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Abstract Attribute-based �lters can be involved in analysis and processing
of images by considering attributes of various kinds (quantitative,
qualitative, structural). Despite their potential usefulness, they
are quite infrequently considered in the development of real appli-
cations. A cause of this underuse is probably the di�culty to de-
termine correct parameters for non-scalar attributes in a fast and
e�cient fashion. This paper proposes a general de�nition of vector-
attribute �lters for grey-level images and describes some solutions
to perform detection tasks using vector-attributes and parameters
determined from a learning set. Based on these elements, an in-
teractive segmentation method for dermatological application has
been developed.

Keywords: vector-attribute �lters, component-tree, segmentation, dermatolog-
ical imaging.

1. Introduction

Connected operators are fundamental tools of mathematical morphology:
area �lters [20, 21], contrast �lters [5], or volumic �lters [19] are all con-
nected operators that, given some criteria, simplify the partition of an image
without introducing new contours. Attribute openings and thinnings have
been introduced in [1] and generalise the notion of connected �lters based
on arbitrary attributes.

These �lters can be e�ciently implemented using a tree structure known
in the literature as dendrone [2,6], component-tree [10], con�nement tree [8]
or max-tree [13]. In the sequel we will employ the generic term component-

tree to denote all these tree-like structures. Their main principle consists
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in storing each connected component of the successive threshold sets of a
grey-level image in a node, and to code the inclusion relation on components
by establishing links between the corresponding nodes. To each node of
the tree can be associated a real-valued attribute, leading to an e�cient
tool to design connected, anti-extensive �lters [13]. Recently, multi-valued
attributes have been considered leading to vector-attribute �lters [16].

Such �lters seem to have an interesting potential for real application
development. However, their main drawback is that attribute parameters
are still mainly determined in an empirical fashion, as in [7] where the
classi�cation between an object component and the background is made by
observation of the attribute signature of this component.

Until now, attribute-�lters have been essentially used for removing com-
ponents presenting undesirable attributes. We wish to demonstrate here
that attribute-�lters, and more especially vector-attribute �lters, can also
be e�ciently involved in the design of segmentation methods.

This paper is organised as follows. Section 2 presents recent works re-
lated to the development of attribute-based �lters and their use for applica-
tive purpose. In Section 3 we propose a de�nition of vector-attribute �lters
for grey-level images and propose to use them in an object-detection con-
text. Section 4 describes an applicative study of the proposed methodology
devoted to the interactive analysis and segmentation of melanocytic nevi
in 2D dermatological images. In Section 5 possible developments, improve-
ments and further works are discussed.

2. Related work

Attribute-based �ltering using component-trees has been used in various
contexts, including feature extraction and retrieval [2], image coding and
compression [13], or segmentation of vessels in wood micrographs [7]. Com-
ponent-trees have also been used in the �eld of cerebral segmentation, for
the automatic selection of markers from 3D MRI images [3].

The notion of shape-based attributes has been considered in [16�18] as
well as the notion of shape granulometry. These concepts have been applied
to �lament extraction in MR angiograms [18] and classi�cation of diatoms
[17].

Component-tree representation of an image based on a connectivity map
(leading to a second-order connectivity) has been proposed in [11, 12] and
applied to 3D �lament extraction in MR angiograms and extraction of �la-
mentous structures in images of proteins.

Vector-attribute �lters have been introduced recently in [16], where their
use was illustrated on synthetic images of characters, in the context of object
�ltering based on Hu's moments invariants. Although vector-attribute based
�lters seem to have a great potential, they have not been used until now in
concrete applications.
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Figure 1. Decomposition of a function into its peak components. Left: Original
function F . In grey: connected component of Xt(F ) including p. Middle: Peak
component Pp,t(F ). Right: Lobe component P ↑

p,t(F ).

3. Grey-level vector-attribute �lters

The connected components of all threshold sets of an image are usually
called peaks. In the context of object recognition or segmentation, it could
be interesting to detect from a grey-level image the peaks representing a
speci�c structure: only these peaks will be preserved, while all other peaks
will be removed.

Formally, a grey-level image is de�ned as a numerical function F : E →
V , where E is a space of points and V a totally ordered set of values, where
⊥ (resp. >) represents the least (resp. the greatest) element.

The threshold set of a function is de�ned byXt(F ) = {p ∈ E | F (p) ≥ t}.
Given a connectivity class C on E (i.e., the set of all connected sets), the
connected opening for sets is de�ned as [15]: γx(X) =

⋃{C | x ∈ C ⊆
X,C ∈ C}.

We de�ne the peak function Pp,t(F ) by:

Pp,t(F )(x) =
{
t if x ∈ γp(Xt(F )),
⊥ otherwise.

Any function F is the supremum of all its peak components:

F =
∨
{Pp,t(F ) | p ∈ E, t ∈ V }.

We de�ne the lobe (or superior peak), as:

P ↑p,t(F )(x) =
{
F (x) if x ∈ γp(Xt(F )),
⊥ otherwise.

These functions are illustrated in Figure 1.
Given a valuation function τ : V E → RN that associates to a func-

tion F a vector of real-valued attributes τ(F ), and a criterion T : RN →
{true, false} that accepts or rejects an attribute-vector depending on a
particular strategy, a grey-level vector-attribute �lter φ can be de�ned by
acting separately on the peak components of an image:

φ(F ) =
∨
{Pp,t(F ) | p ∈ E, t ∈ V, T (τ(P ↑p,t(F ))) = true}. (1)
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The reconstruction of the lobes can be obtained in the same way:

φ↑(F ) =
∨
{P ↑p,t(F ) | p ∈ E, t ∈ V, T (τ(P ↑p,t(F ))) = true}. (2)

In the case where all peak functions are removed, the result of these �l-
tering operations is the least element of the complete lattice of functions V E :∨ ∅ = C⊥ (where C⊥ is the constant function de�ned by: ∀p ∈ E,C⊥(p) =
⊥). These �lters associate to each lobes of a function a vector of attributes.
Using lobes allows to consider non-�at attributes like contrast (i.e., height),
or volume of the peak component. If one of the vector-attribute compo-
nent is non-�at, φ is no longer idempotent since it reconstructs only the
peak Pp,t

1. On the contrary, φ↑ is idempotent, since the lobes verifying the
criterion are preserved. These �lters are not increasing most of the time,
since the criterion based on a vector-attribute is seldom increasing. Hence,
they are not morphological �lters. They are anti-extensive, as they remove
peaks from the original function. Finally, as they act only by merging image
�at-zones, they are connected operators.

3.1 Object detection

The �lters previously described can be used to perform object detection from
a grey-level image provided that objects of interest correspond to some peaks
of the image: this requires the object to be a bright structure surrounded by
dark background (at least after some kind of preprocessing). Such a strategy
requires one to have some prior knowledge about the object to segment.

A typical example of criterion (also proposed in [16]) is based on a dis-
tance d from a reference vector r:

Tr,ε(v) =
{
true if d(r,v) < ε,
false otherwise.

In this latter case, note the di�erence with the vector-attribute de�ned in
[16]: here peaks are suppressed when their attribute-vectors have a distance
superior to ε. In [16], the opposite was performed in order to remove sets
having attributes close to the reference vector.

3.2 Vector-attribute �ltering using component-tree

Vector-attribute �lters, as de�ned previously, can be e�ciently implemented
using the image component-tree. Moreover, as we will see in the sequel,
the component-tree only needs to be computed once, allowing one to per-
form multiple consecutive �ltering with di�erent parameters r and ε. The

1For the same reason, h-reconstruction or volumic �lters are not idempotent and hence
are not morphological �lters.
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component-tree of a function F can be de�ned as follows. Each node of the
tree is a peak function belonging to the set: P (F ) = {Pp,t(F ) | p ∈ E, t ∈
V }. For G : E → V , we consider the function:

supp(G) =
{ {p ∈ E | G(p) > ⊥} if G 6= C⊥,
E if G = C⊥.

A node P2 is a child of P1 in the component-tree of F (P1, P2 ∈ P (F )) i�:

(i) supp(P2) ⊂ supp(P1),

(ii) ∀P3 ∈ P (F ), supp(P2) ⊂ supp(P3)⇒ supp(P1) ⊆ supp(P3).

The root of the component-tree of F is the node R ∈ P (F ) such that
supp(R) =

⋃
P∈P (F ){supp(P )} = E. In particular, R = CFmin , where

Fmin = min{F (p) | p ∈ E}.
Algorithmically, each node can be modelled as a structure : node =

(label, gl,
size, att, points, parent, children, active), where:

• label is the identi�er of the node;
• gl is the grey-level of the node (gl(P ) = max{F (p) | p ∈ supp(P )});
• size is the size of the node (size(P ) = card(supp(P ));

• att is a list of attributes, representing the attribute-vector attached to
the node;

• points is the list of points belonging to the node;

• parent is a pointer to the parent;

• children is a list of pointers to the node's children;

• active is a Boolean value indicating the status of the node.

It is desirable to exploit the redundancy of the points belonging to
the support of the peaks: each point p can be stored in only one node
(Pp,F (p)(F )). This is the principle adopted in [13], leading to the max-tree.
In this case, some nodes have no points: they can be suppressed, lead-
ing to the unique representation of the tree [8]. The construction of the
component-tree can be done using e�cient algorithms [8, 10,13].

Given a valuation function τ and a criterion T , an image �ltered by ap-
plying Equation 1 can be processed by computing the component-tree of the
original image and reconstruct only the nodes verifying T : this is equivalent
to prune the tree using the direct decision [13], as illustrated in Figure 2.
A tree-based �ltering can be decomposed into three steps: component-tree
computation; tree �ltering; image restitution using the direct strategy.
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Figure 2. Left: Original image. Empty circles denote nodes that do not meet
a considered criterion. Right: Direct reconstruction of peak functions that meet
this criterion (applying equation 1).

3.3 Attributes

To each lobe of a function is attached a vector of attributes generated by the
τ function. Vector-attributes can represent any combination of photometric,
textural, or geometric attributes. The attributes most usually considered
for the design of component-tree methods are intensity, area, height (or
contrast), and volume, the last two one being de�ned by:

• Height (or contrast): height(P ↑) = maxp∈supp(P↑){F (p)−gl(P ↑)+1},

• Volume: volume(P ↑) =
∑
p∈supp(P↑){F (p)− gl(P ↑) + 1}.

Geometric or shape attributes have an interesting potential since they
enable to discriminate an object by considering its structural properties, by
opposition to more classical photometric properties. In [22], various shape
representation techniques are described, which could lead to the compu-
tation of such attributes. However when using the component-tree, it is
desirable (for e�ciency reasons) to use attributes that can be computed
incrementally during its construction.

3.4 Attribute learning from a reference component-

tree

Using vector-attribute �lters for object detection requires a preliminary
characterisation of a speci�c class of objects. A possible way to retrieve
some information regarding the attributes of a class is to use a set of object
samples (or learning set). This learning set can be composed, for example,
of manually delineated structures on some original images. Given images
Fi in which the structures of interest have been segmented (each structure
being a connected set Si), it is possible to extract, for each manually seg-
mented component, the most corresponding peak of Fi. This can be done
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using the component-tree of Fi: to each point of the manual segmentation
p ∈ Si is associated the corresponding node or peak function Pp,F (p)(F ).
Algorithmically, this correspondence can be carried out using a mapping
between the points and their corresponding nodes. To each component Si
is associated a set of potential peaks. A way to process this can consist
in retrieving the node associated to the peak having the closest size to the
component's size (i.e., card(Si)).

The attribute-vector of the node can then be retrieved and associated
to the component Si. The set of attribute-vectors corresponding to the
manually segmented structures represent the learning set of the structure
of interest.

4. Application: Segmentation of melanocytic nevi

from photographs of the whole body

Early detection of skin cancer is a very important issue to prevent the mor-
tality due to this kind of a�ection. Computer-aided diagnosis represents
one step towards a more accurate and faster detection of suspicious moles.
Much of the research e�ort in this domain has been done in the �eld of
automated diagnosis from dermatoscopy examinations [4,14]. However this
kind of methods requires the dermatologist to detect beforehand the sus-
picious lesions, which is di�cult due to the large number of moles in the
patients at risk.

Mole mapping from digital photographs is a relatively recent method
whose purpose is to assist the dermatologist in the detection of suspicious
moles. To this aim, a cartography of the existing moles is performed from
images of the whole body acquired at di�erent times. Changes can be
tracked by comparing automatically the corresponding moles in the di�erent
images.

In previous work, a mole-mapping system has been proposed [9], en-
abling the detection of the moles in several images of a patient and the
matching of the corresponding structures. Although based on empirically
evaluated parameters, the method was automatic and e�cient due to the
component-tree approach. We propose here an improved method which al-
lows the dermatologist to segment interactively a class of moles of interest
(for example only the largest ones) and to use the speci�c parameters of this
class to infer the segmentation of the closest moles belonging to the same
one.

4.1 De�nitions and notations

Photographs of the whole body are considered as functions F : E → T rgb
where T rgb = T r ×T g ×T b represents the set of colour values de�ned by a
triplet (r, g, b). Images are processed in the saturation space to discriminate
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moles from skin: indeed, moles and skin have similar hue, but moles ap-
pear more saturated than the skin. The saturation image is de�ned by the
function: S : E → T s : x 7→ max−min

max where max (resp. min) represents
the largest (resp. the smallest) value of the RGB triplet F (x) = (r, g, b).
We de�ne S(x) = 0 for F (x) = (0, 0, 0). An original image, and a sample
visualised in the saturation space, are illustrated in Figure 3.

Figure 3. Left: Original image F (visualised in grey-levels, but de�ned in the RGB
colour space). Right: Enlargement of the white-bordered zone, in the saturation
image S associated to F .

4.2 Interactive segmentation algorithm

Photographs of the whole body consist in a total of 16 images of a patient
in the front, back, right and left positions. The acquisition of each image set
requires a calibration of the digital camera. Dimensions of each image are
4288× 2848 (12 megapixels). The corresponding physical size of the image
pixels obtained from the calibration step is typically contained between 0.16
and 0.17 mm. Individual images of the corresponding part of the body are
then selected by the practitioner for the examination.

Input and output The segmentation algorithm takes as input two dig-
ital photographs of similar parts of the body acquired at di�erent times.
The practitioner can interactively contour the moles of interest, providing
a �rst manual segmentation. A minimum of three or four segmentations is
required to obtain su�cient data for the computation of a statistical model.
A distance parameter can be chosen interactively. As output, the algorithm
detects the moles which are the closest from the manually selected ones,
given the chosen distance parameter. The mole segmentation in each of the
image can then be used as the input of a speci�c point matching algorithm
(not described here) [9].
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Attributes and criterion In the saturation images, moles appear as
bright and compact structures. Cutaneous surfaces have uneven illumina-
tion: segmentation methods based on global threshold are not su�cient to
discriminate moles from other bright structures (see Figure 3 right, the um-
bra under the arm appears very bright in the saturation image). To each
lobe P ↑(S) of the saturation image can be associated a vector-attribute
composed of area, contrast, and compacity parameters:

τ(P ↑(S)) = (area(P ↑(S)), contrast(P ↑(S)), compacity(P ↑(S))).

The compacity parameter can be a measure of roundness (for example the
ratio 4πA

P 2 )), where A and P represent the area and perimeter of the compo-
nent, respectively. The perimeter can be approximated by using the number
of contour points of the component, however this attribute cannot be com-
puted incrementally (it can however easily be computed afterwards using
a mapping between the points and the nodes). Hence an alternative is to
use the �rst Hu's invariant moment, that can be computed incrementally as
suggested in [17]. The two variants of compacity have been experimentally
tested with similar results.

As a criterion, we use Tr,ε, in order to suppress peaks that di�er of more
than a certain quantity ε from a reference vector. The subset of manually
segmented moles is used to select, for each connected component, the closest
corresponding nodes of the component-tree, using the strategy described in
Section 3.4. The set of vector-attributes {vi} of all selected nodes is used
to compute a reference vector:

r =
1
N

N∑
i=1

vi,

and a covariance matrix:

Σ =
1
N

N∑
i=1

(vi − r)T (vi − r),

where N is the number of manually segmented moles.

Segmentation step Assuming that the distribution of the vector-attrib-
utes of the moles is Gaussian multivariate, we can consider the statistical
model computed previously to use normalised distances. Given the reference
vector r and the covariance matrix Σ, a distance is computed between r and
the vector-attributes x of all the nodes of the component-tree. This distance
expresses the probability that the node belongs to the class selected by the
practitioner. This distance can be the Mahalanobis distance:

dM (x, r) =
√

(x− r)TΣ−1(x− r).
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Hence parameter ε in the criterion Tr,ε de�nes the sensitivity of the
detection. Choosing ε = 1.0 ensures that the selected components are �not
farther� than one standard deviation from the reference vector.

4.3 Experiments and results

Experiments have been made on 12 image series. The computation time
of the component-tree using Salembier's recursive algorithm2 is 8 seconds
on a Pentium IV 3.2 GHz with 2 Gb of RAM. Each �ltering step is made
in constant time (0.1 s), allowing an interaction of the dermatologist in
real-time.

Some results are illustrated on Figure 4 (for representation purpose, only
an enlarged portion of the processed image is shown) for two di�erent sets of
manually segmented moles. In the �rst row the largest moles are detected,
while in the second row, only the smallest ones are preserved due to the
di�erent training sets. Segmentation is precise since the attribute �lter is
a connected operator: detected contours correspond to true contours of
the detected component. The segmentation method allows a very good
discrimination between moles and other bright structures of the saturation
image: there is no false detections. This is mainly due to the chosen criteria.
Visual assessment of the detected moles by dermatologist tends to prove that
the method is very satisfying from a medical point of view. As the chosen
attributes are highly uncorrelated in this application, Mahalanobis distance
and normalised Euclidean distance give comparable results.

5. Conclusion and further works

In this paper we have proposed a general de�nition of vector-attribute �lters
for grey-level images. This de�nition allows to �lter the function peaks given
a vector-attribute and a criterion. We have shown that this de�nition can
be e�ciently implemented using the component-tree and the direct pruning
strategy. Some solutions for using vector-attributes and involving them
in the development of component-tree-based �ltering processes (especially
devoted � but not restricted to � segmentation) have been proposed. They
constitute an initial and partial methodological framework which will be
enriched in further works.

This framework has been used for the proposal of a segmentation method
of dermatological 2D data, allowing a real-time interaction with the practi-
tioner. The e�ciency of this method is satisfying from a medical points of
view, but also from a theoretical one. Indeed, it tends to prove that it is

2According to [10], Salembier's algorithm is quadratic in the worst case; however it is
generally twice as fast as Najman's one in practical cases when the value of a point is
comprised between 0 and 255.
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possible to create e�cient, fast and easy to use methods for object detection
purpose, based on vectorial attribute �lters and component-trees.

Further work will now consist in developing this methodology, by inte-
grating more descriptive attributes (for example structural shape descrip-
tors) and extending it to classi�cation tasks.

Figure 4. First column: 5 manually segmented moles (in white). Second column:
Moles segmented using a normalised Euclidean distance threshold of 3.0. Using
compacity as shape attribute allows to e�ciently discriminate moles from other
bright structures of the saturation image (see Figure 3, right, for comparison).
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