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A framework for evaluating the performance 
of SMLM cluster analysis algorithms

Daniel J. Nieves    1,2, Jeremy A. Pike    2,3, Florian Levet4,5, David J. Williamson    6, 
Mohammed Baragilly    1,7, Sandra Oloketuyi8, Ario de Marco8, Juliette Griffié9, 
Daniel Sage    10, Edward A. K. Cohen11, Jean-Baptiste Sibarita4, 
Mike Heilemann12 & Dylan M. Owen    1,2,13 

Single-molecule localization microscopy (SMLM) generates data in the form of 
coordinates of localized fluorophores. Cluster analysis is an attractive route for 
extracting biologically meaningful information from such data and has been 
widely applied. Despite a range of cluster analysis algorithms, there exists no 
consensus framework for the evaluation of their performance. Here, we use a 
systematic approach based on two metrics to score the success of clustering 
algorithms in simulated conditions mimicking experimental data. We 
demonstrate the framework using seven diverse analysis algorithms: DBSCAN, 
ToMATo, KDE, FOCAL, CAML, ClusterViSu and SR-Tesseler. Given that the 
best performer depended on the underlying distribution of localizations, we 
demonstrate an analysis pipeline based on statistical similarity measures that 
enables the selection of the most appropriate algorithm, and the optimized 
analysis parameters for real SMLM data. We propose that these standard 
simulated conditions, metrics and analysis pipeline become the basis for 
future analysis algorithm development and evaluation.

The assembly of biomolecules into clusters is a key process in cell biol-
ogy1,2. Electron microscopy enables high-resolution observation of 
molecule clustering, but sample preparation can be time-consuming 
and difficult for intact samples3. Super-resolution optical fluctuation 
imaging can be applied to intact samples4, but its applicability is limited 
by the requirement to observe fluorophores at higher density than 
other techniques. Given these limitations, single-molecule localization 
microscopy (SMLM) has become one of the most widely used meth-
ods to probe protein clustering, readily achieving nanoscale resolu-
tion (<20 nm) in intact samples5. Regardless of the SMLM modality 

(for example, direct stochastic optical reconstruction microscopy 
(dSTORM)6,7, photoactivated localization microscopy (PALM)8, or 
points accumulation for imaging in nanoscale topography (PAINT)9 
and DNA-PAINT10–12), data from SMLM experiments consist of a list of 
coordinates of all localized fluorophores. These data are suitable for the 
application of statistical methods to describe the spatial arrangement 
of such data13. One of the most common is cluster analysis14.

Clustering methods can be classified into two groups: global 
clustering and complete clustering. Global cluster analysis returns 
an ensemble result; Ripley’s K-function15, nearest neighbor analysis16 
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Methods): Scenario 1, non-clustered molecules seeded at completely 
spatially random positions (Fig. 1a); Scenario 2, 20 clusters of 15 mol-
ecules per cluster with 50% of the total molecules being clustered  
(Fig. 1b); Scenario 3, 20 clusters of 15 molecules per cluster with 20% of 
the total molecules being clustered (Fig. 1c); Scenario 4, 20 clusters of 
5 molecules per cluster with 25% of the total molecules being clustered 
(Fig. 1d); Scenario 5, 100 clusters of 15 molecules per cluster with 50% of 
molecules being clustered (Fig. 1e); Scenario 6, 20 elliptically shaped 
clusters with aspect ratio 3:1 and each having 50 molecules, with 50% 
of the total molecules being clustered (Fig. 1f); Scenario 7, 10 clusters 
with a width of 25 nm and 10 clusters with a width of 75 nm, with 50% 
of the total molecules clustered (Fig. 1g); Scenario 8, 10 clusters with 
5 molecules per cluster and 10 clusters with 15 molecules per cluster, 
with 50% of the total molecules clustered (Fig. 1h); Scenario 9, 10 clus-
ters with 15 molecules per cluster and a cluster width of 25 nm, and a 
further 10 clusters with 135 molecules and a cluster width of 75 nm, 
thus maintaining molecule density with increased size, with 50% of 
the total molecules clustered (Fig. 1i); and Scenario 10, 20 clusters of  
15 molecules per cluster with 50% of the total molecules being clustered, 
but with non-clustered molecule density increasing from left to right 
across the region (Fig. 1j).

Complete clustering methods are not designed to test for the 
presence of clustering and can give erroneous results if applied to data 
without spatial structure. The first stage in an analysis pipeline is there-
fore to test for clustering in the data. This can be done using Ripley’s 
K-function together with 95% simulation envelopes for complete spatial 
randomness (Fig. 1). Only datasets for which the estimated K-function 
lies outside of these envelopes, indicating statistically significant 
levels of clustering, are appropriate for input into complete clustering 
algorithms. From our simulated conditions, all but Scenario 1 reject 
the null hypothesis of a completely random distribution (Fig. 1b–j, 
bottom panels). Scenario 1 was therefore excluded from further study.

Demonstration of clustering performance analysis
We next analyzed the simulations with the clustering algorithms and 
scored the results. The selected algorithms encompass a cross-section 
of those currently available for SMLM cluster analysis and use diverse 
strategies to generate their output. For those algorithms that required 
user settings, that is, DBSCAN, ToMATo, KDE, FOCAL and SR-Tesseler, 
we scanned a wide range of these user inputs to generate hundreds of 
cluster outputs per algorithm. To illustrate, Fig. 2a shows ground truth 
and DBSCAN, ToMATo and KDE outputs for a representative realization 

and pair correlation17 have all been applied to SMLM data18–22. Global 
approaches are statistically robust but provide a limited description 
of the data; thus, complete clustering approaches have gained popu-
larity. These assign every localization to a specific cluster or into a 
non-clustered population23–31. Complete clustering methods provide 
rich descriptions of the data such as the number of clusters, cluster 
shapes and so on.

A consensus framework for assessment of the algorithms used to 
generate complete clusterings of SMLM data remains to be developed. 
However, there are existing mathematical means by which to assess 
the accuracy of clustering algorithms by comparing the result to a 
known ground truth simulated dataset. One such metric is the adjusted 
Rand index (ARI), which aims to determine which points have the same 
cluster classification in the ground truth and the analyzed output32, 
normalized to account for chance33. ARI is an appropriate metric if the 
goal is to classify data points into correct clusters, that is, to determine 
cluster membership. It has a range between −1 and 1, with high positive 
values representing good agreement. Clustering performance can 
also be measured geometrically via the overlap between the cluster 
areas (for example, defined by the convex hull) in the output and the 
ground truth. This is the basis for the intersection over union (IoU)34–36 
metric, the values of which range from 0 to 1. IoU is therefore suited as 
a measure of how truthfully SMLM cluster analyses can recapitulate 
geometric features in the data.

Here, we implement ARI and IoU to score the analysis of a stand-
ardized, consensus set of simulated SMLM data mimicking common 
biological clustering conditions. To demonstrate the framework, we 
analyze the data with seven diverse algorithms: density-based spatial 
clustering of applications with noise (DBSCAN)37, topological mode 
analysis tool (ToMATo)28,38, kernel density estimation (KDE), fast opti-
mized clustering algorithm for localizations (FOCAL)26, cluster analysis 
by machine learning (CAML)27, ClusterViSu25 and SR-Tesseler24.

The goal is threefold: to enable users to select the best-performing 
algorithm for their specific application; to enable selection of 
user-defined analysis settings to maximize the performance of their 
analysis; and to provide guidance on the future direction of cluster 
analysis development.

Results
Simulated conditions and data screening
We first generated 10 simulated conditions with a known ground 
truth in 2,000 × 2,000 nm regions (Scenarios 1–10; Table 1, Fig. 1 and 

Table 1 | Properties of different simulated cluster scenarios

Simulation No. of clusters No. of molecules  
per cluster

Elliptical Cluster width (nm) No. of background 
molecules

Non-clustered 
molecules (%)

Scenario 1 0 N/A N/A N/A 300 100

Scenario 2 20 15 N 25 300 50

Scenario 3 20 15 N 25 1,500 80

Scenario 4 20 5 N 25 300 75

Scenario 5 100 15 N 25 1,500 50

Scenario 6 20 50 Y x = 25
y = 75

1,000 50

Scenario 7 20 15 N 10 ×25
10 ×75

300 50

Scenario 8 20 10 ×5
10 ×15

N 25 200 50

Scenario 9 20 10 ×15§

10 ×135#
N 10 ×25§

10 ×75#
1,500 50

Scenario 10 20 15 N 25 300 (gradient) 50

Parameters used for the simulation of Scenarios 1–10. Bold indicates deviations from Scenario 2 for each scenario, while § and # in Scenario 9 indicate matching cluster parameters in that 
condition. N/A, not applicable, Y, yes, N, no.
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of Scenario 2. The mean ARI and IoU scores and their variance across the 
n = 50 realizations are shown in Fig. 2b–d. The peak scores are shown 
in Supplementary Figs. 3–5. For FOCAL (Supplementary Fig. 1) and 
SR-Tesseler (Supplementary Fig. 2), a single parameter was scanned. 
ClusterViSu was implemented as published25, with optimal analysis 
parameters determined by Monte Carlo simulations. For CAML, the 
algorithm was trained on separate simulation data corresponding to 
each condition, and the best-performing model in each case was cho-
sen for analysis of the data. For each algorithm requiring parameter 
scanning, the mean metric scores for each combination were calcu-
lated. The best-performing parameter set in a scenario was that which 
achieved the highest mean metric score. For DBSCAN, ToMATo, KDE, 
FOCAL and SR-Tesseler, the optimal user parameters are summarized 
in Supplementary Table 1.

Performance analysis on simulated data
We next carried out the same performance analysis on all simulated 
conditions. The mean highest ARI and IoU scores for each condition 
are summarized in Fig. 3, with the distribution of scores shown in Sup-
plementary Figs. 3–9a,b.

From these data we can see that the best-performing algorithm 
depends on the choice of metric, which must be motivated by the 
biological question under study. For example, for Scenario 4, which 
features sparse data, IoU scores are generally low for all algorithms 
because it requires accurate mapping of the cluster boundaries, mean-
ing that it is sensitive to misclassification of only a few points in the clus-
ter periphery. ARI is more robust for these types of effects. Conversely, 

IoU scores remain high for most algorithms in Scenario 9, in which 
large clusters merge, causing misattribution of points even though 
the area of the clusters remains well determined. This phenomenon 
decreases ARI scores.

DBSCAN, ToMATo and KDE perform comparably across all of the 
conditions according to the framework, with only subtle differences 
in the mean peak scores and distribution of those values (Fig. 3 and 
Supplementary Figs. 3–5a,b). Although the algorithms selected here 
are diverse, DBSCAN, ToMATo and KDE are the most similar in terms 
of the two user inputs: one relates to a radius of search or integration, 
and the other operates as a density threshold to terminate clustering. 
Thus, the generally good performance observed for these three algo-
rithms may point to an inherent adaptability of these algorithms for 
different clustering situations. In contrast, ClusterViSu, SR-Tesseler 
and FOCAL often return lower metric scores. All require a threshold 
to segment clusters, and Scenario 4 is where the performance of these 
algorithms drops. Conversely, their performance is best in Scenario 3, 
and comparable to the other algorithms. This suggests that there may 
be a general issue with these algorithms, such that in data with low point 
density within clusters, the choice of a threshold, automatically or not, 
is difficult. This is likely to be a consequence of the points at the edge 
of the clusters having a similar density to the background molecules.

Addition of multiple blinking
An inherent property of SMLM data is the presence of multiple points 
arising from a single molecule. Each ground truth fluorophore may 
therefore appear as a small cluster, with membership related to the 
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Fig. 1 | Examples of simulated data conditions and pre-evaluation of 
suitability. a–j, The 10 simulated data conditions: Scenario 1 (a), Scenario 
2 (b), Scenario 3 (c), Scenario 4 (d), Scenario 5 (e), Scenario 6 (f), Scenario 7 
(g), Scenario 8 (h), Scenario 9 (i) and Scenario 10 (j). Top panels: examples of 
simulation data (colored points and polygons are clustered points, gray points 

are non-clustered). The insets are zooms of the red boxed regions. Scale bars, 
100 nm. Bottom panels: linear representation of Ripley’s K-function (L(r) − r). 
The black line represents the ground truth simulation data, and the red line is the 
mean of 100 simulations using the same number of molecules placed completely 
randomly, with 95% simulation envelopes (pink).
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number of blinks and size related to the localization precision. We test 
the performance of the cluster analysis algorithms against simulated 
data in the presence of non-corrected blinking, for which the prob-
ability of blinking followed a geometric distribution23 set such that 
a single fluorophore would give 4–5 detections, on average. For all 
conditions the mean localization precision (σloc) was approximately 

15 nm. It is important to note that with multiple blinking, Scenario 
1, that is, completely randomly dispersed ground truth molecules, 
would appear clustered and pass the Ripley’s K-function quality con-
trol proposed earlier. Thus, as a general recommendation, the use of 
correction algorithms to mitigate multiple blinking prior to testing 
would be advised39,40.
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Fig. 2 | Representative example of a multi-parameter scan and performance 
analysis of DBSCAN, ToMATo and KDE for Scenario 2. a, Example of simulated 
datasets showing clustered points (blue) and cluster maps generated by 
parameters achieving peak ARI scores for DBSCAN, ToMATo and KDE. The insets 

are zooms of the red boxed regions, which show the same clusters for each 
algorithm. Scale bars, 100 nm. b–d, Mean and variance of the ARI and IoU scores 
for DBSCAN (b), ToMATo (c) and KDE (d) for all combinations of user analysis 
parameters.
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The optimal clustering parameters for algorithms requiring 
user-defined parameters is summarized in Supplementary Table 1. 
The effect of this added blinking step on Scenario 2 is shown in Sup-
plementary Figs. 10–12. The mean peak ARI and IoU scores for each 
algorithm are summarized for each condition with added fluorophore 
blinking in Fig. 4, with the distribution about these values shown in 
Supplementary Figs. 3–9c,d. There is an obvious drop off in perfor-
mance for all algorithms compared with the case with no blinking. The 
stochastic nature of the blinking introduces greater heterogeneity into 
the data, which is demonstrated by the broadening of the peak metric 
score distributions for ARI, whereas IoU scores generally remain at 
similar levels. Decreasing the localization precision from σloc ≈ 15 nm 
to σloc ≈ 30 nm, in the case of Scenario 2, further decreases the per-
formance of all algorithms according to both metrics, but with IoU 
being less affected (Supplementary Figs. 11–13). The framework thus 
guides how algorithms respond when multiple blinking is present in 

SMLM data. Given that optimal user parameters required for DBSCAN, 
ToMATo, KDE and FOCAL shift to higher values, a recommendation 
would be to err on the side of higher density cut-offs to improve algo-
rithm performance. Interestingly, the distribution of parameters that 
gives the highest metric scores is widened (Supplementary Figs. 2  
and 11), lessening the requirement for precise algorithm optimization.

Demonstration of an analysis pipeline for real, experimental 
SMLM data
Finally, we sought to develop an integrated analysis pipeline for users to 
follow when analyzing real, biological data (Fig. 5a). For this we acquired 
dSTORM data of fibroblast growth factor receptor 1 (FGFR1) distribu-
tion on MCF7 cells using a nanobody41 labeled with Alexa Fluor 647. 
After using Ripley’s K-function to confirm the presence of clustering, 
the next challenge is to determine which simulated condition most 
closely recapitulates the experimental data. To determine this, we 
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applied a new method for scoring the similarity of point pattern data 
by calculating a dissimilarity index42. The dissimilarity index was calcu-
lated for FGFR1 data in Scenarios 2–10 with multiple blinking present 
(Supplementary Table 2). Scenario 7 had the lowest dissimilarity score 
for the data, thus, the algorithm seen to perform best in this case was 
used. For Scenario 7, for the IoU metric both ToMATo and DBSCAN 
performed equally (Supplementary Figs. 3d and 4d and Supplementary 
Table 31), but for ARI the performance of DBSCAN was superior (Supple-
mentary Figs. 3c, 4c and Supplementary Table 30). Therefore, DBSCAN 
was applied to the data with the optimal parameters determined from 
the peak metric scores for Scenario 7 (Supplementary Table 1 and  
Fig. 5). Using these parameters we were able to extract quantitative 
information on the clustering of the data, showing that the mean num-
ber of FGFR1 clusters per μm2 was 2.63 ± 0.86 and the mean cluster size 
was 0.017 ± 0.013 μm2 (Fig. 5c,d). Thus, this demonstrates the appli-
cability of the framework to guide cluster analysis of non-simulated 
SMLM data.

Discussion
SMLM produces data in the form of a pointillist set of localization 
coordinates. A frequent goal is the cluster analysis of such data to 
extract quantitative information on molecular aggregation and, to 
this end, a wide variety of algorithms have been deployed14. Given that 
the development of new algorithms is ongoing, it is advantageous to 
have a framework in which the performance of these can be system-
atically evaluated. This is beneficial for both the developers of cluster 
analyses and the biologists seeking a guide to algorithm selection and 
optimization. Here, we provide such an environment in the form of 
standardized simulated conditions, defined performance metrics and 
a complete evaluation of some of the most widely used algorithms. Our 
main conclusions are as follows.

	1.	 ARI is the most appropriate metric when clusters have a long 
tail to their distribution, for example, scenario 4. However, ARI 
operates best when the level of cluster overlap is low. Given that 
the IoU takes the x,y coordinates, as well as the labels, as input, 
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IoU for Scenario 2 (a), Scenario 3 (b), Scenario 4 (c), Scenario 5 (d), Scenario 6 

(e), Scenario 7 (f), Scenario 8 (g), Scenario 9 (h) and Scenario 10 (i), with added 
multiple blinking, for DBSCAN, ToMATo, KDE, FOCAL, SR-Tesseler, ClusterViSu 
and CAML.
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the metric itself is dependent on the underlying distribution. 
It may therefore be less useful to compare IoU scores between 
regions of interest and simulation conditions than between  
algorithms.

	2.	 Algorithms requiring the most user inputs (DBSCAN, ToMATo, 
KDE) are most adaptable to diverse clustering conditions and 
maintain good performance across the board, even in data 
subject to multiple blinking. This indicates that the ability to 
fine-tune the performance of these algorithms could be an ad-
vantage for SMLM cluster analysis for delivering accuracy, but 
this approach might hinder reproducibility between labs.

	3.	 Analysis of the variance in performance between regions of in-
terest in the same condition showed areas of relative stability at 
high scale and low density for DBSCAN, ToMATo and KDE, mean-
ing that it may be safer to err on these sides if the best choice of 
analysis parameter is uncertain. Some performance may be sac-
rificed compared with attempting to locate the peak of perfor-
mance, but results may be more consistent.

	4.	 Scenario 4 (sparse data) was particularly challenging for algo-
rithms with only one parameter, related to density, to set (Clus-
terViSu, FOCAL, SR-Tesseler), and Scenarios 5 (many clusters) 
and 7 (diverse cluster sizes) generally scored poorly across the 
board and users should, therefore, be wary of analyzing regions 
of interest containing very heterogeneous features.

	5.	 DBSCAN was in general most robust to multiple blinking, there-
fore it should be considered, especially if no blink correction has 
been performed.
Overall, when combined with a measure of point-cloud similar-

ity, we have developed an integrated pipeline that enables users to 
objectively select the most appropriate algorithm for their biologi-
cal data. While this work assessed performance, there may be other 
considerations that dictate the choice of algorithm to be used. These 
include processing time, therefore we have provided timing data for 
the different algorithms tested in this work (Supplementary Table 38). 
We anticipate that the framework presented here can be used to evalu-
ate the performance of present cluster analysis algorithms designed 
for SMLM, and to inform the development of future methodologies. 
In particular, the poor performance on sparse data suggests avenues 
for development in the context of low copy-number proteins or as a 
pathway to high-throughput or live-cell SMLM. Furthermore, the basis 
of both metrics, that is, point classification and geometric overlap, 
are easily extendable to 3D, thus widening the applicability of this 
framework.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
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Methods
Ground truth cluster condition simulations
Simulations of ground truth molecule point patterns were generated 
using scripts written in R (available at https://github.com/JeremyPike/
RSMLM). For simulations based on multivariate normal distributions, 
the cluster centers are randomly generated inside a square field of 
interest (here, equivalent to 2,000 × 2,000 nm). At each center, mol-
ecules are then placed around it according to the random multivariate 
distribution. For symmetrical clusters, a single value of 25 nm is used 
for the standard deviation of the multivariate distribution (unless 
stated otherwise, Table 1), whereas for the elliptically shaped clusters 
two different standard deviation values, for the minor and major axes, 
respectively (25 nm and 75 nm), are used. Furthermore, for elliptical 
clusters they are rotated by a random angle around the center of mass 
of the generated cluster. Each cluster generated in the simulations 
possesses a unique ‘cluster index’ value, that is, molecules from the 
same cluster will have the same index value. Background molecules are 
given the index value of 0. For each cluster condition, 50 simulations 
were generated. The different parameter values used to generate the 
simulations in this work are summarized in the table below.

Fluorescence blinking cluster simulations
The positions of molecules in the ground truth cluster conditions 
were used as the basis for simulating data that have the multiple 
fluorophore blinking and detection precision inherent in SMLM. The 
simulateSTORM.r script from the RSMLM package (available at https://
github.com/JeremyPike/RSMLM) was used to generate the blinking 
simulations28. In brief, the transition between the fluorescent on and 
off states was modeled using a geometric distribution23,28 with the prob-
ability of transition to the dark state set to 0.2, to generate on average 
4–5 fluorescent on-states, and thus, detections per molecule. Blinking 
was applied to all molecules in the simulations, thus single background 
molecules were also prone to blinking here. Detections owing to a single 
molecule will all be assigned the index value of that molecule from the 
ground truth, for example, if detections are generated from a ground 
truth molecule with a cluster index of 5, then the detections will also 
retain the cluster index of 5. The localization uncertainty (σloc) for each 
blinking event was determined using a normal distribution centered on 
the molecule position. Standard deviation for localization uncertainty 
was set using a log-normal distribution with a mean of 2.8 (σloc ≈ 15 nm) 
and 3.2 (σloc ≈ 30 nm), both with a standard deviation of 0.28 (ref. 23).

DBSCAN clustering and parameter scanning
The DBSCAN algorithm was implemented in R using the dbscan R pack-
age. For DBSCAN there are two parameters: ε, which is the radius of 
search around each point, and minPts, which is the minimum number 
of neighboring points within that radius that are required for the point 
to be assigned to the cluster. Points within ε of clustered points but fail-
ing to fulfill minPts are designated the edge of the cluster. For DBSCAN 
parameter scanning, the ε (nm) and minPts threshold were varied. For 
the ε values a minimum of 5 nm was used, and stepped by 5 nm up to a 
maximum value of 100 nm (20 steps). For the minPts threshold a mini-
mum value of 2 was used and stepped by 1 up to a maximum value of 50 
(49 steps). Therefore, for each simulation a total of 980 combinations 
of ε and minPts threshold were used, and the resulting indexing from 
each combination was retained for further analysis.

ToMATo clustering and parameter scanning
The ToMATo algorithm was implemented in R using the clusterTomato 
function from the RSMLM library (available at https://github.com/Jer-
emyPike/RSMLM)28. For ToMATo parameter scanning, the search radius 
(nm) and birth density threshold were varied. For the search radius, 
a minimum of 5 nm was used and stepped by 5 nm up to a maximum 
value of 100 nm (20 steps). For the birth density threshold, a minimum 
value of 2 was used and stepped by 1 up to a maximum value of 50  

(49 steps). Therefore, for each simulation, a total of 980 combinations 
of search radius and birth density threshold were used, and the result-
ing indexing from each combination was retained for further analysis.

Kernel density estimation clustering and parameter scanning
KDE was performed using the kde2d function from the MASS R package. 
A two-dimensional (2D) matrix was generated using the minimum and 
maximum dimensions from the simulation data, with each element in 
the matrix corresponding to a 1 nm2 region. The simulation coordinates 
are then convolved with a 2D Gaussian kernel within this 2D matrix, 
and the densities in each of these 1 nm2 regions after convolution are 
calculated. This 2D density matrix can then be thresholded according to 
a specific density value, and higher density regions above the cut-off are 
considered as clustered. These regions are then used to assign points 
from the real data into clusters. For KDE parameter scanning, the 2D 
Gaussian kernel width and the density threshold were varied. For the 
kernel width a minimum of 50 nm was used and stepped by 50 nm up 
to a maximum value of 500 nm (10 steps). For the density threshold a 
minimum value of 1 × 10−8 was used and stepped by 0.5 × 10−7 up to a 
maximum value of 0.96 × 10−6 (20 steps). Therefore, for each simula-
tion, a total of 100 combinations of kernel size and density threshold 
were used, and the resulting indexing from each combination was 
retained for further analysis.

FOCAL clustering and parameter scanning
FOCAL clustering was performed using a custom-written script in R, 
following the method described in ref. 26. In brief, the x and y coordi-
nates from the simulations were discretized into a matrix in which each 
element corresponded to a 10 × 10 nm region. The number of points in 
the region was summed. The matrix was then convolved using a 3 × 3 
square filter, that is, for a single element the sum was taken of that 
element and the surrounding eight elements, and the value entered 
into a new matrix. The convolved matrix was then used, and the minL 
threshold was applied (scanning from 1 to 20; 20 steps). Elements 
in the convolved matrix greater than or equal to the threshold were 
designated as core points, and elements with values greater than zero 
that share a boundary with a core point were designated as boundary 
points. All elements remaining from this process were taken as a mask, 
and masks that had more than nine elements (that is, a 3 × 3 array) were 
retained to filter the point sources. The surviving masks were used to 
determine clusters from x and y coordinates falling within these masks, 
with points indexed depending on the mask they fell into. These cluster 
indexes were retained for further analysis.

ClusterViSu clustering
Clustering was performed as described in ref. 25, using the ClusterViSu 
software package with automatic thresholding. The indexes of points 
in clusters after thresholding were retained for further analysis.

SR-Tesseler clustering and parameter scanning
Clustering was performed using the SR-Tesseler method from ref. 24. 
For SR-Tesseler parameter scanning, the local density threshold was 
varied in the range 0.5–4.9 in 0.2 increments, constituting 22 steps, 
with the cluster indexes retained at each increment for further analysis.

CAML training and clustering
CAML was performed using scripts available from https://gitlab.com/
quokka79/caml and run in Python (v3.8.5), as previously described27. 
Training datasets were generated according to the same conditions in 
Table 1 but across a 40 × 40 μm field of view to ensure that sufficient 
points could be collected to train a supervised machine learning model. 
Ten repeat images were generated for each scenario. The distances and 
relative angle from a point to its 1,000 nearest neighbors was deter-
mined for all points in all images and pooled together with the label 
(non-clustered or clustered). From this, 2.5 × 105 or 0.5 × 105 points of 
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each label were selected at random. The distance, angle and label data 
for each cluster scenario were then used to train a supervised machine 
learning model, for 5–100 epochs, specifically for that scenario. For the 
non-blinking datasets, the model layers were arranged and configured 
similarly to those already published. For the blinking datasets, an input 
layer was connected to three fully connected hidden layers (each with 
1,000 units), and the last hidden layer output was flattened and con-
nected to the final output layer to yield the point’s predicted label. 
Trained models were then used to evaluate the cluster simulations 
data. Model-labeled points were grouped into ‘like clusters’ and the 
labels refined, for example to avoid clusters containing single points, as 
previously described. The predicted label for each point was appended 
to the input data file and saved for ARI and IoU analysis.

Adjusted Rand index scoring
Cluster index results from the clustering and parameter scanning 
are used to compute the ARI. The ARI calculation was implemented 
in R using the function mclustcomp from the dbscan library (the 
full ARI R script is available at https://github.com/DJ-Nieves/
ARI-and-IoU-cluster-analysis-evaluation). In brief, the Rand index 
(RI) is a measure of the similarity between two sets of cluster indexes, 
and is calculated using

RI = a + b

(
n

2
)

where a is the number of agreements between the ground truth and 
the cluster results, and b is the number of disagreements between the 
ground truth and the clustering results. ( n2 ) is the binomial coefficient 
describing the number of unordered pairs between sets a and b.

The ARI corrects for the random chance of points being assigned 
to the correct clusters. For clusterings X and Y, the common elements 
between the two can be summarized using a contingency table:

Where nij is the number of elements in common between Xi and 
Yj, ai is the sum of the contingency table for row i, and bj is the sum of 
the contingency table for column j. The ARI is calculated as follows;
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For each parameter combination the clustering result (that is, the 
cluster indexes) is compared with that of the ground truth simulation, 
and the ARI is calculated for that parameter combination. For fluores-
cent blinking simulations data, the clustering results are compared 
with the cluster indexes generated by the simulateSTORM algorithm 
as the ground truth condition. This is repeated for all parameter com-
binations to generate an ARI matrix.

Intersection of union scoring
The IoU scoring was implemented in custom-written script in R (https://
github.com/DJ-Nieves/ARI-and-IoU-cluster-analysis-evaluation).  

A convex hull was used to identify the molecule coordinates at the edge 
of each ground truth cluster. A filled polygon for each cluster was then 
generated inside a binary image matching the limits of the data (pixel 
area = 1 nm2). All cluster images were then added together to generate a 
single image, and then the image was flattened to generate a combined 
binary image. This process was performed for the ground truth cluster-
ing as well as each of the clustering results from the cluster parameter 
scanning. IoU is calculated as follows:

IoU = Areaof overlapbetween thepolygons
Combined areaof thepolygons

For the calculation from our binary images, the ground truth 
image was added to the cluster result image, thus giving a single image 
in which the overlapping pixels had a value of 2. The number of pixels 
with value > 0 were equal to the combined area (nm2), whereas the 
number of pixels with value > 1 were equal to the area of overlap (nm2). 
For fluorescent blinking simulations data, the clustering results are 
compared with an image generated form the convex hulls of cluster 
indexes generated by the simulateSTORM algorithm as the ground 
truth condition. This is repeated for all parameter combinations to 
generate an IoU matrix.

FGFR1 (C8) nanobody production and conjugation to 
AlexaFluor647
The sequence corresponding to the anti-FGFR1 nanobody C8 (ref. 41) 
was cloned in a modified pET14 vector. The resulting constructs possess 
a 6xHis tag and a free cysteine at the carboxy terminus43. The nanobody 
fusion was produced and affinity purified as previously described44. 
Purified FGFR1 nanobody (500 nM) was incubated for 1 h with a  
5× molar excess of Maleimide-Alexa Fluor 647 dye (2.5 μM, AF647, Life 
Technologies). Excess dye was removed with repeated rounds of Zeba 
spin column desalting (three 2 min spins at 1,000 g, ThermoFisher) 
yielding FGFR1 nanobody labeled with a single fixed AF647 dye in  
1× PBS (FGFR1-nb-AF647).

dSTORM sample staining, imaging and data processing
MCF7 cells (A150645-1106; antibodies.com) were fixed with warm 4% 
(v/v) paraformaldehyde (PFA) in 1× PBS for 15 min at room tempera-
ture and then washed with 1× PBS. Fixed samples were blocked using 
5% (w/v) bovine serum albumin (7030; Sigma Aldrich) in 1× PBS for 
30 min, and then incubated with FGFR1-nb-AF647 (2 μg ml−1) in 5% 
(w/v) bovine serum albumin for a further 30 min. Samples were then 
washed with 1× PBS to remove excess unbound FGFR1-nb-AF647 and a 
post-fixation step (4% PFA for 5 min) was used to preserve the labeled 
sample for later dSTORM imaging. dSTORM imaging was performed 
in an oxygen-scavenging buffer system (10 mM Tris with 50 mM NaCl, 
pH 8.0, supplemented with 20% (w/v) glucose, 0.8 mg ml−1 glucose 
oxidase (G2133; Sigma), 40 mg ml−1 catalase (C100; Sigma) and 10 mM 
cysteamine (30070; Sigma)), with samples mounted freshly with buffer 
just prior to imaging. dSTORM images were acquired with an ONI 
nanoimager using total internal reflection fluorescence (TIRF) imag-
ing. Excitation using the 405 nm laser line was used for conversion of 
fluorophores from the dark state. Stochastic blinking of fluorophores 
was captured using an sCMOS camera with an integration time of 
50 ms per frame. Images were taken until most of the fluorescence 
events inside the field of view had ceased, resulting in images stacks of 
approximately 10,000–20,000 frames. All images were 512 × 256 pixels 
with a pixel size of 117 nm.

Dissimilarity scoring of real data versus simulated data
A dissimilarity score was calculated according to the method in ref. 42. 
A total of n = 15 (two technical replicates) experimental data regions of 
interest were compared, pairwise, with the same number of simulated 
regions of interest from every scenario (including multiple blinking) 
and the mean dissimilarity index was calculated.

X/Y Y1 Y2 ⋯ Yj Sums

X1 n11 n12 ⋯ n1s a1

XXX2 n21 n22 ⋯ n2s a2

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

XXXiii ni1 ni2 ⋯ nij ai

Sums b1 b2 ⋯ bj ∑ij nij = n
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Statistical analyses
Peak metric score distributions in a scenario from each algorithm 
were tested for normality using the Shapiro–Wilk normality test (stats 
package; R Studio). A non-parametric pairwise Wilcoxon rank sum test 
with Bonferroni correction for multiple comparisons was applied to 
determine whether the distributions emerge from the same popula-
tion, with the null hypothesis rejected at a significance threshold of 
0.05. The P values for the pairwise comparisons for each clustering 
algorithm in a scenario, for both peak metric score distributions, are 
presented in Supplementary Tables 3–37.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Both the simulation and the real SMLM data used as the basis for this 
work are available for download at https://github.com/DJ-Nieves/
ARI-and-IoU-cluster-analysis-evaluation without restriction. Source 
data are provided with this paper.

Code availability
R code for calculating ARI and IoU for clustering results against a 
ground truth scenario is available for download at https://github.
com/DJ-Nieves/ARI-and-IoU-cluster-analysis-evaluation without  
restriction.
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