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Abstract—The Poisson summation formula (PSF), which re-
lates the sampling of an analog signal with the periodization of
its Fourier transform, plays a key role in the classical sampling
theory. In its current forms, the formula is only applicable to a
limited class of signals in L1. However, this assumption on the
signals is too strict for many applications in signal processing
that require sampling of non-decaying signals. In this paper
we generalize the PSF for functions living in weighted Sobolev
spaces that do not impose any decay on the functions. The
only requirement is that the signal to be sampled and its weak
derivatives up to order 1/2+ ε for arbitrarily small ε > 0, grow
slower than a polynomial in the L2 sense. The generalized PSF
will be interpreted in the language of distributions.

I. INTRODUCTION

A widely used result in engineering is that sampling in
time corresponds to periodization in frequency and vice versa.
This beautiful relation is captured in the celebrated Poisson
summation formula∑

k∈Z
f(k)e−2πikξ =

∑
k∈Z

f̂(ξ + k). (PSF)

In other words, the discrete-time Fourier transform of the sam-
pled sequence is equal to the periodization of the continuous-
time Fourier transform of the analog signal. This identity is
the key behind many results in sampling theory including
the classical Shannon’s sampling theorem [1] for bandlimited
signals. What appears to be missing, however, is a proof of
(PSF) for a general function f beyond the classical hypotheses,
which will be detailed later. In engineering texts, see for ex-
ample [2]–[5], the common “proof” of (PSF) for an arbitrary
function f is based on the following observations: (1) the
sampled sequence is obtained by multiplying the analog signal
with a Dirac comb; (2) multiplication maps to convolution
in Fourier-domain; and (3) the Fourier transform of a Dirac
comb is also a Dirac comb. The problem with this argument
is that the multiplication of a Dirac comb with a general
function is not necessarily a tempered distribution, so that the
convolution theorem may not be applicable. Take, for example,
the popular ramp signal f(x) = x+|x|

2 . Since f(x) is not
differentiable at 0, the multiplication between f and the Dirac
comb

∑
k∈Z δ(· − k) is prohibited. It means that the above

argument for (PSF) does not even work for this seemingly
well-behaved signal.

In the mathematics literature, the PSF is often stated in a
dual form with the sampling occurring in the Fourier domain,
and under strict conditions on the function f . Various versions
of (PSF) have been proven when both f and f̂ are in appro-
priate subspaces of L1(R) ∩ C(R). In its most general form,
when f, f̂ ∈ L1(R)∩C(R), the RHS of (PSF) is a well-defined
periodic function in L1([0, 1]) whose (possibly divergent)
Fourier series is the LHS. If f and f̂ additionally satisfy
|f(x)|+ |f̂(x)| ≤ C(1+ |x|)−1−ε,∀x ∈ R, for some C, ε > 0,
then it can be shown [6], [7] that (PSF) holds pointwise with
both sides converging absolutely. It is also known [8], [9]
that (PSF) holds pointwise when f, f̂ ∈ L1(R) ∩ C(R) and
f̂ has bounded total variation. Other versions of the PSF on
L1(R) can also be found in [9]–[11]. The main limitation of
the above mathematical forms of the PSF is that they do not
apply to functions that are non-decreasing, such as our above
example of a ramp signal or any realization of a stationary
stochastic process, not to mention the non-stationary ones like
the Brownian motion which may even grow at infinity [12].
Intuitively, however, there does not seem to be any compelling
reason why a continuous signal cannot be sampled even if it
is not decaying.

In this paper we attempt to bridge the gap between the
engineering and mathematics statements of the PSF. We will
show that (PSF) holds in the sense of distribution theory [13]
for a broad class of continuous signals included in a weighted
Sobolev space Ls2,1/w(R), whose weak derivatives up to order
s are in the weighted-L2 space L2,1/w(R). Here, the decaying
weight 1/w allows growing signals. In particular, when the
weight 1/w decays polynomially and the order of smoothness
s is above the threshold 1/2, both sides of (PSF) are well-
defined periodic distributions and they are equal when acting
on periodic test functions. In light of our new result, it is
easy to see that (PSF) holds for the ramp function, and more
generally, for any piecewise polynomials that are continuous.
For brevity, most of the proofs in this paper are omitted or
just sketched. Detailed proofs can be found in our extensive
papers [14], [15] that are currently in preparation.1

The rest of the paper is organized as follows. Section II
introduces some notations and definitions that will be used
throughout the paper. Section III discusses the sampling in
weighted Sobolev spaces. The generalized PSF is stated in
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Section IV with a sketched proof. Finally, some concluding
remarks are made in Section V.

II. NOTATION AND DEFINITION

Throughout the paper, we deal with complex-valued func-
tions and sequences. Following the convention in signal pro-
cessing, we use parentheses for functions and square brackets
for sequences to specify their values at a particular point. Espe-
cially, for a function f , f [·] denotes the sequence {f(k)}k∈Z.
For p ≥ 1, the spaces Lp(R) and `p(Z) include functions and
sequences, respectively, whose p-norms are finite. The scalar
product between two functions in L2(R) is defined as

〈f, g〉 :=

∫
R
f(x)g(x)dx, for f, g ∈ L2(R)

As usual, the notation 〈·, ·〉 is also used for the action of a
distribution on a test function. Sometimes, it is useful to write
the complex sinusoid e−2πikξ as e−2πi〈·,k〉 to imply that it is a
function in variable ξ. We also adopt standard notations used
in Schwartz’s distribution theory [13]. We use the symbols ∧
and ∨ to denote the forward and inverse Fourier transforms,
respectively, of a tempered distribution f ∈ S ′(R), i.e.〈

f̂ , ϕ
〉

= 〈(f)∧, ϕ〉 := 〈f, ϕ̂〉 ,∀ϕ ∈ S(R),〈
f̌ , ϕ

〉
= 〈(f)∨, ϕ〉 := 〈f, ϕ̌〉 ,∀ϕ ∈ S(R)

where

ϕ̂(ξ) = (ϕ)∧(ξ) :=

∫
R
ϕ(x)e−2πiξxdx;

ϕ̌(x) = (ϕ)∨(x) :=

∫
R
ϕ(ξ)e2πiξxdξ.

The set of continuous functions is denoted by C(R), whereas
C∞c (R) = D(R) denotes the space of bump functions that
are infinitely differentiable and compactly supported. For an
interval T of R, C∞(T) denotes the space of T-periodic test
functions that are infinitely differentiable. Here, a function
ϕ is T-periodic if ϕ = ϕ(· + |T|k), ∀k ∈ Z. The constants
throughout the paper are denoted by C with some subscripts
denoting the dependence of the constants on those parameters.
For example, Cx,y,z is a constant that depends only on x, y
and z.

The non-decaying signals in this paper will be modeled
as elements of weighted L2 spaces w.r.t. some decaying
weighting function that controls the growth of the signals.
We assume implicitly throughout the paper that any weighting
function is real-valued, continuous, positive, and symmetric.

Definition 1 (Submultiplicative weights). A weighting func-
tion w is called submultiplicative if there exists a constant
Cw such that

w(x+ y) ≤ Cw w(x)w(y), ∀x, y ∈ R. (1)

Note that the submultiplicativity of w implies w(x) ≤
Cw w(x)w(0), or w(0) ≥ 1/Cw. On the other hand, w(0) =
w(x−x) ≤ Cw w(x)w(−x) = Cw (w(x))2, and thus w(x) ≥

√
w(0)/Cw ≥ 1/Cw, for all x. This means that every submul-

tiplicative weighting function is lower-bounded. A prototypical
example of submultiplicative weights is w(x) = (1+ |x|2)α/2,
for some α ≥ 0. For this weight, we can choose Cw to be
Cα = 2α/2.

Definition 2 (Weighted Lp and `p spaces). For p ≥ 1 and
a weighting function w, a function f is in Lp,w(R) if fw is
in Lp(R); a sequence c is in `p,w(Z) if {c[k]w(k)}k∈Z is in
`p(Z). The corresponding weighted norms are defined as

‖f‖Lp,w(R) := ‖fw‖Lp(R); ‖c‖`p,w(Z) := ‖cw[·]‖`p(Z).

Note that if w is submultiplicative then Lp,w(R) ⊂ Lp(R),
and `p,w(Z) ⊂ `p(Z) because w is lower-bounded.

Definition 3 (Weighted hybrid norm spaces). For p, q ≥ 1, the
hybrid norm space Wp,q(R) includes all functions f : R→ C
whose following norm is finite

‖f‖Wp,q(R) :=

∫ 1

0

(∑
k∈Z
|f(x+ k)|p

)q/p
dx

1/q

,

with usual adjustments when p or q is infinity. The weighted
hybrid norm space Wp,q,w(R) w.r.t. a weighting function w is
defined according to the following weighted norm

‖f‖Wp,q,w(R) := ‖fw‖Wp,q(R).

These hybrid (mixed) norm spaces were mentioned in [9].
They are similar to Wiener amalgam spaces W̃p,q(R) [16]–
[18], where the discrete and continuous norms are mixed in
reverse order, i.e.

‖f‖
W̃p,q(R) :=

(∑
k∈Z

(∫ 1

0

|f(x+ k)|q dx

)p/q)1/p

.

These amalgam spaces play a central role in many important
results of the non-uniform sampling theory in shift-invariant
(spline-like) spaces [19]–[23]. Deeper results regarding Wiener
amalgam spaces and their generalizations can be found
in [24]–[29]. We note some obvious inclusions of hybrid norm
spaces: Wp,q2,w(R) ⊂ Wp,q1,w(R) when 1 ≤ q1 ≤ q2 ≤ ∞,
and Wp1,q,w(R) ⊂ Wp2,q,w(R) when 1 ≤ p1 ≤ p2 ≤ ∞.
Also, it is easy to see that Wp,p,w(R) = Lp,w(R).

Definition 4 (Weighted Sobolev spaces). For s ∈ R, and a
weighting function w, the weighted Sobolev space Ls2,w(R) is
defined as

Ls2,w(R) :=

{
f ∈ S ′(R) :

(
(1 + | · |2)

s
2 f̂
)∨
∈ L2,w(R)

}
.

In the above definition, we note that (1 + |ξ|2)
s
2 is an

infinitely differentiable and slowly increasing function, and so
the multiplication (1 + | · |2)

s
2 f̂ is a well-defined tempered

distribution.
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III. SAMPLING IN WEIGHTED SOBOLEV SPACES

For a slowly increasing weight w, the sampling of a slowly
increasing signal in L2,1/w(R) might be troublesome because
the sampled sequence might be rapidly increasing even when
the signal is continuous, and so its discrete-time Fourier
transform as in the LHS of (PSF) might not be well-defined. It
is therefore desirable to impose some order of smoothness on
the signal to be sampled by switching L2,1/w(R) to Ls2,1/w(R).
In what follows, we show that if the signal is continuous and
the order s of the Sobolev space is above the threshold 1/2
then the sampling is stable in the sense that the discrete `2,1/w-
norm is bounded by the continuous L2,1/w-norm.

We first want to make an important observation: any
distribution f ∈ Ls2,w(R) can be written as a convolution

f = fs ∗ ϕs, where fs :=
(

(1 + | · |2)
s
2 f̂
)∨
∈ L2,w(R),

and ϕs :=
(
(1 + | · |2)−

s
2

)∨
. In the literature, the function

ϕs when s > 0 is often referred to as Bessel potential kernel.
The following properties of this kernel will be useful later.
First, it is easy to see that ϕs(x) is a real and symmetric
function. Second, it is well-known from Sobolev space theory
(see, for example, [30, Prop. 6.1.5]) that ϕs(x) is a positive
function that decays exponentially outside a neighborhood of
the origin. More precisely, there exists a constant Cs such that

ϕs(x) ≤ Cs · e−π|x|, ∀ |x| > 1

π
. (2)

Third, it is also known that ϕs ∈ L2(R) whenever s > 1/2.
Based on these properties we can show the following.

Proposition 1. Suppose s > 1/2, and w(x) = (1 + |x|2)α/2

for some α ≥ 0. The Bessel potential kernel ϕs is then an
element of the weighted hybrid norm space W1,2,w(R).

Proof. See [14].

Note that Ls2,1/w(R) is identical to L2,1/w(R) when s =
0. Is it true that every element of Ls2,1/w(R) is an L2,1/w

function? The following result gives an affirmative answer to
that question when s ≥ 0 and the weighting function 1/w is
decaying polynomially.

Proposition 2. If s > 0, and w(x) = (1 + |x|2)α/2 for some
α ≥ 0, then Ls2,1/w(R) ⊂ L2,1/w(R).

Proof. As a special case of Proposition 1, we have ϕs ∈
W1,1,w(R) = L1,w(R), for all s > 0. Let f be an element
of Ls2,1/w(R). By duality we can write

‖f‖L2,1/w(R) = sup
‖g‖L2,w(R)=1

〈f, g〉 .

Using the submultiplicativity of w, Cauchy-Schwarz and

Young inequalities we obtain

‖f‖L2,1/w(R) = sup
‖g‖L2,w(R)=1

〈fs ∗ ϕs, g〉

= sup
‖g‖L2,w(R)=1

〈
fs
w
,w · (g ∗ ϕs)

〉
≤ sup
‖g‖L2,w(R)=1

‖fs‖L2,1/w(R) Cα ‖g‖L2,w(R) ‖ϕs‖L1,w(R)

= Cα ‖fs‖L2,1/w(R) ‖ϕs‖L1,w(R) <∞,

which implies that f ∈ L2,1/w(R), completing the proof.

Before stating the central result of this section we need the
following key lemma whose proof can be found in [14].

Lemma 1. Let w be a submultiplicative weighting function.
If f ∈ L2,1/w(R) and ϕ ∈ W1,2,w(R) then f ∗ ϕ is a well-
defined continuous function and its sampled sequence {c[k] :=
(f ∗ϕ)(k)}k∈Z belongs to `2,1/w(Z), and the following bound
holds

‖c‖`2,1/w(R) ≤ Cw ‖f‖L2,1/w(R) ‖ϕ‖W1,2,w(R) ,

where Cw is the constant given in (1).

Theorem 1. Let s > 1/2, and w(x) = (1 + |x|2)α/2 for some
α ≥ 0. The sampling operator f 7→ f |Z is then bounded from
Ls2,1/w(R) ∩ C(R) to `2,1/w(Z), i.e., there exists a constant
Cα,s such that

‖f [·]‖`2,1/w(Z) ≤ Cα,s ‖f‖Ls
2,1/w

(R), ∀f ∈ Ls2,1/w(R).

Proof. From Proposition 1, we know that f = fs ∗ϕs almost
everywhere, where fs ∈ L2,1/w and ϕs ∈ W1,2,w(R). It then
follows from Lemma 1 that fs ∗ϕs is continuous. Combining
this with the fact that f is continuous, we deduce that f =
fs ∗ ϕs everywhere.

Now we can safely write f(k) = (fs∗ϕs)(k), for all k ∈ Z,
and again invoke Lemma 1 to get

‖f [·]‖`2,1/w(Z) ≤ Cα ‖ϕs‖W1,2,w(R) ‖fs‖L2,1/w(R)

= Cα ‖ϕs‖W1,2,w(R)︸ ︷︷ ︸
Cα,s

‖f‖Ls
2,1/w

(R) ,

which is the desired bound.

IV. GENERALIZED POISSON SUMMATION FORMULA

Now we are ready to generalize the Poisson summation
formula for functions in weighted Sobolev spaces and show
that both the discrete-domain Fourier transform of the sampled
sequence and the periodization of the continuous-domain
Fourier transform are well-defined periodic distributions and
they are equal in S ′(T), for T := [0, 1]. First we need to
define the periodization

∑
k∈Z f̂(·+ k) by means of a unitary

function ψ ∈ C∞c (R) such that
∑
k∈Z ψ(· + k) = 1. In

particular, the action of
∑
k∈Z f̂(· + k) on a periodic test

function ϕperio ∈ C∞(T) is given by〈∑
k∈Z

f̂(·+ k), ϕperio

〉
T

:=
∑
k∈Z

〈
f̂(·+ k), ϕperioψ

〉
. (3)
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The next result shows that the RHS of (3) is finite for
appropriate weighted Sobolev spaces, whereas Theorem 2
guarantees that this definition is independent of the choice
of ψ.

Proposition 3. For s > 1/2, and w(x) = (1+|x|2)n, for some
n ∈ Z+, if f ∈ Ls2,1/w(R) then the series

∑
k∈Z

〈
f̂(·+ k), ϕ

〉
is absolutely convergent, for every bump function ϕ ∈ C∞c (R).

Proof. See [15].

Theorem 2 (Generalized PSF). Suppose s > 1/2, and w(x) =
(1 + |x|2)n for some n ∈ Z+. For all f ∈ Ls2,1/w(R) ∩ C(R),
the following equality holds∑

k∈Z
f(k)e−2πi〈·,k〉 =

∑
k∈Z

f̂(·+ k),

in the distributional sense, i.e., for all ϕperio ∈ C∞(T) and
every unitary function ψ, we have∑
k∈Z

〈
f(k)e−2πi〈·,k〉, ϕperio

〉
T

=
∑
k∈Z

〈
f̂(·+ k), ϕperioψ

〉
,

(4)

with both sides converging absolutely.

Sketch of Proof. Fix a periodic test function ϕperio, a unitary
function ψ, and put ϕ := ϕperio ψ ∈ C∞c (R), and g := fϕ̂. As
ϕ̂ ∈ S(R), and f ∈ L2,1/w(R) (according to Proposition 2) we
can argue that g ∈ L1(R). Hence, the Fourier transform ĝ of g
is a continuous function. After some algebraic manipulations,
we can rewrite the LHS of (4) as

LHS =
∑
k∈Z

f(k)ϕ̂(k) =
∑
k∈Z

g(k). (5)

We note that the series
∑
k∈Z g(k) is absolutely convergent

because f [·] ∈ `2,1/w(Z) (according to Theorem 1) and that

‖f [·]ϕ̂[·]‖`1(Z) ≤ ‖f [·]‖`2,1/w(Z) ‖ϕ̂[·]‖`2,w(Z) < +∞.

Similarly, we can show that the function h(x) :=
∑
k∈Z g(x+

k) is well-defined everywhere. This function h(x) is obviously
periodic and continuous. Now we can invoke the PSF for
g(x) ∈ L1(R) to obtain that the Fourier coefficients of h(x)
are given by ĥ[n] = ĝ(n), for n ∈ Z. On the other hand,
let us define the function u(x) :=

〈
f̂ , ϕ(· − x)

〉
. Using

the convolution theorem for the product fϕ̂ (which is of
course applicable because ϕ̂ ∈ S(R)), and the properties of
distributions we can show that u(x) = ĝ(x), for almost all
x ∈ R, and that u(x) is continuous. As ĝ is also continuous,
it must be that u = ĝ everywhere. Therefore, for every k ∈ Z,

ĥ[k] = ĝ(k) = u(k) =
〈
f̂ , ϕ(· − k)

〉
=
〈
f̂(·+ k), ϕ

〉
. (6)

From this equality and Proposition 3, we know that the Fourier
coefficients of h(x) is absolutely summable. This together
with the continuity of h(x) establishes that its Fourier series
converges uniformly to h(x). Especially, at x = 0, we have
h(0) =

∑
k∈Z ĥ[k], which gives us the desired equality (4)

thanks to (5), (6), and the definition of h(x).

V. CONCLUSION

We have provided a distributional proof of the Poisson
summation formula for non-decaying signals whose weak
derivatives up to order 1/2 + ε are slowly growing. These
signals are modeled as tempered distributions in weighted
Sobolev spaces. Although our results are stated only for the
sampling on Z, they can be easily extended to TZ for an
arbitrary sampling period T by the scaling property of the
Fourier transform. This generalized PSF may be used as a
foundational result for the sampling theory of non-decaying
signals. It also confirms the general validity of the statement:
“A periodization in the frequency domain maps into a sampling
in the time domain and vice versa.”
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