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Learning Convex Regularizers for Optimal
Bayesian Denoising

Ha Q. Nguyen

Abstract—We propose a data-driven algorithm for the Bayesian
estimation of stochastic processes from noisy observations. The pri-
mary statistical properties of the sought signal are specified by the
penalty function (i.e., negative logarithm of the prior probability
density function). Our alternating direction method of multipli-
ers (ADMM) based approach translates the estimation task into
successive applications of the proximal mapping of the penalty
function. Capitalizing on this direct link, we define the proximal
operator as a parametric spline curve and optimize the spline coef-
ficients by minimizing the average reconstruction error for a given
training set. The key aspects of our learning method are that the
associated penalty function is constrained to be convex and the
convergence of the ADMM iterations is proven. As a result of these
theoretical guarantees, adaptation of the proposed framework to
different levels of measurement noise is extremely simple and does
not require any retraining. We apply our method to estimation of
both sparse and nonsparse models of Lévy processes for which the
minimum mean square error (MMSE) estimators are available.
We carry out a single training session for a fixed level of noise
and perform comparisons at various signal-to-noise ratio values.
Simulations illustrate that the performance of our algorithm are
practically identical to the one of the MMSE estimator irrespective
of the noise power.

Index Terms—Bayesian estimation, learning for inverse prob-
lems, alternating direction method of multipliers, convolutional
neural networks, back propagation, sparsity, convex optimization,
proximal methods, monotone operator theory.

1. INTRODUCTION

TATISTICAL inference is a central theme in the the-
ory of inverse problems. Bayesian methods, in particular,
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have been successfully used in several signal processing prob-
lems [1]-[3]. Among these is the estimation of signals under
the additive white Gaussian noise (AWGN) hypothesis, which
we shall consider throughout this paper. Specifically, we are in-
terested in the problem of estimating a signal x € RY from its
noisy observation

y=x+mn, (D

where n is AWGN of variance o2. Conventionally, the unob-
servable signal x is modeled as a random object with a prior
probability density function (pdf) px and the estimation is per-
formed by assessing the posterior pdf pyy that characterizes
the problem statistically. In addition to being important on its
own right, this classical problem has recently gained a sig-
nificant amount of interest. The main reason of the momen-
tum is that Bayesian estimators can be directly integrated—as
“denoisers”—into algorithms that are designed for more so-
phisticated inverse problems [4]. In plain terms, employing a
more accurate denoising technique helps one improve the per-
formance of the subsequent reconstruction method. Such ideas
have been presented in various applications including deconvo-
lution [5], super-resolved sensing [6], and compressive imag-
ing [7], to name just a few.

The maximum a posteriori (MAP) inference is by far the most
widely used Bayesian paradigm due its computational conve-
nience [8]. This approach assumes the existence of a whitening
operator L such that the pdf of the transformed signal u = Lx
is separable, which allows us to express the MAP estimation as

N
tar = argmin{ Sy~ l3 + 07 Y Bo((Lal) @)
z i=1
where & = — log py is called the penalty function and py is
the pdf of each component of u. Through this expression, com-
patibility of MAP with the regularized least-squares approach
is well-understood. For example, by this parallelism, the im-
plicit statistical links between the popular sparsity-based meth-
ods [9] and MAP considerations based on generalized Gaussian,
Laplace, or hyper-Laplace priors is established [10]-[12]. More-
over, recent iterative optimization techniques including (fast)
iterative shrinkage/thresholding algorithm ((F)ISTA) [13]-[15]
and ADMM [16] allow us to handle the optimization problem (2)
very efficiently.

Fundamentally, the estimation performance of MAP is dif-
ferentiated by the underlying prior model. When the inherent
nature of the underlying signal is (fully or partially) determin-
istic, identification of the correct prior is challenging. Fitting
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statistical models to such signals (or collections of them) is fea-
sible [17]. Yet, the apparent downside is that the reference pdf,
which specifies the inference, can be arbitrary. Even when the
signal of interest is purely stochastic and the prior is exactly
known, deviations from the initial statistical assumptions is ob-
served [18]. More importantly, mathematical characterization of
the estimation error of the MAP solution (that is the maximizer
of the posterior pdf) by means of mean-square error (MSE) is
available only in limited cases [19]. Hence, algorithms driven
by rigorous MAP considerations can still be suboptimal with
respect to MSE [20], [21]. These observations necessitate revis-
iting MAP-like formulations from the perspective of estimation
accuracy instead of strict derivations based on the prior model.

A. Overview of Related Literature

Several works have aimed at improving the performance of
MAP. Cho et al. have introduced a nonconvex method to en-
force the strict fit between the signal (or its attributes) and their
choice of prior distribution [22]. Gribonval has shown that the
MMSE can actually be stated as a variational problem that is in
spirit of MAP [23]. Based on the theory of continuous-domain
sparse stochastic processes [24], Amini ef al. have analyzed
the conditions under which the performance of MAP can be
MSE-optimal [25]. In [26], Bostan et al. have investigated the
algorithmic implications of various prior models for the prox-
imal (or the shrinkage) operator that takes part in the ADMM
steps. Accordingly, Kazerouni ef al. [27] and Tohidi et al. [28]
have demonstrated that MMSE performance can be achieved
for certain type of signals if the said proximal operator is re-
placed with carefully chosen MMSE-type shrinkage functions.
Such methods, however, rely on the full knowledge of the prior
model, which significantly limits their applicability.

Modification of the proximal operators have also been
investigated based on deterministic principles. In particular,
motivated by the outstanding success of convolutional neural
networks (CNNs) [29], several researchers have used learning-
based methods to identify model parameters (thus the proximal
mapping). In this regard, Gregor and LeCun [30], and Kamilov
and Mansour [31] have considered sparse encoding applica-
tions and replaced the soft-thresholding step in (F)ISTA with
a learned proximal mapping. Schmidt and Roth [32] have pro-
posed to learn different shrinkage functions for each iteration
of the half-quadratic minimization method with applications in
image restoration. Meanwhile, Chen et al. have developed a
similar learning strategy for the gradient descent method [33],
[34]. Yang et al. have applied learning to piecewise-linear
proximal operators of ADMM, which also vary with itera-
tion, for improved magnetic resonance (MR) image reconstruc-
tion [35]. A variant of these methods is considered by Lefkim-
miatis [36]. More relevant to the present context, Samuel and
Tappen have learned the model parameters of MAP estimators
for continuous-valued Markov random fields (MRFs) [37]. What
is common in all these techniques is that the proximal algorithm
at hand is trained without any restrictions. This makes it hard to
say anything about the signal reconstruction in the testing phase
using the learned proximal operators. By contrast, we propose
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in this paper to learn a single proximal operator of some convex
penalty function (or regularizer) for every iteration of ADMM,
so that the iterative architecture of the reconstruction still stays
within the realm of convex optimization.

B. Contributions

We revisit the MAP problem for signal denoising that is cast
as the minimization of a quadratic fidelity term regularized by a
penalty function. The latter captures the statistics of a collection
of clean signals. The problem is solved via ADMM by iteratively
applying the proximal operator associated with the penalty func-
tion. The main advantage of ADMM over other iterative meth-
ods such as ISTA/FISTA is that it can decouple the effects of
the whitening operator L and of the scalar penalty function ®;
in (2), which makes the learning of this function feasible even
when L is not the identity operator. When the proximal operator
in ADMM is replaced with a trainable (shrinkage) function, we
call the reconstruction scheme generalized ADMM. Our main
contributions are summarized as follows:

B Proposal of a new estimator by learning a single convex
penalty function whose proximal operator is applied to ev-
ery iteration of the generalized ADMM. The convexity con-
straint is appropriately characterized in terms of the spline
coefficients that parameterize the corresponding proximal
operator. The learning process optimizes the coefficients so
that the mean /5 -normed error between a set of ground-truth
signals and the ADMM reconstructions (from their noise-
added versions) is minimized.

m Convergence proof of the generalized ADMM scheme based
on the above-mentioned convexity confinement. Conse-
quently, the learned penalty function is adjusted from one
level of noise to another by a simple scaling operation,
eliminating the need for retraining. Furthermore, assuming
symmetrically distributed signals, the number of learning
parameters is reduced by a half.

m Application of the proposed learning framework on two
model signals, namely the Brownian motion and compound
Poisson process. The main reason for choosing these models
is that their (optimal) MMSE estimations are available for
comparison. Furthermore, since these stochastic processes
can be decorrelated by the finite difference operator, dictio-
nary learning is no longer needed and we can focus only
on the nonlinearity learning. Experiments show that, for
a wide range of noise variances, ADMM reconstructions
with learned penalty functions are almost identical to the
MMSE estimators of these signals. We further demonstrate
the practical advantages of the proposed learning scheme
over its unconstrained counterpart.

C. Outline

In the sequel, we provide an overview of the necessary mathe-
matical tools in Section II. In Section III, we present our spline-
based parametrization for the proximal operator and formulate
the unconstrained version of our algorithm. This is then followed
by the introduction of the constraint formulation in terms of the
spline coefficients in Section IV. We prove the convergence
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and the scalability (with respect to noise power) in Section V.
Finally, numerical results are illustrated in Section VI where we
show that our algorithm achieves the MMSE performance for
Lévy processes with different sparsity characteristics.

II. BACKGROUND

A. Monotone Operator Theory

We review here some notation and background from convex
analysis and monotone operator theory; see [38] for further
details. Let us restrict ourselves to the Hilbert space H = RY,
for some dimension d > 1, equipped with the Euclidean scalar
product (-, -) and norm || - ||o. The identity operator on H is
denoted by Id. Consider a set-valued operator T : H — 27 that
maps each vector € H to a set T'x C H. The domain, range,
and graph of operator 7" are respectively defined by

domT ={x e H|Tx #0},
ranT ={ueH|(Fx e H)ue Tz},
gral = {(x,u) e Hx H|u e Tx}.

We say that 7" is single-valued if 7'z has a unique element
for all € domT'. The inverse 7! of T is also a set-valued
operator from 7 to 27 defined by

T'u={xecH|uecTz}.

It is straightforward that to see that dom 7T = ran7T ' and
ranT = dom T~'. T is called monotone if

(x—y,u—v)>0, VY(x,u)egraT,V(y,v) € graT.

In the one-dimensional (1-D) case when d = 1, a monotone
operator is simply a non-decreasing function. 7" is maximally
monotone if it is monotone and there exists no monotone op-
erator .S such that graT’ ;Cé gra S. A handy characterization of
the maximal monotonicity is given by Minty’s theorem [38,
Theorem 21.1].

Theorem 1 (Minty): A monotone operator T : H — 2" is
maximally monotone if and only if ran(Id +7") = H.

For an integer n > 2, T': H — 2™ is n-cyclically monotone
if, for every n points (z;,u;) € graT,i=1,...,n, and for
T,+1 = x1, we have that

n

Z (i1 — i, u;) <O0.

i=1
An operator is cyclically monotone if it is n-cyclically monotone
for all n > 2. This is a stronger notion of monotonicity because
being monotone is equivalent to being 2-cyclically monotone.
Moreover, 1" is maximally cyclically monotone if it is cyclically
monotone and there exists no cyclically monotone operator .S
such that graT ; gra S. An operator 7' is said to be firmly
nonexpansive if

(x —y,u —v)>|u—v|*,V(x,u)€ graT,V(y,v) € graT.

It is not difficult to see that a firmly nonexpansive operator must
be both single-valued and monotone.

We denote by I'g(H) the class of all proper lower-
semicontinuous convex functions f : H — (—o0, +oc]. For any
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proper function f : H — (—o0, 400, the subdifferential oper-
ator Of : H — 2™ is defined by

of () ={uecH|(y — =z u) < f(y) — f(x),Vy € H},

whereas, the proximal operator prox; : H — 2" is given by

. 1
prox; () = argmin {f(u) + §||u — m||%} .
ucH

It is remarkable that, when f € T'y(H), 0f is maximally cycli-
cally monotone, prox, is firmly nonexpansive, and the two
operators are related by

prox; = (Id +af)", 3)

where the right-hand side is also referred to as the resolvent of
Jf. Interestingly, any maximally cyclically monotone operator
is the subdifferential of some convex function, according to
Rockafellar’s theorem [38, Theorem 22.14].

Theorem 2 (Rockafellar): A : H — 2™ is maximally cycli-
cally monotone if and only if there exists f € I'g(H) such that
A=0f.

B. Denoising Problem and ADMM

Let us consider throughout this paper the denoising prob-
lem in which a signal z € R” is estimated from its corrupted
version y = x + n, where n is assumed to be additive white
Gaussian noise (AWGN) of variance o2. An estimator of =
from y is denoted by &(y). We treat  as a random vector gen-
erated from the joint probability density function (pdf) px. It
is assumed that x is whitenable by a matrix L € RV*Y such
that the transformed vector w = La has independent and identi-
cally distributed (i.i.d.) entries. The joint pdf p;; of the so-called
innovation wu is therefore separable, i.e.,

N
pu(u) = HPU(W);

where, for convenience, py is reused to denote the 1-D pdf of
each component of u. We define @ (u) = — log py (u) as the
penalty function of w. This function is then separable in the
sense that

N
Oy (u) = Py(w),

where @ is again used to denote the 1-D penalty function of
each entry u;.

The MMSE estimator, which is optimal if the ultimate goal
is to minimize the expected squared error between the estimate
2 and the original signal x, is given by Stein’s formula [19]

@numse(y) =y + 0°Vieg py (y), 4)

where py is the joint pdf of the measurement y and V denotes
the gradient operator. Despite its elegant expression, the MMSE
estimator, in most cases, is computationally intractable since
py is obtained through a high-dimensional convolution between
the prior distribution px and the Gaussian distribution g, (n) =
(2702)N/2 exp(—||n||* /202). However, for Lévy processes,
which have independent and stationary increments, the MMSE
estimator is computable using a message passing algorithm [39].



1096

On the other hand, the MAP is given by

Zyap (y) = argmax px |y (zly)
xX

= argmax {pvix (ylz) px () }

.1
= argmin {2||y —z|} + Py (m)} )

where ®x (x) = —logpx (x) is the (nonseparable) penalty
function of . In other words, the MAP estimator is exactly
the proximal operator of o?®x. Assuming that the mapping
u = Lx is one-to-one, the minimization in (5) can be equiva-
lently written as [24, p. 254]

min {§||y ~af} +0° Z%([Lw]i)} .

i=1

(6)

This expression of the MAP reconstruction resembles the
regularization-based approach (e.g., total variation method) in
which the transform L is designed to sparsify the signal, the
penalty function ®; is chosen—the typical choice being the ¢; -
norm—to promote the sparsity of the transform coefficients w.
The parameter o is set (not necessarily to the noise variance)
to trade off the quadratic fidelity term with the regularization
term. The optimization problem (6) can be solved efficiently by
iterative algorithms such as the alternating direction method of
multipliers (ADMM) [16]. To that end, we form the augmented
Langrangian

1
slly = +0* @0 (u) - o, La — u) + 5| La — ul}

and successively mimimize this functional with respect to each
of the variables  and u, while fixing the other one; the La-
grange multiplier « is also updated appropriately at each step.
In particular, at iteration k + 1, the updates look like

kD) = (I+;LLTL)71 (y + LT (,uu(k) +a(k))> @)

i+ = o) _ (L:c(k“) _ u</~c>) 8)
1

u(k+1) = prOXO'Z//l(I)p <L€L’(k+1) — a(k‘+1)) . (9)
7]

Here, u and « are initialized to be ©?) and a(?), respectively;
I € RM*N denotes the identity matrix. If the proximal
operator prox,:,,q, in (9) is replaced with a general oper-
ator 7', we refer to the above algorithm as the generalized
ADMM associated with 7. When the operator 7' is separable,
ie, T(u) = (T(u1),...,T(ux)), we refer to the 1-D func-
tionT : R — R as the shrinkage function; the name comes from
the observation that typical proximal operators, such as the soft-
thresholding, shrink large values of the input in a pointwise man-
ner to reduce the noise. In what follows, we propose a learning
approach to the denoising problem in which the shrinkage func-
tion 7" of the generalized ADMM is optimized in the MMSE
sense from data, instead of being engineered as in sparsity-
promoting schemes.
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Algorithm 1: Unconstrained Learning.

Input: training example (i, y), learning rate v > 0,
sampling step A, number of spline knots 20 + 1.
Output: spline coefficients c*.

1: Initialize: Set 0 «— i, choose ¢(®) € R2M+1,

2: Compute the gradient V.J (¢(")) via Algorithm 2.

3: Update c as:

) =) v (c<i)) .

4: Return ¢* = ¢+ if a stopping criterion is met,
otherwise set ¢ «— ¢ + 1 and go to step 2.

III. LEARNING UNCONSTRAINED SHRINKAGE FUNCTIONS

A. Learning Algorithm

To learn the shrinkage function 7' : R — R, we parameterize
it via a spline representation:
M

3 (L)

m=—M

T(z) = (10)
where v is some kernel (radial basis functions, B-splines, etc.)
and A is the sampling step size that defines the distant between
consecutive spline knots. We call such function 7" a Spline-
Prox. Consider a generalized ADMM using shrinkage function
T associated with varying spline coefficients ¢ while fixing the
kernel 1) and other parameters of the algorithm (the transform L,
the penalty parameter 4, the initialization (°), and the number
of iterations K). Therefore, the output (%) of the generalized
ADMM is just a function of the spline coefficients ¢ and the ob-
servation y. Given a collection of ground-truth signals {a; },%:1
and their observations {y,}1_,, the vector ¢ € R?**1 is to be
learned via minimizing the following cost function:

L
1 2
J(e) 22;"$<K)(C7yz)—$e“2- an
For notational simplicity, from now on we drop the subscript ¢
and develop a learning algorithm for a single training example
(z, y) that can be easily generalized to training sets of arbitrary
size. The cost function is thus simplified to

J(c) = % Hcc(K>(c,y) - azHi . (12)

Although nonconvex, this cost function is differentiable as long
as the spline kernel v is differentiable. This allows us to carry
out a simple gradient descent that is described in Algorithm 1.
This algorithm serves as an intermediate step toward the con-
strained learning presented later in the paper and, thus, is named
unconstrained learning. As in every neural network, the com-
putation of the gradient of the cost function is performed in
a backpropagation manner, which will be detailed in the next
section.

B. Gradient Computation

We devise in this section a backpropagation algorithm to eval-
uate the gradient of the cost function with respect to the spline
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coefficients of the shrinkage function. We adopt the following
convention for matrix calculus: for a function y : R™ — R of
vector variable x, its gradient is a column vector given by

_oy _[oy oy oy ]
9z | 0r O 0 |

whereas, for a vector-valued function y : R™ — R" of vector
variable x, its Jacobian is an m x n matrix defined by

Vy(x)

Oy Yy
dxy dxy
Oy |0y Oy oy | _ | . )
ox ox Oz ox : :
Jyi OYn
Dz, 0,

We are now ready to compute the gradient of the cost function
J with respect to the parameter vector c. For simplicity, for
k=0,...,K —1,put

M=TI+pLl"L)™,

204D — g T (Muw n a<k>) 7

1
_ Lt

"
By using these notations, we concisely write the updates at iter-
ation k + 1 of the generalized ADMM associated with operator
T as

o) = L+

o) = M EHD)
QD) — b _ (Lw(kr+l) _ u(k)) ’

wF+D — (v(k+1)) .
First, applying the chain rule to (12) yields

oz'K) 9. oz K)

- (ww) _ w)
de  Ox(K) dc

Next, from the updates of the ADMM and by noting that L and

y does not depend on ¢, for k =0,..., K — 1, we get

VJ(e) = (13)

(k+1) (k+1) (k) (k)
ox _ 0z T _ Mo”'u n oo LM,
dc dc dc de
dat)  galk-1) dzk) duF—1)
= —p— LT +p ,
dc dc dc dc
and
ou® 9o gu) de duF)
oc ~ dc v " e oc
K k
_ (02 e 102N by g
dc uw Oec ’
where D) = diag (7"(v(*))) is the diagonal matrix whose

N

entries on the diagonal are the derivatives of 7" at {vi(k) is1s

and ®*) is a matrix defined by

(k) v
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Algorithm 2: Backpropagation for Unconstrained Learn-
ing.

Input: signal x € RY, measurement y € R", transform
matrix L € RV *Y  kernel 1, sampling step A, number of
spline knots 2M + 1, current spline coefficients c€ R?M *1,
number of ADMM iterations K.
Output: gradient V.J(c).

1: Define:

v =Y(-/A =), fori=—M,...,M

A=L(I+pL"L)"
2: Run K iterations of the generalized ADMM with the
SplineProx T' = Zﬁ7 u Cii. Store 25) and, for all
k=1,...,K,store

o) = La® — o) /p,

o= i (),

B™ =1 - pAL" + (2uAL" — I) diag(T"(v\?)).
3: Initialize: 7 = A(x'X) —x),g =0,k = K — 1.
4: Compute:
g—g+phr
r— BWyp.

5: If k = 1, return VJ(c) = g, otherwise, set k < k — 1
and go to step 4.

Proceeding with simple algebraic manipulation, we arrive at

ozk+1) dak) ouk)
ge ( ge 1" oe ) 4, (142)
aa(k> au<k) aa(kfl) au(k71>
= B (k)
Jdc T Jdc ( dc s Jdc ) tH
(14b)
where

A=L(I+pL"L)",
B" =1 - puAL" + (2uAL" — 1) D).

Finally, by combining (13) with (14) and by noting that
2a%) /oe = oul®) /0c = 0, we propose a backpropagation
algorithm to compute the gradient of the cost function J with re-
spect to the spline coefficients c as described in Algorithm 2. We
refer to the generalized ADMM that uses a shrinkage function
learned via Algorithm 1 as MMSE-ADMM.

IV. LEARNING CONSTRAINED SHRINKAGE FUNCTIONS

We propose two constraints for learning the shrinkage func-
tions: firm nonexpansiveness and antisymmetry. The former is
motivated by the well-known fact that the proximal operator of
a convex function must be firmly nonexpansive [38]; the latter is
justified by Theorem 3: symmetrically distributed signals imply
antisymmetric proximal operator and vice versa.
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Theorem 3: Let ® € T'o(RY). ® is symmetric if and only if
proxg is antisymmetric.

Proof: See the appendix. |

In order to incorporate the firmly nonexpansive constraint
into the learning of spline coefficients, we choose the kernel v
in the representation (10) to be a B-spline of some integer order.
Recall that the B-spline 5" of integer order n > 0 is defined
recursively as

_ L e[ <1/2
(2) = {o, | > 1/2,
Bn _ ﬁn—l *ﬁo’

We adopt these type of kernels because they are compactly sup-
ported and their derivatives can be simply expressed in terms
of B-splines of smaller orders [40]. These computational ad-
vantages help speedup the learning process. More importantly,
as pointed out in Theorem 4, by using B-spline kernels, the
firm nonexpansiveness of a SplineProx is satisfied as long as its
coefficients obey a simple linear constraint.

Theorem 4: Let A > 0 and let 5" be the B-spline of order
n > 1. If ¢is a sequence such that 0 < ¢,, — ¢, -1 < A, Vm €
Z,then f =3 73" (-/A —m)is a firmly nonexpansive
function.

Proof: Since f is a 1-D function, it is easy to see that f is
firmly nonexpansive if and only if

n > 1.

Vo > y. (15)
We now show (15) by considering 2 different cases.

n = 1: B is the triangle function, and so f is continuous and
piecewise-linear. If =,y € [(m — 1)A, mA| for some m € Z,
then

flz) = fy)

0< =
- T —y A

which implies

0< f(x)—fly) <xz—y, Y(im—-1A<y<z<mA.
(16)
Otherwise, there exist k, ¢ € Z such that y € [(k — 1)A, kA],

x € [CA, (¢ + 1)A]. Then, we write

f(@) = fly) = [f(z) = FUEA)] + [f(€A) = f((£ = DA)]

+o+ [F((E+1D)A) = FUEA)] + [F(R) = f(y)]-

By applying (16) to each term of the above sum, we obtain

the desired pair of inequalities in (15), which implies the firm
nonexpansiveness of f.
n > 2: " is now differentiable and so is f. Thus, by using the
mean value theorem, (15) is achieved if the derivative f’ of f is
bounded between 0 and 1, which will be shown subsequently.
Recall that the derivative of 5" is equal to the finite difference
of "1, In particular,

(8") () = "~ (:c + ;) -p"! (w - ;) - an
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Algorithm 3: Constrained Learning.

Input: training example (i, y), learning rate v > 0,
sampling step A, number of spline knots 20 + 1.
Output: spline coefficients c*.

1: Define the linear constraint set

S:{CGRJ\JMSQH —Cm-1 §A,Vm =2,... 7M}
2: Initialize: Set 0 « 4, choose ¢(¥) € S.

: Compute the gradient V.J (c(i)) via Algorithm 2.
4: Update c as:

Y = projg (c(” —VJ (c<i>)> .

5: Return ¢* = ¢l'*1) if a stopping criterion is met,
otherwise set ¢ < ¢ + 1 and go to step 3.

W

Hence, for all x € R,

1 ! 1 .
- — Z Cm_1 "1 <x —m+ ) (change of variable)

A A 2
meZ
1 3 no (21
- Z 7 EZ(CM - Cmfl)ﬁ (A + 2 m) J

Since 0 < ¢, — 1 < A,Ym € Z and since /"' (z/A +
1/2—m) > 0,Yz € R,m € Z, one has the following pair of
inequalities for all x € R:

/ n— i 1
0< flle)< > 1<A+2—m>.

meZ

(18)

By using the partition-of-unity property of the B-spline 3"~ !,
(18) is simplified to

0< fl(z) <1, VxeR,

which finally proves that f is a firmly nonexpansive function. ll

With the above results, we easily design an algorithm for
learning antisymmetric and firmly nonexpansive shrinkage
functions. Algorithm 3, the main focus of this paper, is the
constrained counterpart of Algorithm 1: the gradient descent is
replaced with a projected gradient descent where, at each update,
the spline coefficients are projected onto the linear-constraint
set described in Theorem 4 (this projection is performed via a
quadratic programming). The gradient of the cost function in
this case is evaluated through Algorithm 4, which is just slightly
modified from Algorithm 2 to adapt to the antisymmetric na-
ture of the SplineProx. Specifically, we assume that the spline
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Algorithm 4: Backpropagation for Constrained Learning.

Input: signal x € R", measurement y € RY, transform
matrix L € RV*Y B-spline ¢ = 3", sampling step A,
number of spline knots 2/ + 1, current spline coefficients
¢ € RM  number of ADMM iterations K.
Output: gradient V.J(c).

1: Define:

i = Y(/A —i) — (/A +i), fori=1,...,M

A=L(I+puLl"L)",

2: Run K iterations of the generalized ADMM with the
antisymmetric SplineProx T' = Zf\il ¢;1;. Store @)
and, forall k = 1,..., K, store
oF) = e — Ol(k)//%

v = {12)7 (vf(lk))}m’

B"W =1 - pAL" + (2uAL" — I) diag(T"(v'?))).
3: Initialize: 7 = A" (%) —x),g =0,k = K — 1.
4: Compute:
g—g+prhr,
r — BWp,

5: If k = 1, return VJ(e) = g, otherwise, set k <« k — 1
and go to step 4.

coefficients obey the relation c_,, = —c¢,, and rewrite (10) as
M T T
T = m ~ - ~
= 3o [o(5 =) o5 4]
M }
- Z mem (.’E), (19)

m=1

where ¢, = ¥ (/A —m) — 1 (-/A + m) is an antisymmetric
function. The rest of the gradient computation is similar to that
of Algorithm 2. We refer to the generalized ADMM that uses a
shrinkage function learned by Algorithm 3 as MMSE-CADMM,
where the letter ‘C’ stands for ‘convex.” The convexity of this
learning scheme will be made clear in Section V.

V. ADVANTAGES OF ADDING CONSTRAINTS

It is clear that imposing the antisymmetric constraint on the
shrinkage function reduces the dimension of the optimization
problem by a half and therefore substantially reduces the learn-
ing time. In this section, we demonstrate, from the theoretical
point of view, the two important advantages of imposing the
firmly nonexpansive constraint on the shrinkage function: con-
vergence guarantee and scalability with noise level. Thanks
to these properties, our learning-based denoiser behaves like
a MAP estimator with some convex penalty function that is
now different from the conventional penalty function. On the
other hand, as experiments later show, the constrained learning
scheme nearly achieves the optimal denoising performance of
the MMSE estimator.
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A. Convergence Guarantee

The following result asserts that the ADMM denoising con-
verges, no matter what the noisy signal is, if it uses a separable
firmly nonexpansive operator in the place of the conventional
proximal operator. Interestingly, as will be shown in the proof,
any separable firmly nonexpansive operator is the proximal op-
erator of a separable convex penalty function. We want to em-
phasize that the separability is needed to establish this connec-
tion, although the reverse statement is known to hold in the
multidimensional case [38].

Theorem 5: Let p > 0. If T: R — R is a 1-D firmly non-
expansive function such that dom 7" = R, then, for every input
y € RV, the reconstruction sequence {x*)} of the general-
ized ADMM associated with the separable operator 7" and the
penalty parameter p converges to

N
1 2
* = argmin{ <y — N @([La)) ¢,
v ai%ﬁ@m{gy zlz + ) o w])}

i=1
as k — oo, where ® € T'y(R) is a 1-D convex function such
that 7" = proxg ;.
Proof: First, we show that there exists a function ® € T'y(R)
such that 7' = proxg Ju To that end, let us define

S = (T"' —1d).
The firm nonexpansiveness of 7' then implies
(@ =y)(u—v) > (z-y)*
S@—y((u—2)—(v—y)>0,YVueT 'z,veT 'y

Yue T lz,veTly

< (x—y)(a—10) >0, Vu € Sz, v € Sy,

which means that S is a monotone operator. Furthermore, we
have that

ran(S +1Id) =ran (77') = dom 7T = R.
Therefore, .S is maximally monotone thanks to Minty’s theorem
(Theorem 1). Since S is an operator on R, we invoke [38,
Thm. 22.18] to deduce that S must also be maximally cyclically
monotone. Now, as a consequence of Rockafellar’s theorem

(Theorem 2), there exists a function ® € Ty(R) such that 9 =
S.Let ® = u®. Then, ® € Ty(R) and

T=(Id+5)" =(1d+0(®/p)"" =proxg,, -
Next, define the cost function
N

f(@) = 5l — ol + 3 ®(Lal)

i=1

(20)

Replacing T" with proxg ,, the generalized ADMM associated
with 7" becomes the regular ADMM associated with the above
cost function f. By using the convexity of the /5-norm and
of the function ®, it is well known [16, Section 3.2.1] that
f(z®) — p*ask — oo, where p* is the minimum value of f.

Finally, notice that the function f defined in (20) is strongly
convex. Thus, there exists a unique minimizer * € RY such
that f(a*) = p*. Moreover, * is known to be a strong mini-
mizer [42, Lemma 2.26] in the sense that the convergence of
{f (z'®))} to f(z*) implies the convergence of {z'*) } to z*.
This completes the proof.
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B. Scalability With Noise Level

In all existing learning schemes, the shrinkage function is
learned for a particular level of noise and then applied in the re-
construction of testing signals corrupted with the same level of
noise. If the noise variance changes, the shrinkage function must
be relearned from scratch, which will create a computational
burden on top of the ADMM reconstruction. This drawback is
due to the unconstrained learning strategy in which the shrinkage
function is not necessarily the proximal operator of any func-
tion. Despite its flexibility, arbitrary nonlinearity no longer goes
hand-in-hand with a regularization-based minimization (MAP-
like estimation). By contrast, our constrained learning scheme
maintains a connection with the underlying minimization reg-
ularized by a convex penalty function. This strategy allows us
to easily adjust the learned shrinkage function from one level
of noise to another by simply scaling the corresponding penalty
function by the ratio between noise variances like the conven-
tional MAP estimator. Proposition 1 provides a useful formula
to extrapolate the proximal operator of a scaled convex function
from the proximal operator of the original function.

Proposition 1: For all f € T'y(RY),

1
prox,; = (Aprox;l F(1- ) Id) . VA>0. (2D

Proof: Recall a basic result in convex analysis [42] that
O(A\f) = N\Of, for all f € To(RY) and for all A >0 . Also
recall that the proximal operator of a convex function is the
resolvent of the subdifferential operator. Therefore,

prox,; = (Id +9(\f)) " = (Id +A0f)""
= (Id +A (prox;1 — Id))71

_ (Aprox;1 F(1—N) Id)_l,

completing the proof. |

The next result establishes that all members of the family
generated by (21) are firmly nonexpansive when the generator
prox; is replaced with a general firmly nonexpansive operator.
It is noteworthy that the result holds in the multidimensional
case where a firmly nonexpansive operator is not necessarily
the proximal operator of a convex function.

Theorem 6: If T : RN — R¥ is a firmly nonexpansive op-
erator such that dom 7' = R¥, then, forall A\ > 0, T, = (AT~
+ (1 = A)Id)~! is firmly nonexpansive and dom T = R" as
well.

Proof: The claim is trivial for A = 0. Assume from now on
that A > 0. We first show that dom T, = RY. By a straight-
forward extension of the argument in the proof of Theorem 5
to the multidimensional case, we easily have that the operator
S =T~ —1Id is maximally monotone. It follows that \S is
also maximally monotone for all A > 0. By applying Minty’s
theorem to the operator \S, we obtain

dom Ty = ran(AT~" + (1 — \)Id) = ran(Id +)S) = RY.

Next, we show that T}, is firmly nonexpansive. Letx,y € RY
and u € T)(x),v € T)\(y). By the definition of T}, one readily
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Fig. 1. Realizations of a Brownian motion and a compound Poisson process
are plotted along with their corrupted versions with AWGN of variance o> = 1.

verifies that

u=T<"”+(A/\_1)“>, v:T(y‘L(AA_l)”).

The firm nonexpansiveness of 7" yields
A—1 A—1
<<sc+( Ju Y+ ( )u,u—v>

lu — v]?

A A

A—1 1
— 2ol 5 @y u ),

which translates to
[u—vl* <(x-y,u—v).

This confirms that T is a firmly nonexpansive operator. |

VI. EXPERIMENTAL RESULTS

In this section, we report the experimental denoising results of
the two proposed learning schemes: ADMM with unconstrained
shrinkage functions learned via Algorithm 1 (denoted MMSE-
ADMM) and ADMM with constrained shrinkage functions
learned via Algorithm 3 (denoted MMSE-CADMM). Through-
out this section, the transform L is fixed to be the finite differ-
ence operator: [Lx]; = &; — Z(;_1)mod N, Vi; the signal length
is fixed to NV = 100. Experiments were implemented in MAT-
LAB on the two following types of Lévy processes:

1) Brownian motion: entries of the increment vector u =
Lx are i.i.d. Gaussian with unit variance: py(u) =
eu?/2 / 2.

2) Compound Poisson: entries of the increment vector
u = Lx are iid. Bernoulli-Gaussian: py(u) = (1 —
e ) e /2 /\/2m + e *§(u), where § is the Dirac im-
pulse and A = 0.6 is fixed. This results in a piecewise-
constant signal  with Gaussian jumps.

Specific realizations of these processes and their corrupted

versions with AWGN of variance 0> = 1 are shown in Fig. 1.

A. Denoising Performance

The same parameters were chosen for both learning schemes
(constrained and unconstrained). In particular, for each type
of processes, a set of 500 signals was used for training and
another set of 500 for testing. The number of ADMM layers
(iterations) was set to K = 10; the penalty parameter of the
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Fig. 2. Denoising performances of the MMSE-ADMM where the uncon-

strained shrinkage functions are learned for all instances of the noise variance.

augmented Lagrangian was set to 1« = 2. The shrinkage function
was represented with the cubic B-spline:

2 2P+ o< <1
Y(a) =) = L@—|a)?, 1<z <2
0, 2 < |x|.

Cubic splines have the ability to approximate arbitrary functions
and they are also known to offer the best cost/quality trade-
off [43]. The spline coefficients {¢,, } were located uniformly
in the dynamic range of uw = La with sampling step A = /2,
which is dependent on the noise level. Learning was performed
by running either Algorithm 1 or Algorithm 3 for 1000 itera-
tions with learning rate v = 2 x 10~*. The shrinkage function
was always initialized with the identity line, which corresponds
to cf,?) = mA for all m.

The denoising performances were numerically evaluated by
the signal-to-noise ratio (SNR) improvement that is defined by
ASNR [dB] = 10log,, ([|& — =|j3/|ly — =||}) . We compare
the results of MMSE-ADMM and MMSE-CADMM against
the following reconstruction methods:

1) MMSE: This is the optimal estimator (in the MSE sense)

and is obtained through a message-passing algorithm [39].

2) LMMSE (Linear MMSE): The best linear estimation is
obtained by applying the Wiener filter to the noisy ob-
servation: & vvse = (I + o? LTL)’ly. This is also the
least-square solution with ¢, (Tikhonov-like) regulariza-
tion.

3) TV (Total Variation) [9]: This estimator is obtained with
an ¢; regularizer whose proximal operator is simply a
soft-thresholding: T (u) = 1y, xsign(u)(|ul — A). In
our experiments, the regularization parameter \ is opti-
mized for each signal.
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Fig. 3. Denoising performances of the MMSE-CADMM where the con-
strained shrinkage functions are learned for all instances of the noise variance.
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Fig.4. Unconstrained shrinkage functions learned from data for various noise
variances 2.

The denoising performances of MMSE-ADMM and MMSE-
CADMM for various noise variances between 10~/ and 10'/2
are reported in Figs. 2 and 3, respectively. It is remarkable
that both MMSE-ADMM and MMSE-CADMM curves are al-
most identical to the optimal MMSE curve (with the largest gap
being about 0.1 dB) and significantly outperform TV, for both
types of signals, and LMMSE, for compound Poisson processes.
Note that, for Brownian motions, LMMSE and MMSE are the
same. The unconstrained and constrained shrinkage functions
learned for three different levels of noise are illustrated in Figs. 4
and 5, respectively. As can be seen in Fig. 4, the unconstrained
learning might result in non-monotonic curves, which cannot
be the proximal operators of any penalty functions, accord-
ing to [32, Proposition 1]. By contrast, the antisymmetric and
firmly nonexpansive curves in Fig. 5 are the proximal operators
of the symmetric and convex penalty functions that are plot-
ted in Fig. 6. These functions were numerically obtained by
integrating 9® = (T — 1d)~!, where T is the learned shrinkage
function.
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Fig. 5. Antisymmetric and firmly nonexpansive shrinkage functions learned
from data for various noise variances o'2.
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Fig. 6. Symmetric and convex penalty functions that admit the learned con-

strained shrinkage functions in Fig. 5 as their proximal operators for various
noise variances o-.
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Fig. 7. First row: shrinkage functions learned via Algorithm 3 w.r.t. two dif-
ferent initializations for Brownian motion (left) and Compound Poisson (right).
Second row: evolutions of the corresponding training SNRs. We used o2 = 1
and K = 10.

B. Stability of the Training

The constrained learning scheme is not only optimal in the
testing phase but also very stable w.r.t. the initialization, c(°),
and the number of ADMM iterations, K, in the training phase.

Fig. 7 shows the evolutions of training SNRs together
with learned shrinkage functions using Algorithm 3 with two
different initializations: identity and soft-thresholding with
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Fig. 8. Evolution of the training SNR using Algorithm 3 for different values
of K (number of ADMM iterations) and for AWGN of variance o2 = 10.

parameter A\ = ¢2. In this experiment, we fixed ¢ =1 and
K = 10. It can be seen that the training cost functions of the
two scenarios eventually converge to the same value and the
resulting shrinkage functions are almost identical. Although
training with the soft-thresholding initialization converges
very quickly, we chose the identity initialization in all other
experiments to demonstrate that our learning algorithms even
work for such a blind initial guess.

Fig. 8 illustrates the convergence of the training procedure
using Algorithm 3 for varying number of ADMM iterations, K,
in the extremely noisy case when o® = 10. The learning rate
~ is fixed for all choices of K. This experiment suggests that
our backpropagation and gradient descent are not sensitive to
the number of ADMM iterations, which can be interpreted as
the number of layers in the underlying neural network [35]. The
training SNR converges for all testing values of K, including the
large ones. In principle, increasing K always results in a better
SNR, but we experimentally observed that, when K > 10, the
improvement is negligible for all levels of noise and for both
type of testing signals. That is why we fixed K = 10 in all other
experiments.

C. Constrained Versus Unconstrained Learning

To demonstrate the benefits of the constrained learning over
the unconstrained one, we compare their denoising perfor-
mances for 9 different levels of noise as before, but this time
only the shrinkage function 7" for > = 1 was learned. For con-
strained learning, the shrinkage function with respect to another
noise variance o> was numerically computed by using the for-
mula

Ty = (*T7 +(1—0%)1d) .
For unconstrained learning, these computations are prohibited,

and so the learned shrinkage function for 0> = 1 was used for
all the other noise levels. The results were illustrated in Fig. 9. It
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Fig. 9. Learning once and for all: only the shrinkage function for 02 = 1 is
learned (with and without constraints) and the rest are obtained by scaling the
learned penalty function with corresponding values of o2 .
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Fig. 10.  Reconstruction of a specific Brownian motion with AWGN of vari-

ance o2 = 1 using MMSE-CADMM. Values of the underlying cost function
are plotted for the first 50 iterations of ADMM.

is noticeable that MMSE-CADMM is much better than MMSE-
ADMM and, surprisingly, almost as good as the optimal MMSE
for all levels of noise, even though the (constrained) learning was
performed only once. In other words, the experiments suggest
that the proposed MMSE-CADMM combines desired proper-
ties of the MAP and MMSE estimators: fast implementation
and scalability with noise variance of MAP and optimality of
MMSE.

Another advantage of the constrained learning is its conver-
gence guarantee that is associated with the minimization of an
underlying cost function (as mentioned in Theorem 5), which
does not necessarily exist in the case of unconstrained learning.
Figs. 10 and 11 illustrates the reconstructions of a Brownian
motion and a compound Poisson signal, respectively, from their
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Fig. 11.  Reconstruction of a specific compound Poisson signal with AWGN of
variance 0> = 1 using MMSE-CADMM. Values of the underlying cost function
are plotted for the first 50 iterations of ADMM.
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Fig. 12.  Average SNRs when denoising compound Poisson signals with con-
strained and unconstrained learning schemes are plotted against the number of
ADMM iterations used in the testing phase (K ¢es¢ ). The constrained and uncon-
strained shrinkage functions were both trained with Ky,,in = 2 and o2 =10.

noisy measurements using MMSE-CADMM, and the conver-
gences of the corresponding cost functions. Experiments also
show that the constrained learning is much more stable to the
number of ADMM iterations used in the testing phase (Kieg;)
when it is different from the number of ADMM iterations used
in the training phase (K,in). Fig. 12 demonstrates this obser-
vation by plotting the average SNRs of denoising compound
Poisson signals using MMSE-ADMM and MMSE-CADMM
against K.y ranging from 2 to 50. In this experiment, both
constrained and unconstrained learnings were performed with
Kirain = 2 and o> = 10. It can be seen from the plot that, when
Kt increases, the SNR of MMSE-ADMM tends to decrease
and fluctuate significantly, while the SNR of MMSE-CADMM
tends to improve and converge.

VII. CONCLUSION

We have developed in this paper a learning scheme for
signal denoising using ADMM in which a single (iteration-
independent) shrinkage function is constrained to be antisym-
metric firmly-nonexpansive and learned from data via a simple
projected gradient descent to minimize the reconstruction error.
This constrained shrinkage function is proved to be the proxi-
mal operator of a symmetric convex penalty function. Imposing
constraints on the shrinkage function gains several striking ad-
vantages: the antisymmetry reduces the number of learning pa-
rameters by a half, while the firm nonexpansiveness guarantees
the convergence of ADMM, as well as the scalability with noise
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level. Yet, the denoising performance of the proposed learning
scheme is empirically identical to the optimal MMSE estimators
for the two types of Lévy processes in a wide range of noise
variances. Our experiments also demonstrate that learning the
convex penalty function for one level of noise (via learning its
proximal operator) and then scaling it for other noise levels
yields equivalent performances to those of direct leaning for all
noise levels. This property opens up an opportunity to vastly
improve the robustness and generalization ability of learning
schemes. In principle, The proposed learning method can be
extended to the more general model y = Hx + n, where H is
a sampling matrix. In this paper, we have chosen to focus on the
denoising model because its MMSE estimator is available for
comparison. Potential directions for future research include ex-
tension of the proposed framework to general inverse problems
as well as to multidimensional signals. Another issue worth in-
vestigating is the joint learning of the shrinkage function and
the decorrelation (sparsifying) transform L from real data, like
images, whose statistics are unknown.

APPENDIX
PROOF OF THEOREM 3

We first recall that

proxe = (9® + Id) L. (22)

Assume for now that ® is symmetric. Fix € RY and let u =
proxg (), v = proxg (—a). We need to show that u = —v.
From (22), we have that
z—u € 0P(u),
—x —v € 0D(v).
By the definition of the subdifferential operator, we obtain the
following inequalities:
O(—v) —P(u) > (x—u, —v—u)
O(—u) —P(v) > (—z—v, —u—v),

(23)
24

which, by the symmetry of ®, can be further simplified to

S(v) —P(u) > (u—z,u+v) (25)
D(u) —P(v) > (x+v,u+v). (26)
Adding these inequalities yields |[u + v||5 < 0, or u = —v.

Assume conversely that proxg is antisymmetric. We first
show that u € 0®(x) is equivalent to —u € J®(—x). Indeed,
by using (22) and from the antisymmetry of proxg,

u€dP(z) eu+aecidie)+a= prox&,l(w)
& x = proxg (u + )
& —x = proxg (—u — x)
S —u—x € prox&,l(—m) =0P(—x) —x
& —u € 0P(—x).
Furthermore, proxg(0) =0 due to the antisymmetry. Since

0®(0) = prox,' (0), it must be that 0 € 99(0). Let G =
gra(0®) and choose (xg,uy) = (0,0) € G. Consider the

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 4, FEBRUARY 15, 2018

Rockafellar anti-derivative [42] of O®:

(@)

sup  sup

n—1
(T — @, up) + Z (Tiv1 — Ti,u;)
nzl (@1,u1)eG i=0

() u, )eG

= sup sup
n>1 (il‘:l ,uq )EG

n—1
{(w — @y, )+ Y (Tip1 — (17717'UJ7',>}

i=1
(xn ,un )G

27)

It is well known [38, Proposition 22.15] that f € To(R") and
0f = 0. Therefore, we can invoke [38, Proposition 22.15] to
deduce that ® = f + ¢, for some constant ¢ € R. To show the
symmetry of @, it suffices to show the symmetry of f. From (27)
and by the symmetry of G, f(—x) is equal to

n—1
sup  sup (—@ — T, un) + Y (Tig1 — @i, ui)
n>1 (:cl,ul)eG i=1
(zn ,u, )G
n—1
= sup sup <—:L’ + @y, _Un> + Z <_a7i+1 + x;, _ui>
n=1 (x,u;)e@ i—1
(@, ,u, )G
n—1
= sup sup <$_mnaun>+z <xi+1 _wi7ui>
n>1 (xy,u)eG i—1
(mn s Up )EG
= f(z), Ve eRY,

which shows that f is symmetric, completing the proof.
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