete sequences sk are finite.

Continuous differential operators. The conventional differentiation operator
is

Df(x) =
df(x)
dx

.

The operator D corresponds to the convolution of f(x) with the derivative of
the delta function. We may also write the (n+ 1)-fold derivative operator as

Dn+1f(x) = δ(n+1) ∗ f(x).

The unique inverse D−1 of D is the antiderivative operator

D−1f(x) =
∫ x

−∞
f(τ )dτ.

It is uniquely defined by DD−1f(x) = D−1Df(x) = f(x). The operator D−1

also corresponds to the convolution of f(x) with the unit step function. The
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x
n1
+
n1!

x
n2
+
n2!

=
x

n1+n2+1
+

(n1+n2+1)!

(a)

xn+ ✒✑
�✏
% a = ✒✑

�✏
% a

1
an+1 x

n
+

(b)

Figure 3.6: One-sided power function: (a) Concatenation rule. (b) Permutation
with a magnification.

(n+1)-fold convolution of the step function yields the one-sided power function
xn
+
n! , where

xn+ =
{
xn if x ≥ 0
0 otherwise.

In particular, the unit step function is x0+ with 00+ = 1
2 . We may also write

the (n+ 1)-fold antiderivative operator as

D−(n+1)f(x) =
xn+
n!
∗ f(x).

Note that the concatenation rule D−(n1+1)D−(n2+1) = D−(n1+n2+2) corre-
sponds to the following composition property of one-sided power functions (see
Figure 3.6(a)):

xn1
+

n1!
∗
xn2
+

n2!
=

xn1+n2+1
+

(n1 + n2 + 1)!
. (3.3)

Property. The rule for permuting the magnification operator with the convo-
lution with a one-sided power function is given in Figure 3.6(b). The proof is
as follows: We write the expression of the right-hand side in Figure 3.6(b) as∫

f
(τ
a

) 1
an+1

(x− τ )n+dτ.

28



We then make the change of variable u = τ
a∫

f(u)
1
an+1

(x− au)n+a du =
∫
f(u)

(x
a
− u
)n
+
du,

which corresponds to the expression on the left-hand side.
In the graphical representation, we will use δ(n+1) for the differentiation and

xn
+
n! for the antiderivative operators.

Discrete differential operators. We define the backward finite-difference op-
erator as

∆(x) = δ(x)− δ(x− 1).

This is also a discrete convolution operator (digital filter), the z-transform of
which is

∆(z) = 1− z−1.

When working with �1-sequences, we can consider the inverse operator ∆−1

defined uniquely as

∆−1(x) =
∑
n≥0
δ(x− n).

the z-transform of which is

∆−1(z) = (1− z−1)−1.

It can be defined as the running-sum filter

(∆−1 ∗ s)k =
∑
n≤k

sn,

We thus have ∆−1 ∗∆ ∗ s = ∆ ∗∆−1 ∗ s = s.
This operator converges only when it is applied to sequences that are periodic

and have a zero average. In the next chapter, we will define a variation of
∆−1 that preserves the zero-mean property of the input. We will also model
the propagation of boundary conditions through the operator ∆−1. Note that
yk = ∆−1 ∗ sk can be implemented very efficiently using the recursive equation

yk = yk−1 + sk. (3.4)
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Figure 3.7: The centered B-splines of degree 0 to 5.

βn = ∆n+1 xn
+
n!

δ
�
x+ n+1

2

�

Figure 3.8: Schematic representation of a centered B-spline of degree n.

3.3 B-spline definition

The one-sided power function xn+, which has a unique singularity of order n
at the origin, is a trivial example of a polynomial spline of degree n. While a
polynomial spline can always be written as a sum of shifted one-sided power
functions, it is more convenient to work with B-splines as basis functions [125];
The noncentered B-splines are obtained through the following finite-difference
process:

βnnc(x) = ∆n+1 ∗
xn+
n!
. (3.5)

If we shift βnnc by
n+1
2 , the finite-difference operation is recentered so that

the result is a centered B-spline (see Figure 3.7)
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βnc (x) = β
n
nc(x) ∗ δ

(
x+

n+ 1
2

)
. (3.6)

Unless mentioned, we will work with centered B-splines that will be noted βn(x).
Since a convolution with xn

+
n! is equivalent to the (n + 1)-fold antiderivative

D−(n+1), we can rewrite the B-spline as

βn(x) = ∆n+1 ∗D−(n+1)δ

(
x+

n+ 1
2

)
. (3.7)

Figure 3.8 shows the schematic representation of a B-spline of degree n using
our mathematical formalism. ∆n+1 is a digital filter, while x+

n! is a true function
of the continuous variable x. The input signal is a Dirac distribution.

The family of B-spline basis functions turns out to be especially attractive
for our purpose. Their main advantages are as follows:

1. B-splines are non-negative, symmetric, and compactly supported. They
have the shortest support for a given order of approximation L = n + 1,
which means that the computational complexity is minimized [20].

2. B-splines satisfy the partition of unity and have excellent approximation
properties [22]. A B-spline of degree n is part of the MOMS family of
order L.

3. Splines are smooth and well-behaved (piecewise polynomials).

4. The simple analytic form of splines facilitates their manipulation [125].

5. They satisfy a two-scale relation which makes them appropriate for mul-
tiscale processing [124].

6. The family of polynomial splines also provide design flexibility. By in-
creasing the degree, we can progressively switch from simple polynomial
representations (piecewise constant (n = 0) or linear (n = 1) ) to the
bandlimited model (n→∞)[7].

3.4 B-spline relations

As we have just seen, B-spline basis functions possess a number of nice proper-
ties that make them well-suited for the computation of projection-based image
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n−n1
+

(n−n1)!
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Figure 3.9: Graphical derivation of the n1-fold derivative of a B-spline. (a)
Substitution of βn by its explicit expression given in Figure 3.8. (b) Application
of the commutativity of ”∗” and the identity ∆n1 ∗ ∆−n1 = I. (c) Scheme
obtained using the definition of the B-spline.

approximations. As was explained in the introduction, the main difficulty of the
algorithms is that they involve the computation of inner products (or convolu-
tions) with B-splines of different widths. In this section, we propose an exact
solution for these type of computations applicable to B-splines of any order and
arbitrary size.

3.4.1 Differentiation

As an example of the fourth property of Section 3.3, we derive the two most
relevant B-spline differential relations:

• n1-th derivative for n1 ≤ n:

Dn1βn(x) = ∆n1 ∗ βn−n1

(
x+

n1
2

)
. (3.8)

Proof: In Figure 3.9(a), βn is substituted by its explicit expression
given in Figure 3.8. Using ∆n1 ∗∆−n1 = I and the commutativity of ”∗”,
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x
n1−1
+

(n1−1)!
βn =

x
n1−1
+

(n1−1)!
∆n+1 xn

+
n!

δ
�
x+ n+1

2

�

(a)

= ∆−n1 ∆n+n1+1 x
n+n1
+

(n+n1)!
δ
�
x+ n+1+n1

2
− n1

2

�

(b)

= ∆−n1 βn+n1 δ
�
x− n1

2

�

(c)

Figure 3.10: Graphical derivation of the n1-fold integral of a B-spline. (a)
Substitution of βn by its explicit expression given in Figure 3.8. (b) Application
of the commutativity of ”∗” and the identity ∆n1 ∗∆−(n1) = I. (c) The proof
is finished by using the explicit time domain expression for B-splines.

we obtain Figure 3.9(b). We complete the proof by identifying the explicit
time domain expression of βn−n1 .

• n1-fold integral for n1 ≤ n:

D−n1βn(x) = ∆−n1 ∗ βn+n1

(
x− n1

2

)
. (3.9)

Proof: The proof is derived graphically in Figure 3.10. It follows the same
steps as the one for the n1-fold derivative.

3.4.2 Expanding B-splines

As we commented in the introduction, the convolutive equivalence of βa(x) is a
essential tool in our formalism. The resulting explicit time-domain expression
for an expanded B-spline as derived in Figure 3.11 is
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1
a
βna = ✒✑

�✏
%

1
a ∆n+1 xn

+
n!

δ
�
x+ n+1

2

�
✒✑
�✏
% a

(a)

= ✒✑
�✏
%

1
a| {z }

∆n+1
a

∆n+1

✒✑
�✏
% a 1

an+1
xn
+
n!

δ(x+ an+1
2
)

(b)

Figure 3.11: Diagram that shows how to derive the analytic expression for the
B-spline expanded by a factor a. (a) Substitution of βn by its time-domain
explicit expression (see Figure 3.8). (b) Application of the permutation rules
for the shift and the one-sided power function (see Figures 3.1(b) and 3.6(b)).

1
a
βna (x) =

1
a
βn
(x
a

)
= ∆n+1

a ∗ 1
an+1

xn+
n!
∗ δ
(
x+ a

n+ 1
2

)
, (3.10)

where ∆a is the rescaled finite-difference operator

∆n+1
a =

n+1∑
k=0

(
n+ 1
k

)
(−1)k︸ ︷︷ ︸

q(k)

δ(x− ak). (3.11)

Note that lim
a→0

1
a
βna (x) = δ(x).

3.4.3 Spline bikernels

We define the spline bikernels as the convolution of two B-splines of variable
widths and degrees (see Figure 3.12). The explicit time domain expression of a
spline bikernel is as follows:
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Figure 3.12: Spline bikernels computed by the convolution of the two B-splines
1
aβ

n,n
1,a = βn1 ∗ βna with a ∈ [0, 1]. (a) n = 0; (b) n = 1. The kernels generate

a smooth transition between B-splines of degree n and degree 2n + 1. For

a = 0 and a = 1, the kernels are B-splines because lim
a→0

1
a
βn1 ∗ βna = βn1 and

βn1 ∗ βna=1 = β2n+11 .

1
a1a2

βn1,n2
a1,a2

(x) =
1
a1a2

βn1
a1
(x) ∗ βn2

a2
(x)

= ∆n1+1,n2+1
a1,a2

∗ 1
an1+1
1 an2+1

2

xn1+n2+1
+

(n1 + n2 + 1)!

∗δ
(
x+ a1

n1 + 1
2

+ a2
n2 + 1

2

)
,

(3.12)

where we denote the convolution of two finite-difference operators of different
widths as
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a1a2
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a1
1
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n1+1
1

x
n1
+
n1! δ

�
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n1+1
2

�

∆n2+1
a2

1

an2+1

x
n2
+
n2!

δ
�
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n2+1
2

�

(a)

= ∆n1+1
a1 ∆n2+1

a2
1

a
n1+1
1 a

n2+1
2

x
n1+n2+1
+

(n1+n2+1)!

δ
�
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n1+1
2
+ a2
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2
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∆
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Figure 3.13: Time domain explicit expression for the spline bikernel 1
a1a2

βn1,n2
a1,a2

.
(a) Substitution of 1

a1
βn1
a1

and 1
a2
βn2
a2

by its expression given in Figure 3.11. (b)
Application of the concatenation rule of one-sided power functions and of shifts
(see Figures 3.1(b) and 3.6(b)).

∆n1+1,n2+1
a1,a2

= ∆n1+1
a1

∗∆n2+1
a2

=
n2+1∑
k=0

n1+1∑
l=0

q2(k)q1(k − l)δ(x− a1l − a2k) (3.13)

The knots positions of the non-uniform spline that constructs the spline
bikernel βn1,n2

a1,a2
are {a2k + a1l} for k = 0, ..., n2 + 1 and l = 0, ..., n1 + 1. Note

that if a1 = a2 = a, then ∆n1+1
a ∗∆n2+1

a = ∆n1+n2+2
a .

The graphical derivation on Figure 3.13 is based on the convolutive equiv-
alent of the B-spline expanded by an arbitrary factor a (see Figure 3.11). The
final expression is simply obtained applying the concatenation rule of shifts and
one-sided power functions (see Figures 3.6(b) and 3.1(b)).

We have used these kernels in two applications: image resizing and computer
tomographic reconstruction [59].

3.4.4 B-spline inner products

In this section, our concern is to derive an explicit formula for computing B-
spline inner products and convolutions, as they are the basis for our projection
based image approximations. As a B-spline inner product is equivalent to a
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sδ (bn)−1 cδ βn f

Figure 3.14: The spline f interpolates the input samples sk.

x
n1
+
n1!

f = cδ
x

n1
+
n1!

βn

(a)

= cδ ∆−(n1+1) βn+n1+1 δ(x− n1+1
2
)

| {z }
gδ
(b)

Figure 3.15: Schematic representation of the (n1 + 1)-fold integral of a signal
expressed in a B-spline basis. (a) Substitution of f = cδ ∗ βn. (b) The final
expression is derived using the (n1+1)-integral relation for a B-spline (see Figure
3.10).

sampled convolution

1
a

〈
f(x), βn1

(x
a
− k
)〉

=
1
a
(f ∗ βn1

a ) (ka),

we will derive an exact formula to compute (f ∗ βn1
a )(x) with f(x) being a

spline. By substitution of the definition of an expanded B-spline (see Figure
3.11), we get

1
a
(f ∗ βn1

a )(x) =
1

an1+1
∆n1+1
a ∗D−(n1+1)f

(
x+ a

n1 + 1
2

)
. (3.14)

Thus, we can compute the convolution in a rather simple way by applying
finite differences to the (n1 + 1)-fold antiderivative of a shifted version of the
function f(x). What makes an exact computation possible and analytically
tractable is the fact that the (n1 + 1)-fold integral of a spline is a spline with
a corresponding increase of the degree. See Figure 3.16(a) for the graphical
derivation of equation (3.14).
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Figure 3.16: B-spline convolution. (a) Substitution of βna by its expression as

given in Figure 3.11. (b) Substitution of
x

n1
+
n1!

∗ f by its formula given in Figure
3.15 with τ = (a− 1)

(
n1+1
2

)
.

An alternative interpretation of this equation as a mixed convolution is ob-
tained by replacing ∆n1+1

a by its definition

1
a
(f ∗ βn1

a )(x) =

(
n1+1∑
k=0

pkδ(x− ak)
)
∗ v(x), (3.15)

where the coefficients pk are simply a scaled version of the binomial coefficients
qk, pk = 1

an1+1qk, and where the continuous function v(x) is the (n1 + 1)-fold
antiderivative of a shifted version of the function f(x)

v(x) = D−(n1+1)f

(
x+ a

n1 + 1
2

)
. (3.16)

Now, we will derive an expression for the case where f(x) is a spline that
interpolates the discrete input samples s(k). Consequently, we have f(x) =
cδ ∗βn(x) with cδ = sδ ∗ (bnδ )−1, where (bn)−1 is the inverse filter of the B-spline
interpolation filter bn = βn(x)|x=k, as show in [125] (see Figure 3.14). Then,

D−(n1+1)f(x) = gδ ∗ βn+n1+1 ∗ δ
(
x− n1 + 1

2

)
(3.17)

where gδ is obtained by iterative summation of the interpolation coefficients

gδ = ∆−(n1+1) ∗ cδ. (3.18)
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as shown in Figure 3.15. Finally, the B-spline convolution can be rewritten by
substitution of equation (3.17) onto equation (3.16) as the mixed convolution
given in Figure 3.16(b) where v(x) is a spline of degree (n+ n1 + 1)

v(x) = gδ ∗ βn+n1+1 ∗ δ(x+ τ ), (3.19)

and where τ is the shift

τ = (a− 1)
(
n1 + 1

2

)
.

3.5 Summary

In this chapter, we have constructed a mathematical formalism that allows to
compute exact inner products (or convolutions) involving B-splines of different
widths using finite differences.

In the next chapters, we will use this catalog of mathematical operations to
derive discrete algorithms that solve in an innovative and exact fashion common
problems in image and signal processing. These include resizing by an arbitrary
scale, performing continuous wavelet transforms, and non-uniform to uniform
resampling.

One of the advantages of the method is that the corresponding algorithms
can be implemented using digital filters and matrix multiplications. In many
cases, the values of the splines or of the polynomial functions involved in the
matrix multiplications are signal-independent so, by computing them once and
by storing the result in a look-up table, the computational complexity can be
greatly reduced.
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Chapter 4

Least-Squares Image Resizing

Image resizing (magnification or reduction) is a common operation in image
processing [94]. It is used whenever one wants to change the image resolution.
For example, it is required on a routine basis in digital photography, multi-media
and electronic publishing [72, 105], for adapting the pixel size to the resolution
of an output device (printer or monitor) [48, 56], and for generating preview
images, or posting digital pictures on the Web.

Another important area of applications is medical imaging; typical instances
are:

• Reslicing for resolution normalization. This is to compensate for the fact
that 3D volumetric data (CT, SPECT or MRI) are often acquired in a
non-isotropic fashion—the within-slice resolution is typically finer than
the across-slice resolution [13].

• Image zooming. It is often used to focus on details for diagnostic purposes.

• Image pyramids for multi-scale processing. Many iterative image process-
ing algorithms can be applied in a coarse-to-fine fashion. Working with
smaller images reduces the computation time and also tends to improve
robustness [71].

Many linear resizing techniques are available even though they have some
limitations. The standard ones rely on interpolation [119]. The simplest meth-
ods are nearest-neighbor and bilinear interpolation, which correspond to fitting
the image with a spline of degree 0 and 1, respectively. The piecewise con-
stant model generates noticeable blocking artifacts, while the (bi-)linear one

41



tends to lose details through image blurring. Better interpolation performance
is achieved by switching to higher order models [119]; typical examples are Keys’
short kernel convolution [68], or higher order spline interpolation which offers
a better cost-performance ratio [19, 80, 125]. While interpolation works well
for image magnification, it is not entirely suitable for image reduction because
of potential aliasing problems. The standard remedy is to apply some kind of
lowpass prefiltering prior to resampling. Although a complete suppression of
aliasing is possible through the application of Shannon’s ideal filter, this is not
a widely used technique—it is computationally expensive and tends to introduce
ringing artifacts (Gibbs oscillations).

The principal limitation of interpolation approaches is that they are not de-
signed to minimize information loss. It therefore makes good sense to investigate
the possibility of obtaining the best solution in the least-squares sense [131]. In-
deed, the signal-to-noise ratio (SNR) is a standard figure of merit used in image
processing.

The least-squares solution is achieved by modifying the interpolation ap-
proach so that the resampling step gets replaced by the evaluation of inner
products with the translates of a suitable analysis function ϕ̃. This computa-
tion is equivalent to applying a continuously-defined prefilter (anti-alias) to the
interpolated function prior to resampling—the prefilter is not necessarily ideal
but is chosen to be biorthogonal to the underlying interpolation kernel. While
the basic principle of this projection method was introduced in [131], an exact
least-squares implementation was only demonstrated for splines of degree 0 and
1. As we already know, the practical limitation is the difficulty to perform an
exact numerical implementation of the optimal prefilter for higher order splines.
Lee et al. developed a higher order spline resizing algorithm by replacing the
orthogonal projection of [131] by an oblique one [73]. They simplified the pro-
cedure by replacing the optimal prefilter by a box function analysis (B-spline
of degree 0) and made it more efficient by pre-computing the anti-derivative of
the function to be approximated.

Here, we present a generalization of this method that allows us to com-
pute both oblique and orthogonal projections (least-squares approximations)
for splines of any degree n. What makes the approach feasible in this more
general setting is the new finite difference method presented in Chapter 3: it al-
lows an exact computation of the required inner products for analysis functions
that are B-splines of any degree n. The method derived in Section 4.1 and 4.2
works for both reduction and magnification of images with an arbitrary scaling
factor and for any translation value. In Section 4.3, we generalize the approach
to a whole class of piecewise polynomial functions (all linear combinations of
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B-splines), including some with optimal approximation properties. In Section
4.4, we compare the approximation errors of the least-squares, interpolation and
oblique projection method. The quality of the approximation, which depends
on the type of algorithm and on the degree of the B-spline, is also characterized
in this section.

4.1 Philosophy of the approach

The approach follows the philosophy that was presented in Chapter 2.
As the image is represented using separable basis functions, the resizing

problem can be solved optimally in a separable fashion. Consequently, the
complexity is reduced from 2-D to 1-D.

The schematic continuous-space domain representation of the whole algo-
rithm using the operator formalism presented in Chapter 3, is given in Fig-
ure. 4.2. As we know already, all boxes denote convolutions; gδ, qδ and hδ are
digital filters, while ϕ and ϕ1 are analog filters with impulse response ϕ(x) and
ϕ1(x), respectively. The affine transformation s

(
x
a + b

)
is represented via the

combination of a shift (convolution with δ(x+b)), and of a resizing s(x)→ s
(
x
a

)
represented as �%a .

We now describe the four main steps of the method.

4.1.1 Interpolation

The first step is to take the discrete input data sk and to construct a continu-
ous interpolating model s(x) =

∑
k ckϕ(x − k), where the ϕ(x − k)’s are some

specified basis functions. For this purpose, we take the samples sk and con-
volve them with an appropriate prefilter gk to get the coefficients ck = gk ∗ sk.
The continuous-time function is obtained by convolving cδ(x) with ϕ(x). The
prefilter G(z) =

∑
k gkz

−k = 1P
k ϕkz−k is the convolution inverse of the se-

quence ϕ(k). This particular choice ensures that the interpolation requirement
is satisfied; i.e., s(x)|x=k = sk.

4.1.2 Affine transformation (conceptual step)

We apply the affine transformation (scaling and shifting) to the function s(x).

f(x) = s
(x
a
+ b
)

The image is enlarged if a > 1 and shrunk if a < 1.
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Figure 4.1: General scheme for the standard interpolation approach
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Figure 4.2: General scheme for the proposed projection method

4.1.3 Projection-based signal approximation

In the standard interpolation approach, the image gets resized by resampling
f(x) at the integers [60], as illustrated in Figure. 4.1. Here, we will consider an
alternative approach in terms of projection operators. Specifically, we find the
best approximation f̃(x) ∈ Vϕ2 of f(x) in some space Vϕ2 = spank{ϕ2(x− k)}
such that the L2-approximation error εa(f) = ‖f− f̃‖L2 is minimized. From the
Projection Theorem, we know that the least-squares solution to this problem is
the orthogonal projection of f(x) onto Vϕ2 ( see [5] or Section 2.2).

f̃(x) = Pf(x) =
∑
k

c2(k)ϕ2(x− k) = c2,δ ∗ ϕ2(x),

with c2(k) = 〈f, ϕ̊2(x − k)〉, where ϕ̊2(x) is the dual of the analysis function
ϕ2(x); in other words, ϕ̊2 satisfies ϕ̊2 ∈ Vϕ2 and 〈ϕ̊2(x), ϕ2(x− k)〉 = δk.

Rather than computing the inner product 〈f, ϕ̊2(x − k)〉, we consider a
slightly more general and also more flexible approach via the block diagram
in Figure. 4.2. It corresponds to an oblique projection onto Vϕ2 It uses an
auxiliary analysis function ϕ1(x) which is essentially arbitrary.

44



First, we compute the inner products

c1(k) = 〈f(x), ϕ1(x− k)〉, (4.1)

which is equivalent to prefiltering f(x) with ϕ1(−x) and sampling thereafter.
The cross-correlation sequence of ϕ1(x) and ϕ2(x) is given by a12(k) =

〈ϕ1(x), ϕ2(x − k)〉. If a12(k) �= δk, the projection of f(x) onto Vϕ2 perpen-
dicular to Vϕ1 requires an additional digital filtering correction q to satisfy the
biorthogonality condition [126]. Thus, c2(k) = c1(k)∗q(k). The appropriate cor-
rection filter q is the convolution inverse of a12: q = a−112 ↔ 1P

k a12(k)z−k . This is
equivalent to using the analysis function ϕ̃2(x) =

∑
k qk ∗ϕ1(x−k) = qδ ∗ϕ1(x),

where ϕ2(x) and ϕ̃2(x) are biorthonormal. If ϕ1(x) ∈ Vϕ2 , then we get the
orthogonal projection; otherwise, we have an oblique projection [126].

When computing the orthogonal projection, we obtain a resized image with
minimum loss of information in the least-squares sense. If instead, we choose an
oblique projection, the approximation is only slightly suboptimal, depending on
the angle between Vϕ1 = spank{ϕ1(x− k)} and Vϕ2 = spank{ϕ2(x− k)} [126].
Moreover, the rate of convergence depends on the approximation order prop-
erties of the synthesis function alone; the analysis function has essentially no
influence on the asymptotic approximation error [124].

4.1.4 Resampling of the projection at the integers

Finally, we have to resample the projection at the integers (f̃(l) = f̃(x)|x=l)
to get the output of the system f̃δ(x) =

∑
l f̃(l)δ(x − l). This is achieved by

postfiltering with hk = ϕ2(k), the sampled version of the synthesis function.
If we compare the block diagram in Figures. 4.1 and 4.2, we see that the

standard interpolation approach corresponds to the simplified situation where
ϕ1(x) = δ(x) and qk ∗ hk = δk. The main difficulty with our new approach is
the computation of the inner products 〈f(x), ϕ1(x−k)〉 involving continuously-
defined functions that are specified on different grids.

4.2 Spline resizing algorithm

4.2.1 Derivation of the algorithm

As justified in Chapter 3, we choose our basis functions to be B-splines. In that
case, our algorithm has the following parameters: ϕ(x) = βn(x), ϕ1(x) = βn1(x)
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and ϕ2(x) = βn2(x). This implies that a12(k) = q−1(k) = βn1+n2+1(x)|x=k and
φ2(x) = qδ ∗ βn2(x).

In the sequel, we will derive our final form of the resizing algorithm graphi-
cally by using the exchange rules for the one-sided power functions and for the
shift given in Figures. 3.1(b) and 3.6(b), together with the convolution rule for
one-sided power functions given in Figure 3.6(a).

We now proceed by successive modifications of the block diagram in Fig-
ure 4.2. We have extracted the operators between the marks 1 and 2 for sim-
plicity. The final result is shown in Figure 4.3-e.

In Figure 4.3-a, ϕ(x) and ϕ1(−x) are substituted by their explicit expression
using (3.6). Using the rules in Figure 3.1(b) and 3.6(b), the boxes are reorga-
nized in such a way that all one-sided power functions and shifts are moved to
the left side of the scale change �%a as shown in Figure 4.3-b. In this way,
the support of the resampling kernel does not depend on a.

The rule for the convolution of one-sided power functions (3.3) is applied
to get Figure 4.3-c. Using ∆n1+1 ∗∆−(n1+1) = I and ∆n+1 ∗∆n1+1 = ∆n+n1+2

we obtain Figure 4.3-d. The explicit time domain expression for B-splines is
the key to get Figure 4.3-e with the final expression for the spline kernel being
φ(x) = an1+1βn+n1+1(x + τ2) with τ2 = n1+1

2

(
1
a − 1

)
+ b. Note that we are

allowed to push the sampling step towards the resizing box because the filters
located at positions 4 and 5 are all digital.

4.2.2 Practical implementation

We now briefly summarize the main steps in the implementation of the method:

1. Digital prefiltering with the (symmetric) exponential filter g = (bn)−1 to
get ck (interpolation coefficients) from sk (input samples). The filter is
implemented recursively using a cascade of simple causal and anti-causal
operators as described in [128].

2. (n1 + 1)-running sums corresponding to the operator ∆−(n1+1); these are
computed recursively as well by iterating (3.4). The next section describes
an implementation that handles the boundary conditions correctly.

3. Geometric transformation and resampling using a spline interpolation
model of degree (n+ n1 + 1) (basis function φ(x)).

4. (n1 + 1)-centered finite differences, corresponding to the operator ∆n1+1.
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Figure 4.3: Diagram that shows the full process to get our algorithm. (a)
Substitution of βn(x) and βn1(−x) by their explicit time expression. (b) Scheme
obtained using the exchange rule for xn

+
n! and δ(x+ b), with τ1 =

n+1
2 + n1+1

2a + b.

(c) Application of convolution rule of xn
+
n! (see Figure 3.6(b)). (d) Application

of ∆n1+1 ∗∆−(n1+1) = I, ∆n1+1 ∗∆n+1 = ∆n+n1+2 and τ2 = n1+1
2

(
1
a − 1

)
+ b.

(e) Equivalent form of Figure. 1 with φ(x) = an1+1βn+n1+1(x+ τ2), g = (bn)−1,
q = a−1 = (bn1+n2+1)−1 and h = bn2 . The numbers below the diagram indicate
the main steps in the implementation.
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5. Digital postfiltering with the sampled synthesis function φ2(x)|x=k =
qk ∗ hk, where q is an IIR filter implemented using the recursive routines
developed in [128].

4.2.3 Computational issues

We can easily trade computational speed against image quality. The most im-
portant choice is the underlying signal model (the spline degree n) which de-
termines the approximation properties of the solution. The second parameter,
n1, can be selected to obtain the optimal least-squares solution (n1 = n), or a
slightly suboptimal one which corresponds to oblique projection (−1 ≤ n1 < n).
For the limiting case n1 = −1, we recover the traditional interpolation approach
provided that we define the B-spline of degree −1 as the Dirac delta distribution
(ideal sampler). The larger n1 ≤ n, the better the quality but at the expensive
of more computations.

The expensive part of the algorithm is the resampling with the kernel φ
(step 3 in Section IV.B), which is equivalent to a spline interpolation of degree
(n+ n1 + 1). The cost of the rest of the procedure is negligible in comparison:
it involves digital filtering only—either short kernel FIR or fast recursive IIR.
Thus, we can consider that the total cost per computed output point is propor-
tional to (n + n1 + 1) times the number of operations required to evaluate φ
(B-spline of degree (n+ n1 + 1)).

One practical limitation of the present approach is the potential propagation
of roundoff errors during the multiple integration process. This requires working
with high precision arithmetic. Our implementation uses the double type in C
and can handle values up to n1 = 4 with typical image of size 512 ∗ 512.

4.2.4 Boundary conditions and discrete differential operators

The only remaining issue of the chapter is the extension to periodic signals and
the study of how to handle consistently the boundary conditions when imple-
menting the algorithms based in our finite differences method. The difficulty
comes from the running sum filters ∆−(n+1) which, in principle, are neither
symmetric nor anti-symmetric.

Signal extensions

We will consider periodization and the two types of boundary conditions shown
in Figure 4.4.
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N-1

Figure 4.4: Signal extended using: (left) symmetric boundary conditions;
(right) anti-symmetric boundary conditions.

• Periodization

The implementation of the digital filter ∆−(n+1) is undefined for periodic
signals as it attempts to compute an infinite sum of periodic data. A way
to overcome this difficulty is to restrict ourselves to periodic signals that
have a zero mean, i.e., such that

∑
k s(x− k) = 0, and to express the P -

periodic signal s(x) as limm→∞ s[−mP,(m+1)P ](x) where s[−mP,(m+1)P ](x)
is the restriction of s(x) to the support [−mP, (m+ 1)P ]. The compactly
supported signal s[−mP,(m+1)P ](x) can also be expressed by a convolution

s[−mP,(m+1)P ](x) = s[0,P ](x) ∗
∑

|k|≤m
δ(x− kP )

︸ ︷︷ ︸
Πm(x)

.

Then, since ∆−1 commutes with the periodization operator Πm(x) and,
because s[0,P ](x) has zero mean, ∆−1 ∗ s[0,P ] is also finitely supported
within [0, P ] (more precisely: within [0, P − 1]). This implies that ∆−1

keeps its meaning as m tends to infinity. If s(x) =
∑

k skδ(x− k), where
sk = sk+P (periodicity) and

∑P−1
k=0 sk = 0 (zero-mean requirement), then

we have

(∆−1 ∗ s)k =
kmodP∑
l=0

sl.

Since we have to apply the operator ∆−1 repeatedly, a process that does
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not preserve the zero-mean property, we will indicate in the next subsec-
tion how to enforce this property on any periodic input.

• Symmetry

To minimize boundary artifacts, we extend our signal {sk}k=0,... ,N−1 us-
ing symmetric mirror boundary conditions defined as s−k = sk, and
sN−1−k = sN−1+k, for k = 0, 1, . . . , N − 1. This process is repeated
on the newly extended signal, {sk}k=−N+1,... ,2N−3 and so further. As can
readily be verified, this is equivalent to requiring that s(−x) = s(x) and
that s(x) is (2N − 2)-periodic. In other words, it is sufficient to spec-
ify what happens around the origin; the symmetry on the other end is
propagated automatically through the periodization process.

• Anti-symmetry

Another complementary technique interesting to us because it is satis-
fied by signals that appear naturally in the method consists in extending
the signal using anti-symmetric mirror boundary conditions. It is defined
as sk = −s−k−1, and sN−1+k = −sN−2−k, for k = 0, 1, . . . , N − 1, re-
peated on the further extensions of the signal. As can readily be verified,
this is equivalent to requiring that s(−x) = −s(x − 1) and that s(x)
is (2N − 2)-periodic. Note however that, unlike the symmetric exten-
sion, this one cannot be applied to arbitrary signals, as it requires that
sN−1 = −sN−2. Actually, an anti-symmetric signal is always zero mean.
Once again, it is sufficient to specify the anti-symmetry around the origin;
the anti-symmetry on the other end is propagated automatically through
the periodization process.

Propagation of the boundary conditions

Any shift-invariant operator preserves the (2N−2) periodicity, but not necessar-
ily the symmetry. We therefore need to investigate how ∆ and ∆−1 propagate
symmetric and anti-symmetric boundary conditions. We need also to correct
for the fact that the considered periodic signals are not necessarily zero mean.

The finite differences operator ∆ inverses symmetry. Specifically, it trans-
forms anti-symmetric into symmetric boundary conditions and symmetric into
shifted anti-symmetric boundary conditions. The following theorem claims that
∆−1 has a similar behavior.

Theorem 1 The operator ∆−1 transforms symmetries according to
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• Symmetric input
If s(x) = s(−x) and s has a zero mean, then u = ∆−1 ∗s satisfies u(−x) =
−u(x−1). Thus, if s satisfies symmetric boundary conditions, then ∆−1∗s
satisfies anti-symmetric boundary conditions.

• Anti-symmetric input
If s(−x) = −s(x − 1) and s has a zero mean, then u = ∆−1 ∗ s satisfies
u(−x) = u(x−2). Thus, if s satisfies anti-symmetric boundary conditions,
then δ(x− 1) ∗∆−1 ∗ s satisfies symmetric boundary conditions.

Proof: It is sufficient to prove the property for a finitely supported signal
s(x) that satisfies the zero-mean property

∑
k s(x − k) = 0, because of the

definition of ∆−1 for periodic signals.

• Symmetric input
We have

u(−x) =
∑
k≥0
s(−x− k) definition of ∆−1

=
∑
k≥0
s(x+ k) symmetry property

= −
∑
k≤−1

s(x+ k) zero-mean property

= −u(x− 1).

• Anti-symmetric input
We have

u(−x) =
∑
k≥0
s(−x− k) definition of ∆−1

=
∑
k≥0

−s(x+ k − 1) antisymmetry property

=
∑
k≤−1

s(x+ k − 1) zero-mean property

= u(x− 2).

We have defined our inverse finite differences operator for finitely supported
signals, or zero mean periodic signals. We will now show how to deal with non
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B = δ −M ∆−1 ∆

M

⊕
✻

= Identity

Figure 4.5: Identity diagram for symmetric boundary input signals

zero mean P -periodic signals in our algorithm. Let us define the moving average
filter

M(x) =
1
P

P−1∑
k=0

δ(x− k).

We can then consider the identity block diagram in Figure 4.5, which holds for
symmetric boundary input signals. The key idea is that the output of δ −M
is a signal of zero mean, while that of M is a constant, whenever the input is
P-periodic.

Since the finite differences operator kills constant signals, we can write the
equivalence shown in Figure 4.6(a) for an input with symmetric boundary condi-
tions. Furthermore, in order to implement the boundary conditions as specified
in Theorem 1, it is necessary to define a “symmetric” version of ∆−1, ∆−1

S ,
for symmetric inputs and an “anti-symmetric” version, ∆−1

A , for anti-symmetric
inputs as shown in Figure 4.6(b). Note that ∆−1

A is simply ∆−1 (delayed by
one sample) because an anti-symmetric input is of zero mean. That is why, the
filter δ −M disappear at this stage. This is iterated (n1 + 1)-times to yield
the equivalence in Figure 4.6(c). Note that the alternation between symmetric
and anti-symmetric boundary conditions adds a delay of �n1+1

2 �.
Thus, in practice, we will use an alternation of ∆−1

S and ∆−1
A instead of

∆−(n1+1), adding the appropriate delay. This ensures that the boundary con-
ditions are correctly propagated throughout. This modification is necessary for
the behavior of the algorithm to be fully consistent; in particular, this ensures
that for n odd and for an integer scaling (including a = 1) the method is fully
reversible with no boundary artifacts.

4.3 Generalization of the method

We now show that the projection method can also be implemented exactly for
a more general class of piecewise polynomial functions.

52



∆n+1 = δ −M ∆−1 ∆n+2

(a)

= δ −M ∆−1 ∆−1 δ(x− 1) ∆n+3 δ(x+ 1)︸ ︷︷ ︸
∆−1

S

︸ ︷︷ ︸
∆−1

A

(b)

= ∆−1
S ∆−1

A
. . . ∆−1

S/A︸ ︷︷ ︸
×(n1+1)

∆n+n1+2 δ
(
x+ �n1+1

2 �
)

(c)

Figure 4.6: Equivalences for symmetric boundary input signals. (a) First itera-
tion: We apply the identiy block diagram in Figure 4.5. (b) Second iteration: We
define a “symmetric” version of ∆−1, ∆−1

S , for symmetric inputs and an “anti-
symmetric” version, ∆−1

A , for anti-symmetric inputs. (c) (n1 + 1)-iteration of
the process: The alternation between symmetric and anti-symmetric boundary
conditions adds a delay of �n1+1

2 �.

4.3.1 Linear combinations of shifted B-splines

We consider the case where the basis functions are linear combinations of shifted
splines

ψ(x) =
∑
i

αiβ
n(x+ hi)←→ ψ̂(ω) = F (ω)β̂n(ω), (4.2)

with F (ω) =
∑

i αie
jωhi . These functions are piecewise polynomial. How-

ever, they are not necessarily splines and the knots are not necessarily uni-
formly spaced. Then, the functions ϕ(x), ϕ1(x) and ϕ2(x) used in our
algorithm depicted in Figure 4.2, are defined by (αi, hi) = (α0,i, h0,i),
(α1,i, h1,i) and (α2,i, h2,i), respectively; moreover, we have a12(k) = q−1k =∑
i,j

α1,iα2,jβ
n1+n2+1(k + h1,i − h2,j).

If we follow the same process as in Section 4.2.1, we end up with a diagram
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similar to Figure 4.3-e with a kernel that is now

φ(x) = an1+1
∑
i,j

α0,iα1,jβ
n+n1+1(x+ τi,j)

where τi,j = h0,i − h1,j

a + b+ n1+1
2

(
1
a − 1

)
.

4.3.2 Linear combinations of B-spline derivatives

We are interested in this class of functions because, as was explained in Chap-
ter 2, the MOMS functions that minimize the support Nϕ for a given order L,
are linear combinations of B-spline derivatives

ϕ(x) =
L−1∑
k=0

γk
dk

dxk
βL−k(x). (4.3)

We get a simple expression for ϕ(x) in terms of one-sided power functions
by using the relation between splines of different degrees,

ϕ(x) =
n∑
i=0

γiD
iβn(x) =

n∑
i=0

γi∆i ∗ βn−i
(
x+

i

2

)
(4.4)

= ∆n+1 ∗
n∑
i=0

γi
xn−i+

(n− i)! ∗ δ
(
x+

n+ 1
2

)
. (4.5)

We now select ϕ(x), ϕ1(x) and ϕ2(x) to be linear combinations of B-spline
derivatives of degree n, n1 and n2, respectively, with coefficients γ0,i, γ1,i and
γ2,i. With this particular choice, we get

a12(k) = 〈ϕ1(x), ϕ2(x−k)〉 =
n1∑
j=0

γ1,j

n2∑
i=0

γ2,i∆i+j ∗βn1+n2−i−j+1
(
k +

i+ j
2

)
,

and the final scheme is the same as Figure 4.3-e with

φ(x) =
n∑
i=0

γ0,i

n1∑
j=0

γ1,ja
n1−j+1∆i+j ∗ βn+n1−i−j+1(x+ τi,j)

and τi,j = n1+1
2

(
1
a − 1

)
+ i+j

2 + b.
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Interestingly, the generalized scheme has the same computational cost as
the B-spline algorithm. The basis functions are polynomials of the same degree
as the corresponding splines; they have the same support and the recursive
prefilters have the same degree.

Note that this particular setting also constitutes a limit case of the previ-
ous one. Specifically, we can approximate the derivative operator using finite
differences and make the sampling step h tend to 0:

ϕ(x) =
n∑
i=0

γiD
iβn(x) = lim

h→0

n∑
i=0

γi
1
hi
∆i
h ∗ βn(x)

ϕ̂(ω) =

(
n∑
i=0

γi(jω)i
)
β̂n(w) �

n∑
i=0

γi

(
−1 + ejωh

h

)i
β̂n(ω)

=
n∑

k=0

αke
jωhk β̂n(ω) = F (ω)β̂n(ω),

with αk =
∑

i≥k
(
k
i

)
γi
1
hi (−1)i−k and hk = kh.

4.3.3 Extensions of the method

In principle, our algorithm can also be extended to higher dimensions and to
non-separable geometric affine operators. One may get the intuition for this ex-
tension by stressing the key feature of our setting: the function ϕ1(x) which ap-
pears in the general projection-based scheme of Figure 4.2 is built using shifted
versions of functions—the one-sided power functions xn+—that are easily ex-
changed through the geometric transformation—the scaling operator.

The idea is thus to choose a function ρ that can easily be exchanged through
the geometric transformation, and to require that ϕ1 belongs to the space gen-
erated by the uniform shifts of ρ; in our algorithm, ρ(x) = xn+.

For instance, if we wanted to implement rotations and scalings of an N -
dimensional digital signal, we could define ρ(x) = ‖x‖n, that is, a radial basis
function. This radial basis function can be localized using a digital filter ∆ρ;
that is to say, ∆ρ ∗ ρ defines a function that has some appropriate decay as
‖x‖ → ∞. In our algorithm, this localization filter is simply the finite differences
operator ∆n+1, which transforms xn+ into a B-spline of degree n. We would
finally need to compute the convolution of the localized radial basis function
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Figure 4.7: Original Magnetic Resonance (MR) image.

with ϕ to get the function φ shown in Figure 4.3-e. The disadvantage of this
generalization, however, is that the underlying basis functions are no longer
compactly supported.

4.4 Experimental results
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Figure 4.8: Projection versus interpolation method for linear splines

We used a series of back and forth experiments to evaluate and compare
the various resizing algorithms. A test image—the MR scan (Figure 4.7)—is
scaled by a factor of a and then set back to its initial size using the reverse
transformation (scaling by a factor of a−1) with the same algorithm. The loss
of information is measured by the relative mean square difference between the
approximation and the initial digital image, expressed in decibels (dB). The
experiment is repeated for many scaling factors and the peak signal-to-noise
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ratio (SNR) is represented as a function of the scale in a logarithmic plot.
Scale factors smaller than 1 correspond to image reduction, while scale factors
larger than 1 represent enlargement. Obviously, most information is lost in the
reduction step, not in the enlargement one. Note, however, that magnification
is not fully reversible unless the zooming factor is an integer.

4.4.1 Least-squares versus interpolation

Our first goal was to compare the performance of our projection algorithm with
the more standard interpolation method that fits the image with a spline of the
same degree and then resamples it at the required rate. The detailed results
for n = 1 (linear splines) are given in Figure 4.8. It is clear from this plot that
the least-squares method outperforms the standard one (bilinear interpolation),
even though the underlying model is the same in both cases.

The visual improvement can be substantial, as illustrated in Figure 4.10
and 4.11. We observe that the small-scale details are much better preserved with
our optimal approach (see Figure 4.10 and 4.11) and the contrast is enhanced
because of the reduction of aliasing. Figure 4.9 illustrates the reduction of
blocking artifacts of the projection method with respect to the standard one.

Interestingly, the projection method also provides some improvement for
image magnification. For a > 1, the gain is of the order of 20 dB. The distance
between the two curves when a > 1 reflects the differences between the leading
asymptotic constants: In the orthogonal projection case CL is small and in the
interpolation case C intL is larger (see Section 2.3). We also note that the error
curve exhibits peaks at the integers, which simply reflects the fact that the signal
is preserved exactly for integer zooming factors. In this particular case, the
interpolation and projection methods are equivalent because the corresponding
spline spaces are nested (which implies that the projection error is zero). This is
a property that holds for all B-splines of odd degrees, but not for the O-MOMS;
for splines of even degrees, it is only true for odd magnification factors.

The superiority of the least-squares method is also apparent for the other
interpolation models as shown in Figure 4.12. This graph displays the relative
SNR improvement of least-squares versus interpolation for splines of degree 0,
1, and 3, as well as the cubic O-MOMS. For small scaling factors (a < 0.4),
the improvement is typically better than 2 dB, irrespective of the model used.
The fundamental reason for the lesser performance of standard interpolation is
aliasing. The effect is more pronounced for large reduction factors or when the
image contains a lot of high frequency information.

Another visual example is provided in Figure 4.13. Here, we observe a
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(a) (b)

(c) (d)

Figure 4.9: Example of image reduction by a factor a =
√
π using splines of

degree 0. Notice that the projection method reduces blocking artifacts: (a)
Reduced image using standard method; (b) Enlarged version of the image (a)
(SNR=25.8 dB); (c) Reduced image using orthogonal projection; (d) Enlarged
version of the image (c) (SNR=30.7 dB).

substantial improvement in the perceptual quality of the projection method over
the standard one in rescaling text. The interpolation model used was cubic.

4.4.2 Comparison of basis functions

Now that we have established the superiority of the projection method, it is in-
teresting to compare the various basis functions. In particular, we are interested
in evaluating the effect of the order parameter L. For this comparison, we use
as our reference the least-squares method with cubic splines, which corresponds
to the error graph in Figure 4.14-a. The relative performance comparison of the
various models is shown in Figure 4.14-b. As expected, the SNR improves as
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(a) (b)

(c) (d)

Figure 4.10: Same experiment as Figure 4.9, but with linear splines. Notice the
aliasing reduction from (b) to (d) (better contrast of the features). See also the
difference images in Figure 4.11: (a) Reduced image using standard method;
(b) Enlarged version of the image (a) (SNR=31.9 dB); (c) Reduced image using
orthogonal projection; (d) Enlarged version of the image (c) (SNR=35 dB).

the order of the spline increases. For small reduction factors (a < 0.5), cubic
splines perform 1.0 dB better than linear splines, and 2.5 dB better than the
piecewise constant model (n = 0). For large scale factors, this difference gets
magnified. If we now compare the O-MOMS and cubic B-splines, which have
the same support (W = 4) and the same order (L = 4), we find that the former
offer slightly better performance across all scales (+0.15 dB at small scales),
which confirms their optimality.

We also compared the methods when the image is only shifted forward by a
factor b and backwards by the same factor without resizing. Figure 4.15 shows
the results. We observe that the O-MOMS give the best value in terms of SNR,
1 dB over cubic splines, while the linear splines (resp., piecewise constant) are
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(a) (b)

Figure 4.11: Difference between the original and the enlarged version of the
reduced image obtained in Figure 4.10 with the linear spline resizing methods:
(a) Standard method; (b) Orthogonal projection.
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Figure 4.12: Least-squares versus various interpolation models.

10 dB (resp., 25 dB) below the cubic ones. Thus, it appears that higher order
correlates with improved shift-invariance, in accordance with the theoretical
findings in [20].

4.4.3 Oblique versus orthogonal projection

When we pick the analysis degree n1 different from n, our method implements
an oblique projection instead of an orthogonal one. In Figure 4.16, we see that
such an oblique projection only brings a slight degradation of 0.4 dB when
n1 = 0 and 0.15 dB when n1 = 1 compared to the orthogonal scheme, with
the advantage of a lesser computational complexity (O(n1 + n + 1) instead of
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Figure 4.13: Resizing method using cubic splines applied to text with a scale
factor 0.33; Top—Original text; Bottom—Reduced image: (left) using standard
method; (right) using orthogonal projection.

O(2n+ 1)). These results are consistent with the theory developed in [124].

4.5 Summary

In this chapter, we have generalized Lee et al.’s [73] method for image resiz-
ing using both oblique and orthogonal projections. We have demonstrated that
the new method outperforms the standard interpolation techniques. It is es-
pecially advantageous for image reduction because of the built-in anti-aliasing
mechanism. An attractive property of the present implementation is that the
complexity per output point does not depend on the scaling factor. Our resizing
algorithm works for arbitrary scaling factors (image magnification or reduction)
thanks to the underlying mathematical formalism worked out in Chapter 3. We
believe that it should be useful in applications where image quality is a key
concern.

The formulation of the resizing problem that has been presented is rather
general. By varying some key parameters, we switch between optimal least-
squares solution, oblique projection and interpolation. We have also described
algorithmic solutions for basis functions other than B-splines, the most notable
example being the O-MOMS.

In the second half of the present chapter, we have addressed the correct
handling of the boundaries when implementing the discrete finite differences
operators. The edge-handling mechanism is simple and based in periodization
and two types of boundary conditions: symmetric and anti-symmetric.
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Figure 4.14: SNR measures for the least-squares projection method; (a) Cubic
splines; (b) Comparison of cubic splines with n = 1, 0 degree splines and O-
MOMS.

62



100

90

80

70

60

 S
N

R
 (

dB
)

0.50.40.30.20.1
Shift

(a)

-40

-30

-20

-10

0

  S
N

R
 d

eg
ra

da
tio

n

0.50.40.30.20.1
 Shift

 n=0
 n=1
 n=3
 O-MOMS

(b)
Figure 4.15: SNR measures for the shift variations using the projection method.
(a) Cubic splines; (b) Comparison in the performance of different splines with
the cubic ones.
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Figure 4.16: Loss in performance by using oblique projection instead of least-
squares. (a) Full scale range [0.2 : 1.4]; (b) Reduced scale range [0.2:1.0] to
magnify the difference at low scale factors.
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Chapter 5

Non-uniform to Uniform Grid
Conversion

Non-uniform to uniform grid conversion is another approximation problem
where our L2-projection approach onto a spline space offers an advantage.

The interest of performing the non-uniform to uniform grid conversion comes
from its wide range of applications. Examples of these are format conversion for
display or processing purposes and curve resampling in computer graphics [101].
Another promising application field is signal reconstruction from non-uniformly
distributed samples coming from domains such as metrology, biomedical [86,
102, 107], or robotics. Commonly used methods for that reconstruction includes
iterative algorithms, modified Fourier transforms and interpolation.

In this chapter, we solve the problem of approximating a non-uniform spline
f(x) with a uniform spline of the form f̃(x) =

∑
k ckβ

n(x− k), where βn(x) is
the non-centered B-spline of degree-n.

The simplest approach, as we know from Chapter 2, would be to sample
f(x) uniformly and then compute the spline that interpolates these samples.
Its main drawback is the introduction of aliasing when the sampling density is
not high enough.

Here, we propose as alternative to minimize the L2-approximation error be-
tween the non-uniform spline and its uniform representation. We have derived
a closed form solution for this least-squares approximation problem. Our im-
plementation is computationally exact and works for arbitrary sampling rates.

As we treat the problem in the continuous domain, we avoid the possible
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ill-posedness of the discrete matrix formulation [2].
We restrict ourselves to 1-D signals only. It is conceivable too, to extend the

method to non-uniform N -D interpolation using thin-plate splines, for instance.

5.1 Philosophy of the approach

We follow the same philosophy as for the resizing (Section 4.1) and calculate
the orthogonal projection of f(x) onto the uniform causal spline space V n =
span{βn(x− k)}k∈Z where βn is a noncentered B-spline.

The corresponding projection formula is

f̃(x) = Pf(x) =
∑
k

(c ∗ q)kβn(x− k), (5.1)

where

ck = 〈f(x), βn1(x− k)〉. (5.2)

and where q is the IIR spline filter with z-transform Q(z) = 1P
k β

n+n1+1(k)zk

that has a fast recursive implementation as described in [128]. Thus, the only
remaining difficulty as was pointed out in Chapter 3 is to compute (5.2); i.e.,
the inner products of the non-uniform spline f(x) with B-splines of degree n1.

5.2 Non-uniform splines

We call Bn
i (x) the non-uniform B-spline of degree n > 0 associated with the

knots λi, . . . , λi+n+1; it is given by [34]

Bn
i (x) = (n+ 1)[λi, . . . , λi+n+1](x− λ)n+

with [λi, . . . , λn+i]f(λ) the divided differences of order n of the polynomial f(λ)
defined as

[λi, . . . , λn+i]f(λ) =
n+i∑
k=i

f(λk)
n+i∏

l=i,l �=k
(λl − λk)

.

The support of Bn
i is finite. More precisely, Bn

i (x) = 0 if x /∈ [λi, λi+n+1].
This is due to the localization properties of the divided differences with respect
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to polynomials. We construct the B-splines of degree n from the one of degree
(n− 1) by applying De Boor’s recursion formula [23],

Bn
i (x) =

(
n+ 1
n

)[
x− λi

λi+n+1 − λi
Bn−1
i (x) +

λi+n+1 − x
λi+n+1 − λi

Bn−1
i+1 (x)

]
. (5.3)

By using these basis functions, we can represent any non-uniform spline as

f(x) =
∑
i

aiB
n
i (x).

5.3 Non-uniform to uniform grid conversion algo-
rithm

5.3.1 Derivation of the algorithm

As we said before, the difficulty of the method is to compute the inner product
of the non-uniform spline with a uniform one. The key formula was derived in
Chapter 3 from the uniform B-spline definition

ck = 〈f, βn1(x− k)〉 = ∆n1+1 ∗D−(n1+1)f (k) .

In other words, if we have the uniform samples of D−(n1+1)f (k), we can com-
pute the B-spline coefficients ck by simple digital filtering. Thus, it is of critical
importance to be able to compute the (n1 + 1)-fold integral of a non-uniform
spline. The recursive formula that we use for the calculation is derived from
recursion (5.3) and the integration formula for a non-uniform spline [24]. Specif-
ically,

D−1Bn−1
i (x) =

∑
j≥i

λj+n+1 − λj
n+ 1

Bn
j (x).

(5.4)

Note that D−1Bn−1
i (x) ∈ span{Bn

j }k∈Z.

5.3.2 Practical implementation

The main steps of the algorithm are summarized below and shown in Figure 5.1.
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f(x) D−(n+1) ✐×❄

P
k δ(x− k)

∆n+1 qδ
ck

hδ f̃δ(x)

Figure 5.1: General scheme for the method (orthogonal projection)

• Interpolation

Either the spline f(x) =
∑

i aiB
n
i (x) is known, or it is specified by non-

uniform samples of f(x) at knot positions λk. In this latter case, the
coefficients ai of the spline interpolant are the solution of a band-diagonal
system of equations [23].

• Integration

In Sections 5.2 and 5.3.1, we have presented all the tools required to
calculate the (n1 + 1)-fold integral of f(x). We write

D−1f(x) =
∑
i

aiD
−1Bn

i (x) =
∑
i

a
(−1)
i Bn+1

i (x)

with

a
(−1)
i =

λi+n+2 − λi
n+ 2

∑
j≥i
aj (5.5)

We then define

I(x) = D−(n1+1)f(x) =
∑
i

a
−(n1+1)
i Bn+n1+1

i (x)

The basic idea is that the (n1+1)-fold integral of a non-uniform spline of
degree n is a non-uniform spline of degree (n+ n1 + 1).

The coefficients a−(n1+1)
i are pre-computed by recursive application

of (5.5). Likewise, we may also update the B-spline basis functions by
using De Boor’s recursion formula (5.3).

• Sampling

The next step is the resampling of the above integral at the integers

I(k) = D−(n1+1)f(x) |x=k=
∑
i

a
−(n1+1)
i Bn1+n+1 (k) .
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• Digital Filtering

At this stage we apply (n1 + 1) centered finite differences corresponding
to the filter with z-transform ∆n1+1 ↔ (1 − z)n1+1 and the IIR filter
b−(n+n1+1) specified in [125]. Finally, we get the output from the system
by postfiltering with hk = βn(k), the sampled version of the synthesis
function.

5.4 Experimental results

We will now compare the grid conversion method which uses interpolation and
resampling with our projection method to get some indication of the kind of
improvement that can be achieved.

Our first test signal is a non-uniform cubic spline that approximates the
line number 9 of Figure 5.2 using 69 knots (see Figure 5.3). When we just
resample it at uniform sample locations and interpolate the result with a uniform
spline, we observe that the spline curve is constrained to pass through the
sampling points as shown in Figure 5.4(a) (Peak SNR= 26.321 dB). When the
projection method is applied, the resulting uniform spline curve tries to adjust
itself to minimize the difference with the non-uniform spline one as shown in
Figure 5.4(b) (Peak SNR= 27.395 dB). It leads to a better performance in
terms of SNR (see Figure 5.5(a)). The improvement for a ratio of uniform to
non-uniform knot number between 1 and 2 is 1 dB on average as illustrated in
Figure 5.5(b). The sampling points for the uniform interpolation are the same
in both cases.

As a second example, we represent the word here with a non-uniform cubic
spline using 22 control points as illustrated in Figure 5.6. A curve in the x—
y plane can be represented in terms of an arbitrary parameter t as r(t) =
(x(t), y(t)). We have chosen here to specify the curve by a reduced number of
control points λk = (λx,k, λy,k) and to parametrize to each pair with the arc-
length tk of the curve between the origin and the knot (curvilinear axis). The
reason for doing so is that such a cubic spline provides the minimum curvature
interpolant of these control points [65]. We obtain a continuous representation
r(t) by interpolation of each component (λx,k, tk) and (λy,k, tk) by a non-uniform
cubic spline resulting in

x(t) =
∑
k

dkB
3
k(t) and y(t) =

∑
k

gkB
3
k(t)

where dk and gk are the coefficients of the non-uniform spline representation.
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We process each non-uniform spline component independently using either
the standard or the projection method. Note that a uniform knot distribution
means here equal length of the curve between adjacent points.

Figure 5.7 represents the uniform cubic splines recovered when using 26
uniform knots. The output from the projection method is barely readable (peak
SNR= 34.820 dB) while the output from the standard method is less (peak
SNR= 32.934 dB).

The increase of the SNR as a function of the ratio of uniform to non-uniform
knot number is shown in Figure 5.8(a). It is seen from Figure 5.8(b) that the
projection method is superior to the standard one by 2 to 0.5 dB with a gain
that decreases as the ratio increases.

5.5 Summary

We have presented a refined tool to convert non-uniform splines into uniform
ones. The approach is efficient computationally; its complexity per output point
is constant and independent of the knot spacing of the input signal. It is easy
to check that the cost of an oblique projection into V n perpendicular to V n1

is approximately equivalent to a (non-uniform) spline interpolation of degree
(n+ n1 + 1).

Experimental results show that our method outperforms standard interpo-
lation; this to be expected because our solution is optimal in the least-squares
sense. Moreover, the implicit analog prefiltering step in our approximation for-
mula (5.1) reduces aliasing.
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Figure 5.2: Original image.
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Figure 5.3: Test signal which is a non-uniform cubic spline that approximates
the line number 9 of Figure 5.2. The circles correspond to the 69 non-uniform
knot positions that describe the non-uniform spline.
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Figure 5.4: Non-uniform to uniform grid conversion. The number of uniform
sampling points is the same as the number of non-uniform control points (69).
(a) Standard method: The uniform spline is forced to pass through the positions
defined by the sampling points (Peak SNR= 26.321 dB); (b) Projection method:
The smoothing effect of the projection the minimizes the L2-error(Peak SNR=
27.395 dB). Look at the areas inside the circles to observe the main differences.
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Figure 5.5: Comparison of the peak SNR for the standard and the projection
method for different ratios of uniform to non-uniform knot number. The input
non-uniform spline is the one given in Figure 5.3. (a) Peak SNR values. (b)
Peak SNR difference.
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Figure 5.6: Non-uniform cubic spline constructed with the help of the 22 marked
control points.

(a) (b)

Figure 5.7: Non-uniform to uniform grid conversion. The number of uniform
sampling points is 26. (a) Standard method: Peak SNR= 32.934 dB; (b) Pro-
jection method: Peak SNR= 34.820 dB. The word is readable here.
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Figure 5.8: Comparison of the peak SNR for the standard and the projection
method for different ratios of uniform to non-uniform knot number. The input
non-uniform spline is the one given in Figure 5.6. (a) Peak SNR values. (b)
Peak SNR difference.
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Chapter 6

�p-Multiresolution Analysis

Multiresolution analysis is a simple yet very powerful concept which goes back
to the pioneering works of Rosenfeld [103] and Burt and Adelson [27]. Instead of
a fixed size pixel array, one considers a hierarchical image description at multiple
resolution levels; typically, a series of fine-to-coarse approximations which are
stored in a pyramid data structure. Such pyramids are extremely useful for
speeding up computations. In fact, there are multi-scale versions of most image
processing algorithms. The main advantages of multi-scale processing are the
following:

• Computational speed: Since there are much fewer pixels at the coarser
levels of the pyramid, iterative algorithms that switch between resolution
levels require less computation and have faster convergence.

• Spatial resolution adaptation: Many image processing algorithms oper-
ate on very localized neighborhoods and it makes good sense to adapt
the resolution in an optimal fashion. This is especially true with itera-
tive schemes which proceed by successive refinement—here the resolution
should be linked to the step size of the algorithm.

• Increased robustness: In the context of iterative algorithms, the smoothing
effect of the pyramid reduces the likelihood of getting trapped in local
extrema.

• Analogies can be made with the hierarchical organization of the human
primary visual cortex.
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Multiresolution analysis also plays a central role in the theory of the wavelet
transform, which provides a non-redundant representation of images across
scales. Here too, the applications in image processing and computer vision
are numerous, and often very successful [43, 78, 79].

One of the earliest and most popular example of pyramid is due to Burt and
Adelson [27]. Their Gaussian filtering, however, produces excessive smoothing,
which leads to some loss of image details. Higher-quality image approxima-
tion can be obtained by designing a reduction filter that is optimum in the
least-squares sense, or by using the lowpass branch of a wavelet decomposition
algorithm [1, 77]. Another option is to use spline pyramids that minimize either
the �2 or the L2-approximation error [128, 130]. These latter representations
are especially attractive for continuous/discrete multiscale processing. The nice
feature of these pyramids is that they can all be implemented using a combina-
tion of filters and sampling rate converters. Of course, the critical aspect here
is filter design—a standard requirement is the biorthogonality of the reduction
and expansion operators [134]. Unfortunately, simplicity also comes at a price
and these pyramids suffer from limitations that are inherent to linear methods;
in particular, edge blurring (when the smoothing is to too strong; e.g., the Gaus-
sian pyramid), aliasing (when it is not enough), and ringing artifacts (when the
filters have a sharp cut-off). Thus, the selection of a suitable multiresolution
model is essentially a question of compromise: higher order spline or wavelet
approximations generally yield better energy compaction but they also give rise
to larger Gibbs oscillations as the functions become more and more bandlimited
[7].

An attractive alternative to linear pyramids is to go non-linear. Several
authors have proposed to replace the linear pyramid filters by non-linear ones
including the median and morphological operators [37, 51, 83, 111, 122]. How-
ever, these so-called morphological pyramids are generally not meant to provide
a continuous/discrete representation. Non-linear filters can also introduce dis-
tortions that make the reduced images visually unpleasant.

In this thesis, we will pursue another approach and introduce spline pyramids
that are optimal for �p-norms. Note that the choice of a spline model in this
context is equivalent to specifying the expansion mechanism—i.e., polynomial
spline interpolation. Thus, the challenge is to come up with a corresponding
reduction operator that produces visually pleasant results without aliasing and
with minimal ringing artifacts. The information lost by the reduction operator
should be as little as possible. Normally, this corresponds to difference images
which are sparse, i.e., that contain a lot of small-valued elements.
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This chapter is organized as follows. In Section 6.1, we present a Banach-
space formulation of the problem and prove that the solution is well defined.
In Section 6.2, we propose a digital filtering-based procedure that computes the
solution iteratively. The computational overhead of the iterative approach is
small, and we expect the generation of the pyramid to account for only a very
small part of the total effort in a typical multiscale algorithm. In Sections 6.3.1
and 6.3.2, we compare the approximations obtained for different p’s and orders
of the approximation functions, respectively.

6.1 Multiresolution subspaces of �p

In this section, we present the theoretical basis of our method. We describe
the continuous/discrete model chosen in the light of the arguments presented in
Chapter 2 and show that our approximation problem has a well-defined solution.

6.1.1 Definitions and notation

The ‖ · ‖�p
norm of a sequence c = {ck}k∈Z is defined as

‖c‖�p
=

(∑
k∈Z

|ck|p
) 1

p

(6.1)

with 1 ≤ p <∞ and the special case ‖c‖∞ = maxk∈Z |ck|.
The z-transform of a signal s(k), k ∈ Z is denoted by

S(z) =
∑
k∈Z

s(k)z−k

If we make z = ej2πf , we recover the discrete Fourier transform.
The symbol ↓ N denotes the downsampling operator by the integer factor

N ; it is defined as

s↓N (k) = s(Nk), ∀k ∈ Z

The dual operator ↑ N represents upsampling by the integer factor N

s↑N (k) =

{
s( kN ), if N divides k,
0, elsewhere.
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Figure 6.1: Reduction/expansion system for an integer scaling factor N . Re-
duction: the signal is reduced by a factor N so as to minimize the �p-norm of the
error. Expander: upsampling and filtering, as specified by the approximation
model (see equation (6.2)).

6.1.2 Approximation signal model

Our signal model (cf. (6.2) below) follows the philosophy presented in Chapter
2. For simplicity, we will present the theory in 1D. The extension to multiple
dimensions is straightforward through the use of tensor product basis functions.
The use of a separable model implies that the expansion mechanism is separable
as well; the reduction mechanism, on the other hand, will not be separable unless
we are dealing with the classical case p = 2 (least squares approximation).

Specifically, we choose to represent all signals in terms of shifted basis func-
tions, which are typically sampled B-splines. A discrete signal, e.g. s(k),
will always denote the samples on the finest grid. Its coarser level approxi-
mation s̃(k) at resolution N will use basis functions ϕl(k) that are obtained
by translation and sampling at the integers of a continuous basis function
ϕ(x) ∈ L2(R) dilated by N , i.e., hk = ϕ

(
k
N

)
. We make this choice because

we want the interpolated version of our approximated signal to belong to the
space span{ϕ

(
x
N − l

)
}l∈Z, i.e., s̃(x) =

∑
l∈Z
clϕ
(
x
N − l

)
, while its samples s̃(k)

belong to span{h (k −Nl)}l∈Z:

s̃(k) =
∑
l∈Z

clhN (k −Nl) = [c]↑N ∗ hN (k) (6.2)

This yields a consistent discrete/continuous signal representation. As we already
know from Chapter 2, the advantage of this joint model is the possibility of
applying continuously-defined operators commonly used in image processing
such as derivatives or geometrical transformations.

In other words, s̃(k) is entirely specified by its coefficients cl. These are the
quantities that are stored in the pyramid; at each level there is exactly one such
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number per node. The template hN should be interpreted as an expansion (or
interpolation) filter which maps the coefficients sequence cl (coarse level of the
pyramid) to the finest resolution level on which the signals are defined (cf. the
right hand side of Figure 6.1). We are using the subscript N in hN to indicate
that the expansion filter depends on N (typically, a spline interpolator with an
expansion factor N). In the sequel, we will sometimes leave out this dependence
to simplify the notation. The corresponding approximation space is

VN =

{
s̃(k) =

∑
l∈Z

clhN (k −Nl) : c ∈ �p

}
(6.3)

It is clearly convex and N -integer shift-invariant; i.e., s(k) ∈ VN iff s(k +N) ∈
VN .

For our formulation, it is essential that VN be a closed subspace of �p to
ensure a well-defined solution of our approximation problem. This will be the
case if {h(k −Nl)}k∈Z forms a p-stable (or p-Riesz) basis,

∀c ∈ �p, A · ‖c‖�p
≤
∥∥∥∥∥∑
l∈Z

clh(k −Nl)
∥∥∥∥∥
�p

≤ B · ‖c‖�p
(6.4)

with 0 < A,B <∞.
This norm equivalence implies that h ∈ �p (by letting cl = δl) and that �p

and VN are isomorphic Banach spaces.

6.1.3 Riesz-basis theorem in Banach spaces

This above condition is ensured by the following theorem:

Theorem 2 If h ∈ �1 and {h(k− lN)}l∈Z is a p0-Riesz basis for some 1 ≤ p0 ≤
∞ then it is also a p-Riesz basis for 1 ≤ p ≤ ∞.

Consequently, if h is in �1 and generates a Riesz basis in the conventional
�2-sense, then it is automatically also p-stable for any p. The following result
by Aldroubi et al. [4] gives a simple way to check if h ∈ l1 generates a Riesz
basis or not.

Theorem 3 {h(k − lN)}l∈Z is a �2-Riesz basis if and only if

0 < α ≤
N−1∑
i=0

∣∣∣H (e j2π(f−i)
N

)∣∣∣2 ≤ β < +∞.
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We will now proceed and prove Theorem 2 using a technique that was inspired
by the work of Aldroubi et al. [3] who considered Lp-Riesz basis in a continuous
framework. The proof makes use of two classical results

Proposition 1 (Young’s Inequality) If b ∈ �1 and a ∈ �p then ‖a ∗ b‖�p
≤

‖b‖�1 · ‖a‖�p
.

Lemma 1 (Wiener’s Lemma) Let a ∈ �1 with A(ej2πf ) �= 0 ∀f , then
(a)−1 ↔ 1

A(ej2πf) is in �1 as well.

These are used to establish the following:

Lemma 2 Let h ∈ �1 generate a N -shift-invariant �2-Riesz basis. Then, its �2-
dual h̊ defined by h̊ = (a−1h )↑N ∗ h with ah(l) = 〈h(k), h(k− lN)〉 = (h ∗ hT )↓N ,
is in �1 as well.

Proof:
Thanks to Young’s inequality, we have that ah ∈ �1 because

‖ah‖�1 = ‖(h ∗ hT )↓N‖�1 ≤ ‖h ∗ hT ‖�1 ≤ ‖h‖2�1 < +∞.

Since {h(k − lN)}l∈Z is a �2-Riesz basis, the autocorrelation function

α ≤
N−1∑
i=0

∣∣∣H (e 2π(f−i)
N

)∣∣∣2
︸ ︷︷ ︸

Ah(ej2πf )

≤ β

is positive definite (cf. Theorem 3). The conditions of Wiener’s lemma are met;
thus, ah ∈ �1 implies that a−1h belongs to �1 as well. We show that h̊ ∈ �1 by
using the Young’s inequality and the fact that upsampling does not change the
value of the norm.

‖̊h‖�1 = ‖(a−1h )↑N ∗ h‖�1 ≤ ‖a−1h ‖�1 · ‖h‖�1
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To prove Theorem 2, we need to establish upper and lower bounds in the
norm equivalence:

∀c ∈ �p, A · ‖c‖�p
≤ ‖s‖�p

= ‖c↑N ∗ h‖�p
≤ B · ‖c‖�p

The upper bound is easily localized using Young’s Inequality and the fact
that ‖c↑N‖�p

= ‖c‖�p
.

‖c↑N ∗ h‖�p
≤ ‖c‖�p

‖h‖�1︸ ︷︷ ︸
B

To determine a lower bound we will work with the dual filter h̊ which is in �1
as well, as a consequence of Lemma 2. Since h̊ and h are biorthogonal, we have
that ∀s ∈ VN , s(k) =

∑
l∈Z
〈s, h̊(k − lN)〉︸ ︷︷ ︸

cl

h(k − lN).

‖c‖�p
= ‖[s ∗ h̊T ]↓N‖�p

≤ ‖s ∗ h̊T ‖�p
≤ ‖̊h‖�1︸ ︷︷ ︸

A−1

‖s‖�p

with s = c↑N ∗ h. So, we have found A such as A · ‖c‖�p
≤ ‖c↑N ∗ h‖�p

.
One advantage of working with B-splines or spline-related basis function

(spline interpolator) is that these conditions will be satisfied irrespective of the
reduction factor N . Indeed, Aldroubi et al. have shown that the B-splines
and cardinal splines with step size N generate a Riesz basis of �2 [8]. Since
these splines are also in �1, they satisfy the conditions on h to have VN a closed
subspace of �p.

6.1.4 Projection theorem in Banach spaces

Given the discrete signal s ∈ �p, we would like to find the approximation s̃ ∈
VN ⊂ �p that minimizes the error ‖s− s̃‖�p

. The projection theorem in Banach
spaces (i.e., �p) [70] states that, since VN is a convex closed subspace of �p for
any s ∈ �p, there exists s̃ ∈ VN such that

‖s− s̃‖�p
= d(s, VN ) = inf

sV ∈VN

‖s− sV ‖�p
(6.5)

Thus, s̃ is the best approximation of s in VN , in the �p-sense. We denote
s̃ = PVN

s. For 1 < p < ∞, s̃ is unique. Unicity is lost for p = 1 and p =
∞; nevertheless, all the minima are global, ensuring that the solution to our
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s h̊ ✒✑
�✏
❄N︸ ︷︷ ︸

Reducer

c

Figure 6.2: Optimal reducer for �2-norms: antialiasing filter and downsampler.

approximation problem is well-defined. Thus, our initial problem of calculating
the minimum error approximation translates into calculating the coefficients cl
in (6.2) that describe the projection s̃.

6.2 Optimal approximation

In this section, we refer to the state-of-the-art algorithm to calculate �2-
projections. We then turn to more general �p-projections and present a novel
iterative algorithm based on digital filtering.

6.2.1 Optimal approximation in �2

We will start by presenting the solution of Aldroubi et al. [4]. For p = 2, our
space is a Hilbert space; i.e., a Banach space with an inner product. In that
case, the calculation of PVN

s takes the simpler form

s̃(k) = PVN
s(k) =

∑
l∈Z

〈s, h̊(k −Nl)〉h(k −Nl) (6.6)

where h̊ is the (unique) dual function of h; i.e., h̊ ∈ VN and 〈̊h(k −Nl), h(n−
Nl)〉 = δ(k − n) (biorthonormality).

The coefficients cl of the orthogonal projection of the input signal s ∈ �1
onto VN are given by

cl = [s ∗ h̊T ]↓N (l) (6.7)

where

H̊(z) =
NH(z−1)

N−1∑
k=0

H(ej
2πk
N z)H(ej

2πk
N z−1)

.
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The corresponding reduction/expansion digital filtering system is shown in
Figure 6.1. In this particular case, the reduction is implemented via a prefilter h̊
followed by a downsampler as shown in Figure 6.2. Note that the Riesz condition
ensures that the filter h̊ exists and is always well-defined.

6.2.2 Optimal approximation in �p

Now, we deal with the general case of finding an optimal �p-approximation.
The difficulty of working in Banach spaces is the lack of an inner product.
Practically, this means that the solution cannot be computed by a one step
linear algorithm. In this section, we develop an iterative optimization procedure
that takes advantage of linear filtering and of the calculation of first and second
order derivatives.

The �p-norm of the approximation error e = s − s̃ is a convex function of
the coefficients cl, which ensures that its local minima are also global. This is
because of the constitutive definition of a norm (esp., triangle inequality and
semilinearity) and because the error e depends linearly on c. The consequence
is that a gradient-based optimization algorithm with adaptive steps will always
converge to the global minimum. However, since for p = 1 the norm of the
error e is only piecewise differentiable, we must be prepared to encounter some
difficulties (slower convergence) as p gets close to 1.

Theoretical derivation of the optimization algorithm

To speed up convergence, we propose a robust optimization algorithm, the for-
mulation of which is Hessian-based. The idea behind it is to optimize the
coefficients cl each in turn and to express the norm of the error as a second
order polynomial which is easily minimized. The update formula for the vector
of coefficients is then derived.

Mathematically, we justify our algorithm as follows: If we fix an index l0 in
the expression for s̃, we have

s̃(k) =
∑
l∈Z

clh(k −Nl) = cl0h(k −Nl0) +
∑
l �=l0

clh(k −Nl)

︸ ︷︷ ︸
η(k)

(6.8)

Then, we rewrite the norm of the error as
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‖e‖p�p
= ‖s− s̃‖p�p

=
∑
k∈Z

|e(k)|p−2(s(k)− cl0h(k −Nl0)− η(k))2 (6.9)

We minimize the last expression as a function of cl0 considering |e(k)|p−2
as independent of cl0 , in order to get the update formula. Thus, if we know
c(i) = (. . . , c(i)−1, c

(i)
0 , . . . .c

(i)
l0
, . . . ), we obtain the update vector of coefficients

∆c(i+1) by calculating for each index l0

∆c(i)l0 = c(i+1)l0
− c(i)l0 = −

∑
k∈Z

|e(k)|p−2e(k)h(k −Nl0)∑
k∈Z

|e(k)|p−2h2(k −Nl0)
(6.10)

and then s̃(i+1) = s̃(i) +
∑

l∈Z
∆c(i)l h(k −Nl).

We now show that this algorithm can also be interpreted as a gradient-based
or quasi-Newton search procedure. The partial derivative of the norm of the
error ‖e‖p�p

with respect to cl is

∂‖e‖p�p

∂cl
= −

∑
k∈Z

g1[e(k)]h(k −Nl)

with g1(x) = p|x|p−2x. The second order partial derivative is

∂2‖e‖p�p

∂cl∂cn
=
∑
k∈Z

g2[e(k)]h(k −Nl)h(k −Nn)

with g2(x) = p(p−1)|x|p−2; these define the entries of the (infinite dimensional)
Hessian matrix H.

The update formula for the usual Hessian algorithm [89] takes the form
∆c(i) = −H−1∇e where ∇e is the gradient (vector of partial derivatives) and
H is the Hessian (matrix of second order partial derivatives). Here, the Hessian
matrix is essentially diagonal dominant because h(k) is decaying away from the
origin. It is therefore legitimate to use the following simplified update formula

∆c(i) = −λ (diagH)−1∇e, (6.11)

where we have also introduced a step size λ.
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Figure 6.3: One iteration of the algorithm that evaluates the optimal λ.

If we make λ = p − 1, we have the equivalence with formula (6.10). In the
following of the chapter, we will call “Hessian fixed” the algorithm described by
(6.11) with λ = p− 1.

We will see that the advantage of the Hessian over the gradient-based meth-
ods is its efficiency, especially when p gets close to 1. It costs slightly more per
iteration because the diagonal of the Hessian has to be evaluated in addition
to the gradient, fortunately, we can compute it efficiently, using filtering and
downsampling.

Implementation of the optimization algorithm

We describe now the modular structure of the optimization algorithm designed
to calculate the coefficients cl of the �p-approximation signal. The implemen-
tation uses two reduce operations (Figure 6.4) followed by an expander (Figure
6.1). The update vector ∆c(i) is obtained from the error in three steps. First,
gradient estimation (Figure 6.4-upper branch), then, inverse of the diagonal of
the Hessian estimation (Figure 6.4-lower branch). Those are finally combined
and multiplied by the step size λ to provide the update vector ∆c(i). The
diagram of Figure 6.1 shows how to recompute the error at the given iteration.

The value of the step size λ in (6.11) can be made optimal in the sense of
minimizing the error as much as possible at each step. The idea is to remark
that we are minimizing

f(λ) =

∥∥∥∥∥e(i) − λ∑
k

u(l)h(k −Nl)
∥∥∥∥∥
�p

(6.12)

with u = (diagH)−1∇e according to (6.11). In practice, we estimate an upper
(λmax) and lower (λmin) bound for λ. This value is optimized by using a line
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Figure 6.4: Optimal reducer for �p-norms: Reducer 1: Gradient estimation.
Reducer 2: Diagonal of the Hessian estimation. The value of λ that minimizes
the error at each iteration is calculated using a line search algorithm. The filters
are reversed versions of the original ones: hT (k) = h(−k)

Table 6.1: Gradient algorithm: Average (and standard deviation) number of
iterations of the line search algorithm (Figure 6.3)

Gradient mean ± stdv

�3-optimal 3.36± 1.82
�2-optimal 1.0± 0.0
�1.2-optimal 9.83± 1.27
�1.05-optimal 8.74± 1.84

search algorithm that reduces by two the length of the interval [λmin, λmax] at
each step. Figure 6.3 describes one iteration of the algorithm. The search for the
optimal λ is made acceptable in terms of computational overhead by choosing
initial bounds quite close to the optimal; i.e., those calculated in the preceding
iteration. If f ′(λ(0)min) < 0 and f ′(λ(0)max) > 0 then the convergence is ensured by
the convexity of f(λ). Note that for p = 2 we have an exact formula to calculate
λ optimal that amounts to minimizing a second order polynomial.

We observe from Tables 6.1 and 6.2 that the line search algorithm requires
approximately 10− 14 iterations when p < 2 in order to yield an optimal step
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Table 6.2: Hessian algorithm: Average (and standard deviation) number of
iterations of the line search algorithm (Figure 6.3)

Hessian mean ± stdv

�3-optimal 10.92± 0.89
�2-optimal 1.0± 0.0
�1.2-optimal 14.41± 1.43
�1.05-optimal 14.29± 1.29

size λ. The test image is the one in Figure 6.6-top. Cubic splines are chosen for
the interpolation and the scale is reduced by a factor of two.

Figure 6.5 represents a typical example of convergence of the algorithm for
the minimization of the �p-approximation error. The test signal and the pa-
rameters are the same as for the example given above. Each graph shows the
decrease of the criterion (increase of the SNR�p

= −20 log
(‖s−s̃‖�p

‖s‖�p

)
dB), mea-

sured as a function of the number of iterations for different values of p. The
results are shown in dBs. Four variants of our algorithm are compared: Either
gradient or Hessian-based with the parameter λ calculated in an optimal fash-
ion; gradient-based with λ fixed (λ = 0.00045 for p = 3, λ = 0.12 for p = 2,
λ = 1.0 for p = 1.2 and λ = 2.0 for p = 1.05); Hessian-based as given by equa-
tion (6.11) with λ = p − 1. We observe in Figure 6.5 (a) that for high values
of p (p = 3.0 in this case), the performances of the Hessian-based and gradient
optimal algorithms are very similar. The convergence of the gradient-based al-
gorithms with λ fixed is worse. Figure 6.5 (b) is a special case as we deal with
the convergence of the least-squares approximations. Here, the diagonal of the
Hessian is constant and independent of the input, which implies that the Hes-
sian and gradient-based algorithms that use the same strategy for determining
λ are equivalents. On the other hand, we observe a slightly faster increase of the
SNR�p

for the algorithms with λ optimal over the other ones. Figures 6.5 (c)
and (d) demonstrate the behavior of the algorithms with p’s close to 1 (p = 1.2
and p = 1.05, respectively). Here, the algorithms with λ optimal converges in
less iterations than their counterparts in a global sense. We observe a slower
decrease of the error in the first iterations of the gradient method with λ fixed,
due to the conservative step size we have chosen to ensure convergence when we
are close to the solution. The Hessian algorithm moves as fast as the version
that uses the λ optimal at the beginning but afterwards; it gets slower as the
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Figure 6.5: Convergence of the algorithm. Each graph illustrates the decrease
of the criteria (i.e., the increase of the SNR�p

) as a function of the number of
iterations for a different value of p. The axes are logarithmic. Results for: (a)
p = 3.0 and λfixed = 0.00045 (b) p = 2.0 and λfixed = 0.12 (c) p = 1.2 and
λfixed = 1.0 (d) p = 1.05 and λfixed = 2.0.

diagonal of the Hessian gets larger for p close to 1 (when p = 1 the denominator
of (6.10) becomes

∑
k∈Z

|e(k)|−1h2(k −Nl)).
In conclusion, we recommend the Hessian-based, fixed step-size algorithm

when p ≥ 2 as it gives almost the same performance as the one that uses
line search. For p close to 1, the algorithms that take advantage of λ optimal
are more robust at the price of an added computational cost. Note that each
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iteration has complexity comparable to that of the �2-projection. What makes
the �p-algorithm computationally more expensive is the number of iterations
required for reaching the solution. Based on the results in Figure 6.5, we may
conclude that 10 − 20 iterations are necessary. However, we found empirically
that if instead of c(0) = 0 we start with the �2-solution, we save of the order of
10 iterations for p < 2.

6.2.3 Generation of image pyramids

If the basis functions ϕ used to specify h satisfy a two-scale relation, then
the dyadic multiresolution for the linear case has the nestedness property of
the vector spaces: . . . ⊂ V2i ⊂ V2i−1 ⊂ . . . ⊂ V1 [4, 98]. The discrete wavelet
transform that minimizes the L2-norm exploits this nestedness by computing the
projection at one scale from the previous finer approximation. This hierarchical
approach is not appropriate here. In principle, one should always go back to the
finest scale to compute the coarse level approximations because of the nonlinear
structure of the reduction operator.

In Figure 6.6, we illustrate this distinction. We have generated the pyra-
mid on the left hand side using the optimal �1.2 approach (we take the finest
resolution image as initial image to calculate all coarser approximations). The
pyramid on the right hand side is suboptimal in the sense that each coarse-level
approximation is computed from the previous finer level approximation. The
reconstruction error is measured by the SNR�p

as defined before (here, p = 1.2).
It is evident that the error of the approximation at level 1 is the same in both
cases (26.11 dB) as we start from the same image. As can be expected, the
error is slightly larger for the suboptimal (18.74 dB (level 2) and 14.53 dB (level
3)) than for optimal (18.99 dB (level 2) and 14.77 dB (level 3)) pyramid. In
practice, these differences are not significant and it is quite justifiable to use
the step-wise suboptimal approach to minimize computation. Nevertheless, in
the following tests we did not use the recursive downsampling approach but the
direct one.

6.3 Experimental results

6.3.1 Comparison of approximations for different p’s

In this section, we characterize the pyramid decompositions for different values
of p.
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Figure 6.6: Optimal versus suboptimal �1.2 pyramid.
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We observe two effects: The ringing is reduced and the histogram of the
error gets more concentrated as p gets closer to 1.

Ringing

First, we describe the Gibbs phenomenon in 1D. When a signal s(x) is discon-
tinuous, its Fourier transform decreases slowly at high frequencies. The Gibbs
oscillations are created by the removal of the highest frequency components by
a low-pass filtering (i.e., when calculating a least-squares approximation), or by
an equivalent system (i.e., an optimal �p-reducer). The Gibbs oscillations have
an amplitude proportional to the discontinuity jump and independent of the re-
duction factor N . This artifact is frequently observed in least-squares approxi-
mations and is well documented in the literature. We now present an experiment
which aims at quantifying the effect in the context of �p-approximations.

We have chosen a 1D signal that is a single discontinuity: a step function.
Its amplitude is unity and made of 3200 samples. We have reduced it by a
factor N = 100 using different values of p. Figure 6.7 shows the original step
and the signals interpolated back to the original size. We have represented
only the interesting region around the discontinuity. The basis functions are
linear (Figure 6.7 (a)) and cubic B-splines (Figure 6.7 (b)). Observe that there
is almost no Gibbs phenomenon for p = 1, and that the oscillations get more
pronounced as p increases.

We have chosen to quantify the Gibbs phenomenon by the amplitude of the
overshoot given by ‖s̃‖�∞ . Figure 6.8 shows the increase of ‖s̃‖�∞ in percent
with p for linear and cubic spline approximations. We note that the overshoot
for linear spline approximations is comparable to that of cubic spline approxi-
mations.

To illustrate the effects of the reduction of the ringing for images, we show
in Figure 6.9 the low resolution approximations (reduced 1 : 4) of the image
from Figure 6.6-top, as a function of p. Here, the basis functions are cubic
B-splines and the images are interpolated back to the original size. Observe the
overshooting (ringing) for high p’s in Figure 6.9 (a) and (b). It appears around
the nucleus and border of the cells. On the other hand, in Figure 6.9 (c) and
(d) the images are much less textured. Subjectively, these approximations are
more pleasant visually because the regions are more nearly homogeneous.
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Figure 6.7: Illustrating the reduction of ringing for �p-approximations with p
close to 1. Basis functions: (a) Linear B-splines. (b) Cubic B-splines.
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Figure 6.8: Percent of the overshoot as a function of p for linear and cubic
spline approximations.

Histogram sparsity

Now, we center our attention on the study of the histograms corresponding to
the detail images.

Ideally, we would like our error image to be as sparse as possible, with an
histogram presenting a high peak at zero. This would indicate that a large
portion of the image is reproduced in the low-resolution approximation. With
this idea in mind, we compare in Figures 6.10, and 6.11 the histograms of the
detail images for different values of p for a series of biomedical images. In all
cases, the sparsest detail histograms correspond to p’s close to 1, indicating that
the gray value in the original image is more frequently kept in the low resolution
approximation than for larger p’s. For images in which the amount of noise (due
to the characteristics of the image modality) is moderate or low, the height of
the peak at zero is impressive.

Furthermore, combining the visual information from the approximated im-
ages and the detail histogram, we can derive the following conclusions: The near
zero values in the detail histogram correspond to “large” objects in the original
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(c) (d)

Figure 6.9: Expanded version of the approximations calculated using cubic
splines at scale 4 for different values of p. (a) �3-optimal (b) �2-optimal (c)
�1.2-optimal (d) �1.05-optimal

image where the term “large” is relative to the current scale. In other words,
the “large” objects and background are kept in the approximation image while
“small” objects are retained in the detail images. In addition, we benefit from
an excellent preservation of the shape structures for low p’s. The images are
much more blurred for high p (see Figure 6.9).

The height of the peak at zero and the spread of the detail histogram depend
heavily on the characteristics of the image. The peak is higher (resp., lower),
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Table 6.3: SNR�p
measures corresponding to the images in Figure 6.9

energy/distance �3-optimal �2-optimal �1.2-optimal �1.05-optimal

SNR
3 (dB) 16.22 16.08 15.43 15.11

SNR
2 (dB) 17.34 17.47 17.21 16.99

SNR
1.2 (dB) 18.38 18.79 18.99 18.90

SNR
1.05(dB) 18.58 19.05 19.37 19.31

Kullback-Leibler 0.189 0.163 0.138 0.130

Entropy 4.485 4.442 4.397 4.388

if there is more (resp., less) edge information in the original image. The aver-
aging effect characteristic of the least-squares approximation leads to a detail
histogram with a Gaussian appearance. As p grows, the averaging gets even
more accentuated. The spread increases with the degree of uniformity of the
original histogram, independently of p.

Quantitative results for the images in Figure 6.9 are given in Table 6.3. Each
column correspond to the results coming from a different �p-approximation.

The table displays the values of the SNR�p
, the Kullback-Leibler distance

between the histograms of the original and low resolution images and the entropy
of the residues for each of the calculated �p-approximations.

We observe that the results are consistent: The minimum �p-error (maximum
SNR�p

) is achieved for the corresponding �p-approximation in each case. The
results of the Kullback-Leibler distance clearly indicate that the histogram of the
image is best preserved for values of p close to 1. The entropy of the difference
images also tends to get smaller for p close to 1. Note that the last results
concerning the Kullback-Leibler and entropy measures are nothing more but
manifestations of the fact that �1-approximation tries to preserve the original
image values.

Thus, our conclusion is that the most promising scheme is the �1-
approximation because of the following properties:

• Preservation of the structure shapes at different scales which is appropriate
for object detection.

• Reduction of ringing and spurious textures.

• The point structures are presented only at the finest scales of the detail
images. This may be an advantage for some applications; for example, in
the detection of microcalcifications in mammograms (see Figure 6.12).
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Figure 6.10: (Left) Biomedical images. (Right) Histogram of the detail images
(original minus the approximated version at scale 2 using cubic splines as basis
functions) for different values of p. Note the high peak at zero for p close to 1.
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Figure 6.11: (Left) Test images. (Right) Histogram of the detail images (orig-
inal minus the approximated version at scale 2 using cubic splines as basis
functions) for different values of p. Note the high peak at zero for p close to 1.
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(a) (b)

Figure 6.12: Illustration of the detection of microcalcifications using �1-
approximations. (a) Mammogram. (b) Difference image for a scale change
of 8.

6.3.2 Comparison of approximations for different orders

We now examine the choice of the degree of our spline basis functions. Mainly,
we are concerned with the trade-off between quality of approximation and com-
putational complexity. For our experiments we have chosen to compare approx-
imations (reduction 1 : 4) calculated using B-splines of degrees 0, 1, 3 and 5 as
basis functions. The results are shown in Figure 6.13 and 6.14 for p = 2 and
p = 1.05, respectively. We observe that the blocking artifacts typical of piece-
wise constant spline approximation (Figure 6.13(a) and 6.14(a)) disappear for
higher order splines. Most observers will also agree that the subjective quality
of spline approximations with p’s close to 1 (Figure 6.14) is better than p = 2
(Figure 6.13) for all degrees. Note that for the least-squares case the ringing
gets visibly accentuated as the spline degree increases, while this is less the case
for p = 1. In Table 6.4, we give the SNR�p

and entropy of the difference image
that correspond to the �1 and �2 approximations calculated for different spline
degrees. We observe that we have lower values of the entropy (maximum SNR�p

)
with p’s close to 1 when using spline basis of the same degree. The minimum
�2-error is reached for the higher order splines. This finding is consistent with
the standard theory of splines [22, 127]: as the degree n increases, the spline
approximation converges to Shannon’s solution which minimizes the L2-error
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Table 6.4: SNR�p
measures and entropy corresponding to the �1 and �2-

approximations for different scales and degrees of the spline basis functions.

Degree n = 0 n = 1
N �1 �2 �1 �2

2 SNR�p
(dB)

Entropy
22.60 19.77
3.995 4.043

25.74 22.78
3.495 3.757

3
SNR�p

(dB)
Entropy

19.79 16.73
4.185 4.383

21.39 19.09
4.096 4.224

4
SNR�p

(dB)
Entropy

17.78 15.00
4.526 4.610

19.01 16.96
4.410 4.487

5 SNR�p
(dB)

Entropy
16.51 13.87
4.656 4.767

17.62 15.70
4.586 4.642

Degree n = 3 n = 5
N �1 �2 �1 �2

2 SNR�p
(dB)

Entropy
26.23 24.15
3.494 3.645

25.20 24.23
3.648 3.650

3 SNR�p
(dB)

Entropy
21.76 19.87
4.082 4.157

21.29 19.92
4.149 4.159

4
SNR�p

(dB)
Entropy

19.31 17.47
4.386 4.442

19.02 17.50
4.426 4.443

5
SNR�p

(dB)
Entropy

17.90 16.10
4.556 4.603

17.68 16.13
4.583 4.603

when the function is bandlimited or very lowpass (usual case for an image).
The main drawback of the least-squares distance measure is that it does not pe-
nalize enough oscillations and ringing artifacts. Interestingly, if one looks at the
�1-approximation, the optimal model turns out to be the cubic spline (n = 3).
It is not surprising the fact that too high an order splines are not good with
respect to �1-approximations because the basis functions tend to sinc(x) whose
samples are not in �1. This is also consistent with the fact that the �1-distance
is the one that penalizes ringing most.

The �1-cubic splines are also best in terms of data compression (entropy
minimization), combining a good order of approximation with a reduction of
artifacts.

101



(a) (b)

(c) (d)

Figure 6.13: Comparison of the least-squares (p = 2.0) approximations calcu-
lated at scale 4 for different degrees of the splines. (a) n = 0 (b) n = 1 (c) n = 3
(d) n = 5. See Table 6.3 for quantitative error information.

6.4 �p pyramid versus median pyramid

As mentioned in the introduction, median pyramids have been widely used in
the literature because of their desirable properties of edge and detail preserva-
tion [82, 111].

The reducer operator of the median pyramids computes the decimated ver-
sion of a median filter output. We can, as with our method, either start from
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(a) (b)

(c) (d)

Figure 6.14: Comparison of the �1-approximations calculated at scale 4 for
different degrees of the splines. (a) n = 0 (b) n = 1 (c) n = 3 (d) n = 5. See
Table 6.3 for quantitative error information.

the original image for all the resolution levels, or apply the successive refinement
scheme. As we have already pointed out before, the results will be different.

Our model is equivalent to a median pyramid in one particular case: while
minimizing the error in the �1-sense and using as the B-spline of degree 0 as
the interpolation function. If the quality of the low-order interpolation is not
satisfactory (e.g., because of blocking artifacts), we can simply increase the
approximation order by increasing the spline degree. We will still be optimal in
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the �1-sense but our reduction operator will no longer correspond to a median
filter. Naturally, the approximation error decreases as our interpolation model
improves.

The advantages of our �p-approximation model over a classical median pyra-
mid can be summarized as follows:

• The reduction operator is consistent with our approximation model.

• The error is minimized in a well-defined sense.

• The existence of an underlying continuous model allows for the evaluation
of continuously-defined operators.

• The model is flexible as it is possible to tune the parameter p and the
degree of the B-spline which determines the space in which the original
image is projected.

6.5 Perceptual relevance of the �1 metric

There are two related aspects when computing and evaluating image approxi-
mations that should be considered:

• The optimization criterion and the algorithm (�p-projection) used to ap-
proximate the input signal.

• The �p-metric used to measure the approximation error.

Obviously, if we know the metric that best matches our visual perception of
image quality, it makes good sense to use the corresponding approximation
algorithm.

From a perceptual point of view, what we consider to be a good result de-
pends on the sensitivity of the human observer to details at different frequencies
and contrasts [87]. From the examples collected in this thesis and our experimen-
tation with the algorithms, we are tempted to conclude that the �1-projections
look perceptually better than the ones obtained with larger values of p. On the
other hand, the error images for �1-projections also contain details and features
that are more noticeable visually. This is consistent with the observation that
�1-approximation has a stronger tendency than others to simplify images.

In [39], DeVore et al. performed experiments to determine the Lp-norm
that best matched the response of the visual system. They concluded that
the L1-norm was the most appropriate for measuring image compression errors.
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They used these results to justify their non-linear wavelet-based compression
algorithm. Their findings correlate well with our results. It is clear from the
images that we have presented that ringing is disturbing visually. The �1-norm
comes out best because it is the one that penalizes the oscillations most (esp.,
ringing due to the fact that the sinc is bounded if we measure it with the L2
norm whereas it is not with L1).

6.6 Summary

We have presented a theoretical framework for obtaining multiresolution im-
age approximations with non-Euclidean norms. In addition, we have proposed
an efficient iterative algorithm based on digital filtering to calculate these ap-
proximations. In the experimental part, we found �1-pyramids to be the most
promising ones. Overall, they led to better feature preservation and resulted
in less ringing artifacts. They also produced the sparsest error images which
is relevant for coding applications. These are all properties that should make
them useful for multi-scale processing.

Another interesting finding is that cubic splines gave the best results among
all other splines when the approximation was done in the �1-norm. Unlike the
�2-ranking which always gives the advantage to higher-order approximations,
this result correlates well with the fact that the cubic spline model is often the
preferred one in applications [125]. Again, this supports the general perception
that cubic B-splines offer the best compromise in terms of approximation power
versus the support of the basis functions.
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Chapter 7

Asymptotic Error Analysis of
Lp-approximations

As was discussed in Chapter 2, a critical issue in the approximation theory in
a multiresolution context is to measure the decay of the approximation error
as the resolution gets finer [112]. In the early 70’s, Strang and Fix established
the following theorem [113]: Let ϕ(x) be a compactly supported L2 function
that generates the subspace VT = span{ϕ

(
x
T − k

)
}k∈Z. Then, we have the

equivalence

inf
fT (x)∈VT

‖f − fT ‖L2 ≤ C · TL · ‖f (L)‖L2 ⇐⇒

ϕ(x) satisfies the Strang-Fix conditions of order L.

It was generalized to functions ϕ(x) with a suitable fast decay and to Lp-norms
by Jia and others [67, 74]. This result implies that higher order approxima-
tions converge faster and require less terms (or scales) to approximate a smooth
function within a given error tolerance.

A couple of decades later, wavelet researchers got interested in the Strang-
Fix theory to characterize the decay of the error of their orthogonal wavelet
decompositions [100, 112]. Sweldens showed that the leading constant is an ac-
ceptable measure of the efficiency of the wavelet expansions [117, 118]. He also
proved that the leading terms of the expansion only depend on the multiresolu-
tion subspace and not on how the complementary wavelet subspaces are chosen.
In other words, the biorthogonal wavelet expansions are asymptotically optimal
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in the sense that the error is the same as in the orthogonal case. Their finding
is interesting because biorthogonal transforms leave some freedom in the design
of the analysis filters. Unser in [124] extended their analysis by the specifica-
tion of the optimal constant which led to a sharper and asymptotically exact
L2-estimate. His method is simpler as it avoids the use of wavelet expansions
and points out clearly the advantage of splines.

Later on, Blu et al. in [21, 22] derived the Fourier domain characterization
of the approximation error of L2-approximations by means of an error kernel,
as was presented in Chapter 2. They also found a closed-form expression for
the constant in the refinable case. Their research considers all the convolutional
approximation operators studied in [67]. Furthermore, the concept of MOMS
presented in Chapter 2 was introduced in [20]. This work provides a strong
counter example to the commonly-held belief that the smoothness of the basis
functions is a strong determinant of the approximation power of the represen-
tation.

Closely related to this research is the characterization of the approximation
error in the Lp-norm. Wei et al. calculated the leading constants of the interpo-
lation and of the L2-projection of the generalized coiflets (compactly supported
orthogonal wavelet) [139]. Dekel et al. applies the time-domain method de-
scribed in [124] to calculate the leading constants of multivariate interpolation
using arbitrary basis functions of sufficiently fast decay [38]. In this chapter,
we reproduce the derivation of this result for the univariate case and based on
it, we deduce our main contributions 1 which are: First, the evaluation of the
asymptotic constant for Lp-projections (which are nonlinear and nonconvolutive
operators). Second, we shows that it is possible to reach the asymptotic quality
(i.e., the asymptotic constant) of the Lp-projection using a convolutive linear
operator.

Most of the asymptotic expansions are presented with ”o(·)” and ”O(·)”
terms. Writing f(x) = o(xn) is equivalent to writing lim supx→0

∣∣∣ f(x)xn

∣∣∣ = 0.

Writing f(x) = O(xn) is equivalent to writing lim supx→0
∣∣∣ f(x)xn

∣∣∣ <∞ (i.e., not
necessarily 0).

7.1 Approximation space and methods

We would like to find a reasonable approximation at scale T , fT (x), of a function
f(x) ∈ Lp. Our approximation fT (x) belongs to the T -integer shift-invariant

1joint work with Thierry Blu.
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approximation space defined as

VT = span
k∈Z

{
ϕ
( x
T
− k
)}
∩ Lp, (7.1)

where ϕ is an appropriate generating function.
Thus, the general form of our approximation signal model at resolution T is

fT (x) =
∑
k∈Z

ck(T )ϕ
( x
T
− k
)
, (7.2)

where the ck(T )’s are the coefficients that describe the input signal f(x) in the
approximation space VT . Their values depend on the scale T .

We say that {ϕ
(
x
T − k

)
}k∈Z forms a p-stable Riesz basis if and only if

∀c ∈ �p, A · ‖c‖�p
≤
∥∥∥∥∥∑
l∈Z

clϕ (x− l)
∥∥∥∥∥
Lp

≤ B · ‖c‖�p
(7.3)

with 0 < A,B <∞ [3]. This ensures that VT is a closed subspace of Lp and that
each function fT (x) ∈ VT has a unique representation in terms of its coefficients
ck(T ).

The concept of order of approximation for ϕ(x) was defined in Chapter 2.
An alternative formulation of this property is derived by periodization of the
function xlϕ(x) whose Fourier transform is jlϕ̂(l)(ω). Using the property that
periodization in the time domain corresponds to a sampling in the frequency
domain, we obtain the following Fourier series representation:

∑
k∈Z

(x− k)lϕ(x− k) = jl
∑
k∈Z

ϕ̂(l)(2πk)ej2πkx = ml, for l = 0, ..., L− 1, (7.4)

where the constantml is the lth-order moment of the generating function defined
as

ml =
∫
xlϕ(x)dx = jlϕ̂(l)(0). (7.5)

An Lth-order generating function in the Lp-sense is a function ϕ(x) ∈ Lp
that forms a p-stable Riesz basis and has Lth-order of approximation.
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The approximation of f(x) in VT given by an T -integer shift-invariant linear
operator QT is

QT f(x) =
∑
k

γk(T )ϕ
( x
T
− k
)
, (7.6)

where the coefficients γk(T ) are calculated by the inner-product integral

γk(T ) =
∫
f(ξ)ϕ̃

(
ξ

T
− k
)
dξ

T
. (7.7)

As we know already from Chapter 2, the standard interpolation scheme cor-
responds to ϕ̃(x) = δ(x). Then, the approximation coefficients γk(T ) are the
samples of the input function γk(T ) = f(kT ). Note that the biorthogonality
condition 〈ϕ̃(x− k), ϕ(x)〉 = δk gives an approximation operator that is a pro-
jector. Nevertheless, the biorthogonality of ϕ(x) and ϕ̃(x), together with having
ϕ̃(x) ∈ V1 (i.e., ϕ̃ = ϕ̊), does not correspond to the minimum error solution in
the Lp-sense.

In the rest of the chapter, we will denote the Lp-projection PT,pf(x) as

PT,pf(x) =
∑
k∈Z

ck(T )ϕ
( x
T
− k
)

(7.8)

where the coefficients ck(T ) correspond to the minimization of the approxima-
tion error in the Lp-sense

ck(T ) = argmin
c

(
‖f − PT,pf‖Lp

)
. (7.9)

Consequently, the projection coefficients ck(T ) cannot be calculated by a linear
(i.e., prefiltering and sampling ) method, but can be obtained thanks to an
optimization algorithm of the type given in Chapter 6.

The connection between the present Lp-formulation and the discrete �p-
projection algorithm in Chapter 6 is provided by Riemann’s summation formula

∀x0 ∈ R, T
∑
l

|f((x0 + l)T )|p =
∫
|f(ξ)|p dξ + o(1). (7.10)

which expresses the asymptotic equivalence between the continuous and discrete
p-norms, provided that the underlying function is continuous. Thus, we have
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that ‖f−fT ‖Lp
= T‖f−fT ‖�p

as T → 0, which implies that Lp and �p-projection
are equivalents in the asymptotic regime. This suggest that the asymptotic error
formulas that we are stablishing here for Lp-projectors are directly transposable
to the discrete case as well.

In the next sections, we will characterize the Lp-error for linear and projec-
tion approximations in the asymptotic regime, that is, when the sampling step
is sufficiently small or when the signal to approximate is sufficiently smooth, as
is the case within slowly varying regions of an image. In the process, we will
provide sharp estimates for the leading constants that appear in the Strang-Fix
theory of approximation.

7.2 Asymptotic Lp-error of linear approximations

In this section, we follow the time-domain method introduced in [124] to char-
acterize the approximation error of biorthogonal operators with respect to the
Lp-norm. This characterization will help us to calculate the asymptotic approx-
imation error of the Lp-projections (minimal error solutions).

Let us define

eL(x) = (−1)L
∑
k

(x− k)Lϕ(x− k). (7.11)

We show now that the functions

Wn(x) =
∑
k

(∫
(ξ − x)nϕ̃ (ξ − k) dξ

)
ϕ (x− k)

which will be seen to play a key role in the asymptotic approximation error,
take a very simple expression when ϕ and ϕ̃ are biorthogonal.

Lemma 3 If ϕ has an Lth-order of approximation and if ϕ̃ is biorthogonal to
ϕ, then

Wn(x) =
{

0 for n = 0, ..., L− 1
eL(x) +K if n = L,

where

K = (−1)L+1mL − jL
∑
k �=0

ˆ̃ϕ(2kπ)ϕ̂(L)(2kπ)∗. (7.12)

If ϕ̃ satisfies the partition of unity, then K = (−1)L+1mL.
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Proof:
We take a polynomial P (x) with deg(P ) < L. Consequently, P (x) ∈

span{ϕ(x − k)}k∈Z. Because of the biorthogonality between ϕ̃(x) and ϕ(x),
we can write

P (x) =
∑
k

(∫
P (ξ)ϕ̃ (ξ − k) dξ

)
ϕ(x− k).

Let P (x) = Q(x− x0) then

Q(x− x0) =
∑
k

(∫
Q(ξ − x0)ϕ̃ (ξ − k) dξ

)
ϕ(x− k).

Let x = x0, then

Q(0) =
∑
k

(∫
Q(ξ − x)ϕ̃(ξ − k)dξ

)
ϕ(x− k).

The first part of Proposition 3 simply follows by considering Q(x) = xn with
Q(0) = 0.

For l = L, we write ξ − x = (ξ − k) + (k − x) and use the binomial theorem
to expand WL(x) as

WL(x) =
∑
k

L∑
l=0

(
L

l

)(∫
(ξ − k)lϕ̃ (ξ − k) dξ

)
︸ ︷︷ ︸

=
R
ξlϕ̃(ξ)dξ=m̃l

(k − x)L−lϕ (x− k) .

By exchanging the sums over l and k, we have

WL(x) =
L∑
l=0

(
L

l

)
(−1)L−lm̃l

(∑
k

(x− k)L−lϕ(x− k)
)
.

Moreover, from equation (7.4), we know that
∑

k(x − k)L−lϕ(x − k) = mL−l
for L− l = 0, ..., L− 1. We decompose the sum over l into two terms (from 0
to L− 1 and L), to have

WL(x) = eL(x) +K

as m̃0 = 1 if the integral of ϕ̃(x) is one and whereK =
L∑
l=1

(
L

l

)
(−1)L−lmL−lm̃l.
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To obtain equation (7.12), we take the Lth derivative at ω = 0 of(
ˆ̃ϕ(ω)ϕ̂(ω)∗

)(L)∣∣∣∣
ω=0

which yields

(
ˆ̃ϕ(ω)ϕ̂(ω)∗

)(L)∣∣∣∣
ω=0

=
L∑
l=0

(
L

l

)
ˆ̃ϕ
(l)
(0)ϕ̂(L−l)(0)∗.

We rewrite this identity in terms of moments because ˆ̃ϕ
(l)
(0) = (−j)lm̃l and

ϕ̂(L−l)(0) = (−j)L−lmL−l and replace the expression that defines K to have

(
ˆ̃ϕ(ω)ϕ̂(ω)∗

)(L)∣∣∣∣
ω=0

=
L∑
l=0

(
L

l

)
(−1)L−l(−j)LmL−lm̃l

= (−j)L
(
K + (−1)LmL

)
.

Thus, we can express K as

K = (−1)L+1mL + jL
(
ˆ̃ϕ(ω)ϕ̂(ω)∗

)(L)∣∣∣∣
ω=0

.

Finally, we express the biorthogonality condition in the Fourier domain

〈ϕ(x− k), ϕ̃(x− l)〉 = δk,l ⇐⇒
∑
k

ˆ̃ϕ(ω + 2kπ)ϕ̂(ω + 2kπ)∗ = 1

which can be rewritten as

ˆ̃ϕ(ω)ϕ̂(ω)∗ = 1−
∑
k �=0

ˆ̃ϕ(2kπ)ϕ̂(ω + 2kπ)∗ + o(ωL)

whence, (
ˆ̃ϕ(ω)ϕ̂(ω)∗

)(L)∣∣∣∣
ω=0

= −
∑
k �=0

ˆ̃ϕ(2kπ)ϕ̂(L)(2kπ)∗

and by substitution we have (7.12).
If ϕ̃ satisfies the partition of unity then ˆ̃ϕ(2kπ) = 0, for k �= 0 yielding the

desired result K = (−1)L+1mL. An example of function ϕ̃ for which K has this
value is the dual ϕ̊. So, we denote K̊ = (−1)L+1mL. If the sampling function ϕ̃
is the interpolation prefilter of ϕ, ϕint =

∑
k pkδ(x−k) then ˆ̃ϕ(2kπ) = ˆ̃ϕ(0) = 1.

So, the expression for K simplifies to

Kint = K̊ + δKint (7.13)

where δKint = −jL
∑

k �=0 ϕ̂
(L)(2kπ)∗.
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Note that (−1)LWL(x) is the error for the lowest degree monomial that
cannot be approximated exactly by the linear shift-invariant approximation op-
erator QT f(x). The lower degree errors Wn(x) are zero as the monomials of
degree smaller than L are reproduced exactly.

We now use Lemma 3 to derive an estimate of the approximation error
f(x)−QT f(x) when ϕ(x) and ϕ̃(x) are biorthogonal.

Theorem 4 If ϕ(x) has an Lth-order of approximation, if f(x) ∈ CL+1 and if
ϕ̃(x) and ϕ(x) are biorthogonal, then

f(x)−QT f(x) = −
TL

L!
f (L)(x)

(
eL

( x
T

)
+K

)
+ o(TL). (7.14)

and

‖f −QT f‖Lp
= Cϕ,pTL‖f (L)‖Lp

+ o(TL) (7.15)

where Cϕ,p =
1
L!

(∫ 1

0

|eL(x) +K|pdx
) 1

p

.

Proof: Thanks to the partition of unity

f(x) = f(x)
∑
k

ϕ
( x
T
− k
)
,

we write

f(x)−QT f(x) =
∑
k

(f(x)− γk)ϕ
( x
T
− k
)
. (7.16)

We replace f(ξ) by its Lth-order Taylor series around x

f(x)− γk =
∫
(f(x)− f(ξ))ϕ̃

(
ξ

T
− k
)
dξ

T
(7.17)

= −
∫ ( L∑

n=1

f (n)(x)
(ξ − x)n
n!

+RL+1(ξ)

)
ϕ̃

(
ξ

T
− k
)
dξ

T

where the remainder of the Taylor series is

RL+1(ξ) =
(ξ − x)L+1
(L+ 1)!

f (L+1)(µ) (7.18)
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with x ≤ µ ≤ ξ. Next, we rewrite equation (7.16) using the definition of Wn(x)
as

f(x)−QT f(x) = −
L∑

n=1

Tnf (n)(x)
n!

Wn

( x
T

)

−
∫
RL+1(ξ)

∑
k

ϕ̃

(
ξ

T
− k
)
ϕ
( x
T
− k
) dξ
T
. (7.19)

The first (L−1) error terms are zero (polynomial cancellation) as a consequence
of Proposition 3. This leads to the following estimate:

f(x)−QT f(x) = −
TL

L!
f (L)(x)

(
eL

( x
T

)
+K

)
+ o(TL). (7.20)

The asymptotic Lp-error of linear approximations ‖f(x)−QT f(x)‖Lp
can now

be expressed as

‖f −QT f‖Lp
=

TL

L!

(∑
l

∫ lT+T

lT

|f (L)|p
∣∣∣eL ( x

T

)
+K

∣∣∣p dx
) 1

p

+ o(TL)

(7.21)

Using the fact that the function eL
(
x
T

)
in (7.14) is T -periodic, and making the

change of variable x→ (x+ l)T , we write

‖f −QT f‖Lp
=

TL

L!

(
T
∑
l

∫ 1

0

|f (L)((x+ l)T )|p|eL(x) +K|pdx
) 1

p

+ o(TL)

(7.22)

Finally, thanks to Riemann’s summation formula (7.10), we obtain

‖f −QT f‖Lp
= Cϕ,pTL‖f (L)‖Lp

+ o(TL) (7.23)

where Cϕ,p =
1
L!

(∫ 1

0

|eL(x) +K|pdx
) 1

p

.
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7.3 Asymptotic error of Lp-projection approxima-
tions

To characterize the asymptotic error for Lp-projection approximations, we start
by expressing mathematically the difference between the linear approximation
and the projection coefficients. We choose to express the approximation error
as a function of both the linear shift-invariant approximation PT,2f(x) and of
the Lp-projection operator PT,pf(x), where the basis function ϕ is of order L
and the sampling function ϕ̃ is its dual ϕ̊

f(x)− PT,pf(x) = f(x)− PT,2f(x) +
∑
k

(γk(T )− ck(T ))ϕ
( x
T
− k
)
. (7.24)

where the ck(T )’s are the coefficients of PT,pf and the γk(T )’s the coefficients
of PT,2f . As ϕ(x) is a generating function of order L, the approximation order
of both the linear approximation PT,2f(x) and of the Lp-projection PT,pf(x)
coincide and are of order L [74]. We can therefore write,

‖f − PT,pf‖Lp
=

∥∥∥∥∥f(x)− PT,2f(x) +∑
k

(γk(T )− ck(T ))ϕ
( x
T
− k
)∥∥∥∥∥

Lp

= O(TL)
(7.25)

and

‖f − PT,2f‖Lp
= O(TL).

By using the norm inequality ‖f1 + f2‖ ≥ ‖f1‖ − ‖f2‖, we have

‖f − PT,pf‖Lp
≥
∥∥∥∥∥∑

k

(γk(T )− ck(T ))ϕ
( x
T
− k
)∥∥∥∥∥

Lp

− ‖f − PT,2f‖Lp
.

It follows that the middle term has the same convergence rate∥∥∥∥∥∑
k

(γk(T )− ck(T ))ϕ
( x
T
− k
)∥∥∥∥∥

Lp

= O(TL). (7.26)
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Moreover, the lowerbound inequality of the p-stable Riesz basis definition
gives

A · ‖γ − c‖�p
T

1
p ≤

∥∥∥∥∥∑
k

(γk(T )− ck(T ))ϕ
( x
T
− k
)∥∥∥∥∥

Lp

≤ C · TL. (7.27)

This implies that γk(T ) − ck(T ) ≤ C
A · T

L− 1
p ⇒ γk(T )− ck(T ) = o(TL−1) (for

p > 1). Furthermore, if ck(T ) is differentiable L-times with respect to T , then
γk(T )− ck(T ) = O(TL). Thus, we can conclude that the quantity

uk(T ) =
L!
TL

1
f (L)(kT )

(ck(T )− γk(T )); (7.28)

remains bounded when T → 0. The sequence uk(T ) is the difference of order
L between the coefficients γk(T ) and ck(T ) which coincide in value up to this
order.

Next, we prove that the series uk(T ) in (7.28) behave as a constant
uk(T )→ u in the asymptotic regime which simplifies the characterization of
the asymptotic error.

To this end, we use the approximation∣∣∣ϕ( x
T
− k
)(
f (L)(x)− f (L)(kT )

)∣∣∣ ≤ C · T · ∣∣∣ϕ( x
T
− k
)∣∣∣ (7.29)

which is valid provided that ϕ(x) has sufficient decay and f (L)(x) is continuous.
Thanks to the result given by Theorem 4 and the above approximation formula,
we can express f(x)− PT,pf(x) as

f(x)− PT,pf(x) = −T
L

L!
f (L)(x)

(
eL

( x
T

)
+ K̊ +

∑
k

uk(T )ϕ
( x
T
− k
))

+o(TL).
(7.30)

We substitute this expression in the formula for ‖f − PT,pf‖Lp
and express

the integral as a sum of partial integrals to get
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‖f − PT,pf‖Lp
=

TL

L!

(∑
l

∫ lT+T

lT

∣∣∣f (L)(x)∣∣∣p

·
∣∣∣∣∣eL
( x
T

)
+ K̊ +

∑
k

uk(T )ϕ
( x
T
− k
)∣∣∣∣∣
p

dx

) 1
p

+ o(TL).

(7.31)

We simplify this result by making the change of variable x → (x+ l)T and by
using the fact that the function eL(x) is 1-periodic. Thus, eL

(
x
T

)
= eL(l+x′) =

eL(x′). The resulting formula is

‖f − PT,pf‖Lp
=

TL

L!

(
T
∑
l

∫ 1

0

∣∣∣f (L)((l + x)T )∣∣∣p

·
∣∣∣∣∣eL(x) + K̊ +

∑
k

uk+lϕ(x− k)
∣∣∣∣∣
p

dx

) 1
p

+ o(TL).

(7.32)

Due to the convexity of |z|p for p ≥ 1, the inequality

∣∣∣∣∣∑
l

λlzl

∣∣∣∣∣
p

≤
∑
l

λl|zl|p

where
∑

n λn = 1 and λn ≥ 0 ∀n, is satisfied. We apply this result to equa-
tion (7.32) by identifying

zl = eL(x) + K̊ +
∑
k

uk+lϕ(x− k)

and

λl =
|f (L)((x+ l)T )|p∑
l′ |f (L)((x+ l′)T )|p

.

We obtain the expression

‖f − PT,pf‖Lp
≥ TL

L!

(
T

∫ 1

0

∑
l′

∣∣∣f (L)((x+ l′)T )∣∣∣p

·
∣∣∣∣∣eL(x) + K̊ +

∑
l

∑
k

λluk+lϕ(x− k)
∣∣∣∣∣
p

dx

) 1
p

.
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Thanks to Riemann’s summation formula, we have

‖f − PT,pf‖Lp
≥ TL

L!
‖f (L)‖Lp

·

·
(∫ 1

0

∣∣∣∣∣eL(x) + K̊ +
∑
l

∑
k

λluk+lϕ(x− k)
∣∣∣∣∣
p

dx

) 1
p

.

(7.33)

which will be further simplified by reduction of the term
∑

l

∑
k λluk+lϕ(x− k)

to a constant value independent of x. The following lemma demonstrates that
the simplification is feasible.

Lemma 4 If ϕ(x) is compactly supported (i.e., supportϕ(x) ∈
(
−L
2 ,

L
2

)
), then∑

l

∑
k

λluk+lϕ(x− k) = u+ o(T )

when T → 0, where u is some constant independent of x and T .

Proof: We have

λluk+lϕ(x− k) =
∣∣f (L)((x+ l)T )∣∣p∑
l′

∣∣f (L)((x+ l′)T )∣∣puk+lϕ(x− k). (7.34)

We use the approximation sup|x−k|≤L
2
|f((x+l)T )−f((k+l)T )| ≤ sup |f ′(ξ)|L2 T

and the change of variable k + l′ → l′ to write

λluk+lϕ(x− k) =
∣∣f (L)((k + l)T )∣∣p∑
l′

∣∣∣f (L)(l′T )∣∣∣p
︸ ︷︷ ︸
= 1

T ‖f(L)‖p
Lp
+o(T )

uk+lϕ(x− k) + o(T ).

We include now the double summation on l and k to have

∑
l

∑
k

λluk+lϕ(x− k) =
∑
l

∑
k

T
∣∣f (L)((k + l)T )∣∣p
‖f (L)‖pLp

uk+lϕ(x− k) + o(T ).
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We finalize the proof with the change of variable (k, k + l) → (k, l) to simplify
the expression into∑

l

∑
k

λluk+lϕ(x− k) =
∑
l

∑
k

T
∣∣f (L)(lT )∣∣p
‖f (L)‖pLp

ulϕ(x− k) + o(T )

=
∑
l

T
∣∣f (L)(lT )∣∣p
‖f (L)‖pLp

ul︸ ︷︷ ︸
independent of x

+ o(T ). (7.35)

where we have applied the partition of unity satisfied by ϕ(x). Consequently,
we have the following inequality

‖f −QT f‖Lp
≥ ‖f − PT,pf‖Lp

≥ T
L

L!
‖f (L)‖Lp

(∫ 1

0

|eL(x) + u|p dx
) 1

p

(7.36)

where u is some constant independent of x.

Theorem 5 If ϕ(x) has an Lth-order of approximation, if f(x) ∈ CL+1 then,

f(x)− PT,pf(x) = −
TL

L!
f (L)(x)

(
eL

( x
T

)
+ u
)
+ o(TL) (7.37)

where u = argmin
u

∫ 1

0

|eL(x) + u|pdx and

‖f − PT,pf‖Lp
= Cminϕ,p · TL · ‖f (L)(x)‖Lp

+ o(TL) (7.38)

where Cminϕ,p =
1
L!

min
u

(∫ 1

0

|eL(x) + u|pdx
) 1

p

.

Proof: The result from Theorem 4 and (7.36) implies the following in-
equalities

1
L!

(∫ 1

0

|eL(x) + u|pdx
) 1

p

≤

≤ 1
TL

‖f − PT,pf‖Lp

‖f (L)‖Lp

≤

≤ 1
L!

(∫ 1

0

|eL(x) +K|pdx
) 1

p

∀K

(7.39)
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for some u. By definition, the Lp-projector has the smallest error over all
approximations so that

1
TL

‖f − PT,pf‖Lp

‖f (L)‖Lp

≤ 1
L!

min
K

(∫ 1

0

|eL(x) +K|pdx
) 1

p

which implies that the above inequality has to be an equality. The detailed
argument rest on the fact that we can construct a linear approximation QT f
that achieves this upper bound (Theorem 6).

Theorem 4 shows that a linear approximation of the form QT f is character-
ized by a pointwise approximation error given by (7.14) and a Lp-approximation
error given by (7.15). The analogy between (7.15) and (7.38) indicates that, if
we choose ϕ̃ such as K = u, then the linear approximation method reaches the
quality of the Lp-projection. This also means that QT f = PT,pf + o(TL).

Usually, the value K = u is different from K̊ which is optimized for the
L2-error measure. Thus, the difference u− K̊ is a bias of the Lp-projection with
respect to the L2 (orthogonal) projection.

We characterize the error of an asymptotic approximation for spline based
Lp-projections in Figure (7.1). The generating functions are centered B-splines.
The value of the Lp−L2 projection bias with respect to the Lp-exponent is shown
in Figure 7.1(a) for a spline approximation of order 1, and (b) for an order 4. For
odd orders, the value of the bias is null for all p because eL(x) is anti-symmetric
and of zero mean. For even orders, eL(x) is anti-symmetric with a non-zero
mean, so the bias is non-zero except for p = 2 as it corresponds to a least-squares
projection. This point marks a transition between positive and negative values
of the bias. The asymptote is given by the mean of the maximum and minimum
values of eL(x): Bias∞ = −0.0021. The value of the approximation constant
(CminβL−1,p)

1
L with respect to the Lp-exponent is represented in Figure (7.1) (c)

for a spline approximation of order 1, and in Figure (7.1) (d) for an order 4.
The asymptotes, represented by the dashed lines, correspond to Cβ0,∞ = 0.5
and (Cβ3,∞)

1
4 = 0.19, respectively.

The next theorem demonstrates that we can construct a linear operator that
has the same asymptotic performance as the Lp-projection.

Theorem 6 Given the basis function ϕ of approximation order L, we can re-
place the Lp-projection PT,pf by the linear operator QT f in which the sampling
function ϕ̃ is defined as

ϕ̃ = (1− α)ϕ̊+ αϕint
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Figure 7.1: Characterization of the error of an asymptotic approximation for
spline based Lp-projections. Top: Lp−L2 projection bias (u−K̊), as a function
of p. (a) L = 1: the bias is zero for all value of p. (b) L = 4: the bias is only
zero for p = 2 (orthogonal L2-projection). Bottom: Normalized asymptotic
approximation constant (CminβL−1,p)

1
L as a function of p. (c) L = 1; (d) L = 4.

The asymptote p = ∞ provides the values for L∞-norm: Bias∞ = −0.0021,
Cβ0,∞ = 0.5 and (Cβ3,∞)

1
4 = 0.19.
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with α = u+(−1)LmL

−jL
P

k �=0 ϕ̂
(L)(2kπ)∗

. With this choice, QT f and PT,pf yield the same

asymptotic error up to o(TL).

Proof:
QT f and PT,pf are both approximations of order L. The magnitudes of the

approximation error differ proportionally to the value of the respective approxi-
mation constant: Cϕ,p and Cminϕ,p . For the linear approximation QT f , we choose
ϕ̃ = (1− α)ϕ̊+ αϕint which is biorthogonal to ϕ. Due to linearity, the value of
the leading constant Cϕ,p is

Cϕ,p =
1
L!

(∫ 1

0

|eL(x) + K̊ + αδKint|pdx
) 1

p

.

where δKint = −jL
∑

k �=0 ϕ̂
(L)(2kπ)∗. For the nonlinear approximation PT f

the constant Cminϕ,p is

Cminϕ,p =
1
L!

(∫ 1

0

|eL(x) + u|pdx
) 1

p

.

Thus, we obtain the equivalence (i.e.,Cϕ,p = Cminϕ,p ) by making α = u−K̊
δKint

.

Consequently, we just need to tune the value of α proportionally to the
theoretical bias u. Then, we can calculate by filtering the linear approximation
coefficients (equation 7.7) that can serve as a good initialization of the Lp-
projection minimization algorithm.

Since we work with B-splines as basis functions, we give the specialized form
of Theorem 6 for this case.

Corollary 1 Given the B-spline βL−1 of approximation order L, we can replace
the Lp-projection PT,pf by the linear operator QT f in which the sampling
function ϕ̃ is defined as

ϕ̃ = (1− α)β̊L−1 + αβL−1int

with

α =




0 for odd L
u+(−1)LmL

(−1)
L
2 +12ζ(L) L!

(2π)L

for even L,

with this choice, QT f and PT,pf yield the same asymptotic error up to o(TL).
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Proof: What are need to do is to evaluate the value of α in Theorem 6
when ϕ(x) = βL−1(x). For this purpose, we calculate

δKint = −jL
∑
k �=0
ϕ̂(L)(2kπ)∗.

The Fourier transform of a B-spline of order L (βL−1) is

ϕ̂(ω) =
(
1− e−jω
jω

)L
,

and thus

∑
k �=0
ϕ̂(2kπ)∗ =


(1− e−jω)L∑

k �=0

1
(j(ω + 2kπ))L


∗

=


((jω)L + o(ωL)

)∑
k �=0

1
(j2kπ)L

+ o(1)




∗

. (7.40)

Using the Riemann zeta function, we have

∑
k �=0

1
(j2kπ)L

=

{
0 for odd L
(−1)L

2 2ζ(L) 1
(2π)L for even L.

Finally,

∑
k �=0
ϕ̂(L)(2kπ)∗ =

{
0 for odd L
2ζ(L) L!

(2π)L
for even L.

i.e., δKint for spline approximation is

δKint =

{
0 for odd L
(−1)L

2 +12ζ(L) L!
(2π)L for even L.

In this way, we have all the necessary tools to calculate the value of α and
then, estimate the value of the Lp-projection coefficients for a B-spline interpo-
lation model. The good news is that we can simply use the L2-projection as
initialization when the degree of the spline is even; otherwise, a little correction
needs to be done as indicate above.

124



7.4 Conclusion

The main contribution of the chapter is the characterization of the error of an
asymptotic approximation for Lp-projections. The difficulty comes from the
nonlinear structure of the corresponding approximation operator. To derive a
solution, we have used the fact that linear projection operators give the same
order of approximation as Lp-projection ones when the approximation space is
the same. We conclude that we can initialize the Lp-projection algorithm with
a well-specified linear solution as the estimates converge to each other in the
smooth regions.
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Chapter 8

Conclusion

8.1 Novel multiresolution image approximations

In this thesis, we developed two types of extensions to multiresolution image ap-
proximations: image resizing for arbitrary scales, and nonlinear methods based
on the calculation of �p-projections.

In the first part (Chapter 4), we proposed an optimal spline-based algorithm
for the enlargement or reduction of digital images with arbitrary (noninteger)
scaling factors. This projection-based approach can be computed exactly thanks
to a new finite-difference method that allows the computation of inner products
with analysis functions that are B-splines of any degree n. A noteworthy prop-
erty of the algorithm is that the computational complexity per pixel does not
depend on the scaling factor a. For a given choice of basis functions, the results
of our method are consistently better than those of the standard interpolation
and resampling procedure; the present scheme achieves a reduction of artifacts
such as aliasing and blocking and a significant improvement of the signal-to-noise
ratio. The finite-difference method can be applied to other image processing re-
lated problems where computations of inner products or of convolutions with
splines of different widths are necessary. Other examples described in this thesis
are nonuniform to uniform resampling, and the computation of the continuous
wavelet transform.

Our second key contribution was to propose an alternative to linear mul-
tiresolution analysis. Our approach differs from the morphological or rank-order
multiresolution decompositions that have been investigated by other authors.
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The underlying continuous-discrete model used in our formalism is the same
as the wavelet-like methods: a polynomial spline with a knot spacing that is
matched to the resolution. The choice of the spline model specifies the cor-
responding expansion mechanism which is equivalent to a polynomial spline
interpolator. Our departure from the traditional wavelet-like formulation is
that the reduction operator is chosen to minimize the approximation error in
the �p-sense (not restricted to the usual p = 2), where p can take non-integer
values. This leads to a Banach space formulation of the problem which calls
for a non-linear solution. Our algorithm uses the same linear components (fil-
ters and down/upsamplers) but finds the solution iteratively. While we did not
have enough time to pursue applications, we believe that our non-linear pyra-
mids should be useful for most image processing tasks for which multiresolution
makes sense, in particular, those that call for a continuous formulation of the
problem. In some sense, we are combining the advantages of wavelet-based
methods (the availability of a signal model) and morphological ones which are
more robust and less prone to ringing artifacts.

8.2 Future research

8.2.1 Applications of �p-projections with 1 ≤ p ≤ 2

Denoising

Thresholding of the transform coefficients of linear multiresolution methods is
a state-of-the-art technique for denoising [40]. Some research in this direction
shows that this method does not perform well with non-Gaussian (heavy tailed)
noise. This reason motivates the research on denoising using nonlinear multires-
olution approximations that might be more appropriate to treat non-Gaussian
noise [42]. The first step should be an analysis of the statistical properties of
the transform coefficients of our spline pyramids, which is necessary to make
an optimal choice for the threshold values. Furthermore, one could implement
adaptive thresholding rules (such as context modeling [30] or hidden Markov
models [33]), which has been shown to improve results in the linear case.

Feature sieve

Nonlinear filters are frequently used to perform a size sensitive decomposition. A
nonlinear filter removes features smaller than its associated structuring element,
while leaving the larger features practically untouched. A pyramidal adaptation
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of the approach can be useful in pattern recognition [53]. In our pyramidal
model, the selection of the spline model and of the scale change factor for the
reduction step will determine the size of the features extracted in the difference
images.

Multiscale algorithms

Multiscale algorithms based on morphological pyramids allow for both a con-
siderable tolerance to non-Gaussian noise and a saving in computational time.
Edge detection [138], image registration [61], and video tracking [108] are ex-
amples of applications where morphological pyramids significantly enhance per-
formance over comparable linear methods.

In our case, we may take advantage of the underlying continuous model to
evaluate image gradients and differentials at various scales, in a way that is
globally consistent with our assumptions and approximation mechanism.

8.2.2 Extensions to other measures

In the field of wavelets, several authors have developed algorithms for optimal
basis selection by minimizing diversity measures [41, 140]. Basis selection has
applications in linear inverse problems where the solution is known or required
to be sparse [50, 66]. The use of the term ‘diversity‘ refers here to a measure
of antisparsity. Note that minimizing diversity (antisparsity) is equivalent to
maximizing concentration (sparsity).

A popular diversity measure is Ep(x), where

Ep(x) =
∑
k

|xk|p, 0 ≤ p ≤ 1.

The motivation for these diversity measures is that their minimization will
result in sparse solutions for the detail images. It is well known that, for p < 1,
�p is not a true norm. The diversity measure for p = 0 is a direct measure of
sparsity that provides a count of the number of nonzero elements of a vector x

E0(x) = H{k : xk �= 0}.

Finding a minimum for this measure requires an enumerative search and is
NP complete. Conversely, the Ep(x) measures for p < 1, p �= 0 are somewhat
more amenable to optimization techniques, even though their associated cost
functions are concave. The minimization of concave functions is known to be
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difficult because of the existence of multiple minima. Nevertheless, minimization
algorithms with provable convergence can be found in the literature [96].

Figure 8.1 illustrates the tendency of Ep(x) to favor sparse solutions, with a
large quantity of null errors and a few ’whatever’ ones that contribute modestly.
The behavior of

∑
k |xk|p for p >> 1 is in some sense the opposite; the solutions

with a large quantity of small but non-null errors are to be preferred.
Consequently, we expect that designing reduction operators that minimize

this type of diversity measures Ep(x) would increase the sparsity over the present
solutions.
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Figure 8.1: |xk|p versus x. (a) For p < 1: Outliers have a small effect. Solutions
having a large quantity of null errors are preferred. (b) For p ≥ 1: Outliers have
a strong effect. Solutions having a large quantity of non-null errors are preferred.
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Appendix A

Continuous Wavelet
Transform with Arbitrary
Scales

The continuous wavelet transform (CWT) of a signal f with the wavelet ψ is
defined as

Wψf(a, b) =
1√
a

∫ +∞

−∞
f(x)ψ

(
b− x
a

)
dx. (A.1)

It can be interpreted as the correlation of the input signal with a time-
reversed version of ψ rescaled by a factor of a. For a 1-D input signal, the
result is a 2-D description of the signal with respect to time b and scale a.
The scale a is inversely proportional to the central frequency of the rescaled
wavelet ψa(x) = ψ(xa ) which is typically a bandpass function; b represents the
time location at which we analyze the signal. The larger the scale a, the wider
the analyzing function ψa, and hence the smaller the corresponding analyzed
frequency. The output value is maximized when the frequency of the signal
matches that of the corresponding dilated wavelet. The main advantage over
the Fourier Transform (FT) analysis is that the frequency description is localized
in time. The advantage over the Short-Time Fourier Transform (STFT) is that
the window size varies; low frequencies are analyzed over wide time windows,
and high frequencies over narrow time windows, which is more effective than
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to use a fixed-size analysis. Typical applications of the CWT are the detection
and characterization of singularities [16, 85], pattern recognition [35], image
processing [28, 93], fractal analysis [9, 79, 136], noise reduction [75] and the
analysis of biomedical signals [49, 64, 141].

The main contribution of this chapter is the development of a fast algorithm
for the computation of the CWT at any real scale a and integer time localization
b. Mallat’s fast wavelet algorithm [79] uses the multiresolution properties of the
wavelet to compute the CWT at dyadic scales a = 2i and time shifts b = 2ik, k ∈
Z [99]; it achieves an overall O(N) complexity. Other techniques compute the
Wavelet Transform at dyadic scales and integer time points with an ‘à trous’
approach. Their complexity per scale is O(N) the same as Mallat’s algorithm,
but with a larger leading constant [16, 29, 58, 97].

Despite their speed, these methods may not be precise enough for some appli-
cations, since a dyadic scale progression cannot be finer than an octave subband
decomposition. To achieve a better scale resolution, other approaches have been
proposed, either based on M -band decomposition inside an octave [99], [137] or
on a generalization of the two-scale relation to general integer N -scale rela-
tions [57], [132]. However, none of these algorithms can handle arbitrary scales.

Our purpose here is to develop a novel and fast algorithm that works for
any real value of a. It takes advantage of a B-spline decomposition of the
input signal and of the mother wavelet. The method exploits the fact that B-
splines are compactly supported and that the convolution of two B-splines can
be expressed analytically as was explained in Chapter 3.

The chapter is organized as follows. In Section A.1, the spline wavelets are
presented. In the next section, the CWT algorithm is mathematically derived
and its implementation presented. The chapter ends with the comparison of
computational time of our method and a FFT-based one, and the analysis of a
biomedical signal.

A.1 Spline wavelets

Among all existing wavelet bases, B-spline wavelets have the advantage of pos-
sessing an explicit formula [6]; most wavelets are defined only implicitly by
means of a refinement filter. For example, the well-known Haar wavelet is a
weighted sum of two B-splines of degree 0. Other wavelets, such as the first
derivative or the second derivative of a Gaussian (Mexican hat wavelet), can
be closely approximated by linear combination of B-splines of sufficiently high
degrees (n ≥ 2) [123].
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Figure A.1: (a) First derivative of the quartic B-spline enlarged by a factor 2.
(b) Second derivative of the quintic spline wavelet.
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Figure A.2: Schematic representation of a spline wavelet 1
aψa(x) using our

operator formalism.

The description of wavelets in a B-spline basis allows for an efficient com-
putation of the convolution products of the CWT that takes advantage of the
convolution properties of B-splines. Thus, we choose to express our mother
wavelet ψ in a B-spline basis of order n1. The wavelet at scale a is represented
by its B-spline expansion

1
a
ψa(x) = ψ

(x
a

)
=

K∑
k=−K

dkβ
n1

(x
a
− k
)

(A.2)

where dk are the B-spline coefficients (see [129] for additional information
on how to choose their value).
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Figure A.3: Graphical representation of our CWT algorithm as a mixed convo-
lution.

A.2 Continuous wavelet transform algorithm

A.2.1 Mathematical derivation

Using the expression for the B-spline inner product (Equation 3.11), the CWT
(A.1) for the wavelet (A.2) becomes:

Wψf(a, b) =
1√
a
(f ∗ ψa) (b)

=
1

an1+
1
2

(
∆n1+1
a ∗ dδ,a ∗D−(n1+1)f ∗ δ

(
·+ an1 + 1

2

))
(b)

As the intersample distance a is the same for the distributions ∆n1+1
a and

dδ,a, we can express the continuos wavelet transform as the mixed convolution

Wψf(a, b) =

((
n1+1+K∑
k=−K

p(k)δ(· − ak)
)
∗ v(·)

)
(b), (A.3)

where

pk =
1

an1+
1
2
(d ∗ q)k =

1
an1+

1
2

n1+1∑
l=0

d(k − l)q(l) (A.4)

being ql the finite differences coefficients in (3.11) and v(x) is given by equation
(3.16). The graphical representation is given in Figure A.3.

Spline input signal

If f is a spline that interpolates the discrete input samples sk, we use the results
derived in Chapter 3 and rewrite v(x) as given in equation (3.19).
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We introduce this relation in the CWT expression (A.3) which yields,

Wψf(a, b) =
K+n1+1∑
k=−K

n1+n2+1∑
i=0

gi+i0wa,b(k, i), (A.5)

where io =
⌈
b− ak + τ − n1+n2+2

2

⌉
and where

wa,b(k, i) = pkβn1+n2+1 (b− ak − i− i0 + τ ) . (A.6)

We have used here the compact-support property of B-splines to reduce the
number of terms of the sum over i. In this way, the computation of the CWT
reduces to the inner product with the coefficients gi of a series of precalculated
weights wa,b(k, i) (which we can store in a look-up table).
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gio+i

gio

a

Figure A.4: Spatial structure of the filter wa: ’clusters’ of weights separated by
a distance a of each other. Parameters: n1 = 3, n2 = 3, K = 1, a = 16 and
b = 128.

In practice, we are typically only interested in the values of b that correspond
to the time locations of the original samples, that is, for integer b. Then, we
can use the fact that wa,b(k, i) = wa,0(k, i − b), if b ∈ Z. The algorithm (A.5)
is then equivalent to a discrete convolution. This reduces considerably the
number of weights to be precalculated, since only the values wa,0 = wa are
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required.

Note the interesting spatial structure of the filter wa (see Figure A.4). The
CWT computation consists in filtering the integrated interpolation coefficients
gδ with (2K + n1 + 2) ’clusters’ of length (n1 + n2 + 2), each cluster being
separated from its neighbors by a distance a. This can be seen as a kind of
modified ’à trous ’ filter.

A.2.2 Fast implementation

Let us now describe the fast algorithm based on the expansion (A.5). In the
initialization step, the B-spline expansion coefficients cδ of the sampled signal f
are calculated, and the running-sum operator ∆−1 is applied (n1+1) times; it is
computed recursively by iterating (3.4) (see Section 4.2.4 for the implementation
details).

fδ✲ (bn2)−1 ✲cδ ∆−(n1+1) ✲gδ ⊗✲ Wψf(a, b)
✻∑
k wa(k, i)δ(b− ak)

Figure A.5: Schematic representation of the fast wavelet transform. (bn2)−1:
Computation of the interpolation coefficients cδ. ∆−(n1+1): Calculation of the
(n1 + 1)-fold integral of cδ. wa(k, i): Look-up table calculation where k ∈
[−K,K + n1 + 1], i ∈ [0, n1 + n2 + 1] and a ∈ [a1, aN ]. N is the number of
scales. wa: Filtering with the mask calculated for each scale. Wψf(a, b): CWT
of f for scale a at position b.

The intermediate result gδ does not depend on the scale a. For a given
scale a, we compute the weights wa and store them in a 2-D look-up table of
dimensions (2K+n1+2)× (n1+n2+2). These values are then convolved with
the precomputed sequence gδ. The values wa and the inter-cluster distance for
the filtering depend on a, but the computational complexity is constant and does
not depend on a. Moreover, the values wa do not depend on the signal f . Thus,
the computational complexity per point only depends on the values of K, n1
and n2. Note that the independence between scales allows for a straightforward
parallel implementation (Figure A.5).
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A.3 Experimental results

Here, we discuss the implementation of our fast CWT algorithm and compare its
execution time with a FFT-based implementation. As example of application,
we show the analysis of a biomedical signal.

A.3.1 Comparison with FFT-based computation
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Figure A.6: Comparison of the experimental computation times of the FFT
and of our B-spline-based method to calculate the CWT.

The FFT has an overall O(N logN) complexity and is therefore asymptot-
ically slower than our method which has an O(N) complexity. This can be
observed from the experimental comparison of the computation times shown in
Figure A.6. We see that, for long input signals, our method is indeed faster. The
interpolation degree for the input signal was zero. The CWT was computed over
four octaves with 12 scales per octave. The wavelet was the second derivative of
the quintic (see Figure A.1 (b)), quartic and cubic B-spline, respectively [132].
The FFT-based method used a radix-2 algorithm when the signal length was
a power of 2 and a mixed-radix method for other signal lengths (MATLAB’s
FFT algorithm). The region where the algorithm is faster than the FFT-radix
2 method with zero padding is colored in gray. The time required to compute
the wavelet in the time domain before its FFT computation was neglected. A
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parallel implementation for the scale-dependent part of each algorithm would
speed up the computations.

A.3.2 Analysis of a biomedical signal
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Figure A.7: Gabor-like wavelet β3(x)e−4πxj .

We have applied our method to the analysis of bowel movements. A mag-
netically active capsule was swallowed and its gastrointestinal transit was mon-
itored. The measures consisted in its three spatial coordinates and the angles
that describe its orientation [106].

Figure A.8(a) corresponds to the x-coordinate of the capsule. The sampling
time was 70 ms. We have analyzed it using both the real (Figure A.8(b)) and
the complex CWT (Figure A.8(c)) for cubic spline interpolation of the input
signal. The y-axis corresponds to a normalized scale in seconds; it is given by
a0 = a

f0
where f0 is the central frequency of the wavelet.

In the real case, the wavelet was the first derivative of a quartic spline ex-
panded by a factor of 2 as shown in Figure A.1(a). A visual inspection highlights
the band of period 3 s, which corresponds to the breathing of the patient. We
chose to calculate the complex CWT by an extension of the method proposed
by Unser et al. [123] for integer scales. The analysis wavelet is the Morlet-like
wavelet β3(x)e−4πxj (Figure A.7). Using complex analysis (Figure A.8 (c)), we
discovered three relevant frequency bands: First, the breathing with a period
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close to 3 s; then, two more bands with periods around 12 s and 20− 25 s due
to the contractions of the stomach.

A.4 Summary

We have presented a novel B-spline-based CWT algorithm that is able to com-
pute the CWT at any real scale, making it possible to use arbitrary scale pro-
gressions. The computational complexity per computed coefficient is O(1), as is
the case with the most efficient wavelet algorithms for dyadic or integer scales.
The overall operation count only depends on the wavelet shape and on the
degrees of the B-spline basis on which the wavelet and the input signal are
described, but is independent of the value of the scale. Thanks to the good
approximation properties of B-splines, virtually any wavelet can be used (either
via their B-spline interpolation or projection). Moreover, the algorithm lends
itself well to a parallel implementation as it is not iterative across scales.

The price to pay for the generality of this algorithm is that the leading
constant in the O(N) complexity can be large (typically 56 for a cubic spline
Mexican-hat wavelet and cubic interpolation of the input signal). Thus, the
method really starts paying off when the size of the signal is large (say N ≥ 1000
samples). For smaller sizes, it may be more efficient to use a simpler FFT-based
method. Note, however, that the specialized version of the algorithm for integer
scales beats the FFT in all cases [132].
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Figure A.8: (a) Trajectory of a magnet within the digestive track (x compo-
nent). (b) Real CWT using the wavelet in Figure A.1(a). (c) Complex CWT
using the Morlet-like wavelet shown in Figures A.7.
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[59] S. Horbelt, A. Muñoz, T. Blu, and M. Unser, Spline kernels for
continuous-space image processing, in Proceedings of the Twenty-Fifth
IEEE International Conference on Acoustics, Speech, and Signal Process-
ing (ICASSP’00), vol. IV, Istanbul, Turkey, June 5-9 2000, pp. 2191–2194.

[60] H. S. Hou and H. C. Andrews, Cubic splines for image interpolation
and digital filtering, IEEE Transactions on Acoustic, Speech and Signal
Processing, 26 (1978), pp. 508–517.

[61] Z. Hu and S. T. Acton, Morphological pyramid image registration, in
Proceedings of the 4th IEEE Southwest Symposium on Image Analysis
and Interpretation, 2000, pp. 227–231.

148



[62] B. B. Hubbard, The world according to wavelets, A. K. Peters, Natick,
Massachusetts, 2nd ed., 1998.

[63] D. H. Hubel and T. N. Wiesel, Receptive fields, binocular interaction
and functional architecture in the cat’s visual system, Journal of Physiol-
ogy, 160 (1962), pp. 106–154.

[64] A. R. Ismail and S. S. Asfour, Continuous wavelet transform applica-
tion to EMG signals during human gait, in Record of the Thirty-Second
Asilomar Conference on Signals, Systems and Computers, vol. 1, 1998,
pp. 325–329.

[65] M. Jacob, T. Blu, and M. Unser, A unifying approach and interface
for spline-based snakes, in Proceedings of the SPIE International Sympo-
sium on Medical Imaging: Image Processing, vol. 4322, San Diego CA,
USA, February 17-22 2001, pp. 340–347.

[66] B. Jeffs and M. Gunsay, Restoration of blurred star field images by
maximally sparse optimization, IEEE Transactions on Image Processing,
2 (1993), pp. 202–211.

[67] R. Q. Jia, Shift-invariant spaces and linear operator equations, Israel
Journal of Mathematics, 103 (1998), pp. 259–288.

[68] R. Keys, Cubic convolution interpolation for digital image processing,
IEEE Transactions on Acoustic, Speech and Signal Processing, 29 (1981),
pp. 1153–1160.

[69] J. Kovacevic and M. Vetterli, Perfect reconstruction filterbanks with
rational sampling factors, IEEE Transactions on signal processing, 41
(1993), pp. 2047–2066.

[70] R. Kress, Numerical Analysis, New York: Springer, 1998.
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