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The classical assumption in sampling and spline theories is that the input signal 
is square-integrable, which prevents us from applying such techniques to signals 
that do not decay or even grow at infinity. In this paper, we develop a sampling 
theory for multidimensional non-decaying signals living in weighted Lp spaces. The 
sampling and reconstruction of an analog signal can be done by a projection onto 
a shift-invariant subspace generated by an interpolating kernel. We show that, if 
this kernel and its biorthogonal counterpart are elements of appropriate hybrid-
norm spaces, then both the sampling and the reconstruction are stable. This is an 
extension of earlier results by Aldroubi and Gröchenig. The extension is required 
because it allows us to develop the theory for the ideal sampling of non-decaying 
signals in weighted Sobolev spaces. When the d-dimensional signal and its d/p + ε
derivatives, for arbitrarily small ε > 0, grow no faster than a polynomial in the 
Lp sense, the sampling operator is shown to be bounded even without a sampling 
kernel. As a consequence, the signal can also be interpolated from its samples with 
a nicely behaved interpolating kernel.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The sampling theory has a rich history [1,2] starting with the classical Whittaker–Shannon–Kotel’nikov 
sampling theorem [3]. The crucial fact behind the sampling theorem is that bandlimited signals live in 
the shift-invariant (spline-like) space generated by the sinc function. Sampling theory has been extended 
for the general shift-invariant spaces generated by splines or wavelets, which exhibit better localization 
properties than the ideal sinc kernel [4–6]. Although a large body of work has been dedicated to sampling 
in shift-invariant spaces, [7–20] just to name a few, a general theory for sampling non-decaying signals 
seems to be still missing. There were some attempts to generalize the sampling theorem for bandlimited 
signals of polynomial growth [21–24], but the bandlimitedness requirement is too restrictive. Aldroubi and 
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Gröchenig developed in [10] a theory for sampling signals in weighted Lp spaces with moderate weights. 
Although the authors did not emphasize this property, their theoretical framework can also handle the 
sampling of growing signals with a well-behaved sampling kernel as moderate weights might be decaying. 
However, in the absence of a prefilter, the ideal sampling of weighted Lp signals cannot be done stably. To 
the best of our knowledge, none of the existing theories apply to the ideal sampling of general functions that 
are non-decreasing, such as realizations of Brownian and Lévy processes, which happen to be intimately 
linked to splines [25–27]. Intuitively, however, there seems to be no fundamental reason to prevent one from 
sampling a continuous signal even if it is not decaying.

In the first half of this paper, we develop a theory for the regular sampling of multidimensional non-
decaying signals that are modeled as elements of weighted Lp spaces in which the growth of the signals 
is controlled by a decaying weighting function. These signals can be sampled and then reconstructed by a 
projection onto the shift-invariant subspace generated by an interpolating kernel ϕ where the non-decaying 
coefficients are allowed to be in the corresponding weighted �p space. We shall show that both the sampling 
and the reconstruction are stable through Riesz-type bounds, provided that the kernel ϕ is an element of 
an appropriate weighted hybrid-norm space [28,29]. These results are extensions of what has been presented 
in [10] where the kernel ϕ is required to be in a weighted Wiener amalgam space [30–38], which is not 
sensitive to the power p of the function spaces. By relaxing amalgam spaces to hybrid-norm spaces, we can 
control p which, together with the weighting function, dictates the order of growth of the signals. These 
extensions are nontrivial and, more importantly, essential for us to develop the theory of ideal sampling.

The second half of the paper deals with the ideal sampling of non-decaying signals when a sampling 
kernel is not available. For this, we switch from the weighted Lp space to a weighted Sobolev space of 
signals whose weak derivatives up to some (fractional) order are in the weighted Lp space. We shall prove 
that the sampling of such a signal is bounded if the weighting function decays polynomially and the order 
of the weighted Sobolev space is above d/p, where d is the dimension. The beauty of this result is that, 
when p tends to infinity, a signal can be sampled if its ε derivatives are bounded by a polynomial for an 
arbitrarily small ε > 0. This condition is just slightly stronger than requiring the signal to be continuous. 
Interestingly, the result on the boundedness of the ideal sampling makes an intermediate step towards the 
proof of the Poisson summation formula for a general class of growing functions [39]. Once the signal can 
be stably sampled, we shall show that it can also be stably interpolated with an interpolating kernel lying 
in some appropriate hybrid-norm space.

The outline of this paper is as follows: In Section 2, we introduce notations and definitions of the relevant 
function spaces. In Section 3, we provide several Riesz-type bounds that establish the sampling theory for 
non-decaying signals in weighted Lp spaces. In Section 4, the boundedness of the ideal sampling operator 
is proved for non-decaying signals in weighted Sobolev spaces and the spline interpolation of such a signal 
is discussed. Proofs of most results in Section 3 are given in Section 5.

2. Notations and definitions

Throughout the paper, we deal with complex-valued multidimensional functions with bold letters denoting 
variables in Rd or Zd, where d ≥ 1 is a fixed dimension. The Euclidean norm of a vector x ∈ Rd is denoted 
by ‖x‖. The complex conjugate of a number z ∈ C is denoted by z̄. The constants throughout the paper 
are denoted by C with subscripts that indicate the dependence of the constants on some parameters. For 
example, Cx,y,z is a constant that depends only on x, y, and z.

Following the convention in signal processing, we use parentheses for functions and square brackets for 
sequences to specify their values at a particular point. Especially, for a function f , f [·] denotes the sequence 
{f(k)}k∈Zd . Also, f∨ denotes the reflection f(−·). For 1 ≤ p ≤ ∞, we denote by p′ the Hölder conjugate 
that satisfies 1 + 1

′ = 1. As usual, the p-norms of a function f and a sequence c are respectively defined as
p p
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‖f‖Lp(Rd) :=

⎛⎝∫
Rd

|f(x)|pdx

⎞⎠1/p

; ‖c‖�p(Zd) :=

⎛⎝∑
k∈Zd

|c[k]|p
⎞⎠1/p

,

with 1 ≤ p < ∞. When p = ∞, these norms should be adjusted as

‖f‖L∞(Rd) := ess sup
x∈Rd

|f(x)|; ‖c‖�∞(Zd) := max
k∈Zd

|c[k]|.

The spaces Lp(Rd) and �p(Zd) consist of functions and sequences, respectively, whose p-norms are finite. 
Note that, in order for the p-norm to be positive definite, each element of Lp(Rd) is considered as an 
equivalent class of functions that are equal almost everywhere. Most of the time we just write f = g for two 
functions in the same equivalent class, but when extra care is needed, we switch to the notation f

a.e.= g. 
Equipped with these p-norms, the spaces Lp(Rd) and �p(Zd) become Banach spaces for all p ≥ 1. The scalar 
product is defined as

〈f, g〉 :=
∫
Rd

f(x)g(x)dx, for f ∈ Lp(Rd), g ∈ Lp′(Rd);

〈a, b〉 :=
∑
k∈Zd

a[k]b[k], for a ∈ �p(Zd), b ∈ �p′(Zd).

The notation 〈·, ·〉 is also used for the action of a distribution on a test function. The reason why we did not 
put any complex conjugation in the above definition of the scalar product is to make it compatible with the 
linearity of distributions. We also adopt other standard notations used in Schwartz’ distribution theory [40]. 
In particular, the Fourier transform of a tempered distribution f ∈ S ′(Rd) is defined as

〈Ff, ϕ〉 =
〈
f̂ , ϕ

〉
:= 〈f, ϕ̂〉 , ∀ϕ ∈ S(Rd),

where

ϕ̂(ξ) :=
∫
Rd

ϕ(x)e−2πj〈ξ,x〉dx.

The inverse Fourier-transform operator is denoted by F−1. The set of continuous functions is denoted by 
C(Rd).

The non-decaying signals in this paper are modeled as elements of weighted Lp spaces. Their growth is 
controlled by some decaying weighting function, various types of which being extensively discussed in [41]. 
We assume implicitly throughout the paper that any weighting function is real-valued, positive, symmetric, 
and continuous.

Definition 1 (Submultiplicative weights). A weighting function w : Rd → R is called (weakly) submultiplica-
tive if it is positive, symmetric, continuous, and there exists a constant Cw such that

w(x + y) ≤ Cw w(x)w(y), ∀x,y ∈ Rd. (1)

From the above definition, the submultiplicativity of w implies w(x) ≤ Cw w(x)w(0), or w(0) ≥ 1/Cw. On 
the other hand, w(0) = w(x− x) ≤ Cw w(x)w(−x) = Cw (w(x))2 and, thus, w(x) ≥

√
w(0)/Cw ≥ 1/Cw, 

for all x. This means that every submultiplicative weighting function is lower-bounded. An important 
example of submultiplicative weights is w(x) = (1 + ‖x‖2)α/2 for some α ≥ 0. For this weight, we can 
choose Cw to be Cα = 2α/2.
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Definition 2 (Weighted Lp and �p spaces). For p ≥ 1 and a weighting function w, a function f is in Lp,w(Rd)
if (fw) is in Lp(Rd); a sequence c is in �p,w(Zd) if {c[k]w(k)}k∈Zd is in �p(Zd). The corresponding weighted 
norms are defined as

‖f‖Lp,w(Rd) := ‖fw‖Lp(Rd); ‖c‖�p,w(Zd) := ‖cw[·]‖�p(Zd).

Note that, if w is submultiplicative, then Lp,w(Rd) ⊂ Lp(Rd) and �p,w(Zd) ⊂ �p(Zd) because w is 
lower-bounded.

Definition 3 (Weighted hybrid-norm spaces). For p, q ≥ 1, the hybrid-norm space Wp,q(Rd) includes all 
functions f : Rd → C whose norm defined as

‖f‖Wp,q(Rd) :=

⎛⎜⎝ ∫
[0,1]d

⎛⎝∑
k∈Zd

|f(x + k)|p
⎞⎠q/p

dx

⎞⎟⎠
1/q

is finite, with usual adjustments when p or q is infinity. The weighted hybrid-norm space Wp,q,w(Rd) with 
respect to a weighting function w is defined according to the following weighted norm:

‖f‖Wp,q,w(Rd) := ‖fw‖Wp,q(Rd).

These hybrid- (mixed-) norm spaces were mentioned in [28,29]. They are similar to Wiener amalgam 
spaces W̃p,q(Rd) [30–32], where the discrete and continuous norms are mixed in reverse order, like

‖f‖
W̃p,q(Rd) :=

⎛⎜⎜⎝∑
k∈Zd

⎛⎜⎝ ∫
[0,1]d

|f(x + k)|q dx

⎞⎟⎠
p/q

⎞⎟⎟⎠
1/p

.

Deeper results regarding Wiener amalgam spaces and their generalizations can be found in [33–38]. We note 
some obvious inclusions of hybrid-norm spaces: Wp,q2,w(Rd) ⊂ Wp,q1,w(Rd) when 1 ≤ q1 ≤ q2 ≤ ∞; and 
Wp1,q,w(Rd) ⊂ Wp2,q,w(Rd) when 1 ≤ p1 ≤ p2 ≤ ∞. Also, it is easy to see that Wp,p,w(Rd) = Lp,w(Rd).

3. Sampling in non-decaying shift-invariant spaces

In this section, we consider the sampling and reconstruction of non-decaying signals in some weighted
Lp space by projecting them into a shift-invariant space spanned by the integer shifts of a generator. This 
generator function can be thought of as a reconstruction (synthesis) filter, whereas its biorthogonal partner
plays the role of a sampling (analysis) filter. In order for the filtering and projection to make sense, we need 
some Riesz-type bounds for the shift-invariant space of non-decaying signals. Throughout this section, we 
fix p ≥ 1 and assume that w is some submultiplicative weighting function. The non-decaying shift-invariant 
space associated with the kernel (generator) ϕ is defined as

Vp,1/w(ϕ) :=

⎧⎨⎩f =
∑
k∈Zd

c[k]ϕ(· − k) : c ∈ �p,1/w(Zd)

⎫⎬⎭ .

The decaying weight 1/w controls the growing rate of the signals living in Vp,1/w(ϕ). When w = 1, we omit 
the subscript 1/w and simply write Vp(ϕ). As a special case, V2(sinc) is nothing but the space of bandlimited 
signals in Shannon’s sampling theory. A biorthogonal kernel ϕ̃ of ϕ is defined through the relation
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〈ϕ̃, ϕ(· − k)〉 = δ[k], ∀k ∈ Zd.

We shall show that, if the kernels ϕ and ϕ̃ are in appropriate hybrid-norm spaces, then the result of 
sampling a signal in Lp,1/w(Rd) using the kernel ϕ̃ followed by a reconstruction using the kernel ϕ is simply 
a projection onto Vp,1/w(ϕ). The projection becomes orthogonal when ϕ̃ is also an element of Vp,1/w(ϕ). 
In this case, we call it a dual kernel of ϕ and use the notation ϕdual instead of ϕ̃. It is well-known [2,7]
that such a dual kernel exists and is unique if {ϕ(· − k)}k∈Zd is a Riesz basis for V2(ϕ) or, equivalently, 
if 
∑

k∈Zd |ϕ̂(ξ + k)|2 is bounded from above and below for almost every ξ. The dual kernel ϕdual is then 
determined in the Fourier domain by

ϕ̂dual(ξ) = ϕ̂(ξ)∑
k∈Zd |ϕ̂(ξ + k)|2 .

We shall also show that, if the generator ϕ is in the hybrid-norm space W1,q,w(Rd) for q := max(p, p′)
and if {ϕ(· − k)}k∈Zd is a Riesz basis for V2(ϕ), then Vp,1/w(ϕ) is a closed subspace of Lp,1/w(Rd) and 
{ϕ(· − k)}k∈Zd is an unconditional basis for Vp,1/w(ϕ). We stress that Aldroubi and Gröchenig in [10]
obtained a similar result but only under the condition that ϕ lies in the stricter amalgam space W̃1,∞,w(Rd). 
By Minkowski’s inequality, it is not hard to see that W̃1,∞,w(Rd) ⊂ W̃1,q,w(Rd) ⊂ W1,q,w(Rd). This condition 
on the generator, however, is too strong for our present purpose because it does not allow us to control 
p. By operating on hybrid-norm spaces instead of Wiener amalgams, our main contribution in this section 
is to relax the admissibility condition on the generator of the shift-invariant space so that it now depends 
on p. This relaxation is required to prove the boundedness of the ideal sampling in Section 4.

Since we do prefilter the signal before taking its samples, it is important to make sure that the filtered sig-
nal is continuous. It is well-known that the convolution of an Lp function with an Lp′ function is continuous. 
Proposition 1 gives a weighted version of this fact.

Proposition 1. Let h ∈ Lp,w(Rd) and f ∈ Lp′,1/w(Rd), where p ≥ 1 and w is a submultiplicative weighting 
function. Then, the convolution g = h ∗ f is continuous and included in L∞,1/w(Rd).

Proof. See Section 5. �
Next, we present a series of Riesz-type bounds that relate the weighted discrete norm of the samples to 

the weighted continuous norms of the original and interpolated signals. We first show these bounds for a 
submultiplicative (growing) weight w and then use duality to obtain similar bounds for the decaying weight 
1/w.

Proposition 2. Let p ≥ 1 and let w be a submultiplicative weighting function. If ϕ ∈ W1,p,w(Rd) and 
c ∈ �p,w(Zd), then the function f =

∑
k∈Zd c[k]ϕ(· − k) belongs to Lp,w(Rd) and we have that

‖f‖Lp,w(Rd) ≤ Cw ‖c‖�p,w(Zd) ‖ϕ‖W1,p,w(Rd) ,

where Cw is the constant given in (1).

Proof. See Section 5. �
Proposition 3. Let p ≥ 1 and let w be a submultiplicative weighting function. If f ∈ Lp,w(Rd) and ϕ ∈
W1,p′,w(Rd), then f ∗ϕ is a well-defined continuous function. Its sampled sequence {c[k] := (f ∗ϕ)(k)}k∈Zd

belongs to �p,w(Zd) and the bound
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‖c‖�p,w(Zd) ≤ Cw ‖f‖Lp,w(Rd) ‖ϕ‖W1,p′,w(Rd)

holds, where Cw is the constant given in (1).

Proof. See Section 5. �
Propositions 2 and 3 are required to develop our theory. They are an extension of some earlier results 

in [10] for which the generator ϕ has to be strictly in the amalgam space W̃1,∞,w(Rd). This extension 
actually constitutes the technical part of the proofs. We now state the counterparts of these results for the 
decaying weighting function 1/w. Based on the comment in [10] that 1/w is a moderate weight, part of the 
following results for ϕ ∈ W̃1,∞,w(Rd) can be also be deduced from [10, Lemmas 2.9 & 2.10], although the 
authors did not specifically mention the possibility of sampling non-decaying signals. Our reason for using 
the weight 1/w is to explicitly indicate the sampling of non-decaying signals.

Proposition 4. Let p ≥ 1 and let w be a submultiplicative weighting function. If ϕ ∈ W1,p,w(Rd) and 
c ∈ �p,1/w(Zd), then the function f =

∑
k∈Zd c[k]ϕ(· − k) belongs to Lp,1/w(Rd) and we have that

‖f‖Lp,1/w(Rd) ≤ Cw ‖c‖�p,1/w(Zd) ‖ϕ‖W1,p,w(Rd) ,

where Cw is the constant given in (1).

Proof. By duality, we can express the 1
w -weighted norm of f as

‖f‖Lp,1/w(Rd) = sup
‖g‖

L
p′,w(Rd)=1

〈f, g〉 .

Using Hölder’s inequality and Proposition 3, we obtain

‖f‖Lp,1/w(Rd) = sup
‖g‖

L
p′,w(Rd)=1

〈∑
k∈Zd

c[k]ϕ(· − k), g
〉

= sup
‖g‖

L
p′,w(Rd)=1

∑
k∈Zd

c[k]
w(k) · w(k) 〈ϕ(· − k), g〉

≤ sup
‖g‖

L
p′,w(Rd)=1

‖c‖�p,1/w(Zd) · ‖(g ∗ ϕ∨)[·]‖�p′,w(Zd)

≤ ‖c‖�p,1/w(Zd) sup
‖g‖

L
p′,w(Rd)=1

Cw ‖g‖Lp′,w(Rd) ‖ϕ∨‖W1,p,w(Rd)

= Cw ‖c‖�p,1/w(Zd) ‖ϕ‖W1,p,w(Rd) ,

which is the desired bound. �
Proposition 5. Let p ≥ 1 and let w be a submultiplicative weighting function. If f ∈ Lp,1/w(Rd) and ϕ ∈
W1,p′,w(Rd), then f ∗ϕ is a well-defined continuous function. Its sampled sequence {c[k] := (f ∗ϕ)(k)}k∈Zd

belongs to �p,1/w(Zd) and the bound

‖c‖�p,1/w(Zd) ≤ Cw ‖f‖Lp,1/w(Rd) ‖ϕ‖W1,p′,w(Rd)

holds, where Cw is the constant given in (1).
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Proof. As ϕ ∈ W1,p′,w(Rd) ⊂ Wp′,p′,w(Rd) = Lp,w(Rd), the continuity of f ∗ ϕ is due to Proposition 1. 
Similar to the proof of Proposition 4, we use the duality, Hölder’s inequality, and Proposition 2 to obtain 
the desired bound as

‖c‖�p,1/w(Zd) = sup
‖b‖

�
p′,w(Zd)=1

〈b, c〉

= sup
‖b‖

�
p′,w(Zd)=1

∑
k∈Zd

b[k]
∫
Rd

f(x)ϕ(k − x) dx

= sup
‖b‖

�
p′,w(Zd)=1

∫
Rd

f(x)
w(x) · w(x)

∑
k∈Zd

b[k]ϕ(k − x) dx

≤ ‖f‖Lp,1/w(Rd) sup
‖b‖

�
p′,w(Zd)=1

∥∥∥∥∥∥
∑
k∈Zd

b[k]ϕ∨(· − k)

∥∥∥∥∥∥
Lp′,w(Rd)

≤ ‖f‖Lp,1/w(Rd) sup
‖b‖

�
p′,w(Zd)=1

Cw ‖b‖�p′,w(Zd) ‖ϕ∨‖W1,p′,w(Rd)

= Cw ‖f‖Lp,1/w(Rd) ‖ϕ‖W1,p′,w(Rd) . �
Theorem 1 captures both the sampling and the reconstruction of signals in Lp,1/w(Rd).

Theorem 1. Let ϕ ∈ W1,p,w(Rd) and ϕ̃ ∈ W1,p′,w(Rd) be two biorthogonal functions such that 〈ϕ, ϕ̃(· − k)〉 =
δ[k], ∀k ∈ Zd. We also assume that the weighting function w is submultiplicative. Then, the linear operator

Pϕf :=
∑
k∈Zd

〈f, ϕ̃(· − k)〉ϕ(· − k)

is a projector that continuously maps Lp,1/w(Rd) into the subspace Vp,1/w(ϕ) ⊂ Lp,1/w(Rd).

Proof. The fact that Pϕ is a projector (i.e., P 2
ϕ = Pϕ) simply follows from the biorthogonality of ϕ and ϕ̃. 

In particular, for all f ∈ Lp,1/w(Rd), we have that

P 2
ϕf =

∑
k∈Zd

〈Pϕf, ϕ̃(· − k)〉ϕ(· − k)

=
∑
k∈Zd

〈∑
�∈Zd

〈f, ϕ̃(· − �)〉ϕ(· − �), ϕ̃(· − k)
〉
ϕ(· − k)

=
∑
k∈Zd

∑
�∈Zd

〈f, ϕ̃(· − �)〉 δ[k − �]ϕ(· − k)

=
∑
k∈Zd

〈f, ϕ̃(· − k)〉ϕ(· − k)

= Pϕf.

To establish the continuity, we only need to show that Pϕ is bounded in the Lp,1/w-norm. We note that 
the expansion coefficients of Pϕf are given by c[k] = 〈f, ϕ̃(· − k)〉 = (f ∗ ϕ̃∨) (k), which allows us to invoke 
Proposition 5 to deduce that

‖c‖�p,1/w(Zd) ≤ Cw ‖ϕ̃‖W1,p′,w(Rd) ‖f‖Lp,1/w(Rd) .
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Using this bound and Proposition 4, we obtain

‖Pϕf‖Lp,1/w(Rd) ≤ Cw ‖c‖�p,1/w(Zd) ‖ϕ‖W1,p,w(Rd) ≤ C2
w‖ϕ‖W1,p,w(Rd)‖ϕ̃‖W1,p′,w(Rd)︸ ︷︷ ︸

constant

‖f‖Lp,1/w(Rd) ,

which shows the boundedness of the operator Pϕ. �
Before presenting Theorem 2, which is the central result of this section, we need two complementary 

results.

Lemma 1. Let p, q ≥ 1 and let w be a submultiplicative weighting function. If ϕ ∈ Wp,q,w(Rd) and c ∈ �1,w(Zd), 
then the function f =

∑
k∈Zd c[k]ϕ(· − k) also belongs to Wp,q,w(Rd) and we have that

‖f‖Wp,q,w(Rd) ≤ Cw ‖c‖�1,w(Zd) ‖ϕ‖Wp,q,w(Rd) ,

where Cw is the constant given in (1).

Proof. See Section 5. �
Proposition 6. Let q ≥ 2 and let w be a submultiplicative weighting function that additionally satisfies the 
Gelfand–Raikov–Shilov (GRS) condition

lim
n→∞

w(nk)1/n = 1, ∀k ∈ Zd. (2)

Suppose that the generator ϕ is in W1,q,w(Rd) and that {ϕ(· − k)}k∈Zd is a Riesz basis for V2(ϕ). Then, the 
dual generator ϕdual is in W1,q,w(Rd) as well.

Proof. See Section 5. �
Theorem 2. Let p ≥ 1, q = max (p, p′), and let w be a submultiplicative weighting function satisfying the 
GRS condition. Assume that ϕ ∈ W1,q,w and that {ϕ(· − k)}k∈Zd is a Riesz basis for V2(ϕ). Then, there 
exist constants Cw,p,ϕ < ∞ and C̃w,p,ϕ > 0 such that

C̃w,p,ϕ ‖c‖�p,1/w(Zd) ≤

∥∥∥∥∥∥
∑
k∈Zd

c[k]ϕ(· − k)

∥∥∥∥∥∥
Lp,1/w(Rd)

≤ Cw,p,ϕ ‖c‖�p,1/w(Zd), ∀c ∈ �p,1/w(Zd). (3)

This norm equivalence implies that Vp,1/w(ϕ) is a closed subspace of Lp,1/w(Rd) and that {ϕ(· − k)}k∈Zd is 
an unconditional basis for Vp,1/w(ϕ).

Proof. Let f :=
∑

k∈Zd c[k]ϕ(· − k). The right-hand-side inequality of (3) can be obtained by invoking 
Proposition 4

‖f‖Lp,1/w(Rd) ≤ Cw ‖c‖�p,1/w(Zd) ‖ϕ‖W1,p,w(Rd)

≤ Cw ‖c‖�p,1/w(Zd) ‖ϕ‖W1,q,w(Rd) (4)

= Cw,p,ϕ ‖c‖�p,1/w(Zd) ,

where (4) is a consequence of Hölder’s inequality and the fact that q ≥ p, and where the constant Cw,p,ϕ is 
equal to Cw ‖ϕ‖ d .
W1,q,w(R )
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Fig. 1. Illustration of a continuous function f(x) ∈ L1(R) whose sampled sequence f [k] grows exponentially.

The left-hand-side inequality can be obtained by noting that c[k] = 〈f, ϕdual(· −k)〉 = (f ∗ϕ∨
dual)(k), ∀k ∈

Zd. Since q = max(p, p′) ≥ 2 and from Proposition 6, it must be that ϕdual ∈ W1,q,w(Rd), and so ϕ∨
dual ∈

W1,q,w(Rd). This allows us to invoke Proposition 5 to get

‖c‖�p,1/w(Zd) ≤ Cw ‖f‖Lp,1/w(Rd) ‖ϕ∨
dual‖W1,p′,w(Rd) = Cw ‖f‖Lp,1/w(Rd) ‖ϕdual‖W1,p′,w(Rd)

≤ Cw ‖f‖Lp,1/w(Rd) ‖ϕdual‖W1,q,w(Rd) (5)

= C̃w,p,ϕ ‖f‖Lp,1/w(Rd) ,

where (5) is a consequence of Hölder’s inequality and the fact that q ≥ p′, and where the constant C̃w,p,ϕ

is equal to Cw ‖ϕdual‖W1,q,w(Rd). �
4. Ideal sampling

4.1. Sampling in weighted Sobolev spaces

We have considered so far the sampling of growing signals with a decaying sampling kernel in some 
weighted hybrid-norm space. In the case of ideal sampling, the kernel is just a Dirac impulse so that we 
need to restrict the signals to a subspace of weighted-Lp with some order of smoothness; namely, a weighted 
Sobolev space. (As illustrated in Fig. 1, if no smoothness is imposed on the analog signal, its samples might 
blow up exponentially even though the signal is continuous and absolutely integrable.) In the most basic 
sense, a Sobolev space Lk

p of order k, for a natural number k, consists of functions whose derivatives up to 
order k are all included in Lp. The concept can be extended for weighted-Lp spaces with a fractional order s
by means of the Fourier transform. As we are dealing with non-decaying functions, their Fourier transforms 
should be treated in the generalized sense of distributions.

Definition 4 (Weighted Sobolev spaces). For s ∈ R, 1 < p < ∞, and for a weighting function w, the weighted 
Sobolev space Ls

p,w(Rd) is defined as

Ls
p,w(Rd) :=

{
f ∈ S ′(Rd) : F−1

{
(1 + ‖ · ‖2) s

2 f̂
}
∈ Lp,w(Rd)

}
.

This space is equipped with the weighted Sobolev norm

‖f‖Ls
p,w(Rd) :=

∥∥∥F−1
{

(1 + ‖ · ‖2) s
2 f̂
}∥∥∥

Lp,w(Rd)
.
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In Definition 4, because (1 +‖ ·‖2) s
2 is a smooth and slowly increasing function for every s, the multiplica-

tion (1 +‖ · ‖2) s
2 f̂ is a well-defined tempered distribution. An important observation is that any distribution 

f ∈ Ls
p,w(Rd) can be written as the convolution f = fs ∗ ϕs, where fs := F−1

{
(1 + ‖ · ‖2) s

2 f̂
}
∈ Lp,w(Rd), 

and ϕs := F−1 {(1 + ‖ · ‖2)− s
2
}
. In the literature, the function ϕs when s > 0 is often referred to as Bessel 

potential kernel. The following properties of this kernel will be useful later. First, it is easy to see that ϕs

is a real and symmetric function. Second, it is well-known from Sobolev space theory (see for example [42, 
Proposition 6.1.5]) that ϕs is a positive function that decays exponentially outside a neighborhood of the 
origin. More precisely, there exists a constant Cs such that

ϕs(x) ≤ Cs e−π‖x‖, ∀ ‖x‖ >
1
π
. (6)

Third, it is also known that ϕs ∈ Lp′(Rd) whenever s > d/p (cf. [42, page 14]). Proposition 7 gives a stronger 
property of ϕs.

Proposition 7. Let 1 < p < ∞, s > d/p, and w(x) = (1 + ‖x‖2)α/2 for some α ≥ 0. Then, the Bessel 
potential kernel ϕs is an element of the weighted hybrid-norm space W1,p′,w(Rd).

Proof. We first show that ϕs ∈ Lp′,w(Rd). Indeed, from the listed properties of ϕs we have that

‖ϕs‖p
′

Lp′,w(Rd) =
∫

‖x‖≤ 1
π

|w(x)|p′ |ϕs(x)|p′
dx +

∫
‖x‖≥ 1

π

|w(x)|p′ |ϕs(x)|p′
dx

≤ ‖ϕs‖p
′

Lp′ (Rd) sup
‖x‖≤ 1

π

|w(x)|p′
+ Cs

∫
‖x‖≥ 1

π

(1 + ‖x‖2)
p′α
2 e−p′π‖x‖dx < ∞.

Next, we show that ϕs ∈ W1,p′,w(Rd) or, equivalently, that 
∥∥∑

k∈Zd ϕs,w(· + k)
∥∥
Lp′ (Td) is finite, where 

T := [0, 1] and ϕs,w := wϕs. In order to achieve that, we break this norm in two parts using Minkowski’s 
inequality∥∥∥∥∥∥

∑
k∈Zd

ϕs,w(· + k)

∥∥∥∥∥∥
Lp′ (Td)

≤

∥∥∥∥∥∥
∑

‖k‖≤
√
d+ 1

π

ϕs,w(· + k)

∥∥∥∥∥∥
Lp′ (Td)︸ ︷︷ ︸

A

+

∥∥∥∥∥∥
∑

‖k‖>
√
d+ 1

π

ϕs,w(· + k)

∥∥∥∥∥∥
Lp′ (Td)︸ ︷︷ ︸

B

, (7)

and then show that each of the two terms in the RHS of (7) is finite. On one hand, the term A can be 
bounded since

A ≤
∑

‖k‖≤
√
d+ 1

π

‖ϕs,w(· + k)‖Lp′ (Rd)

= #
{
k ∈ Zd : ‖k‖ ≤

√
d + 1

π

}
· ‖ϕs‖Lp′,w(Rd)

is finite because ϕs ∈ Lp′,w(Rd) and the set {k ∈ Zd : ‖k‖ ≤
√
d+1/π} has finite elements. In this estimate, 

we have extended the integrating region from Td to Rd. On the other hand, the term B can be bounded as

B =

⎛⎜⎝ ∫
d

⎛⎝ ∑
‖k‖>

√
d+ 1

ϕs,w(x + k)

⎞⎠p′

dx

⎞⎟⎠
1/p′

(8)

[0,1] π
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≤ Cs

⎛⎜⎝ ∫
[0,1]d

⎛⎝ ∑
‖k‖>

√
d+ 1

π

w(x + k)e−π‖x+k‖

⎞⎠p′

dx

⎞⎟⎠
1/p′

(9)

≤ Cs,α

⎛⎜⎝ ∫
[0,1]d

(1 + ‖x‖2)
p′α
2 ep

′π‖x‖ dx

⎞⎟⎠
1/p′

·
∑
k∈Zd

(1 + ‖k‖2)α
2 e−π‖k‖ (10)

≤ Cs,α sup
x∈[0,1]d

(1 + ‖x‖2)α
2 eπ‖x‖ ·

∑
k∈Zd

(1 + ‖k‖2)α
2 e−π‖k‖

= Cs,α (1 + d)α
2 eπ

√
d ·

∑
k∈Zd

(1 + ‖k‖2)α
2 e−π‖k‖ (11)

< +∞,

where (9) follows from (6); (10) follows from the submultiplicativity of w and from ‖x + k‖ ≥ ‖k‖ − ‖x‖. 
Finally, the sum in (11) is finite because the polynomial growth (1 + ‖k‖2)α/2 will be dominated by the 
exponential decay e−π‖k‖ when ‖k‖ is large enough. The proof is completed. �

Note that Ls
p,w(Rd) is identical to Lp,w(Rd) when s = 0. Is it true that every element of Ls

p,w(Rd) is an 
Lp,w(Rd) function? Proposition 8 gives an affirmative answer to that question when s > 0 and the weighting 
function w is decaying polynomially.

Proposition 8. If 1 < p < ∞, s > 0, and w(x) = (1 + ‖x‖2)α/2 for some α ≥ 0, then Ls
p,1/w ⊂ Lp,1/w.

Proof. As a special case of Proposition 7, we have that ϕs ∈ W1,1,w(Rd) = L1,w(Rd), for all s > 0. Let f
be an element of Ls

p,1/w(Rd). By duality we can write

‖f‖Lp,1/w(Rd) = sup
‖g‖

L
p′,w(Rd)=1

〈f, g〉 .

Using the submultiplicativity of w, Hölder’s, and Young’s inequalities, we have that

‖f‖Lp,1/w(Rd) = sup
‖g‖

L
p′,w(Rd)=1

〈fs ∗ ϕs, g〉

= sup
‖g‖

L
p′,w(Rd)=1

〈
fs
w
,w · (g ∗ ϕs)

〉
≤ sup

‖g‖
L
p′,w(Rd)=1

‖fs‖Lp,1/w(Rd) Cα ‖g‖Lp′,w(Rd) ‖ϕs‖L1,w(Rd)

= Cα ‖fs‖Lp,1/w(Rd) ‖ϕs‖L1,w(Rd) < ∞,

which implies that f ∈ Lp,1/w(Rd), completing the proof. �
We are now ready to state the main result of this section about the boundedness of the sampling operator 

for non-decaying signals of sufficient smoothness in the Lp sense. While Lp functions are equivalent classes, 
we select the unique member that is continuous and can therefore be safely sampled.

Theorem 3. Let 1 < p < ∞, s > d/p, and w(x) = (1 + ‖x‖2)α/2 for some α ≥ 0. Then, the sampling 
operator f �→ f |Zd is bounded from Ls

p,1/w(Rd) ∩ C(Rd) to �p,1/w(Zd), i.e., there exists a constant Cα,s,p

depending only on α, s, and p, such that
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‖f [·]‖�p,1/w(Zd) ≤ Cα,s,p ‖f‖Ls
p,1/w(Rd), ∀f ∈ Ls

p,1/w(Rd) ∩ C(Rd). (12)

Proof. From Proposition 7, we know that f a.e.= fs ∗ ϕs, where fs ∈ Lp,1/w(Rd) and ϕs ∈ W1,p′,w(Rd). 
Since W1,p′,w(Rd) ⊂ Wp′,p′,w(Rd) = Lp′,w(Rd), it follows from Proposition 1 that the convolution fs ∗ ϕs is 
continuous everywhere. Combining this with the fact that f a.e.= fs ∗ϕs and f is continuous, we deduce that 
f = fs ∗ ϕs everywhere.

Finally, it is safe to write f(k) = (fs ∗ ϕs)(k), for all k ∈ Zd, and invoke Proposition 5 to get

‖f [·]‖�p,1/w(Zd) ≤ Cα ‖ϕs‖W1,p′,w(Rd) ‖fs‖Lp,1/w(Rd)

= Cα ‖ϕs‖W1,p′,w(Rd)︸ ︷︷ ︸
Cα,s,p

‖f‖Ls
p,1/w(Rd) ,

which shows that (12) is true, completing the proof. �
4.2. Spline interpolation

From Section 4.1, a non-decaying signal can be stably sampled if its weak derivatives up to order d/p + ε

are bounded by a polynomial (in the Lp sense). Now, consider the spline interpolation of such a signal f(x)
from its samples {f(k)}k∈Zd using an interpolant ϕint. The interpolated signal is given by

fint(x) =
∑
k∈Zd

f(k)ϕint(x− k). (13)

To make sure that fint(k) = f(k), for all k ∈ Zd, the function ϕint has to satisfy the interpolation condition

ϕint(k) = δ[k], ∀k ∈ Zd.

Unfortunately, this condition significantly limits the choice of an interpolating kernel with desirable proper-
ties (such as localization, smoothness, etc.). Therefore, it is preferable to perform the interpolation on the 
filtered version of the samples of the signal using a better kernel such as B-splines [4–6]. More precisely, the 
interpolated signal can be alternatively obtained by

fint(x) =
∑
k∈Zd

c[k]ϕ(x− k), (14)

where ϕ is the chosen kernel (such as a B-spline), and the coefficients {c[k]}k∈Zd are obtained by filtering 
the samples {f [k]}k∈Zd with a digital interpolation filter h[·] whose discrete-domain Fourier transform is 
given by

ĥ(ξ) := 1∑
k∈Zd ϕ(k)e−2πj〈ξ,k〉 . (15)

In (15), we assumed that 
∑

k∈Zd ϕ(k)e−2πj〈ξ,k〉 �= 0, for almost all ξ ∈ Rd. The interpolant ϕint and the 
kernel ϕ are then related by

ϕint =
∑
k∈Zd

h[k]ϕ(· − k). (16)

The bound of Proposition 9 provides a safeguard for the spline interpolation of a non-decaying signal, 
given that the original signal lies in some weighted Sobolev space with a large-enough order of smoothness 
and the interpolating kernel behaves nicely.
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Proposition 9. Let 1 < p < ∞, s > d/p, and w(x) = (1 + ‖x‖2)α/2 for some α ≥ 0. Assume that ϕ ∈
W1,p,w(Rd), ϕ[·] ∈ �1,w(Zd), and that 

∑
k∈Zd ϕ(k)e−2πj〈ξ,k〉 is nonzero for almost all ξ. If f ∈ Ls

p,1/w(Rd) ∩
C(Rd), then the interpolated function fint given in (14) is included in Lp,1/w(Rd), and we have that

Cα,p,ϕ ‖fint‖Lp,1/w(Rd) ≤ ‖f [·]‖�p,1/w(Zd) ≤ Cα,s,p ‖f‖Ls
p,1/w(Rd) . (17)

Proof. Since the right-hand-side inequality follows directly from Theorem 3, we only need to show the 
left-hand-side inequality. Note that the weight w(x) = (1 + ‖x‖2)α/2 is submultiplicative and satisfies the 
GRS condition specified in (2). Since ϕ[·] ∈ �1,w(Zd) and ĥ(ξ) = 1/

∑
k∈Zd ϕ(k)e−2πj〈ξ,k〉, it follows from 

the weighted version of Wiener’s lemma [41, Theorem 6.2] that the interpolation filter h is a sequence 
in �1,w(Zd). Combining this with (16) and Lemma 1, we deduce that the interpolant ϕint also belongs to 
W1,p,w(Rd). It then follows from (13) and Proposition 4 that

‖fint‖Lp,1/w(Rd) ≤ Cα ‖ϕint‖W1,p,w(Rd)︸ ︷︷ ︸
1/Cα,p,ϕ

‖f [·]‖�p,1/w(Zd) ,

which proves the left-hand-side inequality. �
5. Proofs

5.1. Proof of Proposition 1

We first show that g is a well-defined function in L∞,1/w(Rd) using Hölder’s inequality and the submul-
tiplicativity of w. In particular, for all x ∈ Rd, we have that

1
w(x) |(h ∗ f)(x)| =

∣∣∣∣∣∣
∫
Rd

w(y)h(y) f(x− y)
w(x)w(−y) dy

∣∣∣∣∣∣
≤ Cw

∣∣∣∣∣∣
∫
Rd

w(y)h(y) f(x− y)
w(x− y) dy

∣∣∣∣∣∣
≤ Cw‖wh‖Lp(Rd) ‖f/w‖Lp′ (Rd)

= Cw‖h‖Lp,w(Rd) ‖f‖Lp′,1/w(Rd). (18)

To prove the continuity of g, we first recall a classical result in functional analysis: Cc(Rd), the set of 
continuous and compactly supported functions, is dense in Lp(Rd). Since Cc(Rd) ⊂ Lp,w(Rd) ⊂ Lp(Rd), it 
follows that Cc(Rd) is also dense in Lp,w(Rd). Hence, it suffices to show that g is continuous for h ∈ Cc(Rd). 
This assumption allows us to pick an interval [−a, a]d that includes the supports of both h and h(· − x0)
for x0 sufficiently small. By the shift-invariance of convolution and the bound (18) we have that, for any 
x ∈ Rd,

|g(x) − g(x− x0)| = |((h− h(· − x0)) ∗ f)(x)|

≤ Cw w(x)‖f‖Lp′,1/w(Rd) ‖h− h(· − x0)‖Lp,w(Rd)

≤ Cw w(x)‖f‖Lp′,1/w(Rd) (2a)
d
p sup

y∈[−a,a]
w(y) sup

y∈[−a,a]
|h(y) − h(y − x0)|

≤ Cw,x,f,a sup
y∈[−a,a]

|h(y) − h(y − x0)|,
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where the constant Cw,x,f,a is a notational aggregate of the factors that depend neither on h nor on x0. 
Since h is uniformly continuous, the RHS converges to zero as ‖x0‖ → 0, which proves the continuity of g
at the point x.

5.2. Proof of Proposition 2

By breaking the integral over Rd in parts over cubes of size 1 in each dimension, we get

‖f‖Lp,w(Rd) =

⎛⎜⎝∑
k∈Zd

∫
[0,1]d

|w(x + k)f(x + k)|p dx

⎞⎟⎠
1/p

≤ Cw

⎛⎜⎝ ∫
[0,1]d

∑
k∈Zd

∣∣∣∣∣∣
∑
�∈Zd

w(�)|c[�]| · w(x + k − �)|ϕ(x + k − �)|

∣∣∣∣∣∣
p

dx

⎞⎟⎠
1/p

(19)

= Cw

⎛⎜⎝ ∫
[0,1]d

‖cw ∗ ϕw,x‖p�p(Zd) dx

⎞⎟⎠
1/p

(20)

≤ Cw

⎛⎜⎝ ∫
[0,1]d

‖cw‖p�p(Zd) · ‖ϕw,x‖p�1(Zd) dx

⎞⎟⎠
1/p

(21)

= Cw ‖c‖�p,w(Zd) ‖ϕ‖W1,p,w(Rd) ,

where (19) is justified by the Fubini–Tonelli theorem and the submultiplicativity of w; the convolution in (20)
was obtained by putting cw := w|c| and ϕw,x[·] := w(· + x)|ϕ(· + x)|; and, finally, (21) is a consequence of 
Young’s inequality for discrete convolutions.

5.3. Proof of Proposition 3

Since f ∈ Lp,w(Rd) ⊂ Lp(Rd) ⊂ Lp,1/w(Rd) and ϕ ∈ W1,p′,w(Rd) ⊂ Wp′,p′,w(Rd) = Lp′,w(Rd), it follows 
from Proposition 1 that the convolution f ∗ ϕ is a continuous function. Thus, its samples on the integer 
multigrid are well-defined. Next, we bound the discrete norm of these samples as

‖c‖�p,w(Zd) =

⎛⎝∑
k∈Zd

∣∣∣∣∣∣w(k)
∫
Rd

f(x)ϕ(k − x) dx

∣∣∣∣∣∣
p⎞⎠1/p

≤ Cw

⎛⎝∑
k∈Zd

∣∣∣∣∣∣
∫
Rd

fw(x) · ϕw(k − x) dx

∣∣∣∣∣∣
p⎞⎠1/p

(22)

= Cw

⎛⎜⎝∑
k∈Zd

∣∣∣∣∣∣∣
∑
�∈Zd

∫
[0,1]d

fw(x + �) · ϕw(k − (x + �)) dx

∣∣∣∣∣∣∣
p⎞⎟⎠

1/p

= Cw

⎛⎜⎝∑
k∈Zd

∣∣∣∣∣∣∣
∫

d

∑
�∈Zd

fw(x + �) · ϕw(k − x− �) dx

∣∣∣∣∣∣∣
p⎞⎟⎠

1/p
[0,1]
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≤ Cw

∫
[0,1]d

⎛⎝∑
k∈Zd

∣∣∣∣∣∣
∑
�∈Zd

fw(x + �) · ϕw(k − x− �)

∣∣∣∣∣∣
p⎞⎠1/p

dx (23)

= Cw

∫
[0,1]d

‖fw,x ∗ ϕw,−x‖�p(Zd) dx (24)

≤ Cw

∫
[0,1]d

‖fw,x‖�p(Zd) · ‖ϕw,−x‖�1(Zd) dx, (25)

where (22) follows from the submultiplicativity of w and from putting fw := w|f | and ϕw := w|ϕ|; (23)
follows from Minkowski’s inequality for integrals; in (24) we defined the two sequences fw,x[·] := fw(· + x)
and ϕw,−x[·] := ϕw(· − x) for each x ∈ [0, 1]d; and, finally, (25) follows from Young’s inequality.

We then proceed by applying Hölder’s inequality to the RHS of (25) to get

‖c‖�p,w(Zd) ≤ Cw

⎛⎜⎝ ∫
[0,1]d

‖fw,x‖p�p(Zd) dx

⎞⎟⎠
1/p

·

⎛⎜⎝ ∫
[0,1]d

‖ϕw,−x‖p
′

�1(Zd) dx

⎞⎟⎠
1/p′

= Cw

⎛⎜⎝ ∫
[0,1]d

∑
k∈Zd

|fw(x + k)|p dx

⎞⎟⎠
1/p

·

⎛⎜⎝ ∫
[0,1]d

⎛⎝∑
k∈Zd

ϕw(k − x)

⎞⎠p′

dx

⎞⎟⎠
1/p′

= Cw

⎛⎜⎝∑
k∈Zd

∫
[0,1]d

|fw(x + k)|p dx

⎞⎟⎠
1/p

·

⎛⎜⎝ ∫
[−1,0]d

⎛⎝∑
k∈Zd

ϕw(x + k)

⎞⎠p′

dx

⎞⎟⎠
1/p′

= Cw

⎛⎝∫
Rd

|f(x)w(x)|p dx

⎞⎠1/p

·

⎛⎜⎝ ∫
[0,1]d

⎛⎝∑
k∈Zd

ϕw(x + k)

⎞⎠p′

dx

⎞⎟⎠
1/p′

= Cw ‖f‖Lp,w(Rd) ‖ϕ‖W1,p′,w(Rd) ,

thus completing the proof.

5.4. Proof of Lemma 1

As usual, let us put cw := w|c| and ϕw,x[·] := w(· +x)|ϕ(· +x)|. By using the submultiplicative property 
of w and Young’s inequality, we get the estimate

‖f‖Wp,q,w(Rd) =

⎛⎜⎝ ∫
[0,1]d

⎛⎝∑
k∈Zd

∣∣∣∣∣∣w(x + k)
∑
�∈Zd

c[�]ϕ(x + k − �)

∣∣∣∣∣∣
p⎞⎠q/p

dx

⎞⎟⎠
1/q

≤ Cw

⎛⎜⎝ ∫
[0,1]d

⎛⎝∑
k∈Zd

∣∣∣∣∣∣
∑
�∈Zd

cw[�]ϕw,x[k − �]

∣∣∣∣∣∣
p⎞⎠q/p

dx

⎞⎟⎠
1/q

= Cw

⎛⎜⎝ ∫
d

(
‖cw ∗ ϕw,x‖�p(Zd)

)q

dx

⎞⎟⎠
1/q
[0,1]
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≤ Cw

⎛⎜⎝ ∫
[0,1]d

(
‖cw‖�1(Zd) · ‖ϕw,x‖�p(Zd)

)q

dx

⎞⎟⎠
1/q

= Cw ‖cw‖�1(Zd)

⎛⎜⎝ ∫
[0,1]d

⎛⎝∑
k∈Zd

|w(x + k)ϕ(x + k)|p
⎞⎠q/p

dx

⎞⎟⎠
1/q

= Cw ‖c‖�1,w(Zd) ‖ϕ‖Wp,q,w(Rd) ,

which is the desired bound.

5.5. Proof of Proposition 6

Let us define the autocorrelation sequence of ϕ as

a[k] :=
∫
Rd

ϕ(x)ϕ(x− k) dx, for k ∈ Zd. (26)

We first want to show that a ∈ �1,w(Zd). Let us put ψ(x) := ϕ(−x). Then, similar to the bound (25) in the 
proof of Proposition 3, we can get

‖a‖�1,w(Zd) = ‖(ϕ ∗ ψ)[·]‖�1,w(Zd)

≤ Cw

∫
[0,1]d

‖ϕw,x‖�1(Zd) · ‖ψw,−x‖�1(Zd) dx (27)

= Cw

∫
[0,1]d

1 · ‖ϕw,x‖2
�1(Zd) dx (28)

≤ Cw

⎛⎜⎝ ∫
[0,1]d

‖ϕw,x‖q�1(Zd) dx

⎞⎟⎠
2/q

(29)

= Cw · ‖ϕ‖2
W1,q,w(Rd) < ∞,

where we adopted in (27) again the notation fw,x[·] := w(· + x)|f(· + x)|; (28) is because ‖ψw,−x‖�1(Zd) =
‖ϕw,x‖�1(Zd); (29) follows from Hölder’s inequality and the fact that q ≥ 2. So, we have proved that a ∈
�1,w(Zd).

Next, from the hypothesis that {ϕ(· − k)}k∈Zd is a Riesz basis for V2(ϕ), the dual generator ϕdual is 
uniquely determined by the expansion

ϕdual =
∑
k∈Zd

b[k]ϕ(· − k), (30)

where the coefficient sequence b is given in the Fourier domain by

b̂(ξ) = 1∑
k∈Zd |ϕ̂(ξ + k)|2

= 1
â(ξ) .
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Here, â and b̂ are the Fourier series associated with the sequences of coefficients a and b, respectively. 
Because a ∈ �1,w(Zd) and w satisfies the GRS condition, we now invoke the weighted version of Wiener’s 
lemma (see [41, Theorem 6.2]) to deduce that b ∈ �1,w(Zd). Finally, from (30) and Lemma 1, we have that

‖ϕdual‖W1,q,w(Rd) ≤ Cw ‖b‖�1,w(Zd) ‖ϕ‖W1,q,w(Rd) < ∞.

In conclusion, the dual kernel ϕdual belongs to W1,q,w(Rd), too.

References

[1] A.J. Jerri, The Shannon sampling theorem—its various extensions and applications: a tutorial review, Proc. IEEE 65 (11) 
(1977) 1565–1596.

[2] M. Unser, Sampling—50 years after Shannon, Proc. IEEE 88 (4) (2000) 569–587.
[3] C. Shannon, Communication in the presence of noise, Proc. IRE 37 (1) (1949) 10–21.
[4] M. Unser, A. Aldroubi, M. Eden, B-spline signal processing: part I—theory, IEEE Trans. Signal Process. 41 (2) (1993) 

821–833.
[5] M. Unser, A. Aldroubi, M. Eden, B-spline signal processing: part II—efficiency design and applications, IEEE Trans. 

Signal Process. 41 (2) (1993) 834–848.
[6] M. Unser, Splines: a perfect fit for signal and image processing, IEEE Signal Process. Mag. 16 (6) (1999) 22–38.
[7] A. Aldroubi, M. Unser, Sampling procedures in function spaces and asymptotic equivalence with Shannon’s sampling 

theory, Numer. Funct. Anal. Optim. 15 (1) (1994) 1–21.
[8] A. Aldroubi, H.G. Feichtinger, Exact iterative reconstruction algorithm for multivariate irregularly sampled functions in 

spline-like spaces: The Lp-theory, Proc. Amer. Math. Soc. 126 (9) (1998) 2677–2686.
[9] A. Aldroubi, K. Gröchenig, Beurling–Landau-type theorems for non-uniform sampling in shift invariant spline spaces, 

J. Fourier Anal. Appl. 6 (1) (2000) 93–103.
[10] A. Aldroubi, K. Gröchenig, Nonuniform sampling and reconstruction in shift-invariant spaces, SIAM Rev. 43 (4) (2001) 

585–620.
[11] A. Aldroubi, Non-uniform weighted average sampling and reconstruction in shift-invariant and wavelet spaces, Appl. 

Comput. Harmon. Anal. 13 (2) (2002) 151–161.
[12] M.Z. Nashed, Q. Sun, Sampling and reconstruction of signals in a reproducing kernel subspace of Lp(Rd), J. Funct. Anal. 

258 (7) (2010) 2422–2452.
[13] M.Z. Nashed, Q. Sun, J. Xian, Convolution sampling and reconstruction of signals in a reproducing kernel subspace, Proc. 

Amer. Math. Soc. 141 (6) (2013) 1995–2007.
[14] M.Z. Nashed, G.G. Walter, General sampling theorems for functions in reproducing kernel Hilbert spaces, Math. Control 

Signals Systems 4 (4) (1991) 363–390.
[15] C.V.M. van der Mee, M.Z. Nashed, S. Seatzu, Sampling expansions and interpolation in unitarily translation invariant 

reproducing kernel Hilbert spaces, Adv. Comput. Math. 19 (4) (2003) 355–372.
[16] D. Han, M.Z. Nashed, Q. Sun, Sampling expansions in reproducing kernel Hilbert and Banach spaces, Numer. Funct. 

Anal. Optim. 30 (9–10) (2009) 971–987.
[17] A. Aldroubi, Q. Sun, W.-S. Tang, Convolution, average sampling, and a Calderon resolution of the identity for shift-

invariant spaces, J. Fourier Anal. Appl. 11 (2) (2005) 215–244.
[18] A. Aldroubi, Q. Sun, W.-S. Tang, Non-uniform average sampling and reconstruction in multiply generated shift-invariant 

spaces, Constr. Approx. 20 (2) (2004) 173–189.
[19] H.G. Feichtinger, K. Gröchenig, Iterative reconstruction of multivariate band-limited functions from irregular sampling 

values, SIAM J. Math. Anal. 23 (1) (1992) 244–261.
[20] H.G. Feichtinger, K. Gröchenig, Irregular sampling theorems and series expansions of band-limited functions, J. Math. 

Anal. Appl. 167 (2) (1992) 530–556.
[21] E. Pfaffelhuber, Sampling series for band-limited generalized functions, IEEE Trans. Inform. Theory 17 (6) (1971) 650–654.
[22] G.G. Walter, Sampling bandlimited functions of polynomial growth, SIAM J. Math. Anal. 19 (5) (1988) 1198–1203.
[23] G.G. Walter, Nonuniform sampling of bandlimited functions of polynomial growth, SIAM J. Math. Anal. 23 (4) (1992) 

995–1003.
[24] A.I. Zayed, A.G. García, Nonuniform sampling of bandlimited signals with polynomial growth on the real axis, IEEE 

Trans. Inform. Theory 43 (5) (1997) 1717–1721.
[25] M. Unser, P.D. Tafti, An Introduction to Sparse Stochastic Processes, Cambridge University Press, 2014.
[26] M. Unser, P.D. Tafti, Q. Sun, A unified formulation of Gaussian versus sparse stochastic processes—part I: continuous-

domain theory, IEEE Trans. Inform. Theory 60 (3) (2014) 1945–1962.
[27] M. Unser, P.D. Tafti, A. Amini, H. Kirshner, A unified formulation of Gaussian versus sparse stochastic processes—part II: 

discrete-domain theory, IEEE Trans. Inform. Theory 60 (5) (2014) 3036–3051.
[28] G. Zimmermann, Projective multiresolution analysis and generalized sampling, Ph.D. thesis, University of Maryland, 

College Park, MD, Dec. 1994.
[29] J.J. Benedetto, G. Zimmermann, Sampling multipliers and the Poisson summation formula, J. Fourier Anal. Appl. 3 (5) 

(1997) 505–523.
[30] N. Wiener, On the representation of functions by trigonometric integrals, Math. Z. 24 (1) (1926) 575–616.
[31] N. Wiener, Tauberian theorems, Ann. Math. 33 (1) (1932) 1–100.

http://refhub.elsevier.com/S1063-5203(15)00147-5/bib4A657272693A31393737s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib4A657272693A31393737s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib556E7365723A32303030s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib5368616E6E6F6E3A31393439s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib556E73657241453A3139393361s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib556E73657241453A3139393361s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib556E73657241453A3139393362s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib556E73657241453A3139393362s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib556E7365723A31393939s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib416C64726F756269553A31393934s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib416C64726F756269553A31393934s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib416C64726F756269463A31393938s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib416C64726F756269463A31393938s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib416C64726F756269473A32303030s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib416C64726F756269473A32303030s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib416C64726F756269473A32303031s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib416C64726F756269473A32303031s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib416C64726F7562693A32303032s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib416C64726F7562693A32303032s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib4E6173686564533A32303130s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib4E6173686564533A32303130s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib4E617368656453583A32303132s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib4E617368656453583A32303132s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib4E6173686564573A31393931s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib4E6173686564573A31393931s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib76616E4465724D65654E533A31393931s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib76616E4465724D65654E533A31393931s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib48616E4E533A32303039s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib48616E4E533A32303039s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib416C64726F75626953543A32303035s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib416C64726F75626953543A32303035s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib416C64726F75626953543A32303034s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib416C64726F75626953543A32303034s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib466569636874696E676572473A3139393261s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib466569636874696E676572473A3139393261s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib466569636874696E676572473A3139393262s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib466569636874696E676572473A3139393262s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib5066616666656C68756265723A31393731s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib57616C7465723A31393838s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib57616C7465723A31393932s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib57616C7465723A31393932s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib5A61796564473A31393937s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib5A61796564473A31393937s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib556E736572543A32303134s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib556E73657254533A32303134s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib556E73657254533A32303134s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib556E73657254414B3A32303134s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib556E73657254414B3A32303134s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib5A696D6D65726D616E6E3A31393934s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib5A696D6D65726D616E6E3A31393934s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib42656E65646574746F5A3A31393937s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib42656E65646574746F5A3A31393937s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib5769656E65723A31393236s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib5769656E65723A31393332s1


H.Q. Nguyen, M. Unser / Appl. Comput. Harmon. Anal. 43 (2017) 76–93 93
[32] N. Wiener, The Fourier Integral and Certain of Its Applications, MIT Press, Cambridge, 1933.
[33] H.G. Feichtinger, Banach convolution algebras of Wiener type, in: Proc. Conf. Functions, Series, Operators, Budapest, 

Hungary, 1980, pp. 509–524.
[34] H.G. Feichtinger, Generalized amalgams, with applications to Fourier transform, Canad. J. Math. 42 (3) (1990) 395–409.
[35] H.G. Feichtinger, New results on regular and irregular sampling based on Wiener amalgams, in: K. Jarosz (Ed.), Proc. 

Conf. Function Spaces, in: Lecture Notes in Pure and Appl. Math., vol. 136, Dekker, New York, 1991, pp. 107–121.
[36] H.G. Feichtinger, Wiener amalgams over Euclidean spaces and some of their applications, in: K. Jarosz (Ed.), Proc. Conf. 

Function Spaces, in: Lecture Notes in Pure and Appl. Math., vol. 136, Dekker, New York, 1991, pp. 123–137.
[37] J.J.F. Fournier, J. Steward, Amalgams of Lp and �q , Bull. Amer. Math. Soc. 13 (1985) 1–21.
[38] C. Heil, An introduction to weighted Wiener amalgams, in: M. Krishna, R. Radha, S. Thangavelu (Eds.), Wavelets and 

Their Applications, Allied Publishers, New Delhi, 2003, pp. 183–216.
[39] H.Q. Nguyen, M. Unser, Generalized Poisson summation formula for tempered distributions, in: Proc. 11th Int. Conf. 

Sampling Theory and Applications, SampTA’15, Washington, DC, USA, 2015, pp. 1–5.
[40] L. Schwartz, Théorie des Distributions, Hermann, Paris, France, 1966.
[41] K. Gröchenig, Weight functions in time-frequency analysis, arXiv:math/0611174, 2006.
[42] L. Grafakos, Modern Fourier Analysis, 2nd edition, Springer, 2008.

http://refhub.elsevier.com/S1063-5203(15)00147-5/bib5769656E65723A31393333s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib466569636874696E6765723A31393830s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib466569636874696E6765723A31393830s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib466569636874696E6765723A31393930s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib466569636874696E6765723A3139393161s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib466569636874696E6765723A3139393161s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib466569636874696E6765723A3139393162s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib466569636874696E6765723A3139393162s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib466F75726E696572533A31393835s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib4865696C3A32303032s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib4865696C3A32303032s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib4E677579656E553A32303135s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib4E677579656E553A32303135s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib536368776172747A3A31393531s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib47726F6368656E69673A32303036s1
http://refhub.elsevier.com/S1063-5203(15)00147-5/bib47726166616B6F733A3230303862s1

	A sampling theory for non-decaying signals
	1 Introduction
	2 Notations and deﬁnitions
	3 Sampling in non-decaying shift-invariant spaces
	4 Ideal sampling 
	4.1 Sampling in weighted Sobolev spaces
	4.2 Spline interpolation

	5 Proofs
	5.1 Proof of Proposition 1
	5.2 Proof of Proposition 2
	5.3 Proof of Proposition 3
	5.4 Proof of Lemma 1
	5.5 Proof of Proposition 6

	References


