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Abstract
In our recent work, the sampling and reconstruction of non-decaying signals, modeled
as members of weighted-L p spaces, were shown to be stable with an appropriate
choice of the generating kernel for the shift-invariant reconstruction space. In this
paper, we extend the Strang–Fix theory to show that, for d-dimensional signals whose
derivatives up to order L are all in some weighted-L p space, the weighted norm of the
approximation error can bemade to go down as O(hL)when the sampling step h tends
to 0. The sufficient condition for this decay rate is that the generating kernel belongs
to a particular hybrid-norm space and satisfies the Strang–Fix conditions of order L .
We show that the O(hL) behavior of the error is attainable for both approximation
schemes using projection (when the signal is prefiltered with the dual kernel) and
interpolation (when a prefilter is unavailable). The requirement on the signal for the
interpolation method, however, is slightly more stringent than that of the projection
because we need to increase the smoothness of the signal by a margin of d/p + ε, for
arbitrary ε > 0. This extra amount of derivatives is used to make sure that the direct
sampling is stable.
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1 Introduction

Sampling and reconstruction are important in signal processing because they provide
an insightful connection between analog signals and their discrete representations.
In the sampling procedure, oftentimes, a continuous-domain signal f : Rd �→ C is
uniformly sampled (with or without a prefilter) at multi-integer multiples of some
sampling step h to produce a discrete-domain signal c : Zd �→ C. The reconstruction,
on the other hand, is commonly done by interpolating the samples {c[k]}k∈Zd with
scaled and shifted copies of some kernel (generating function) ϕ positioned on the
grid hZd . Precisely, the reconstructed signal takes the (integer) shift-invariant form

f̃ (x) =
∑

k∈Zd

c[k]ϕ
( x
h

− k
)

. (1)

This interpolation model has been extensively used in the theory of splines [9,39–41].
It is general enough to include the celebrated reconstruction formula in Shannon’s sam-
pling theorem [42] in which the kernel ϕ is replaced with the sinc function. Although
the sinc-based interpolation guarantees exact recovery of bandlimited signals (or sig-
nals prefiltered with an ideal lowpass filter) whenever 1/h exceeds Nyquist’s rate, the
slow decay of sinc(x) unfortunately prevents the application of this method in prac-
tice [47]. For other choices of ϕ with better localization properties, such as splines,
exact reconstruction is no longer achievable but the quality of the approximation of a
signal f by such f̃ given in (1) can be characterized as a power of the sampling step h
via the Strang–Fix theory. Specifically, in early 1970’s, Strang and Fix [44] extended
Schoenberg’s work [39] and introduced the concept of controlled approximation in
which the �2-norm of the sampled coefficients is bounded by the L2-norm of the orig-
inal signal. They showed that, for compactly supported ϕ, the error of the controlled
approximation is bound as

∀ f ∈ HL
2 (Rd), min

c

∥∥∥ f − f̃
∥∥∥
L2(Rd )

≤ Cϕ,L · hL ·
∥∥∥ f (L)

∥∥∥
L2(Rd )

, as h → 0,

(2)

if and only if ϕ satisfies the Strang–Fix conditions of order L so that the representa-
tion (1) is able to reproduce all polynomials of degree less than L; this notion will be
clarified later in Sect. 2.4. Here, f (L) is the Lth derivative1 of f and HL

2 (Rd) is the
Sobolev space of L2 functions whose first L derivatives are all in L2(R

d). The order
L in (2) is referred to in the literature as the order (power) of approximation.

1 To be precise, when f is multivariate, f (L) is the summation of (the moduli of) all partial derivatives of
order L of f .
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The original result of Strang and Fix has been extended in various direc-
tions, including controlled L p-approximation with globally supported (multi-) ker-
nel [13,26,32,34], uncontrolled L2-approximation [14], and finer estimations of the
L2-approximation error [3–5,46,48]; interested readers are also referred to the sur-
veys [6,11,33]. More recently, the Strang–Fix theory was linked to the sampling of
signals with finite rate of innovation [15]. Despite a rich literature on the Strang–Fix
conditions, none of the existing results allows us to deal with the approximation of
non-decaying (non-L p) signals, such as sample paths of a Brownian motion, which
can even grow at infinity. This is an important part that seems to be missing, and
which, for instance, is relevant to the theory of sparse stochastic processes recently
developed by Unser et al. [49,52,53].

In this paper, a follow-up of our recent works on the sampling theory for non-
decaying signals [36–38], we provide an approximation theory for such objects. Recall
that we showed in [37] that both the sampling and reconstruction of weighted-L p

signals, at a fixed sampling step, are stable, provided the generating kernel ϕ lies in
an appropriate hybrid-norm space, a concept closely related to the Wiener amalgams
that are frequently used in time-frequency analysis [18,24,54]. Note that, in the direct
sampling scheme, where a prefilter is absent, not only the signal is required to live
in a weighted-L p space, but also its first d/p + ε derivatives, for some ε > 0. In
the spirit of [37], we model non-decaying signals in this paper as members of the
weighted space L p,−α(Rd) associated with the Sobolev weight (1+‖·‖2)−α/2, where
α ≥ 0 specifies the order of growth of the signals. In particular, f ∈ L p,−α(Rd)

if (1 + ‖ · ‖2)−α/2 f ∈ L p(R
d). We then extend the classical Strang–Fix theory

to the approximation of such signals for the two common types of shift-invariant
reconstructions: projection versus (direct) interpolation.

In the projection scheme, which provides the optimal L2-approximation, the orig-
inal signal is prefiltered with the dual kernel h−dϕd

(− ·
h

)
[48] and the coefficients

{c[k]}k∈Zd in (1) are obtained by sampling the resulting signal with step size h. It
means that the reconstructed signal is given by

f̃proj(x) = 1

hd
∑

k∈Zd

〈
f , ϕd

( ·
h

− k
)〉

ϕ
( x
h

− k
)

.

For this type of reconstruction, we show, in the first half of the paper, that if ϕ belongs
to an appropriate hybrid-norm space and at the same time satisfies the Strang–Fix
conditions of order L , then the weighted-L p norm of the projection error is bounded
as

∀ f ∈ HL
p,−α(Rd),

∥∥∥ f − f̃proj
∥∥∥
L p,−α(Rd )

≤ Cϕ,L,α · hL ·
∥∥∥ f (L)

∥∥∥
L p,−α(Rd )

, as h → 0, (3)

where the weighted Sobolev space HL
p,−α(Rd) is a collection of functions whose

derivatives up to order L are all in L p,−α(Rd). We want to remark that this result is
the weighted version of [32, Theorem 2.2].
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In the interpolation scheme, the coefficients are sampled directly from the original
signal; hence the reconstructed signal takes the form

f̃int(x) =
∑

k∈Zd

f (hk) ϕint

( x
h

− k
)

,

where ϕint is the interpolant generated from the kernel ϕ [47]. Similar to the projection
case, we establish, in the second half of the paper, that if ϕ is an element of a particular
hybrid-norm space that satisfies the Strang–Fix condition of order L , then, given
r > d/p,

∀ f : Dr f ∈ HL
p,−α(Rd),

∥∥∥ f − f̃int
∥∥∥
L p,−α(Rd )

≤ Cϕ,L,α · hL ·
∥∥∥(Dr f )(L)

∥∥∥
L p,−α(Rd )

, as h → 0. (4)

Here, Dr f is a combination of all fractional derivatives up to order r of f defined in
the frequency domain as Dr f := F−1

{
(1 + ‖ · ‖2)r/2F f

}
with F being the Fourier

transform operator. Informally speaking, the interpolation error can also be made
to decay like O(hL), when h tends to 0, for functions whose derivatives up to order
L+d/p+ε live in someweighted-L p space, for arbitrary ε > 0. This is not surprising
because we need d/p+ε derivatives to take care of the sampling, as indicated in [37],
and L derivatives more to reach the target approximation order. To the best of our
knowledge, the bound (4) is new even in the unweighted L p case (when all instances
of the subscript α disappear), although similar results exist for the direct interpolation
in L2 [48] and L∞ [34]. The (unweighted) L p result presented in [26, Theorem 4.1],
although similar to (4), does not fall into the realm of direct interpolation because
the samples are taken from a smoothed version of the original signal. It is important
to remark that the decay rate in (4) is integer while the order of smoothness of f is
fractional. An extension of such bound for fractional decay rates, in a similar vein
to the unweighted approximations in [2,25,27–29], might be considered for future
research.

One of the challenges for the approximation in weighted spaces is that the beautiful
Fourier-basedmethods commonly used in the Strang–Fix theory [3–5,14,44,46,48] are
no longer applicable, even in the weighted-L2 case, due to the lack of a Parseval-type
relation. In proving the bounds (3) and (4), we adapt the L p-approximation techniques
in [26,32], which are carried entirely in the space domain, but our analysis is much
more involved because of the handling of the weights. We also heavily rely on the
preliminary results in [37]. Other works that are closely related to the present paper
are [1,45] in which similar bounds were derived in the weighted-L p spaces associated
with the so-calledMuckenhoupt weights [35]. These weights, however, are strikingly
different from the Sobolev weights used in this paper. They are characterized by the
boundedness of the Hardy-Littlewood maximal operator [17,23,43] with respect to
the weighted norm. Typical examples of the Muckenhoupt weights are ‖ · ‖α , for α

being restricted in the interval (−d/p, d − d/p) (cf. [31]). By contrast, the Sobolev
weights (1 + ‖ · ‖2)α/2 can take arbitrary order α ∈ R and therefore give us more
freedom in quantifying the growth or decay of the signals.Moreover, theMuckenhoupt
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weights are not well-suited to time-frequency analysis because they are generally
not submultiplicative, an important property that is satisfied by the Sobolev weights
(cf. [22, Section 9]).

The remainder of the paper is organized as follows: preliminary notions are intro-
duced in Sect. 2; approximation error bounds for the projection and interpolation
paradigms are derived in Sects. 3 and 4, respectively; proofs of several auxiliary
results are given in Sect. 5.

2 Preliminaries

2.1 Notation

All functions in this paper are mappings from R
d to C for a fixed dimension d ≥ 1.

Vectors in R
d are denoted by bold letters and their Euclidean norms are denoted by

‖ · ‖. The constants throughout the paper are denoted by C with subscripts indicating
the dependence of the constants on some parameters; we use the same notation for
different constants that depend on the same set of parameters. The restriction of a
function f on the multi-integer grid Z

d is denoted by f [·]. N is the set of natural
numbers and Z+ is the set of nonnegative integers, i.e., Z+ = N ∪ {0}. For brevity,
we denote by 〈·〉 the Sobolev weighting function (1+ ‖ · ‖2)1/2. For 1 ≤ p ≤ ∞, we
use p′ to denote the Hölder conjugate of p that satisfies 1

p + 1
p′ = 1 .

C∞
c (Rd) is the space of smooth and compactly supported functions, S(Rd) is

Schwartz’ class of smooth and rapidly decaying functions, and S ′(Rd) is the space of
tempered distributions, which are continuous linear functionals on S(Rd). As usual,
the notation 〈·, ·〉 is used interchangeably for the scalar product and for the action of
a distribution on a test function. The (distributional) Fourier transform f̂ = F f of a
tempered distribution f ∈ S ′(Rd) is also a tempered distribution defined as

〈F f , ϕ〉 :=
〈
f̂ , ϕ

〉
:= 〈

f , ϕ̂
〉
, for ϕ ∈ S(Rd),

where

ϕ̂(ω) :=
∫

Rd
ϕ(x)e−j〈ω,x〉dx.

We denote the inverse Fourier-transform operator by F−1. For a multi-index � ∈ Z
d+,

|�| := ∑d
i=1 �i and ∂� is a shorthand for (∂/∂x1)�1 · · · (∂/∂xd)�d . The (distributional)

partial derivative with respect to � of a tempered distribution f ∈ S ′(Rd) is also a
tempered distribution defined as

〈
∂� f , ϕ

〉
:= (−1)|�|

〈
f , ∂�ϕ

〉
, for ϕ ∈ S(Rd).
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We also use the notation

f (n) :=
∑

�∈Zd+:|�|=n

|∂� f |.

∇ := (∂/∂x1, . . . , ∂/∂xd) is the gradient operator and Du := 〈∇, u〉 is the directional
derivative operator with respect to u ∈ R

d . The shift and difference operators are
defined as Su f := f (· − u) and �u f := f − Su f , respectively. For h > 0, σh
denotes the scaling operator given by σh f := f (·/h).

2.2 Weighted Normed Spaces

The spaces L p(R
d) and �p(Z

d) and their corresponding norms ‖·‖L p(Rd ) and ‖·‖�p(Zd )

are defined as usual. We also need the hybrid-norm space Wp(R
d) which comprises

all functions f whose hybrid (mixed) norm

‖ f ‖Wp(Rd ) :=
⎧
⎨

⎩

(∫
[0,1]d

(∑
k∈Zd | f (x + k)|)p dx

)1/p
, 1 ≤ p < ∞

ess supx∈[0,1]d
∑

k∈Zd | f (x + k)|, p = ∞

is finite. For any weighting function w, the weighted spaces L p,w(Rd), �p,w(Zd) and
Wp,w(Rd) are defined with respect to the following weighted norms:

‖ f ‖L p,w(Rd ) := ‖ f · w‖L p(Rd ) ,

‖c‖�p,w(Zd ) := ‖c · w[·]‖�p(Zd ) ,

‖ f ‖Wp,w(Rd ) := ‖ f · w‖Wp(Rd ) .

When w = 〈·〉α , for some α ∈ R, we write L p,α(Rd) for L p,w(Rd), �p,α(Zd) for
�p,w(Zd), and Wp,α(Rd) for Wp,w(Rd). Note that, for α ≥ 0, the weight w = 〈·〉α is
(weakly) submultiplicative, i.e.,

〈x + y〉α ≤ Cα 〈x〉α 〈 y〉α , ∀x, y ∈ R
d ,

which is equivalent to

〈x + y〉−α ≤ Cα 〈x〉α 〈 y〉−α , ∀x, y ∈ R
d .

Furthermore, the weight w = 〈·〉α satisfies the Gelfand-Raikov-Shilov condition [19]
that

lim
n→∞ w(nx)1/n = 1, ∀ x ∈ R

d .

These two properties of 〈·〉α , with α ≥ 0, will be crucial for us to manipulate weights.
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Finally, let us define the weighted Sobolev spaces of integer and fractional orders.
Given 1 ≤ p ≤ ∞ and α ∈ R, the space Hk

p,α(Rd) with k ∈ Z+ consists of all
f ∈ S ′(Rd) such that

‖ f ‖Hk
p,α(Rd ) :=

∑

�∈Zd+:|�|≤k

∥∥∥∂� f
∥∥∥
L p,α(Rd )

< ∞.

It is straightforward that if f ∈ Hk
p,α(Rd) then f (n) ∈ L p,α(Rd), for all n ≤ k.

Meanwhile, the space Ls
p,α with s ∈ R consists of all f ∈ S ′(Rd) such that

‖ f ‖Ls
p,α(Rd ) :=

∥∥∥F−1
{
〈·〉s f̂

}∥∥∥
L p,α(Rd )

< ∞.

From here on, the termF−1
{
〈·〉s f̂

}
will be abbreviated as Ds f . When s > 0, D−s is

the Bessel potential of order s [20]. We also need the hybrid weighted Sobolev space
Hk,s

p,α which encompasses all f ∈ S ′(Rd) such that Ds f ∈ Hk
p,α . Note that, in the

unweighted case (α = 0), it is not difficult to show that Hk,s
p (Rd) = Lk+s

p (Rd), for
1 < p < ∞, using the Mikhlin–Hörmander theorem on Fourier multipliers (cf. [21,
Chapter 5] and [20, Chapter 6]). For α �= 0, however, Hk,s

p,α(Rd) is not necessarily
the same as Lk+s

p,α (Rd). This is due to the lack of a theory on weighted Fourier multi-
pliers for the Sobolev weights; most of the existing literature are concerned with the
Muckenhoupt weights, instead [16,30,31].

2.3 Shift-Invariant Spaces of Non-decaying Functions

Weare interested in the approximation of a non-decaying function living in the ambient
space L p,−α(Rd), for some α ≥ 0, by an element in the (weighted) shift-invariant
space Vp,−α,h(ϕ) generated by some kernel ϕ defined as

Vp,−α,h(ϕ) :=
⎧
⎨

⎩ f =
∑

k∈Zd

c[k]ϕ
( ·
h

− k
)

: c ∈ �p,−α(Zd)

⎫
⎬

⎭ ,

where h > 0 is a varying scale (sampling step). We write Vp,−α(ϕ) for Vp,−α,1(ϕ),
write Vp,h(ϕ) for Vp,0,h(ϕ), and write Vp(ϕ) for Vp,0,1(ϕ). In addition to including
many types of signal reconstruction models covered in the literature [47], this general
formulation allows us to deal with (polynomially) growing signals. Similar to the
unweighted case, we want to make sure that the (unscaled) space Vp,−α(ϕ) is a closed
subspace of L p,−α(Rd) and each of its member f ∈ Vp,−α(ϕ) has an unambiguous
representation in terms of the coefficients c[k]. It turns out that, as shown in [37,
Theorem 2], this wish list will be fulfilled if the generating kernel ϕ satisfies the
following admissibility conditions:
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(i) {ϕ(· − k)}k∈Zd is a Riesz basis for V2(ϕ) or, equivalently, the Fourier tranform of

the autocorrelation sequence, âϕ(ω) := ∑
k∈Zd

∣∣ϕ̂(ω + 2πk)
∣∣2, is bounded from

below and above for all ω ∈ R
d ;

(ii) ϕ belongs to the weighted hybrid-norm space Wq,α(Rd) with q := max(p, p′).

Wewant to emphasize that the above conditions, thoughmathematically cumbersome,
are by no means restrictive since they are easily satisfied by all interpolation kernels
used in practice, and in particular B-splines [47].

2.4 Strang–Fix Conditions

There are multiple forms of the Strang–Fix conditions; the equivalence between them
was initially shown for compactly supported functions [44] but then extended to kernels
with global supports [26,34]. The most common form of the Strang–Fix conditions
is characterized in the frequency domain: a kernel ϕ is said to satisfy the Strang–Fix
conditions of order L if

(i) ϕ̂(0) �= 0;
(ii) ∂�ϕ̂(2πk) = 0, ∀|�| ≤ L − 1,∀k ∈ Z

d \ {0}.
To translate the Strang–Fix conditions into the space domain, we also need the Poisson
summation formula (PSF) to hold.Oneof themost commonconditions for thePSF [21]
is that

∃C, ε > 0 : |ϕ(x)| + |ϕ̂(x)| ≤ C(1 + ‖x‖)−d−ε,∀x ∈ R
d . (5)

Although (5) is not satisfied by the rectangle kernel, it can be relaxed [26, Theorem2.1]
to cover that case. Assuming the PSF, the Strang–Fix conditions above are equivalent
to the existence of a quasi-interpolant ϕQI of order L [7,10,12] in the shift-invariant
subspace V2(ϕ). This quasi-interpolant exactly interpolates all polynomials of degree
(strictly) less than L , i.e.

∑

k∈Zd

k�ϕQI(x − k) = x�, ∀|�| ≤ L − 1,∀x ∈ R
d , (6)

where x� stands for x�1
1 · · · x�d

d . Therefore, the Strang–Fix conditions of order L can
also be described as the ability of the space V2(ϕ) to reproduce polynomials of degree
less than L . It is important to note that, for a particular ϕ, there are multiple choices
for the quasi-interpolant within the subspace V2(ϕ), one of which is the interpolant
ϕint that satisfies not only (6) but also the interpolating property

ϕint(k) = δ[k], ∀k ∈ Z
d , (7)

where δ[·] denote the discrete unit impulse; the construction of this interpolant will
be discussed in Sect. 4.
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Most importantly, the Strang–Fix conditions of order L are necessary and sufficient
for the controlled L2-approximation of order L that for any f ∈ HL

2 (Rd), there exists
f̃ = ∑

k∈Zd c[k]ϕ (·/h − k) in V2(ϕ) such that

(i) ‖c‖�2(Zd ) ≤ C · ‖ f ‖L2(Rd ) and

(ii)
∥∥∥ f − f̃

∥∥∥
L2(Rd )

≤ C · hL · ∥∥ f (L)
∥∥
L2(Rd )

, as h → 0,

where the constantsC are independent of f . Note that the controllability of the approx-
imation is dictated by the first bound, whereas the order of the approximation is
described by the second bound. This beautiful connection between the approxima-
tion of order L and the ability of the representation space to reproduce polynomials
of degree less than L lies at the core of the Strang–Fix theory and its various exten-
sions [3,14,26]. Finally, it is handy to keep in mind that the B-spline of order L [50,51]
satisfies the Strang–Fix conditions of order L .

3 Projection Error Bound

In this section, we derive the error bound for the approximation of a non-decaying
function in the weighted Sobolev space HL

p,−α(Rd) by its projection onto the shift-
invariant space Vp,−α,h(ϕ). Assume throughout this section that the kernel ϕ is such
that {ϕ(· − k)}k∈Zd is a Riesz basis for V2(ϕ). This condition guarantees [47] that the
dual kernel ϕd exists and is given in the Fourier domain by

ϕ̂d(ω) = ϕ̂(ω)∑
k∈Zd |ϕ̂(ω + 2πk)|2 .

Let us define the operator

Pϕ,h : f �→ f̃proj =
∑

k∈Zd

c[k]ϕ
( ·
h

− k
)

,

where, for each k ∈ Z
d , the coefficient c[k] is given by

c[k] = 1

hd

∫

Rd
f ( y)ϕd

( y
h

− k
)
d y.

In the language of signal processing, c[k] is the result of prefiltering the signal f with
the filter h−dϕd

(− ·
h

)
followed by a sampling at location hk. We write Pϕ for Pϕ,1. It

is well known in the (unweighted) L2 case that Pϕ,h is an orthogonal projector from
L2(R

d) onto the subspace V2,h(ϕ) and therefore provides the best L2-approximation.
In the weighted-L p setup, orthogonality no longer exists but the operator Pϕ,h still
behaves properly. In particular, the following result shows that Pϕ,h is a bounded
projector from L p,−α(Rd) onto Vp,−α,h(ϕ) whose norm is bounded as the scale h
tends to 0. The essential condition for that to hold true is that the generating kernel ϕ
is a member of an appropriate weighted hybrid-norm space.
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Theorem 1 Let 1 ≤ p ≤ ∞ and α ≥ 0. If ϕ ∈ Wq,α(Rd) with q := max(p, p′) and
{ϕ(· − k)}k∈Zd is a Riesz basis for V2(ϕ), then, for all h > 0, Vp,−α,h(ϕ) is a closed
subspace of L p,−α(Rd) and Pϕ,h is a projector from L p,−α(Rd) onto Vp,−α,h(ϕ).
Furthermore, there exists a constant Cϕ,α such that

∥∥Pϕ,h f
∥∥
L p,−α(Rd )

≤ Cϕ,α ‖ f ‖L p,−α(Rd ) , ∀ f ∈ L p,−α(Rd),∀h ∈ (0, 1). (8)

Proof Since ϕ ∈ Wq,α(Rd) and {ϕ(· − k)}k∈Zd is a Riesz basis for V2(ϕ), it is known
from [37, Theorems 1 and 2] that Vp,−α(ϕ) is a closed subspace of L p,−α(Rd) and
Pϕ is a bounded projector from L p,−α(Rd) onto Vp,−α(ϕ). We now divide the rest of
the proof into several steps.

First, we show that Vp,−α,h(ϕ) is a subspace of L p,−α(Rd), for all h > 0. Given
f ∈ Vp,−α,h(ϕ), it is clear that σ1/h f ∈ Vp,−α(ϕ) ⊂ L p,−α(Rd). On the other hand,

‖ f ‖p
L p,−α(Rd )

= hd
∫

Rd
〈hx〉−α p

∣∣(σ1/h f )(x)
∣∣p dx

≤ hd · max(1, h−α p)

∫

Rd
〈x〉−α p

∣∣(σ1/h f )(x)
∣∣p dx

= hd · max(1, h−α p) · ∥∥σ1/h f
∥∥p
L p,−α(Rd )

. (9)

This implies that f also belongs to L p,−α(Rd), or Vp,−α,h(ϕ) is a subspace of
L p,−α(Rd), for all h > 0.

Second, we show that Vp,−α,h(ϕ) is closed under the norm of L p,−α(Rd), for all
h > 0. Let { fn} be a sequence in Vp,−α,h(ϕ) such that fn → f in L p,−α(Rd) as
n → ∞. Similar to (9), we have that

∥∥σ1/h fn − σ1/h f
∥∥
L p,−α(Rd )

≤ h−d/p · max(1, hα) · ‖ fn − f ‖L p,−α(Rd ) ,

which implies that σ1/h fn → σ1/h f in L p,−α(Rd) as n → ∞. As
{
σ1/h fn

}
is

a sequence in Vp,−α(ϕ), it follows from the closedness of Vp,−α(ϕ) that σ1/h f ∈
Vp,−α(ϕ), or f ∈ Vp,−α,h(ϕ). This shows the closedness of Vp,−α,h(ϕ).

Third, we show that Pϕ,h is a projector that maps L p,−α(Rd) to Vp,−α,h(ϕ), for
all h > 0. Observe that Pϕ,h = σh Pϕσ1/h . From (9), σ1/h maps L p,−α(Rd) to itself.
It is also known that Pϕ maps L p,−α(Rd) to Vp,−α(ϕ) and σh maps Vp,−α(ϕ) to
Vp,−α,h(ϕ). Therefore, Pϕ,h maps L p,−α(Rd) to Vp,−α,h(ϕ). The idempotence of
Pϕ,h can be easily verified as

P2
ϕ,h = σh Pϕσ1/hσh Pϕσ1/h = σh P

2
ϕ σ1/h = σh Pϕσ1/h = Pϕ,h,

where we have relied on the idempotence of the projector Pϕ .
Finally, we show the bound (8). Let us consider the weighting function wh(x) :=

〈hx〉α . It is easy to see that wh satisfies

wh(x + y) ≤ Cα wh(x)wh( y), ∀x, y ∈ R
d ,∀h > 0. (10)
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By a change of variable and from the last bound in the proof of [37, Theorem 1], we
have that, for all h > 0,

∥∥Pϕ,h f
∥∥
L p,−α(Rd )

= ∥∥σh Pϕσ1/h f
∥∥
L p,−α(Rd )

= hd/p · ∥∥Pϕ(σ1/h f )
∥∥
L p,1/wh (Rd )

≤ hd/p · C2
α · ‖ϕ‖Wp,wh (Rd ) ‖ϕd‖Wp′,wh

(Rd )

∥∥σ1/h f
∥∥
L p,1/wh (Rd )

= C2
α · ‖ϕ‖Wp,wh (Rd ) ‖ϕd‖Wp′,wh

(Rd ) ‖ f ‖L p,−α(Rd ) , (11)

where Cα is precisely the constant in (10) that does not depend on h. On the other
hand, according to [37, Proposition 6], both ϕ and ϕd are elements ofWq,α(Rd). Since
q = max(p, p′), it must be that ϕ ∈ Wp,α(Rd) and ϕd ∈ Wp′,α(Rd). Moreover, the
assumption that h ∈ (0, 1) gives

‖ϕ‖Wp,wh (Rd ) ≤ ‖ϕ‖Wp,α(Rd ) < ∞, (12)

and

‖ϕd‖Wp′,wh
(Rd ) ≤ ‖ϕd‖Wp′,α(Rd ) < ∞. (13)

Putting together (11)–(13) yields the desired bound (8). ��
The main result of this section is as follows:

Theorem 2 Let 1 ≤ p ≤ ∞, L ∈ N, and α ≥ 0. Assume that ϕ ∈ Wq,L+α(Rd) with
q := max(p, p′) and that {ϕ(· − k)}k∈Zd is a Riesz basis for V2(ϕ). Assume also that
ϕ satisfies the Strang–Fix conditions of order L. Then, there exists a constant Cϕ,L,α

such that, for all f ∈ HL
p,−α(Rd),

∥∥ f − Pϕ,h f
∥∥
L p,−α(Rd )

≤ Cϕ,L,α · hL ·
∥∥∥ f (L)

∥∥∥
L p,−α(Rd )

, (14)

when h → 0.

In what follows, we break the proof of Theorem 2 into several small results. Let us
begin by defining the smoothing operator Jh as

Jh : f �→
∫

Rd

(
f − �L

hu f
)

(·)χ (u) du, (15)

with some underlying function χ ∈ C∞
c (Rd) such that supp(χ) ⊂ [−1, 1]d and∫

Rd χ(u)du = 1. This smoothing operator was also exploited in [26,32].
Expanding �L

hu f as

�L
hu f =

L∑

n=0

(−1)n
(
L

n

)
f (· − nhu),
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we obtain

f − �L
hu f =

L∑

n=1

(−1)n−1
(
L

n

)
f (· − nhu).

Therefore, Jh can also be expressed as

Jh f =
L∑

n=1

(−1)n−1
(
L

n

)∫

Rd
f (· − nhu)χ (u) du.

This means that Jh is a convolution operator: Jh f = f ∗ ψh , where

ψh :=
L∑

n=1

(−1)n−1
(
L

n

)
1

(nh)d
σnhχ. (16)

The following result shows that the weighted norm of the error between a function
f ∈ HL

p,−α(Rd) and its smoothed version Jh f is O(hL) as h tends to 0.

Proposition 1 For 1 ≤ p ≤ ∞, L ∈ N, α ≥ 0, and Jh being the smoothing operator
defined in (15), there exists a constant CL,α such that, for all f ∈ HL

p,−α(Rd) and for
all h ∈ (0, 1),

‖ f − Jh f ‖L p,−α(Rd ) ≤ CL,α · hL ·
∥∥∥ f (L)

∥∥∥
L p,−α(Rd )

. (17)

Proof We first need the following two lemmas whose proofs can be found in Sect. 5.

Lemma 1 Let L ∈ N and let βL−1 be the (1-D) B-spline of order (L − 1) given by the
L-fold convolution

βL−1 := β0 ∗ β0 ∗ · · · ∗ β0
︸ ︷︷ ︸

L times

,

where

β0(x) :=
{
1, 0 < x < 1

0, otherwise
.

Then, for all f ∈ S ′(Rd), one has

�L
u f =

∫

R

DL
u f (· − tu)βL−1(t)dt . (18)
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Lemma 2 Let L ∈ N and u ∈ R
d . If f ∈ S ′(Rd) such that its partial derivatives up

to order L are locally integrable functions, then

∣∣∣DL
u f (x)

∣∣∣ ≤ ‖u‖L∞ · f (L)(x), ∀x ∈ R
d , (19)

where ‖u‖∞ := max{|u1|, . . . , |ud |}.
We remark that Lemma 1 is an extension of Peano’s theorem [8, p. 70] for smooth

functions. It is needed to avoid the density argument in the proof of [26, Theorem 3.3]
that is unavailable in theweighted case. Let us continuewith the proof of Proposition 1.
Observe that

( f − Jh f )(x) = f (x)

∫

Rd
χ (u) du −

∫

Rd

(
f − �L

hu f
)

(x)χ (u) du

=
∫

Rd
�L

hu(x)χ (u) du.

From Lemma 1 and by taking into account the fact that supp(χ) ⊂ [−1, 1]d and
supp(βL−1) = [0, L], we write

( f − Jh f )(x) =
∫

[−1,1]d

∫ L

0
DL
hu f (x − thu)βL−1(t)χ (u) du dt .

It then follows from Minkowski’s inequality and Lemma 2 that

‖ f − Jh f ‖L p,−α(Rd ) ≤
∫

[−1,1]d

∫

R

∥∥∥DL
hu f (· − thu)

∥∥∥
L p,−α(Rd )

βL−1(t)χ (u) du dt

≤
∫

[−1,1]d

∫

R

‖hu‖L∞ ·
∥∥∥ f (L)(· − thu)

∥∥∥
L p,−α(Rd )

βL−1(t)χ (u) du dt

≤ hL ·
∫

[−1,1]d

∫

R

∥∥∥ f (L)(· − thu)

∥∥∥
L p,−α(Rd )

βL−1(t)χ (u) du dt .

(20)

On the other hand,

∥∥∥ f (L)(· − thu)

∥∥∥
L p,−α(Rd )

=
(∫

Rd

∣∣∣〈x〉−α f (L)(x − thu)

∣∣∣
p
dx

)1/p

≤ Cα 〈thu〉α
(∫

Rd

∣∣∣〈x − thu〉−α f (L)(x − thu)

∣∣∣
p
dx

)1/p

= Cα 〈thu〉α
∥∥∥ f (L)

∥∥∥
L p,−α(Rd )

.

Thus, for t ∈ [0, L] and h ∈ (0, 1),

∥∥∥ f (L)(· − thu)

∥∥∥
L p,−α(Rd )

≤ Cα Lα 〈u〉α
∥∥∥ f (L)

∥∥∥
L p,−α(Rd )

. (21)
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Combining (21) with (20) leads to

‖ f − Jh f ‖L p,−α(Rd ) ≤ Cα Lα · hL ·
∥∥∥ f (L)

∥∥∥
L p,−α(Rd )

∫ L

0
βL−1(t)dt

∫

[−1,1]d
〈u〉α χ (u) du

= CL,α · hL ·
∥∥∥ f (L)

∥∥∥
L p,−α(Rd )

,

which completes the proof. ��
Proposition 2 Assume that 1 ≤ p ≤ ∞, L ∈ N, and α ≥ 0. Let q := max(p, p′) and
let Jh be the smoothing operator defined in (15). If ϕ is an element of Wq,L+α(Rd)

that satisfies the Strang–Fix conditions of order L, then there exists a constant Cϕ,L,α

such that, for all f ∈ HL
p,−α(Rd) and for all h ∈ (0, 1),

∥∥Jh f − Pϕ,h Jh f
∥∥
L p,−α(Rd )

≤ Cϕ,L,α · hL ·
∥∥∥ f (L)

∥∥∥
L p,−α(Rd )

.

Proof We begin the proof with a lemma; its proof is given in Sect. 5.

Lemma 3 Let wh(x) := 〈hx〉α , α ≥ 0. Then, there exists a constant CL,α such that,
for all f ∈ L p,−α(Rd) and for all h ∈ (0, 1),

∥∥(σ1/h Jh f )[·]
∥∥

�p,1/wh (Zd )
≤ CL,α · h−d/p · ‖ f ‖L p,−α(Rd ) . (22)

Let us now put g := Jh f and e := g − Pϕ,hg. It is clear that g is infinitely
differentiable. For x ∈ R

d , let Rx denote the remainder of the order-(L − 1) Taylor
series of function g about x. Since ϕ satisfies the Strang–Fix conditions of order L , it is
known [48] that Pϕ,h maps every polynomial of degree less than L to itself. Therefore,
it is possible to write

e(x) = −
∑

�∈Zd

cx[�]ϕ
( x
h

− �
)

, (23)

where the sequence cx is given by

cx[�] := 1

hd

∫

Rd
Rx( y)ϕd

( y
h

− �
)
d y. (24)

The weighted-L p norm of the projection error is then bounded as

‖e‖p
L p,−α(Rd )

=
∑

k∈Zd

∫

[0,h]d
∣∣〈x + hk〉−α e(x + hk)

∣∣p dx

= hd ·
∫

[0,1]d
∑

k∈Zd

∣∣〈hx + hk〉−α e(hx + hk)
∣∣p dx
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= hd ·
∫

[0,1]d
∑

k∈Zd

∣∣∣∣∣∣
〈hx + hk〉−α

∑

�∈Zd

chx+hk[�] · ϕ (x + k − �)

∣∣∣∣∣∣

p

dx

≤ Cα · hd ·
∫

[0,1]d
∑

k∈Zd

⎛

⎝
∑

�∈Zd

〈hk〉−α
∣∣chx+hk[k − �]∣∣ · |ϕ (x + �)|

⎞

⎠
p

dx.

(25)

The last estimate is due to a change of variable and to the fact that 〈hx + hk〉−α ≤
Cα 〈hk〉−α , ∀x ∈ [0, 1]d , ∀h ∈ (0, 1). Let us define the two sequences: cx,�[k] :=
〈hk〉−α |chx+hk[k− �]| and ϕx[·] = |ϕ(x + ·)|, for each x ∈ [0, 1]d and each � ∈ Z

d .
Plugging these notations into (25) and applying Minkowski’s inequality, we obtain

‖e‖p
L p,−α(Rd )

≤ Cα · hd ·
∫

[0,1]d
∑

k∈Zd

⎛

⎝
∑

�∈Zd

cx,�[k] · ϕx[�]
⎞

⎠
p

dx

≤ Cα · hd ·
∫

[0,1]d

⎛

⎝
∑

�∈Zd

‖cx,�‖�p(Zd ) · ϕx[�]
⎞

⎠
p

dx. (26)

We now proceed to bound the quantity
∥∥cx,�

∥∥
�p(Zd )

. By Taylor’s theorem

Rhx+hk(h y + hk) =
∫ 1

0

(1 − τ)L−1

(L − 1)! Sτh y+(1−τ)hxD
L
h y−hx(Jh f )(hk)dτ

=
∫ 1

0
JhTy,τ f (hk)dτ, (27)

where the operator Ty,τ is defined as

Ty,τ := (1 − τ)L−1

(L − 1)! Sτh y+(1−τ)hxD
L
h y−hx . (28)

Note that the swapping of Ty,τ and Jh in (27) is justified because Jh is a convolution
operator and hence commutes with differential and shift operators. From (24) and the
definition of cx,�, one has

cx,�[k] = 〈hk〉−α

∫

Rd
Rhx+hk(h y + hk)ϕd ( y + �) d y

=
∫

Rd
ϕd (y + �)

∫ 1

0

1

wh(k)
· JhTy,τ f (hk)dτd y, (29)
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where wh := 〈h·〉α . By Minkowski’s inequality and by Lemma 3

‖cx,�‖�p(Zd ) ≤
∫

Rd
|ϕd ( y + �)|

∫ 1

0

∥∥(σ1/h JhTy,τ f )[·]∥∥
�p,1/wh (Zd )

dτd y

≤ CL,α · h−d/p
∫

Rd
|ϕd ( y + �)|

∫ 1

0

∥∥Ty,τ f
∥∥
L p,−α(Rd )

dτd y. (30)

On the other hand

∥∥Ty,τ f
∥∥
L p,−α(Rd )

= (1 − τ)L−1

(L − 1)! ·
∥∥∥Sτh y+(1−τ)hxD

L
h y−hx f

∥∥∥
L p,−α(Rd )

≤ CL ·
∥∥∥ f (L)(· − τh y − (1 − τ)hx)

∥∥∥
L p,−α(Rd )

‖h y − hx‖L
(31)

≤ CL,α ·
∥∥∥ f (L)

∥∥∥
L p,−α(Rd )

· 〈τh y + (1 − τ)hx〉α ‖h y − hx‖L
(32)

≤ CL,α · hL ·
∥∥∥ f (L)

∥∥∥
L p,−α(Rd )

· 〈 y − x〉α ‖ y − x‖L (33)

≤ CL,α · hL ·
∥∥∥ f (L)

∥∥∥
L p,−α(Rd )

· 〈 y − x〉L+α , (34)

where (31) follows from Lemma 2; (32) is due to the submultiplicativity of the weight
〈·〉α; and (33) is because h, τ ∈ (0, 1) and x ∈ [0, 1]d . Putting (30) and (34) together

‖cx,�‖�p(Zd ) ≤ CL,α · h−d/p · hL
∥∥∥ f (L)

∥∥∥
L p,−α(Rd )

∫

Rd
〈 y − x〉L+α |ϕd( y + �)|d y

= CL,α · h−d/p · hL
∥∥∥ f (L)

∥∥∥
L p,−α(Rd )

∫

Rd
〈 y − � − x〉L+α |ϕd( y)|d y

≤ CL,α · h−d/p · hL
∥∥∥ f (L)

∥∥∥
L p,−α(Rd )

〈x + �〉L+α ‖ϕd‖L1,L+α(Rd ). (35)

The last estimate is again due to the submultiplicativity of the weight 〈·〉α .
Since ϕ ∈ Wq,L+α(Rd), it follows from [37, Proposition 6] that ϕd also belongs

to Wq,L+α(Rd). Since Wq,L+α(Rd) ⊂ W1,L+α(Rd) = L1,L+α(Rd), it must be that
ϕd ∈ L1,L+α(Rd) and so the right-hand side of (35) is finite. Plugging (35) into (26)
yields

‖e‖L p,−α(Rd ) ≤ CL,α · hL ·
∥∥∥ f (L)

∥∥∥
L p,−α(Rd )

‖ϕd‖L1,L+α(Rd )

×
⎛

⎝
∫

[0,1]d

⎛

⎝
∑

�∈Zd

〈x + �〉L+α |ϕ(x + �)|
⎞

⎠
p

dx

⎞

⎠
1/p
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= CL,α · ‖ϕd‖L1,L+α(Rd ) · ‖ϕ‖Wp,L+α(Rd )︸ ︷︷ ︸
Cϕ,L,α

·hL ·
∥∥∥ f (L)

∥∥∥
L p,−α(Rd )

,

which is the desired bound. ��
With the above results in hands, we are now ready to prove Theorem 2.

Proof of Theorem 2 Without loss of generality, assume that h ∈ (0, 1). Put g := Jh f .
By using the triangle inequality and by applying Theorem 1, we have that

∥∥ f − Pϕ,h f
∥∥
L p,−α(Rd )

≤ ‖ f − g‖L p,−α(Rd ) + ∥∥Pϕ,h f − Pϕ,hg
∥∥
L p,−α(Rd )

+ ∥∥g − Pϕ,hg
∥∥
L p,−α(Rd )

≤ (1 + Cϕ,α) ‖ f − g‖L p,−α(Rd ) + ∥∥g − Pϕ,hg
∥∥
L p,−α(Rd )

.

This bound together with Propositions 1 and 2 immediately implies (14), completing
the proof. ��

4 Interpolation Error Bound

We consider in this section the approximation scheme in which a function is ideally
sampled (without a prefilter) and reconstructed using an interpolating kernel. Consider
throughout this section a kernelϕ that satisfies condition (5). The interpolation operator
associated with kernel ϕ and sampling step h is defined by

Iϕ,h : f �→ f̃int =
∑

k∈Zd

f (hk)ϕint

( ·
h

− k
)

, (36)

where the interpolant ϕint is related to the kernel ϕ by

ϕint :=
∑

k∈Zd

a[k]ϕ(· − k), (37)

and where a is a discrete filter given by

a[n] := 1

(2π)d

∫

[−π,π ]d
ej〈ω,n〉

∑
k∈Zd ϕ(k)e−j〈ω,k〉 dω, for n ∈ Z

d . (38)

This filter is to make sure that f (hk) = f̃int(hk), for all k ∈ Z
d . We have assumed

implicitly in (38) that
∑

k∈Zd ϕ(k)e−j〈ω,k〉 is nonzero for all ω ∈ R
d . It is noteworthy

that, in the absence of a prefilter, the function f to be approximated has to be continuous
everywhere for the sampling to make sense.
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Another way to express (36) is

Iϕ,h : f �→ f̃int =
∑

k∈Zd

c[k]ϕ
( ·
h

− k
)

, (39)

where c := (σ1/h f )[·] ∗ a is the sampled sequence of f discretely filtered by a. This
is the way interpolation is often implemented in practice since it is generally much
easier to work with the kernel ϕ than with ϕint. To simplify the notation, we write Iϕ
for Iϕ,1.

The following lemma says that the interpolant ϕint and the kernel ϕ can be made to
lie in the same weighted hybrid-norm space by imposing on ϕ some mild conditions
that are satisfied by, for example, B-splines of all orders.

Lemma 4 Let 1 ≤ p ≤ ∞ and α ≥ 0. Let ϕ ∈ Wp,α(Rd) such that ϕ[·] ∈ �1,α(Zd)

and
∑

k∈Zd ϕ[k]e−j〈ω,k〉 is nonzero for all ω ∈ R
d . Then, the corresponding inter-

polant ϕint defined in (37) also belongs to Wp,α(Rd).

Proof See Sect. 5. ��
The next result is the interpolation counterpart of Theorem 1 and can be thought of

as the scaled version of [37, Proposition 9]. It asserts that Iϕ,h is a bounded operator

from Ld/p+ε
p,−α (Rd) to Vp,−α,h(ϕ) whose norm is bounded as h → 0. The underly-

ing condition is that the interpolant ϕint belongs to the weighted hybrid-norm space
Wp,α(Rd).

Theorem 3 Assume that 1 ≤ p ≤ ∞, α ≥ 0, and r > d/p. Let ϕ ∈ Wp,α(Rd) such
that ϕ[·] ∈ �1,α(Zd) and

∑
k∈Zd ϕ[k]e−j〈ω,k〉 is nonzero for all ω ∈ R

d . Then, there
exists a constant Cϕ,r ,α such that, for all continuous functions f ∈ Lr

p,−α(Rd) and
for all h ∈ (0, 1),

∥∥Iϕ,h f
∥∥
L p,−α(Rd )

≤ Cϕ,r ,α · ‖ f ‖Lrp,−α(Rd ) . (40)

Proof Let Br := F−1{〈·〉−r } be the kernel associated with the Bessel potential of
order r . Recall from [20, Proposition 6.1.5] that Br (x) > 0, for all x ∈ R

d , and that

Br (x) ≤ Cr e
− ‖x‖

2 , ∀ ‖x‖ ≥ 2. (41)

Moreover, since r > d/p, it is also known [37, Proposition 7] that Br ∈ L p′,α(Rd).
Let us now define the weight wh(x) := 〈hx〉α . Recall that wh is submultiplicative

with the same constant Cα for all h > 0. Observe from (36) that Iϕ,h = σh Iϕσ1/h .
Therefore, by a change of variable, we have

∥∥Iϕ,h f
∥∥
L p,−α(Rd )

= ∥∥σh Iϕσ1/h f
∥∥
L p,−α(Rd )

= hd/p · ∥∥Iϕ
(
σ1/h f

)∥∥
L p,1/wh (Rd )

.

(42)
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We now invoke [37, Proposition 4] to get

∥∥Iϕ
(
σ1/h f

)∥∥
L p,1/wh (Rd )

≤ Cα · ‖ϕint‖Wp,wh (Rd ) · ∥∥(σ1/h f
) [·]∥∥

�p,1/wh (Zd )
. (43)

Note that, for all h ∈ (0, 1), wh(x) ≤ 〈x〉α , and so, the quantity ‖ϕint‖Wp,wh (Rd ) is
bounded since

‖ϕint‖Wp,wh (Rd ) ≤ ‖ϕint‖Wp,α(Rd ) , (44)

which is finite due to Lemma 4. On the other hand, since f = Br ∗Dr f , we can write

σ1/h f = hd · (σ1/h Br
) ∗ (

σ1/h D
r f

)
,

and apply [37, Proposition 5] to obtain

∥∥(σ1/h f
) [·]∥∥

�p,1/wh (Zd )
≤ Cα · hd ∥∥σ1/h Br

∥∥
Wp′,wh

(Rd )
· ∥∥σ1/h D

r f
∥∥
L p,1/wh (Rd )

= Cα · hd ∥∥σ1/h Br
∥∥
Wp′,wh

(Rd )
· h−d/p ‖ f ‖Lrp,−α(Rd ) , (45)

where (45) is due to a change of variable and the definition of the Sobolev norm
‖·‖Lrp,−α(Rd ). Combining (42)–(45), we arrive at

∥∥Iϕ,h f
∥∥
L p,−α(Rd )

≤ C2
α · ‖ϕint‖Wp,α(Rd ) · hd ∥∥σ1/h Br

∥∥
Wp′,wh

(Rd )
· ‖ f ‖Lrp,−α(Rd ) .

(46)

Hence, the desired bound (40) will be achieved if

∥∥σ1/h Br
∥∥
Wp′,wh

(Rd )
≤ Cr ,α · h−d , ∀h ∈ (0, 1), (47)

for some constant Cr ,α . In the rest of the proof, we will show that this claim is true.
Let us put T := [0, 1]d , Th := [0, h]d , and Br ,α := 〈·〉α Br . From the positivity of
Br , it is clear that Br ,α(x) > 0, ∀x ∈ R

d . By the definition of the mixed norm, we
express

∥∥σ1/h Br
∥∥
Wp′,wh

(Rd )
= ∥∥σ1/h Br ,α

∥∥
Wp′ (Rd )

=
∥∥∥∥∥∥

∑

k∈Zd

(
σ1/h Br ,α

)
(· + k)

∥∥∥∥∥∥
L p′ (T)

= h−d/p′
∥∥∥∥∥∥

∑

k∈Zd

Br ,α(· + hk)

∥∥∥∥∥∥
L p′ (Th)

.
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Applying Minkowski’s inequality, we get

∥∥σ1/h Br
∥∥
Wp′,wh

(Rd )
≤ h−d/p′ ∑

k∈Sh

∥∥Br ,α(· + hk)
∥∥
L p′ (Th)

+ h−d/p′
∥∥∥∥∥∥

∑

k∈Zd\Sh

Br ,α(· + hk)

∥∥∥∥∥∥
L p′ (Th)

=: A + B, (48)

where Sh is a subset of Zd defined by

Sh :=
{
k ∈ Z

d : ‖k‖ ≤
√
d + 2

h

}
.

We complete the proof by showing that both terms A and B in (48) are bounded by
Cr ,α h−d . It is clear that |Sh | = Ch−d , for some constant C . Therefore, by Hölder’s
inequality

A ≤ h−d/p′ ·
⎛

⎝
∑

k∈Sh

1p

⎞

⎠
1/p

·
⎛

⎝
∑

k∈Sh

∥∥Br ,α(· + hk)
∥∥p′
L p′ (Th)

⎞

⎠
1/p′

= h−d/p′ · |Sh |1/p ·
⎛

⎝
∑

k∈Sh

∫

Th

∣∣Br ,α(x + hk)
∣∣p′

dx

⎞

⎠
1/p′

≤ h−d/p′ · C · h−d/p ·
⎛

⎝
∑

k∈Zd

∫

Th

∣∣Br ,α(x + hk)
∣∣p′

dx

⎞

⎠
1/p′

≤ C · h−d ·
(∫

Rd

∣∣Br ,α(x)
∣∣p′

dx
)1/p′

≤ C · ‖Br‖L p′,α(Rd )
︸ ︷︷ ︸

Cr ,α

·h−d . (49)

The constant Cr ,α in (49) is finite because Br ∈ L p′,α(Rd). We now proceed to bound
the term B in (48). As h ∈ (0, 1), we have that, for all x ∈ T and for all k /∈ Sh ,

‖hx + hk‖ ≥ h ‖k‖ − h ‖x‖ > (
√
d + 2) − h

√
d > 2,

which, according to (41), implies that

Br (hx + hk) ≤ Cr e
−‖hx+hk‖/2 ≤ Cr e

‖hx‖−‖hk‖
2 .



Journal of Fourier Analysis and Applications (2019) 25:633–660 653

Plugging this bound into the formula of B and using the submultiplicativity of the
weight 〈·〉α and the fact that h ∈ (0, 1), we get

B =
⎛

⎜⎝
∫

T

⎛

⎝
∑

k∈Zd\Sh

〈hx + hk〉α Br (hx + hk)

⎞

⎠
p′

dx

⎞

⎟⎠

1/p′

≤ Cr ,α ·
⎛

⎜⎝
∫

T

⎛

⎝
∑

k∈Zd\Sh

〈x〉α 〈hk〉α e ‖x‖−‖hk‖
2

⎞

⎠
p′

dx

⎞

⎟⎠

1/p′

≤ Cr ,α ·
(∫

T

〈x〉p′α e
p′‖x‖
2 dx

)1/p′

·
∑

k∈Zd

〈hk〉α e− ‖hk‖
2 · (50)

Since the integral in (50) is a constant independent of h, we only need to show that
the sum is bounded by Cα h−d . Again, by the submultiplicativity of the weight 〈·〉α
and by the assumption that h ∈ (0, 1), we have

∫

Rd
〈x〉α e− ‖x‖

2 dx =
∑

k∈Zd

∫

Th

〈x + hk〉α e− ‖x+hk‖
2 dx

≥ Cα

∫

Th

〈x〉−α e− ‖x‖
2 dx

∑

k∈Zd

〈hk〉α e− ‖hk‖
2

= Cα · hd
∫

T

〈hx〉−α e− ‖hx‖
2 dx

∑

k∈Zd

〈hk〉α e− ‖hk‖
2

≥ Cα · hd
∫

T

〈x〉−α e− ‖x‖
2 dx

∑

k∈Zd

〈hk〉α e− ‖hk‖
2 ,

which implies

∑

k∈Zd

〈hk〉α e− ‖hk‖
2 ≤ C−1

α

∫

Rd
〈x〉α e− ‖x‖

2 dx
(∫

T

〈x〉−α e− ‖x‖
2 dx

)−1

· h−d

= Cα · h−d .

Combining this with (50) yields that B ≤ Cr ,α h−d which, together with (49), estab-
lishes the claim (47) and therefore completes the proof. ��

In the rest of this section, we state and prove the interpolation counterpart of The-
orem 2.

Theorem 4 Assume that 1 ≤ p ≤ ∞, L ∈ N, α ≥ 0, and r > d/p. Let ϕ be an
element of Wp,L+α(Rd) that satisfies the Strang–Fix conditions of order L. Assume
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also that ϕ[·] ∈ �1,L+α(Zd) and
∑

k∈Zd ϕ[k]e−j〈ω,k〉 is nonzero for all ω ∈ R
d . Then,

there exists a constant Cϕ,L,α such that, for all continuous functions f in H L,r
p,−α(Rd),

∥∥ f − Iϕ,h f
∥∥
L p,−α(Rd )

≤ Cϕ,L,α · hL ·
∥∥∥(Dr f )(L)

∥∥∥
L p,−α

, (51)

when h → 0.

Similar to the proof of Theorem 2, we divide the proof of Theorem 4 into two
propositions.

Proposition 3 For 1 ≤ p ≤ ∞, L ∈ N, α ≥ 0, r > 0, and Jh being the smoothing
operator defined in (15), there exists a constant CL,α such that, for all f ∈ HL,r

p,−α(Rd)

and for all h ∈ (0, 1),

‖ f − Jh f ‖Lrp,−α(Rd ) ≤ CL,α · hL ·
∥∥∥(Dr f )(L)

∥∥∥
L p,−α(Rd )

.

Proof Put Br := F−1
{〈·〉−r

}
. Since Jh is a convolution operator, we have the expres-

sion

f − Jh f = Br ∗ Dr f − Jh(Br ∗ Dr f ) = Br ∗ (Dr f − JhD
r f ).

Hence

‖ f − Jh f ‖Lrp,−α(Rd ) = ∥∥Dr f − JhD
r f

∥∥
L p,−α(Rd )

. (52)

We now apply Proposition 1 to Dr f ∈ HL
p,−α(Rd) to obtain

∥∥Dr f − JhD
r f

∥∥
L p,−α(Rd )

≤ CL,α · hL ·
∥∥∥(Dr f )(L)

∥∥∥
L p,−α(Rd )

. (53)

Putting (52) and (53) together completes the proof. ��

Proposition 4 Assume that 1 ≤ p ≤ ∞, L ∈ N, α ≥ 0, and r > 0. Let Jh be the
smoothing operator defined in (15). If ϕ satisfies the conditions of Theorem 4, there
exists a constant Cϕ,r ,L,α such that, for all f ∈ HL,r

p,−α(Rd) and for all h ∈ (0, 1),

∥∥Jh f − Iϕ,h Jh f
∥∥
L p,−α(Rd )

≤ Cϕ,r ,L,α · hL ·
∥∥∥(Dr f )(L)

∥∥∥
L p,−α(Rd )

. (54)
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Proof We first show that f ∈ HL
p,−α(Rd). Indeed, since f = Br ∗ Dr f , where

Br := F−1
{〈·〉−r

}
, we have the estimate

∥∥∥∂� f
∥∥∥
L p,−α(Rd )

=
∥∥∥∂�(Br ∗ Dr f )

∥∥∥
L p,−α(Rd )

=
∥∥∥Br ∗ ∂�Dr f

∥∥∥
L p,−α(Rd )

≤ Cα · ‖Br‖L1,α(Rd ) ·
∥∥∥∂�Dr f

∥∥∥
L p,−α(Rd )

(55)

= Cr ,α ·
∥∥∥∂�Dr f

∥∥∥
L p,−α(Rd )

, ∀|�| ≤ L (56)

where (55) is a consequence of weighted Young’s inequality. On the other hand, it
was shown in [37, Proposition 7] that Br ∈ L1,α(Rd), for r > 0. This means that the
constant Cr ,α in (56) is finite, which then implies that f ∈ HL

p,−α(Rd).
Let Rx be the remainder of the order-(L − 1) Taylor series of the infinitely differ-

entiable function g := Jh f about x. Since ϕint is a quasi-interpolant of order L , Iϕ,h

maps every polynomial of order less than L to itself. Following the path of the proof
of Proposition 2, we write

e(x) := g(x) − (Iϕ,hg)(x) = −
∑

�∈Zd

cx[�]ϕint

( x
h

− �
)

,

where the sequence cx is redefined as

cx[�] := Rx(h�), for � ∈ Z
d .

Therefore, (26) still holds and we only need to estimate
∥∥cx,�

∥∥
�p(Zd )

, where

cx,�[k] := 〈hk〉−α |chx+hk[k − �]| = 〈hk〉−α |Rhx+hk(hk − h�)|.

Similarly to (27), we express

Rhx+hk(hk − h�) =
∫ 1

0
JhT−�,τ f (hk)dτ,

where the operator Ty,τ is given in (28). Repeating the manipulations in the proof of
Proposition 2, we obtain the counterpart of (35):

‖cx,�‖�p(Zd ) ≤ CL,α · h−d/p
∥∥∥ f (L)

∥∥∥
L p,−α(Rd )

〈x + �〉L+α .

Substituting this bound into (26), we end up with

‖e‖L p,−α(Rd ) ≤ CL,α · ‖ϕint‖Wp,L+α(Rd ) · hL ·
∥∥∥ f (L)

∥∥∥
L p,−α(Rd )

, (57)

where‖ϕint‖Wp,L+α(Rd ) is a finite constant thanks toLemma4.Combining (57) and (56)
gives us the desired bound (54). ��
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Proof of Theorem 4 Without loss of generality, assume that h ∈ (0, 1). Let g := Jh f .
By the triangle inequality

∥∥ f − Iϕ,h f
∥∥
L p,−α(Rd )

≤ ‖ f − g‖L p,−α(Rd ) + ∥∥Iϕ,h( f − g)
∥∥
L p,−α(Rd )

+ ∥∥g − Iϕ,hg
∥∥
L p,−α(Rd )

. (58)

From Theorem 3 and Propositions 3, the first two terms in the right-hand side of (58)
are bounded as

‖ f − g‖L p,−α(Rd ) + ∥∥Iϕ,h( f − g)
∥∥
L p,−α(Rd )

≤ ‖ f − g‖Lrp,−α(Rd ) + Cϕ,r ,α · ‖ f − g‖Lrp,−α(Rd )

≤ Cϕ,r ,L,α · hL ·
∥∥∥(Dr f )(L)

∥∥∥
L p,−α(Rd )

, (59)

whereas the third term is also bounded, according to Proposition 4, as

∥∥g − Iϕ,hg
∥∥
L p,−α(Rd )

≤ Cϕ,r ,L,α · hL ·
∥∥∥(Dr f )(L)

∥∥∥
L p,−α(Rd )

. (60)

Finally, the desired bound (51) is obtained by combining (58)–(60). ��

5 Proofs of Auxiliary Results

5.1 Proof of Lemma 1

It is clear that

F
{
DL
u f

}
= (j 〈u, ·〉)L f̂ .

On the other hand, the Fourier transform of the B-spline βL−1 is given by [50]

β̂L−1(ω) =
(
1 − e−jω

jω

)L

.

Therefore, the Fourier transform of the right-hand side (RHS) of (18) is given by

F{RHS} =
∫

R

F
{
DL
u f (· − tu)

}
βL−1(t)dt

=
∫

R

e−j〈tu,·〉F
{
DL
u f

}
βL−1(t)dt

= (j 〈u, ·〉)L f̂ ·
∫

R

e−j〈u,·〉tβL−1(t)dt

= (j 〈u, ·〉)L β̂L−1(〈u, ·〉) f̂
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=
(
1 − e−j〈u,·〉)L f̂ ,

which is exactly the Fourier transform of the left-hand side of (18), completing the
proof.

5.2 Proof of Lemma 2

The claim is trivial for L = 0. We now show (19) based on the induction hypothesis
that

∣∣∣DL−1
u f (x)

∣∣∣ ≤ ‖u‖L−1∞ · f (L−1)(x), ∀x ∈ R
d . (61)

By definition of directional derivatives, we have that

∣∣∣DL
u f (x)

∣∣∣ =
∣∣∣∣∣

d∑

i=1

ui
∂

∂xi
DL−1
u f (x)

∣∣∣∣∣ ≤ ‖u‖∞ ·
d∑

i=1

∣∣∣∣D
L−1
u

∂ f

∂xi
(x)

∣∣∣∣ .

It then follows from (61) that

∣∣∣DL
u f (x)

∣∣∣ ≤ ‖u‖∞ · ‖u‖L−1∞ ·
d∑

i=1

(
∂ f

∂xi

)(L−1)

(x)

≤ ‖u‖L∞ ·
d∑

i=1

∑

|k|=L−1

∣∣∣∣∂
k
(

∂ f

∂xi

)
(x)

∣∣∣∣

= ‖u‖L∞ · f (L)(x),

completing the proof.

5.3 Proof of Lemma 3

It is clear from the definition of Jh that σ1/h Jh = Jσ1/h . Then, we write

σ1/h Jh f = Jσ1/h f = (σ1/h f ) ∗ ψ, (62)

where the kernel ψ is given by

ψ :=
L∑

n=1

(−1)n−1
(
L

n

)
σnχ

nd
.

Since χ is a compactly supported smooth function, it is easy to see that the kernel ψ
given above is an element of the hybrid-norm spaceW∞,α(Rd), which is clearly a sub-
space ofWp′,α(Rd). Then, the convolution expression in (62) allows us to invoke [37,
Proposition 5] to obtain
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∥∥(σ1/h Jh f )[·]
∥∥

�p,1/wh (Zd )
≤ Cα ‖ψ‖Wp′,wh

· ∥∥σ1/h f
∥∥
L p,1/wh (Rd )

≤ Cα ‖ψ‖Wp′,α · ∥∥σ1/h f
∥∥
L p,1/wh (Rd )

(63)

= Cα ‖ψ‖Wp′,α · h−d/p · ‖ f ‖L p,−α(Rd ) , (64)

where (63) is due to the assumption that h ∈ (0, 1) and (64) is the result of a change
of variable. Putting CL,α := Cα ‖ψ‖Wp′,α gives us the desired bound (22).

5.4 Proof of Lemma 4

Recall that, for α ≥ 0, the weight 〈·〉α is submultiplicative and satisfies the Gelfand-
Raikov-Shilov condition. Since ϕ[·] ∈ �1,α(Zd) and since

∑
k∈Zd ϕ[k]e−j〈ω,k〉 is

nonzero for all ω ∈ R
d , we are allowed to invoke the weighted version of Wiener’s

lemma [22, Theorem 6.2] to deduce that the sequence a defined in (38) also belongs
to �1,α(Zd). Now that ϕint has the representation (37) with a ∈ �1,α(Zd) and ϕ ∈
Wp,α(Rd), it must be that ϕint ∈ Wp,α(Rd) as a consequence of [37, Lemma 1].
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