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ABSTRACT

Our contribution in this paper is two fold. First, we propose a novel
discretization of the forward model for differential phase-contrast
imaging that uses B-spline basis functions. The approach yields a
fast and accurate algorithm for implementing the forward model,
which is based on the first derivative of the Radon transform. Sec-
ond, as an alternative to the FBP-like approaches that are currently
used in practice, we present an iterative reconstruction algorithm that
remains more faithful to the data when the number of projections
dwindles. Since the reconstruction is an ill-posed problem, we im-
pose a total-variation (TV) regularization constraint. We propose
to solve the reconstruction problem using the alternating direction
method of multipliers (ADMM). A specificity of our system is the
use of a preconditioner that improves the convergence rate of the lin-
ear solver in ADMM. Our experiments on test data suggest that our
method can achieve the same quality as the standard direct recon-
struction, while using only one-third of the projection data. We also
find that the approach is much faster than the standard algorithms
(ISTA and FISTA) that are typically used for solving linear inverse
problems subject to the TV regularization constraint.

Keywords: differential phase-contrast imaging, alternating di-
rection method of multipliers (ADMM), Radon transform, precon-
ditioned conjugate gradient method, filtered back projection (FBP).

1. INTRODUCTION

Conventional X-ray computed tomography aims at reconstructing
the distribution of the absorption coefficient of the object. However,
many materials in biological and medical samples show low absorp-
tion contrast, while producing indicative phase shift in the transmit-
ted X-ray beam [1]. The differential phase-contrast imaging (DPCI)
is a recent modality that utilizes this phase information to reconstruct
the distribution of the refractive index of the object.

The physical model of DPCI is based on the first derivative of
the Radon transform (FDRT) [2]. The consequence is that images
can be reconstructed using a variant of the filtered back projection
(FBP) algorithm used in conventional tomography [2]. However,
since the FBP requires a large number of projections, the imaging
acquisition time is very long, on the order of hours. The situation
is even worse (on the order of days) in neutron tomography which
has the same mathematical model [3]. The key factor at the time
of data acquisition is the number of view angles that will be later
required to reconstruct the object. To lessen this number, it is natural
to formulate the reconstruction as an inverse problem and to use prior
information to reconstruct the object with an appropriate iterative
algorithm.
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The development of iterative methods for DPCl is very recent [4,
5] and there are several aspects that have not yet been optimized. The
first concerns the implementation of the forward imaging model.
Qi in [4] implemented the derivative of the Radon operator as a
weighted sum of projections along the two object dimensions; this
simplified scheme, however, performs poorly with noisy measure-
ments. Kohler et al. use Kaiser-Bessel windows (isotropic blob
functions) as basis functions whose Radon transform is known an-
alytically and can be readily differentiated [5]. The downside of
the approach is that the blob functions fail to satisfy the partition
of unity, which is a necessary condition for controlling the error of
approximation [6]. The second aspect is computational speed. The
two methods proposed so far are first-order schemes whose conver-
gence speed is at the low end of what has been achieved with other
modalities.: the first uses a basic steepest decent algorithm [4], while
the second relies on the Newton-Raphson method with Separable-
Paraboloidal-Surrogate [5].

In this paper, we propose a new discrete model for DPCI
based on polynomial B-splines which are known to offer the best
cost/quality tradeoff among interpolators. We show that the model
lends itself to an analytical treatment and that it yields a fast and
accurate implementation of the forward model. Based on this model,
we then design an iterative reconstruction algorithm that imposes
a combination of TV and Tikhonov regularization constraints. Our
new method follows an augmented-Lagrangian optimization prin-
ciple and makes use of the conjugate gradient method to solve
the linear step in the alternating direction method of multipliers
(ADMM). The use of a problem-specific preconditioner makes it
significantly faster than competing algorithms.

The paper is organized as follows: in Section 2, we briefly re-
view the mathematics of the Radon transform and derive the cor-
responding properties of the FDRT and its adjoint. We propose a
discrete model for the FDRT together with a fast implementation in
Section 3. In Section 4, we present our iterative reconstruction algo-
rithm. We provide some simulation results in Section 5 to validate
our method.

2. RADON TRANSFORM AND ITS FIRST DERIVATIVE

The Radon transform is an important mathematical tool in many ap-
plications of straight-ray tomography with complete projection data.
In order to specify the operator, we need to set our 2-D geometry.
We define the unit vector @ = (cos @, sin 6) orthogonal to the line
of integration, as depicted in Figure 1. The spatial coordinates of the
input function are denoted by & = (1, z2). They are also expressed
in a rotated coordinate system as @ = y0 -+ t@—, where t € R and
0+ = (—sin@, cos 0) is the unit vector along the integral line.

Definition 1. [7] The (2-dimensional) Radon transform R
L2(R?) — Lo(R x [0,7]) maps a function on R? into the set of
its integrals over the lines of R?. Specifically, if & = (cos 6, sin 0)
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Fig. 1: The object lies in a 2-D plane and is imaged at an angle 6.

and y € R, then
RUPH:0) = [ | F@)3(— (w.0))w = [ 10 +10")at

It represents the set of line integrals of f € La(R?) perpendicu-
lar to @ with the (signed) distance y from the origin. For brevity,
R{f}(y; 0) is sometimes denoted by Ro f(y).

2.1. Review of Standard Results

The Radon transform is a linear operator with the following essential

properties

e Pseudo-commuting with convolution
Ro{f *9(2)}(y) = (Rof * Reg)(y),
e Projected translation invariance
Ro{f(- = 20)}(y) = Rof(y — (x0,6)).

The adjoint of the Radon transform is an operator that maps back
projection data into the space domain. It is given by

W@MW@:AEmew, W

where go(y) € L2(R x [0,7]). The Radon adjoint of the Radon
transform globally acts as a smoothing filter on the object f(x);
since

Wﬂﬂw=ﬁwww

=21 x (=) {f} (=), @)

where (—A) =2 is the fractional integral operator with transfer func-
tion 1.

el
2.2. First Derivative of the Radon Transform

The relevant mathematical model for DPCI is based on the first
derivative of the Radon transform with respect to the signed direc-
tion from the origin. It is denoted by

R f(y) = a%Ref(y) — D,Rof(y),
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where D, denotes the partial derivative along the y direction.

As a consequence of the linearity and the projected translation
invariance properties of the Radon transform, FDRT is a linear oper-
ator and has itself the projected translation invariance property.

Proposition 1. Let RM” denote the adjoint of the FDRT. We have

ROROLFH=) = 27 x (—A) {F} (=), 3

1. . . .
where (—A\)2 is a fractional Laplace operator with transfer function

Proof. Since Dy, = D, we find that

RYWRE (@) = R*{~Dy}DyRo{ f} ().

By using the Fourier-slice theorem and pseudo-commuting with the
convolution property of the Radon transform, we have

RH{=Dy}DyRe{f}(x) = R"Re{(=L){/}} ().

The result then follows from (2). O

3. FAST AND ACCURATE IMPLEMENTATION OF FDRT

In order to implement the FDRT, it is essential to define a discrete
model that is consistent with the continuous domain and supports
algebraic exactness and geometry fidelity.

3.1. Discrete Model for FDRT

We want to present the FDRT in the discrete domain. More pre-
cisely, the input is the discrete model of the object and the output is
a set of sampled line integrals along a finite number of directions.
These measurements should match the continuous-domain FDRT at
the sampling positions. Let ¢ denote a function that generates a
Riesz basis of the space V' as

V = span{p(- — k)}rezz-

We define ¢, = (f, ¢(- — k)), where ¢ is the dual of ¢ with Fourier
= — P(w)

= Teenow—2rR)?
f on the space V is

transform @(w) The projection of the object

Pyf(@) = crpr(@),

kez?

where () = p(z — k).
Using the linearity and translation invariance properties of the
FDRT, we have

ROP 1) = D exRY on(y), )
kez2
where
RV on(y) = R&Mo(y — (6, K)). ®)

With regard to (4), the problem is reduced to finding an appropri-
ate generating function and to determining analytically its FDRT. In
this work, we use a tensor-product B-spline which provides a cost-
quality tradeoff, where cost and quality are related to the size and the
order of the generating function, respectively. Specifically we set

B (x) = B (x1)B" (x2),

w(x)



where 5 (x;) ,4 = 1,2 is the centered univariate B-spline function
of degree m.

Proposition 2. The FDRT of the tensor-product B-spline ™ (z) =
L™ (z1)B™ (x2) is given by

m—+41 m+1
m cos 6 sin 6 m
ROAB™ M) = =g v (©)

where A}, f (y) is the n-fold iteration of the finite-difference operator
Ahf(y) _ f(y)—{l(y—h) )

Proof. We define gg(y) = Rél) {A™}(y). By an application of the
Fourier-slice theorem, we have

90(y) = F_l{jwﬂ/’\"(w cos 6),6/”\"(0.; sin )},

where 3™ (w) is the Fourier transform of 5™ (y). So,

9 mt1 YL mt1 Y¥
gg(y) = ETy (AICOSQ‘E * A|sin9|ﬁ]

m+1 m—+1
_ A\cosG|A|sin9\ 2m
NG T

In our formulation, we represent the object by the B-spline ex-

pansion
fx) =) cnplz —k),
kez?

which is fully specified by its B-spline coefficients ci. To discretize
the reconstruction problem and specify our forward model, we need
to calculate the FDRT of f at the location (y;; 6;), where y; = jAy
and 6; = {Af. Specifically, the discrete model of the FDRT of f is

RVl = ewRyor(us).

kez?

)

The linear weights ’Ré?gok (y;) can be calculated using (5).

3.2. Matrix Formulation of the Forward Model

To specify the forward imaging model, we now introduce an equiv-
alent matrix formulation of (7) which reads

g = Hc, ®)
where c is a vector of B-spline coefficients in lexical order with
c(k) = ck, where g is the output vector, and whose H is the system
matrix with

[H] (5,56 = R o (u5)- )

The matrix entries Ré?gpk(yj) are calculated using (5). The corre-
sponding adjoint operator is represented by the conjugate transpose
of the system matrix.

In our implementation, we use cubic B-spline basis functions
and take advantage of the closed-form (6). For better efficiency,
these projection functions are stored in a lookup table. Since we
present an exact discrete model for the FDRT, our implementation is
accurate—using a lookup table and multi-threading makes it fast.
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4. RECONSTRUCTION METHODS

For large images with a limited number of projections, direct solu-
tion methods such as FBP are not accurate enough. In this case,
iterative techniques provide much more robust means of solving the
underlying large-scale system of equations.

In our implementation, we take advantage of our forward-model
algorithm. Using the symbol H as a generic system matrix, the cost
function that we want to minimize with respect to (8) is

1 2

J(e) = 5 IIHe —g]*.

Since image reconstruction with a limited number of projections is
ill-posed, we introduce a combination of anisotropic discrete TV and
Tikhonov regularization. We then aim at finding a vector ¢ that min-
imizes the cost function

1 A
J(e) = 5 [|He — g|* + 31 el + 22> [{Lekll, . (10)

where {Lc}; € R? is a vector containing a finite difference in po-
sition c; along horizontal and vertical directions. The summation is
on all image B-spline coefficients.

We reformulate the TV problem (10) using variable splitting
as a linear equality-constrained problem. We form its augmented-
Lagrangian function as

1 A
Lule,w @) = [He — gl* + 5 el + X2 > i,

+aT(Lc—u)+%HLc—u||2, (11

where a € R**V ® is the vector of Lagrange multipliers and N? is

the image size. To minimize (11), we apply the ADMM to separate
the problem in two basic optimization problems with respect to a
single variable, which consists of the iterations

Ck+ k k)

!« argmin £,(c,u*, «
C

(Ck+1

u**! « argmin Ly Ju, o)

u
ak:+1 — ak +u(LCk+1 o uk+1).

L, (c,u” o) is a quadratic function with respect to ¢ whose
gradient is

VL, (e, u*, ak) = (HHH +uLP L+ ,\11) c

k
L

We minimize £, (c,u”, a*) iteratively using the CG algorithm.
Since H H has a large condition number, we need to find a trans-
formation that produces a condition number as close to 1 as possible
to improve the rate of convergence. We call the matrix M a pre-
conditioner. Tt is such that M~' (H”H + pL”L + A1) has a
formable set of eigenvalues. In principle, we can compute a self-
adjoint, positive square root of M, which we denote by Mz,

From the continuous-domain formulation (3) of our our prob-
lem, we know that RV R has a Fourier transform that is pro-
portional to ||w|| and L7 L is a Laplace operator. Thus, the precon-
ditioner M~! that we use in the discrete domain is the discrete filter

. 1
whose frequency response is —————5——.
quency resp Twl+allwlZF s



It is easy to show that the solution of the minimization of
L,,(c®,u, &) with respect to u is given by the shrinkage

k+1
1,1+ :max{

k k
Lc T+ a—' — E,O} sen(Lc™ ™ + a—)
p p I
(12)
5. EXPERIMENTAL RESULTS

As the original object, we use the realistic analytical brain phan-
tom [8] shown in Figure 2(a). It has size 256 x 256. Starting from
the B-spline coefficients of the object, we simulate the DPCI acqui-
sition by applying the forward model (8).

We investigated the performance of the direct method and the
ADMM algorithm by using our proposed FDRT implementation to
solve the inverse problem (8). Our simulation results show that us-
ing the proposed preconditioner improves the convergence speed ten
fold in comparison with the conventional CG method. The signal-
to-noise ratio (SNR) of the images reconstructed with only 60 pro-
jections using the ADMM and FBP approach are 13.4dB and 5.7dB,
respectively. The reconstruction results are displayed in Figures 2(c)
and 2(d). To get a result as good as in Figure. 2(c), the direct method
requires 180 projections, which is three times more data and as much
increase in acquisition time.

We also compared the proposed ADMM method with two stan-
dard methods for the solution of TV-regularized inverse problems:
iterative shrinkage thresholding algorithm (ISTA) and FISTA [9] in
Figure 2(b). The required time to reach the value 4 x 107 of the ob-
jective function is 11s and 54 s for ADMM and FISTA, respectively.
This suggests that our method is about 4 times faster than FISTA,
which is often presented as the state-of-the-art technique for solving
TV-regularization problems.

6. CONCLUSION

We presented an exact B-spline formulation for the discretization of
the first derivative of the Radon transform that avoids any numerical
differentiation in 2-D. This result can be easily extended to higher
dimensions. We introduced a new algorithm that uses the alternating
direction method of multipliers to solve the TV-regularized recon-
struction problem of DPCI. An important practical twist is the in-
troduction of a problem-specific preconditioner which significantly
speeds up the quadratic optimization step of the algorithm. Our sim-
ulation results suggest that the one ADMM method is competitive
with state-of-the-art methods to solve the TV-reconstruction prob-
lem.
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