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Abstract

We develop a high-performance scheme to reconstruct straight-ray tomographic scans. We
preserve the quality of the state-of-the-art schemes typically found in traditional computed
tomography but reduce the computational cost substantially. Our approach is based on
1) a rigorous discretization of the forward model using a generalized sampling scheme;
2) a variational formulation of the reconstruction problem; and 3) iterative reconstruction
algorithms that use the alternating-direction method of multipliers. To improve the quality
of the reconstruction, we take advantage of total-variation regularization and its higher-
order variants. In addition, the prior information on the support and the positivity of the
refractive index are both considered, which yields significant improvements.

The two challenging applications to which we apply the methods of our framework
are grating-based x-ray imaging (GI) and single-particle analysis (SPA). In the context of
micro-resolution GI, three complementary characteristics are measured: the conventional
absorption contrast, the differential phase contrast, and the small-angle scattering contrast.
While these three measurements provide powerful insights on biological samples, up to
now they were calling for a large-dose deposition which potentially was harming the spec-
imens (e.g., in small-rodent scanners). As it turns out, we are able to preserve the image
quality of filtered back-projection-type methods despite the fewer acquisition angles and
the lower signal-to-noise ratio implied by a reduction in the total dose of in-vivo grating
interferometry. To achieve this, we first apply our reconstruction framework to differential
phase-contrast imaging (DPCI). We then add Jacobian-type regularization to simultane-
ously reconstruct phase and absorption. The experimental results confirm the power of our
method. This is a crucial step toward the deployment of DPCI in medicine and biology.
Our algorithms have been implemented in the TOMCAT laboratory of the Paul Scherrer
Institute.

In the context of near-atomic-resolution SPA, we need to cope with hundreds or thou-
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sands of noisy projections of macromolecules onto different micrographs. Moreover, each
projection has an unknown orientation and is blurred by some space-dependent point-
spread function of the microscope. Consequently, the determination of the structure of a
macromolecule involves not only a reconstruction task, but also the deconvolution of each
projection image. We formulate this problem as a constrained regularized reconstruction.
We are able to directly include the contrast transfer function in the system matrix without
any extra computational cost. The experimental results suggest that our approach brings a
significant improvement in the quality of the reconstruction. Our framework also provides
an important step toward the application of SPA for the de novo generation of macromolec-
ular models. The corresponding algorithms have been implemented in Xmipp.

Keywords: Discretization, variational formulation, iterative reconstruction, alternating-
direction method of multipliers, grating-based x-ray imaging, single-particle analysis, phase-
contrast imaging.



Résumé

Dans ce travail, nous développons des méthodes de reconstruction de haute-performances
pour la tomographie sans diffraction. Nous obtenons des résultats comparables à l'état-de-
l'art en tomographie par ordinateur en termes de qualité, tout en réduisant significativement
le coût de calcul. Notre approche comporte trois aspects : 1) une discrétisation rigoureuse
du modèle d'analyse en suivant un schéma d'échantillonnage généralisé, 2) une formula-
tion variationnelle du problème de reconstruction, et 3) des algorithmes de reconstruction
itératifs fondés sur la méthode intitulée alternating direction method of multipliers. Afin
d'augmenter la qualité de la reconstruction, nous utilisons les techniques de régularisation
basées sur la variation totale ou des variantes à des ordres supérieurs. De plus, la prise en
compte des informations a priori sur le support et la positivité de l'indice de réfraction de
l'objet d'étude conduit à des améliorations significatives.

Les méthodes que nous avons développées sont mises en pratique sur deux appli-
cations importantes : l'imagerie par rayon X pour l'interférométrie à réseau (en anglais
GI pour Grating interferometry) et l'analyse de particule unique (en anglais SPA pour
single particle analysis). Dans le contexte de la micro-résolution GI, trois caractéristiques
complémentaires sont mesurées : le contraste d'absorption, le contraste de phase et le
contraste de diffusion. Bien que ces trois grandeurs apportent des informations très utiles
pour l'étude biologiques in vivo, jusquà maintenant leur obtention nécessitait une longue
exposition qui pouvait être toxique pour le spécimen étudié (par exemple lors des scan-
ners réalisés sur de petits rongeurs). Il apparaı̂t cependant que nous sommes capables de
reproducer la qualité de l'image reconstruite par des méthodes de rétroprojection filtrée,
malgré le faible nombre de projections durant l'acquisition, ce qui implique une réduction
de la dose totale de radiation. Pour atteindre ce but, nous appliquons d'abord notre méthode
de reconstruction à l’imagerie par contrast de phase differential. Nous effectuons ensuite
une régularisation basée sur le Jacobien afin de reconstruire simultanément la phase et
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l'absorption. Les résultats expérimentaux confirment les performances de notre méthode.
Il s'agit d'une étape cruciale pour l'utilisation de la l’imagerie par contraste de phase diffe-
rentiel en médecine et en biologie. Nos algorithmes ont été implémentés et sont utilisés au
laboratoire TOMCAT de l'Institut Paul Scherrer.

Pour la SPA, réalisée à une résolution quasi atomique, nous devons alors composer
avec des centaines ou des milliers de projections de macromolécules, qui sont corrompues
par du bruit. Chaque projection a une orientation inconnue et elles sont floutées par une
fonction d'étalement du point (en anglais PSF pour point spread function) qui peut être
différente pour chaque orientation. Ainsi, la détermination de la structure de la macromo-
lecule nımplique pas seulement une tâche de reconstruction, mais aussi la deconvolution
de chaque image projetée, ce que nous formulons comme un problème de reconstruc-
tion régularisé sous contrainte. Nous sommes capables d'inclure directement la function
du transfer de contraste dans le système matriciel sans coût de calcul supplémentaire.
Les résultats expérimentaux confirment que notre approche augmente significativement
la qualité de la reconstruction. Le cadre proposé est de plus une étape importante pour
l'application de la SPA pour l'interprétation de modèles de macromolécules. Les algo-
rithmes correspondants ont été implémentés sur Xmipp.

Mots-clés : Discrétisation, formulation variationnelle, des algorithmes de reconstruc-
tion itératifs, alternating direction method of multipliers, l'imagerie par rayon X pour
l'interférométrie à réseau, l'analyse de particule unique, l’imagerie par contraste de phase.
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Chapter 1

Introduction

Computerized tomography (CT) revolutionized diagnostic medicine by enabling physi-
cians to view the internal structure of organs in 1970s. It aims at reconstructing the ob-
ject using several images taken. The acquisition is performed by illuminating a specimen
(or an organ) by an electromagnetic wave along different orientations. In more detail, a
monochromatic wave is represented by complex wave function

u(y, t) = a(y)exp( jφ(y))exp( j2πνt) , (1.1)

where a, φ , and ν are the amplitude, phase, and frequency of the wave, respectively [1].
The parameter y ∈ R2 is a coordinate on a plane that is perpendicular to the direction of
propagation of the wave, and t is the time parameter. The interaction of the wave with the
specimen can be described by the complex refractive index n(x) = 1−δ (x)+ jβ (x), where
x ∈R3 specifies a spatial coordinate. Then, the wave function over the exiting curve of the
specimen in the context of diffraction-less electromagnetic plane wave (parallel beam with
extremely small wavelength) is given by

uo(y, t) = u(y, t)exp
(

j
2π

λ

∫

R
n(sθ+PT

θ⊥y)ds
)
, (1.2)

where λ is called the wavelength, θ is the unit vector that specifies the direction of propa-
gation of the wave, and PT

θ⊥ ∈ R3×2 is the transpose of the matrix Pθ⊥ ∈ R2×3 with Pθ⊥x
the orthogonal projection of x onto the plane perpendicular to θ. Equation (1.2) describes
the phase shift and attenuation introduced by the specimen, as shown in Figure 1.1.
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Figure 1.1: (a) The specimen introduces a phase shift and an attenuation. (b)
Illustration of the intensity received by the detector.

In conventional CT, the decay of the wave intensity (the attenuation) is inferred for
several orientations. This is linked to the X-ray transform of the attenuation coefficient
µ(x) = 4πβ (x)/λ [2]. Since the mathematical model of CT is based on the x-ray trans-
form, the specimen can be reconstructed using the analytical solution, particularly fil-
tered back-projection-type algorithm (FBP). The drawback of FBP is the requirement of a
large number of orientations with high signal-to-noise projection measurements for good-
quality reconstruction which is equivalent to long exposure time. In order to reduce the
radiation dose, several sophisticated algorithms have been developed for CT, including it-
erative coordinate descent (ICD) methods [3], block-based coordinate descent [4], ordered
subset algorithms based on separable quadratic surrogates [5], preconditioned nonlinear
conjugate-gradient methods [6], and alternating direction method of multipliers [7]. Pre-
cise modeling of the acquisition process in these methods offers a gain in quality with
respect to FBP for the same data and degrades more gracefully than FBP when the data
worsen; equivalently, it results in a notable radiation dose reduction. Moreover, special-
ized hardwares (CT vendors) have also been manufactured to implement these techniques.
GE Healthcare started with ASIR (adaptive statistical iterative reconstruction) in 2008; the
Siemens company provided SAFIRE (sinogram affirmed iterative reconstruction) in 2010;
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the Toshiba company proposed AIDR (adaptive iterative dose reduction) in 2010.
The phase shift of the transmitted wave is given by the x-ray transform of the local

phase shift per length, φ(x) = 2πδ (x)/λ . Note that, in practice, intensity is the only
measurable quantity. Therefore, it is necessary to find a mechanism that transforms the
phase into an intensity. This fact motivates the development of various phase-contrast
imaging modalities (PCI) including analyzer based [8–10], interferometric [11–13], and
free-space propagation methods [14–16]. These methods differ substantially in terms of
the physical signal that is measured and their experimental setup. They often show higher
contrast over the conventional imaging of biological samples and soft tissues [17–23]. The
iterative reconstruction scheme in PCI has not been developed as much as the conventional
CT.

In this thesis, we develop a unified and high-performance reconstruction scheme for
straight-ray tomography. We achieve the same level of sophistication as the state-of-the-
art iterative schemes in conventional CT and take profit of recent developments in the
specialized area of straight-ray tomography, but at a much lower computational cost. After
successive application of conventional CT for the visualization of the specimen with the
resolution of lower than micro meter, several imaging modalities have been developed from
micro to nano resolution. In these modalities, the state-of-the-art reconstruction until very
recently has been using direct methods. We demonstrate the proposed framework in the
context of grating-based x-ray imaging for micro resolution and single-particle analysis for
near-atomic-resolution imaging.

1.1 X-ray Grating Interferometry: Potentially in vivo Imag-
ing Modality

Phase-sensitive x-ray imaging using grating interferometry (GI) is a tomographic technique
that was first proposed by David et al. [24] and Momose et al. [19]. A unique property
of GI is to provide simultaneously three complementary information about the object of
interest: 1) The absorption contrast, 2) the differential phase contrast, and 3) the small
scattering angle which is called dark field or visibility-reduction contrast as demonstrated
in Figure 1.2. Additional advantages are its compatibility with regular laboratory sources
of x-rays and its high sensitivity to variations in the density of electrons, which offers
further opportunities to probe the specimen.

The data provided by differential phase-contrast imaging (DPCI) corresponds to the
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Figure 1.2: [25] (a) Conventional x-ray image based on attenuation. (b) Differen-
tial phase-contrast image based on x-ray refraction. (c) Dark-field image based on
x-ray scattering. All three images are intrinsically perfectly registered as they are
extracted from the same data recorded with a grating interferometer. Examples of
regions of enhanced contrast are marked with arrows, showing (b) the refraction
of the trachea and (c) the scattering of the lungs. The white bars correspond to 1
cm.
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first derivative of the x-ray transform of the real part of the refractive index of the sample.
Thus, in practical applications, the common reconstruction scheme for DPCI is based on a
variant of the filtered back-projection (FBP) algorithm. While FBP is a fast (non-iterative)
method, it typically requires a large number of projections with high signal-to-noise ratio
to achieve a good reconstruction quality [26]. This implies long exposure times which
could damage the specimen. High doses of x-ray radiation can lead to an increased risk of
developing cancer and may cause the genetic deffects [27–32]. In order to be able to use
this technique for in vivo imaging, one requires reducing the radiation dose significantly.

Recently, several authors have proposed iterative techniques that exploit prior knowl-
edge on the specimen to significantly reduce the number of required projections [33–36] at
no cost in the quality. Their approaches are all based on a penalized maximum-likelihood
formulation, with a standard `2-norm data-fidelity term. In this thesis, we aim at further
reducing the number of projections by proposing an improved iterative reconstruction al-
gorithm for DPCI.

1.2 Single Particle Analysis: A Step Towards de novo Gen-
eration of Atomic Models

The purpose of single-particle analysis is to combine images of similar particles, typically
proteins or viruses, often acquired from transmission electron microscopy. The proper
combination then provides high-resolution 3D reconstruction of the sample. The first use
of this technique dates back to the reconstruction of human wart virus and bushy stunt
virus in the 1970s [37, 38]. This technique has progressed significantly since then, cur-
rently reaching to 0.5 nanometer resolution [39]. This motivates researchers to improve its
resolution even further to be able to use this technique for de novo generation of an atomic
model. The resolution improvement can be achieved by developing precise, fast and robust
particle determination scheme besides high-end microscopes and careful data acquisition.

Since the linear image-formation model of the cryo-electron microscopy (Cryo-EM) is
based on the x-ray transform, one needs to reform an inversion equation for reconstructing
the particle. Given the size of the data and the fact that the angular distribution of the views
is uneven, this is already a non-trivial reconstruction problem. In single-particle analysis,
the problem is further complicated owing to the lack of information about the orientations
besides the structural variability in the particle. Moreover, the Cryo-EM images are ex-
tremely noisy because of the low electron exposure to limit the radiation damage. Then,
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the reconstruction problem suffers from overfitting, which means that the reconstruction
express noise instead of the underlying particle details. In order to deal with this issue,
It is convenient to introduce some prior information and formulate the problem as regu-
larized inverse problem. In the literature, the smoothness concept is widely used as prior
information in SPA [40–42]. This is performed by imposing a Gaussian distribution on the
Fourier components of the particle in the context of maximum a posteriori estimation or
using Tikhonov regularization in penalized likelihood estimation.

1.3 Main Contributions
The main focus of this thesis is on the development of a high-performance reconstruction
framework for straight-ray computerized tomography. We then demonstrate the proposed
framework in 1) grating-based x-ray imaging in order to reduce the radiation dose to in-
crease its potential for being used in in vivo imaging, and in 2) single-particle analysis to
improve the resolution such that one can potentially use it for de novo generation of atomic
model. The five contributions of this thesis can be summarized as follows:

• Discretization Scheme: In order to formulate the reconstruction problem as an in-
verse problem, one needs first to discretize the forward operator. We specify the re-
construction space through the choice of the generating function. In this regard, we
investigate an extended family of box splines and Kaiser-Bessel window functions.
We first provide a general characterization of the x-ray transform for the extended
family of box splines. We find that this level of generality simplifies the analysis
because the family happens to be closed under the Radon/x-ray transform. Since
all commonly used brands of B-splines are special instances of box splines [43], it
makes sense to investigate these functions in more detail. Then, we consider the fam-
ily of Kaiser-Bessel window functions. These are isotropic, and they involve several
parameters that need to be adjusted [44,45]. We investigate approximation-theoretic
properties of these basis functions and we show how to optimize the parameters for
the best performance.

• Reconstruction Framework: We have designed new iterative reconstruction al-
gorithms that take advantage of the proposed discretization and use a combina-
tion of non-quadratic regularizes. The regularization consists either of total varia-
tion (TV) for piecewise-constant images or a higher-order extension that is better
matched to biological specimens and quadratic regularizations. Our method follows
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an augmented-Lagrangian optimization principle and makes use of the conjugate-
gradient method to solve the linear step in the alternating direction method of mul-
tipliers (ADMM). We propose a problem-specific preconditioner that considerably
speeds up the convergence of the linear optimization step. Moreover, we impose
support and positivity constraints in the reconstruction algorithm.

• FFT-Cost Implementation of HT H: The computationally costly step in the pro-
posed reconstruction scheme is the calculation of HT H. We show theoretically that
HT H is a digital convolution operator if the generating function satisfies the radial
Nyquist criteria. We then show that, if we use B-spline functions or Kaiser-Bessel
windows as generating function, then the proposed ADMM scheme converges to
the fixed point of the problem. It improves the speed of reconstruction scheme sig-
nificantly. We show that the use of the proposed digital convolution instead of the
direct implementation of HT H makes the computational cost independent upon the
number of orientations and the support of the generating function.

• Grating-Based X-Ray Imaging (collaboration with the Paul Scherrer Institute
(PSI)): Up to now, in-vivo tomography with grating interferometry faces the chal-
lenge of large-dose deposition, which potentially harms the specimens (e.g., in small
rodent scanners). Grating-based x-ray imaging is a powerful modality to investi-
gate biological samples. It measures three complementary characteristics of the
imaged sample: the conventional absorption contrast (AC), the differential phase
contrast (DPC), and a small-angle scattering contrast. To reduce the total scanning
time, we apply the proposed reconstruction framework to the context of differential
phase-contrast imaging. We present experimental results to validate the proposed
discretization method and the corresponding iterative technique. Our findings con-
firm that the proposed reconstruction framework is quite competitive for solving
regularized problems. Moreover, our method allows for a substantial dose reduc-
tion while preserving the image quality of FBP-type methods. This is a crucial step
towards the diffusion of DPCI in medicine and biology. The codes have been im-
plemented in the TOMCAT laboratory of PSI and are being used by scientists to
visualize the internal structure of their samples.

Unlike DPC tomography, where the phase information can be recovered effectively
by a reconstruction algorithm, the retrieval of phase images from DPC projections
remains challenging and reduces the advantages of the phase information in radio-
graphic applications. We utilize the same algorithm proposed in the first part of



8 Introduction

the thesis and deploy a novel discretization approach using B-spline calculus to es-
tablish the differential operator. The algorithm is evaluated with breast biopsy and
mastectomy samples. Although it is predicted theoretically that the phase image can
give higher contrast for breast tissue, this has not yet been demonstrated in a clini-
cal environment. The present study constitutes the first practical demonstration that
DPC is capable of providing a higher contrast in clinical by relevant features like
spiculation. These results could help to improve the diagnosis of breast cancer.

• Single Particle Analysis (collaboration with Centro Nacional de Biotecnologia,
Spain (CSIC)): Several critical difficulties arise in the context of single-particle
analysis (SPA). They can be summarized as follows: 1) hundreds (thousands) of low-
signal-to-noise-ratio micrographs with unknown orientations (too many projection
images which are highly noisy), and 2) space-dependent contrast transfer function
(CTF). More precisely, the measurements (micrographs) are the x-ray transform of
specimens (macromolecules), filtered by the point-spread function of the microscope
and varying from one projection image to the next. Consequently, the determination
of the structure of macromolecule involves deconvolving of each projection image
along with the reconstruction of the specimen. We apply the proposed reconstruction
framework to the context of SPA. We formulate the problem as a constrained regu-
larized reconstruction. We show that we can directly include the CTF in the system
matrix HT H without any extra computational cost. The experimental results suggest
that our approach improves significantly the resolution of the reconstruction. It is an
important step towards the application of SPA for de novo generation of an atomic
model. The corresponding codes have been already implemented in Xmipp [46,47].

1.4 Thesis Outline

This thesis involves two main parts. The first part describes the development of a high-
performance reconstruction framework for straight-ray computerized tomography (Chap-
ters 2, 3, 4, 5). The linear mathematical model of straight-ray imaging is based on the
Radon transform, the x-ray transform, and its differential. We discuss the mathematical
properties of these operators in Chapter 2. We describe the discretization scheme of the
imaging operator and discuss the properties that should be satisfied by the generating func-
tion to be used for discretizing the forward model in Chapter 3 as well as a fast and accurate
implementation. In particular, we investigate the use of box splines and Kaiser-Bessel win-
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dow functions (KBWF). We study the KBWFs from an approximation-theory point of view
and propose new parameters for their use in the discretization scheme. In Chapter 4, we
describe several reconstruction schemes that use the alternating-direction method of multi-
pliers (ADMM) to solve constrained and regularized reconstruction problems. The costiest
step in the proposed iterative methods is the computation of HT H. We show that, under
certain conditions, we can implement it as a digital filter with the help of the FFT.

The second part is the application of the proposed framework to the context of x-ray
grating interferometry (Chapter 6, 7, 8) and single-particle analysis (Chapter 9). In Chap-
ter 6, we briefly review the physical model of x-ray grating interferometry. The end-result
is that differential phase-contrast imaging can be described mathematically in terms of
derivative variants of the x-ray transform. We then use real data from the TOMCAT beam
line to validate the proposed framework. We improve the performance of the reconstruc-
tion framework in the context of grating based imaging in Chapter 7 by developing new
reconstruction schemes. Beside the tomography problem, we develop phase and absorp-
tion retrieval in the context of grating-based radiography which is important clinically in
Chapter 8. The second important application is widely investigated in Chapter 9. We
finally conclude this thesis in Chapter 10.
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Chapter 2

Mathematical Preliminaries

1 Let an object be characterized by its complex refractive index n(x) = 1−α(x)+ jβ (x)
where x ∈ R3 specifies the object coordinate. The measurements in straight-ray imaging
modalities are related to the x-ray transform and its differential variants, such as

• Conventional x-ray CT
g(y,θ) = P {β}(y,θ) . (2.1)

• Propagation-based phase-contrast CT [48]

g(y,θ) =4yP {α}(y,θ) . (2.2)

where4y = ∂ 2/∂y2
1 +∂ 2/∂y2

2 is the Laplacian operator with y = (y1,y2).

• Differential phase-contrast CT [13, 49, 50]

g(y,θ) = 〈u,∇yP {α}(y,θ)〉y , (2.3)

where u is a unit vector in a projection coordinate y, ∇y is the gradient operator with
respect to y and 〈·, ·〉y is the corresponding inner product,

There P { f}(y,θ) denotes the x-ray transform of a function f along a given orientation
θ with y ∈ R2 is the projection coordinates. In this regard, we establish some higher-level
mathematical properties of the x-ray transform and its differential variants in this chapter.

1A part of this chapter has been presented in [36]

11



12 Mathematical Preliminaries

2.1 X-ray transform
In order to specify the x-ray transform and its differential variants, we need to set the
geometry of the problem. The spatial coordinates of the input function are denoted by
x = [x1 x2 . . . xd ]

T and the hyperplane projection coordinates are y = [y1 . . . yd−1]
T . The

unit vector θ ∈ Sd−1 (Sd−1 is the unit sphere in Rd) points along the direction of integration.
The projection matrix Pθ⊥ ∈R(d−1)×d is constructed such that its rows specify the normal
basis of the hyperplane perpendicular to the direction of integration θ. Then, a point x can
be expressed in the rotated coordinate [θ,PT

θ⊥ ] as

x = tθ+PT
θ⊥y, (2.4)

where PT
θ⊥ is the transpose of the matrix Pθ⊥ .

2.1.1 Problem geometry
We now explicitly describe the geometry in the case of 2-D and 3-D input functions.

We start with two-dimensional functions. The unit vector θ=(−sinθ ,cosθ) lies along
the line of integration as depicted in Figure 2.1. The spatial coordinates of the input func-
tion are denoted by x = (x1,x2). They are also expressed in a rotated coordinate system
as x = tθ+ yθ⊥, where t ∈ R and θ⊥ = (cosθ ,sinθ) is the unit vector orthogonal to the
integral line (θ⊥ specifies the direction of projection).

In the case of three-dimensional problem, the integral orientation can be determined by
knowing two Euler angles ϕ and θ as depicted in Figures 2.2(a) and 2.2(b) and is given by

θ = (sinθ cosϕ,sinθ sinϕ,cosθ) , (2.5)

In order to specify the projection matrix Pθ⊥ , it is necessary to determine the unit
vectors y1 and y2 in the input function coordinates. The unit vector y2 is the projection of
the unit vector x3 = (0,0,1) along direction θ and is computed as

y2 = x3−< x3,θ > θ . (2.6)

This yields

y2 =
1

|sinθ |



−cosϕ cosθ sinθ

−sinϕ cosθ sinθ

sin2
θ


 . (2.7)
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Figure 2.1: The object lies in a 2-D plane and is imaged along angle θ .

The unit vector y1 is the cross product of y2 and θ

y1 = y2×θ (2.8)

which is in the form of

y1 =
1

|sinθ |




sinϕ sinθ

−cosϕ sinθ

0


 (2.9)

Then the projection matrix is

Pθ⊥ = [y1,y2]
T . (2.10)

2.1.2 Definition and properties
The x-ray transform is the continuous-domain operator that maps a d-dimensional function
into its line integrals; P : L2(Rd)→ L2(Rd−1×Sd−1) where Sd−1 is the unit sphere in Rd .
More specifically,
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(a) (b)

Figure 2.2: The object lies in a 2-D plane and is imaged along angle θ .

P{ f}(y,θ) =
∫

R
f (tθ +PT

θ⊥y)dt, (2.11)

Note that when f ∈ L2(R2), the x-ray transform is equivalent to the Radon transform. In
some cases, we use the notation Pθ{ f}(y) in place of P{ f}(y,θ).

Theorem 2.1. Fourier slice theorem in the context of x-ray transform For f ∈ L2(Rd),
we have

Fx{ f (x)}(PT
θ⊥ω) = Fy{P{ f (x)}(y,θ)}(ω) , (2.12)

where ω ∈ Rd−1.

The Fourier slice theorem states that the (d−1)-dimensional Fourier transform of the
x-ray transform of a function f is equal to the d-dimensional Fourier transform of the given
function on the hyperplane parallel to the projection coordinate.
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One can define the x-ray transform with the use of the Dirac impulse within the frame-
work of distribution theory

P{ f}(y;θ) = 〈 f (x),δ (P
θ⊥x−y)〉x∈Rd , (2.13)

where δ (P
θ⊥x−y) is a line distribution that specifies a line that passes through the point

y in the projection coordinate and is parallel to the orientation θ. Initially one assumes
that f and its x-ray transform are in the Schwartz space, of smooth and rapidly decaying
functions. One can extend the transformation to L2(Rd) by applying a standard density
argument. The main properties of the x-ray transform are as follows:

• Linear:

It is a linear map by definition since it is an integral operator. Then, the x-ray trans-
form adjoint (back-projection) is well-defined P∗ : L2(Rd−1×Sd−1)→ L2(Rd) and
is in the form of

P∗{g(y,θ)}(x) =
∫

Sd−1
g(P

θ⊥x,θ)dθ . (2.14)

• Scale invariance
For any α > 0,

P{ f (αx)}(y,θ) = α
−1P{ f}(αy,θ) . (2.15)

The proof is achieved with the use of the x-ray transform definition,

P{ f (αx)}(y,θ) = 〈 f (αx),δ (P
θ⊥x−y)〉x∈Rd

(1)
=
〈

f (x),α−d
δ (α−1P

θ⊥x−y)
〉

x∈Rd

(2)
=
〈

f (x),α−1
δ (P

θ⊥x−αy)
〉

x∈Rd

(3)
= α

−1 〈 f (x),δ (P
θ⊥x−αy)〉x∈Rd . (2.16)

The change of variable x = αx and consequently dx = |α|ddx yield the equality (1).
The scaling property of the Dirac impulse and the linearity of the inner product with
respect to the second term implies the other two equalities, respectively.

• Projection translation invariance

P{ f (·−x0)}(y,θ) = P{ f}(y−P
θ⊥x0,θ) . (2.17)
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Starting form the definition, we have

P{ f (x−x0)}(y,θ) = 〈 f (x−x0),δ (Pθ⊥x−y)〉x
(1)
= 〈 f (x),δ (P

θ⊥x+P
θ⊥x0−y)〉x

= 〈 f (x),δ (P
θ⊥x− (y−P

θ⊥x0))〉x . (2.18)

The adjoint of a shift operator is exactly the same shift with opposite direction which
implies equality (1).

• Pseudo-distributivity with respect to convolution

P{ f ∗g}(y,θ) = (P f (·,θ)∗Pg(·,θ))(y,θ) . (2.19)

2.2 Differential variants of the x-ray transform
Since in the parallel-beam geometry, the 3-D problem can be decomposed into a set of
two dimensional problems, we focus on two dimensional function f ∈ L2(R2). The nth
derivative of the x-ray transform of a function f (x) is denoted by

P(n) f (y,θ) =
∂ n

∂yn P f (y,θ) . (2.20)

The derivatives of the x-ray transform are linear operators with the following properties:

• Scale invariance

P(n){ f (αx)}(y,θ) = α
n+1P(n) f (αy,θ), α ∈ R+ . (2.21)

• Pseudo-distributivity with respect to convolution

P(n){ f ∗g}(y,θ)= (P(n) f (·,θ)∗Pg(·,θ))(y,θ)= (P f (·,θ)∗P(n)g(·,θ))(y,θ) .
(2.22)

• Projected translation invariance

P(n){ f (·−x0)}(y,θ) = P(n) f (y−〈x0,θ〉,θ) . (2.23)
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2.3 Direct inversion formula
To derive the necessary relations, we define a new operator, the Hilbert transform along the
second coordinate.

Definition 2.1. The Hilbert transform along the x2 axis, H2 : L2(R2) −→ L2(R2), is de-
fined in the Fourier domain as

Ĥ2{ f}(ω1,ω2) =−j · sgn(ω2) f̂ (ω1,ω2) , (2.24)

where (ω1,ω2) are spatial frequency coordinates.

Proposition 2.1. The sequential application of the x-ray transform, the nth derivative
operator and the adjoint of the x-ray transform on function f ∈ L2(R2) is

P∗{ ∂ n

∂yn P{ f}(y,θ)}(x) = 2π (−1)nH n
2 (−4)

n−1
2 { f}(x) , (2.25)

where (−4)
1
2 is the fractional Laplace operator with transfer function ‖ω‖, (−4)

n
2 is n

times application of this operator, and the adjoint of x-ray transform (2.14) can be restated
in two dimensional case in the form of

P∗{g}(x) =
∫

π

0
g(x1 cosθ + x2 sinθ ,θ)dθ . (2.26)

Proof. Let g(y,θ) = P f (y,θ). The Fourier Slice Theorem states that:

ĝ(ω,θ) = f̂ (ω cosθ ,ω sinθ) . (2.27)

The Fourier transform of the nth derivative of g(y,θ) with respect to y is (iω)nĝ(ω,θ).
Thus,

(jω)nĝ(ω,θ) = jn× sgnn(ω)|ω|n f̂ (ω cosθ ,ω sinθ) . (2.28)

where ω = ‖ω‖withω=(ω1,ω2)=ω(cosθ ,sinθ). For θ ∈ (0,π), sgn(ω)= sgn(ω sinθ)=
sgn(ω2). The space-domain equivalent is

∂ n

∂yn P f (y,θ) = P{((−1)n(H2)
n(−4)

n
2 { f})(x)}(y,θ) ,∀θ ∈ (0,π) . (2.29)
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Therefore we have

P∗{ ∂ n

∂yn P{ f}(y,θ)}(x) = P∗P{((−1)n(H2)
n(−4)

n
2 { f})(x)}(y,θ) ,∀θ ∈ (0,π)

(2.30)
which, owing to the property that P∗P = (−4)1/2, yields the desired results.

Equation(2.25) is a key equation. It implies that if one is interested in solving the
inverse problem

P(n) f (y,θ) = g(y,θ) , (2.31)

the direct solution is to first apply the x-ray adjoint on the measured data and then apply
the inverse of the operator 2π (−1)nH n

2 (−4)(n−1)/2. The transfer function of this inverse
is 1

2π in sgn(ω2)
n‖ω‖−(n−1).

An equivalent form of (2.25) using the fact that ( ∂

∂y )
∗ =− ∂

∂y is

P(n)∗{(q∗P(n) f (·,θ))(y)}(x) = f (x) , (2.32)

where P(n) is the adjoint of the n-th derivative of the x-ray transform and the transfer
function of q(y) is

q̂(ωy) =
1

2π
× 1

|ωy|2n−1 . (2.33)

Equation (2.32) is the basis for the generalized filtered back projection (GFBP). The full
procedure is described in Algorithm 1.
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Input: gθ (y) = P
(n)
θ

f (y) as data
Output: Reconstructed image f (x)
initialization Nθ = The number of angles;
for i = 1→ Nθ do

Filter the input data with the transfer function

q̂(ωy) =
1

2π

1

|ωy|2n−1 (2.34)

end
Apply the adjoint of the n-th derivative of the x-ray transform on the output of the
previous stage;
return f (x).

Algorithm 1: GENERALIZED FILTERED BACK PROJECTION(GFBP) FOR THE IN-
VERSE PROBLEM P

(n)
θ

f (y) = gθ (y)
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Chapter 3

Discretization Scheme

1

Since the mathematical model of straight-ray imaging modalities are based on the x-ray
transform and its differential variants, the object can be reconstructed using direct methods
such as filtered back-projection. These techniques require large number of projections with
high signal-to-noise ratio in order to provide high quality reconstruction. It is equivalent to
a long exposure time and high radiation dose. It is highly desirable to reduce the radiation
dose in different imaging modalities. This can be achieved by either a reduction in the
intensity of the photons or in the number of projection angles. The price to pay for this
reduction is that the reconstruction problem becomes more ill-posed and its solution can no
longer be well approximated using traditional direct methods. Instead the deployment of
more sophisticated iterative schemes is needed. In order to specify such methods, one first
discretizes the imaging operator, and then selects a reconstruction scheme that typically
involves the choice of a cost functional to minimize.

In this chapter we concentrate on the first aspect: we use generalized sampling frame-
work to discretize the forward operator. Therefore, the discretization problem is summa-
rized in the choice of a suitable reconstruction space. This space is usually determined as
a set of functions of the form

f (x) = ∑
k∈Zd

c[k]ϕ
( x

T
−k
)
, (3.1)

1A part of this chapter has been presented in [51]

21
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where T is the sampling step. The reconstruction space is then specified through the choice
of the generating function ϕ .

In computed tomography, where the mathematical model is based on the x-ray trans-
form and its variants, it is beneficial to use a generating function that has 1) short support
and 2) good approximation properties. Isotropy is an additional property that simplifies the
implementation since the footprint (x-ray transform of the function) is independent of the
orientation, but typically introduces some loss of accuracy.

Two favorable candidates are box splines (in particular B-splines) and Kaiser-Bessel
window functions. B-splines are compactly supported functions with the best cost/quality
trade-off for the interpolation of discrete data on uniform grid. Their tensor product
is used in order to extend them to higher dimension. Note that high degree B-splines
are approximately isotropic. They are a special case of the box-splines investigated in
this chapter. Kaiser-Bessel window functions (KBWFs) are widely used in electron mi-
croscopy [52–54] and conventional and differential phase-contrast x-ray computed tomog-
raphy [34, 44, 55–57]. KBWFs involve three parameters that need to be adjusted [44, 45].
In this chapter, we investigate approximation-theoretic properties of the basis functions
and we show how to optimize the parameters for the best performance. We also present
experimental results that corroborate our theoretical prediction.

3.1 Discretization Using Shift-Invariant Functional Spaces
We first explain how the discretization of the forward model is intimately connected with
the choice of a given basis function. We then recall some fundamental results from approx-
imation theory that ensure stability and allow one to predict the expected discretization
error. This will point to the importance of the partition-of-unity property which, unfor-
tunately as we shall prove for compactly support functions, is incompatible with isotropy
properties.

3.1.1 Matrix formulation
Reconstruction is usually formulated as a linear inverse problem. To solve it, it is conve-
nient to introduce discrete representations of the object and the imaging operator. Here,
we consider an object in two dimensions. The model of the object, from the perspective of
the generalized sampling theory [58], is obtained by specifying a suitable reconstruction
space. Specifically, we select VT (ϕ) as the principal shift-invariant space generated by the
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function ϕ ∈ L2(R2). This space is defined by

VT (ϕ) =

{
∑

k∈Z2

c[k]ϕ
( x

T
−k
)

: c ∈ `2(Z2)

}
, (3.2)

where x ∈ R2. The corresponding orthogonal projection operator PT : L2(R2)→VT (ϕ) is
defined as

PT f = argmin
g∈VT (ϕ)

‖ f −g‖L2
. (3.3)

In practice, however, the values of c in (3.2) are determined based on the solution of an
inverse problem.

As the derivative variants of x-ray transform are linear, pseudo shift-invariant operators,
their application on a function f ∈VT is

P(n){ f}(y,θ) = ∑
k∈Z2

c[k]P(n){ϕT (·−T k)}(y,θ)

= ∑
k∈Z2

c[k]P(n){ϕT}(y−T 〈k,θ〉 ,θ) , (3.4)

where ϕT (x) = ϕ(x/T ), θ = (cosθ ,sinθ), and

P(n) f (y,θ) =
∂ nP f

∂yn (y,θ) ,

with P : L2(R2)→ L2(R× [0,π]) being the x-ray transform operator.
The formulation of the reconstruction as a linear inverse problem is then restated as the

matrix equation
g = Hc , (3.5)

where g is the measurement vector, H is the system matrix, and c is the discrete represen-
tation of the object of interest. Using (3.4), the matrix formulation can be obtained as fol-
lows: The measurement vector g contains values of the imaging transform P(n){ f}(y,θ)
at the sampled points y j = j∆y and θi = i∆θ , where i, j ∈ Z. The object f is represented
with its coefficients c within the space VT . The system matrix H is given by

[H](i, j),k = P(n){ϕT}(y j−T 〈k,θi〉 ,θi) . (3.6)
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Note that, in order to compute the imaging operator, there is no need to store the whole
system matrix because it is sufficient to have access to a lookup table that contains the
projection of one basis function along every direction. For an isotropic basis function,
storing its footprint along one orientation is enough since its footprint is independent of
the orientation.

3.1.2 Fast implementation
The calculation of the x-ray transform (or its variants) involves the application of the sys-
tem matrix on the coefficients of the object. However the system matrix H cannot be stored
explicitly due to its size. To circumvent this problem we exploit the translation-invariance
of the x-ray transform. This property implies that all the matrix entries in (3.6) can be de-
rived from a single derivative of the x-ray transform, namely that of the generating function
ϕ:

H(i, j),k = P(n)
ϕT (y j−T 〈k,θi〉,θi).

To improve the speed, we oversample P(n)ϕ(y,θ) on a fine grid Y ×Θ with for exam-
ple 100 samples along each angular direction and store the values in a lookup table L. To
compute the matrix entries we define a mapping

I : R× [0,π]−→ {1,2, · · · ,K}×{1,2, ...,P}
(y,θ) 7−→ ( j, i) , (3.7)

with K is the number of samples along each direction, P is the number of projections and
(Y ( j),Θ(i)) is the sample in Y ×Θ that is nearest to (y,θ). Therefore, we have

[H](i, j),k = LI(y j−〈k,θi〉,θi) . (3.8)

In the case of isotropic basis functions, it is sufficient to store its footprint along one
orientation in the look-up table since its x-ray transform is independent of the orienta-
tion. Note that the algorithm can easily be parallelized, since projections corresponding
to different angles are completely independent of each other (Figure 3.1). We designed a
multithreaded implementation for an 8-core workstation which allows for 8 simultaneous
projection computations. Similarly, for the adjoint of the forward model, the computation
can be parallelized with respect to each object point.

In summary, our implementation is based on an accurate continuous-to-discrete model.
Moreover it is fast thanks to the use of look-up tables and multi-threading. Note that our



3.1 Discretization Using Shift-Invariant Functional Spaces 25

Computation	
  along	
  each	
  
orientation	
  is	
  independent	
  

of	
  the	
  other

Computation	
  along	
  one	
  
orientation	
  =	
  Thread

d

Multi-­‐Threading

y

Lookup	
  table

R✓i
f [j] =

X

k

ckH(i,j),k

=
X

k

ckLI(yj�hk,✓ii,✓i)

Figure 3.1: A simple demonstration of the implementation of the projection op-
erator using lookup table in multithread scenario.

method could be also adapted to fan beam geometry by mapping it back to the parallel
beam geometry. This would lead to a non-uniform sampling pattern but our method can
account for this at no additional cost (thanks to our look-up-table-based implementation).

3.1.3 Desirable properties of the basis functions
We require the basis function ϕ to satisfy the four following properties:

1) Riesz basis. Every object f ∈V (ϕ) must be uniquely specified by its coefficients c.
This requires the existence of a positive constant A such that

∀c ∈ `2, A · ‖c‖2
`2
≤
∥∥∥∥∥ ∑

k∈Z2

c[k]ϕ
( x

T
−k
)∥∥∥∥∥

L2

. (3.9)

In addition, the representation should be stable. This requires the existence of a positive
constant B such that

∀c ∈ `2,

∥∥∥∥∥ ∑
k∈Z2

c[k]ϕ
( x

T
−k
)∥∥∥∥∥

L2

≤ B · ‖c‖2
`2
. (3.10)
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Together, these two conditions are equivalent to ϕ being a Riesz basis of V (ϕ).
2) Partition of unity. It is constructive for such a discretization scheme that the model

approximate any input function as closely as desired by choosing a sufficiently small sam-
pling step. More precisely, the approximation error should vanish whenever the sampling
step T tends to zero. We thus require that

lim
T→0

{
‖ f −PT f‖L2

}
= 0 . (3.11)

Theorem 3.1 ( [59]). Let f be a continuously defined function. The L2-approximation
error of the operator PT : L2→VT (ϕ) can be written as

ε f (T ) = ‖ f −PT{ f}‖L2

=

(∫

R2
Eϕ(Tω)| f̂ (ω)|2

dω
2π

)1/2

+ εcorr , (3.12)

where εcorr is a correction term and Eϕ is the error kernel defined in the least-squares case
as

Eϕ(ω) = 1− |ϕ̂(ω)|2
∑k∈Z2 |ϕ̂(ω+2kπ)|2 , (3.13)

where ϕ̂ is the Fourier transform of ϕ . Specifically, if f ∈W r
2 (Sobolev space of order r)

with r > 1/2, then |εcorr|< γT r‖ f (r)‖L2 , where γ is some constant.

The asymptotic convergence
lim
T→0

ε f (T ) = 0 (3.14)

is achieved if and only if the basis function ϕ satisfies the partition-of-unity condition [58]

∑
k∈Z2

ϕ(x+k) = 1, ∀x ∈ R2 . (3.15)

The equivalent formulation of the partition of unity in the frequency domain is

ϕ̂(2πn) = δ [n], ∀n ∈ Z2 , (3.16)

where δ is the two-dimensional Kronecker delta function.
3) Compact support. The basis function ϕ should be compactly supported in order to

reduce the computational cost and also for localization in the spatial domain.
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4) Isotropy. For the implementation of the imaging operator, it is required to store the
values of its application on the basis function along different directions. If the basis func-
tion is isotropic, its projections do not depend on the direction, which leads to simplicity
and efficiency of implementation.

3.1.4 Revisiting optimality in the projection domain

We now bound the error of approximation incurred by PT f = P{PT f}. It can be ex-
tended to any derivative of the x-ray transform through the Fourier-slice theorem since
||P(n) f ||L2 = ||PF−1{|ω|n f̂ (ω)}||L2 . To this end, we use the Sobolev norm ‖·‖2

W 1/2
2

in

the projection domain. If g ∈ L2(R2), then

‖g‖2
W 1/2

2
=
∫ 2π

0

∫
∞

0
(1+ω

2)
1
2 |ĝ(ω,θ)|dθdω , (3.17)

where ĝ(ω,θ) is the polar form of the Fourier transform of g.

Theorem 3.2. Let εP f (T ) == ‖P f −PT f‖
W 1/2

2
be the Sobolev approximation error of

the operator PT . Then, there exist positive constants r1,R1 > 0 such that

r1ε f (T )≤ εP f (T )≤ R1ε f (T ) . (3.18)

Lemma 3.1. Let Ω⊂R2 be a compact domain. Then, there exist positive constants r2 and
R2 such that, for any L2(R2) function f that is supported on Ω, it holds that

r2 ‖ f‖L2
≤ ‖P f‖

W 1/2
2
≤ R2 ‖ f‖L2

. (3.19)

Proof. The Fourier-slice theorem implies that

P̂ f (ω,θ) = f̂ (ω,θ) , ∀ω ∈ [0,+∞) ,θ ∈ [0,2π) . (3.20)
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To show the left-hand-side inequality, we write that

‖ f‖2
L2

=
∥∥∥ f̂
∥∥∥

2

L2

=
∫ 2π

0

∫
∞

0
| f̂ (ω,θ)|2|ω|dωdθ

=
∫ 2π

0

∫
∞

0
|P̂ f (ω,θ)|2|ω|dωdθ

≤
∫ 2π

0

∫
∞

0
|P̂ f (ω,θ)|2(1+ω

2)1/2dωdθ

= ‖P f‖2
W 1/2

2
. (3.21)

For the right-hand side, we decompose the integral into an integral over |ω| ≥ 1 and an
integral over |ω| ≤ 1. In the first one, we have that 2|ω| ≥ (1+ |ω|2)1/2. So,

∫ 2π

0

∫
∞

1
|P̂ f (ω,θ)|2(1+ω

2)1/2dωdθ ≤ 2
∫ 2π

0

∫
∞

1
|P̂ f (ω,θ)|2|ω|dωdθ

≤ 2‖ f‖2
L2

. (3.22)

The integral over |ω| ≤ 1 is estimated using
∫ 2π

0

∫ 1

0
|P̂ f (ω,θ)|2(1+ω

2)1/2dωdθ ≤
∫ 2π

0

∫ 1

0
| f̂ (ω,θ)|2(1+ω

2)1/2dωdθ

≤ sup
θ∈[0,2π),ω∈[0,1)

| f̂ (ω,θ)|2
∫ 2π

0

∫ 1

0
(1+ω

2)1/2dωdθ

≤ C̃‖ f‖2
L2

. (3.23)

Details concerning the last inequality can be found in [60, Section II.5]. Together, these
inequalities yield the desired result.

Proof of Theorem 3.2. By letting f ← ( f −PT{ f}) in (3.19), we obtain (3.18). �
This theorem implies that the average error over all angles is small in the transform

domain when the error of approximation is small in the object domain. While the theorem
is an average result that involves a continuum of angles, it is still useful practically because
it gives us the approximation error in the transform domain over a family of images that
would correspond to all rotated versions of a given reference image.
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3.1.5 Incompatible properties

There is an inconvenient result that is expressed in Theorem 3.3:

Theorem 3.3. The following properties are mutually exclusive for an isotropic basis func-
tion:

1. compact support;

2. partition of unity.

Proof. Here, we first provide a sketch of the argument. The partition-of-unity condition
implies the configuration (3.16) of zeros of the Fourier transform of the basis function. At
the same time, the Hankel transform of an even compactly supported function is an entire
function of finite exponential type. Jensen’s theorem provides a contradiction between
these two properties.

We prove Theorem 3.3 using a proof by contradiction. We suppose that there is a
compactly supported isotropic function φ that satisfies the partition-of-unity condition.
Then, using Jensen’s theorem, we obtain a contradiction.

Theorem 3.4 ( [61]). (J.L. Griffith) Let ν > −1/2 and 1/p+ 1/q = 1. Let f be an even
entire function of exponential type 1. If 1 < p ≤ 2 and tν+1/2 f (t) ∈ Lp(0,∞), then f can
be represented by

f (z) =
∫ 1

0
(xz)−ν Jν(xz)φ(x)dx (z ∈ C) , (3.24)

with x−ν−1/2φ(x) ∈ Lq(0,1). Conversely, if f has this representation and x−ν−1/2φ(x) ∈
Lp(0,1), 1 < p ≤ 2, then f is an even entire function of exponential type 1 such that
tν+1/2 f (t) ∈ Lq(0,∞).

Without loss of generality, let us assume that φ(x) = 0, for ‖x‖ ≥ 1. We have the
following:

• The function φ is isotropic, so its Fourier transform is the Hankel transform of the
function φ(x) = φ(‖x‖) with x = ‖x‖. We write that

F{φ}(ω) = 2π

∫
∞

0
xφ(x)J0(‖ω‖x)dx . (3.25)
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• We define

f (z) = 2π

∫
∞

0
xφ(x)J0(zx)dx , (3.26)

so f (‖ω‖) = F{φ}(ω). According to Theorem 3.4 (with ν = 0),

f (z) =
∫

∞

0
ψ(x)J0(zx)dx , (3.27)

where ψ(x) = 2πxφ(x). Since x−
1
2 ψ(x) ∈ L2(0,1), f is an even entire function of

exponential type 1.

• Satisfying the partition of unity is equivalent to having the equality in the Fourier
domain

φ̂(2πn) = δ [n] , (3.28)

where n ∈ Z2 and δ is the two-dimensional Kronecker-delta function. It means that
the set of zeros of f (z) is {z = 2π ‖n‖ ,∀n ∈ Z2 \{0}}. Therefore,

n(R)≥ cR2 , (3.29)

where n(R) is the number of zeros in the circle with radius R and c is a positive
constant.

• Jensen’s theorem implies the inequality

∫ R

0

n(t)
t

dt ≤max
|z|=R

log| f (z)| . (3.30)

This inequality restricts the number of zeros inside the disc. We have that

n(R/2)log2 =
∫ R

R/2

n(R/2)
t

dt

≤
∫ R

R/2

n(t)
t

dt

≤max
|z|=R

log| f (z)| . (3.31)
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• Since f is of exponential type 1, it implies that | f (z)| ≤ Ae|z|. Therefore,

max
|z|=R

log| f (z)| ≤CR , (3.32)

where C is a positive constant.

• Equations (3.29), (3.31), and (3.32) imply that

c(R/2)2log2≤ n(R/2)log2
≤max
|z|=R

log| f (z)|

≤CR . (3.33)

Taking R sufficiently large, we reach a contradiction.

3.2 Basis functions
Here, we investigate two favorable Basis functions, box splines and Kaise-Bessel window
functions in order to discretize the projection operator. We first discuss box-splines, par-
ticularly B-spline functions which satisfy all the desirable properties of basis functions
for tomographic application except the isotropy one. Note that high degree B-splines are
approximately isotropic. We show that the space of these functions are close under the
x-ray transform and we derive the analytical formula for their x-ray projection. We then
present Kaiser-Bessel window functions which are compactly supported and isotropic. As
implied by Theorem 3.3, these functions do not satisfy the partition of unity condition.
Subsequently, we propose an optimal parameter selection based on approximation theory
to have minimal deviation from the partition of unity condition.

The main interest of basis functions is to provide an effective and consistent way to
discretize the forward model of a computed-tomography reconstruction problem. The
basis for such an approach is to characterize one image by its coefficients c = (ck)k∈Ω

where Ω denotes the domain of the image and to apply (3.4) to obtain the simulated line-
integral measurements (x-ray transform). The image reconstruction is then formulated as
a regularized least-square optimization problem that is solved iteratively. Specifically, the
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reconstructed image is determined as

c? = argmin
c

{
‖g−Hc‖2 +λR(c)

}
, (3.34)

where g is the input measurement vector and H the matrix-representation of the forward
model. The quantity R(c) is a regularization functional (e.g., the energy of the gradient
of the image or its total variation) that penalizes non-desirable solutions; it is a way of
introducing prior information on the solution to make the problem well-posed. The scalar
parameter λ ≥ 0 is a tradeoff factor that balances the fitting accuracy versus the amount of
regularization.

The success of such a reconstruction algorithm depends on two factors: 1) the quality
and accuracy of the forward model, and 2) the constraints that are imposed by the regu-
larization. The latter is very much application-dependent and becomes especially relevant
when the reconstruction problem is ill-posed (e.g., limited angle tomography). Since the
appropriate choice of the regularization is a whole field of investigation in itself, we focus
here on the assessment of the quality of the forward model.

To that end, we consider a well-conditioned scenario where the measurement noise
is negligible and the number of projection angles is sufficient to reconstruct the image
by numerical inversion of the forward model. Our series of experiments is set-up such
that the number of degrees of freedom of the image model (square grid of size M×M)
matches the number of measurements (M properly-sampled projections in an equiangular
configuration). The reconstruction is performed by solving (3.34) with λ = 0 iteratively
(least-squares solution) using the conjugate Gradient (CG) method. In the next sections,
we investigate box splines and Kaiser-Bessel window functions, separately. We evaluate
the performance of each one using the proposed scheme independently. We then conclude
and discuss about their advantages and disadvantages.

3.3 Box splines
Box splines are smooth piecewise polynomial functions defined in Rd that are (non-separable)
generalization of univariate B-splines to the multivariate setting. The definitive reference
on the subject is the monograph by de Boor and Hölig [43], which is rather mathematically-
oriented. Here, we briefly summarize the results of box spline theory that are pertinent to
the derivations in this section. In particular, we emphasize the convolutional interpretation
of these functions and their intimate connection with directional derivative operators.
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3.3.1 Basic geometric definition
Geometrically, a box spline is the shadow (i.e., x-ray image) of a hypercube, in RN , when
projected to a lower-dimensional space, Rd (N ≥ d). A box spline is defined for a set of
N vectors ξ1,ξ2, . . . ,ξN in Rd . Each of these vectors is the shadow of an edge of the N-
hypercube adjacent to its origin. The matrix of directions Ξ = [ξ1 ξ2 . . . ξN ] completely
specifies the box spline in Rd . Note that the vectors in this (multi-) set need not be distinct
as they can appear with some multiplicity. When N = d, the box spline is simply the
(normalized) indicator function of the parallelepiped formed by d vectors in Rd :

MΞ(x) =

{
1

|detΞ| x = ∑
d
n=1 tnξn for some 0≤ tn ≤ 1

0 otherwise
.

For N > d, box splines are defined recursively by a “directional” convolution which makes
them particularly suitable for the Radon transform:

MΞ∪ξ(x) =
∫ 1

0
MΞ(x− tξ)dt. (3.35)

When the lower dimensional space is R (i.e., d = 1), the box splines coincide with uni-
variate B-splines (basic splines). When the distinct column vectors of Ξ are orthogonal to
each other, box splines amount to tensor-product B-splines.

The shifts of MΞ on Zd form the spline space

SMΞ
= span(MΞ(·−k))k∈Zd . (3.36)

If κ is the minimal number of directions whose removal from Ξ makes the remaining
directions not span Rd , then all polynomials up to degree (κ−1) are contained in SMΞ

[43];
also, the approximation order of SMΞ

is κ . Furthermore, the continuity of the box spline is
at least

MΞ ∈Cκ−2(Rd). (3.37)

3.3.2 Elementary box spline constituents
Another way of constructing box splines, which is probably more transparent to engineers,
is by repeated convolution of elementary line-segment-like distributions. Specifically, we
have

MΞ(x) = (Mξ1 ∗ · · · ∗MξN )(x) (3.38)
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where the elementary box splines, Mξn , are Dirac-like line distributions supported over
x = tξn with t ∈ [0,1] with a unit integral. These elementary box splines are in direct
geometric correspondence (via a rotation and a proper scaling) with the primary box spline

M~e1(x) = box(x1)δ (x2, · · · ,xd)

where δ (x2, · · · ,xd) is the (d−1)-dimensional Dirac distribution and

box(x) =

{
1 0≤ x≤ 1
0 otherwise

.

Moreover, they integrate to 1 which is a property that is shared by all box splines (and also
preserved through convolution).

Based on (3.38), one directly infers that the box splines are positive, compactly-supported
functions. Their support is a zonotope, which is the Minkowski sum of N vectors in Ξ.
The center of the support of MΞ(x) is given by cΞ = 1

2 ∑
N
n=1 ξn. The Fourier transform of

the box spline is therefore given by:

M̂Ξ(ω) =
N

∏
n=1

1− exp(−j〈ξn,ω〉)
j〈ξn,ω〉

= exp(−j〈cΞ,ω〉)
N

∏
n=1

sinc
( 〈ξn,ω〉

2π

)
,

(3.39)

where ω = (ω1, . . . ,ωd) is the multivariate frequency vector. Alternatively, a centered box
spline, denoted by Mc

Ξ which is shifted to the origin has the simple Fourier transform

M̂c
Ξ(ω) =

N

∏
n=1

sinc
( 〈ξn,ω〉

2π

)
. (3.40)

3.3.3 x-ray projection of box splines
We now turn to our main objective, which is the derivation of an explicit formula for
Pθ{MΞ}(y) where MΞ is a given box spline generator specified by N direction vectors
ξn ∈ Ξ. In the following discussion, ν = (ν1, . . . ,νd−1) denotes the (d− 1)-variate fre-
quency vector corresponding to the projection-domain spatial coordinate vector y ∈ Rd−1,
while the projection geometry is the specified in Section 2.1.
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Theorem 3.5 (Sinogram-domain Parameterization). The x-ray transform of a d-variate
box spline specified by the direction set, Ξ, is a (d−1)-variate box spline whose direction
set, Z = [ζ1 ζ2 . . . ζN ], is the geometric projection of the former. Specifically,

Pθ{MΞ}(y) = MP
θ⊥Ξ(y).

where Pθ⊥ is the transformation matrix that geometrically projects the canonical system
onto the coordinate system perpendicular to θ.

Proof. We start with the derivation of the x-ray transform of the elementary (Dirac-type)
box spline Mξ whose distributional Fourier transform is

M̂ξ(ω) =
1− exp(〈ξ,ω〉)

j〈ξ,ω〉 .

We can proceed geometrically by determining the “shadow” of the direction vector ξ since
the latter specifies the support of the elementary box spline as a line segment in Rd . The
alternative is to apply the central slice theorem which states that the Fourier transform
of Pθϕ(y) corresponds to the restriction of ϕ̂(ω) to the hyperplane perpendicular to θ.
Specifically, we have that

P̂θMξ(ν) = M̂ξ(ω)
∣∣
ω=PT

θ⊥ν
= M̂P

θ⊥ξ
(ν).

Since
〈
ξ,PT

θ⊥ν

〉
= 〈Pθ⊥ξ,ν〉, we can define the projected directions by ζ = Pθ⊥ξ. This

allows us to deduce that

Pθ{Mξ}(y) = MP
θ⊥ξ

(y) = Mζ (y). (3.41)

This proves the theorem for N = 1. By defining

Z = [Pθ⊥ξ1 · · ·Pθ⊥ξN ] = Pθ⊥Ξ, (3.42)

we are then able to transfer the result to the general case using convolution properties of
X-ray transform and (3.38).

The theorem is illustrated in Figure 3.2. The box spline on the right is a trivari-
ate tensor-product B-spline (first order) whose direction vectors are (1,0,0), (0,1,0) and
(0,0,1). When projected to the plane orthogonal to θ, it yields a bivariate, three-direction,
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ξ1

ξ2

ξ3

ξ4

y

ζ1 ζ2
ζ3ζ4

θ

θ

Z = [cos(θ), sin(θ), cos(θ) + sin(θ), cos(θ)− sin(θ)]

(a) (b)

Figure 3.2: The x-ray transform of a box spline is a box spline whose directions
are projections of the directions of the original box spline onto the projected plane.
On the right: a trivariate box spline (a tensor-product B-spline) projected to 2-D.

box spline that is a hat function with hexagonal support. Likewise, the x-ray transform of
the trilinear B-spline (second order) is again a three-direction box spline, but with multi-
plicity of 2. The concept carries over to higher-order tensor-product B-splines which are
transformed into three-direction box splines with repeated directions, the main point being
that these can be evaluated efficiently.

Corollary 3.1 (Image-domain Parameterization). The x-ray transform of an s-variate box
spline specified by the direction set, Ξ, along a direction θ is an (s−1)-variate box spline.
The directions of the latter (s−1)-variate box spline are obtained by geometric projection
of the directions ξ ∈Ξ into the (hyper) plane orthogonal to the projection direction θ :

ζ = ξ−〈ξ,θ〉θ . (3.43)

Corollary 3.2 (The Radon Transform of Box Splines). The Radon transform of an s-
variate box spline specified by the direction set, Ξ, along a direction θ is a univariate box
spline (i.e., a B-spline along θ ). The directions (i.e., knots) of the latter univariate box
spline are obtained by geometric projection of the directions ξ ∈ Ξ onto the projection
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11 2

Figure 3.3: The natural multiscale relationship for box splines by projection.

direction θ :
ζ = 〈ξ,θ〉θ . (3.44)

Since any box spline is (geometrically) constructed by the shadow (x-ray) transform
of a hypercube, these results establish that the space of box splines are closed under x-ray
transform. These results suggest that box splines are suitable basis functions for problems
involving tomographic reconstruction.

Another feature of box splines that is particularly useful in the context of tomography is
their multi-scale property. Since box splines are obtained by projecting a hypercube down
to a lower-dimensional space, the subdivision of the hypercube leads to a natural formula
for a box spline that is written as a sum of scaled versions of itself where the scaled versions
are projections of subdivided hypercubes, see Figure 3.3.

M[1 1](x) = M[1 1](2x−1)+2M[1 1](2x)+M[1 1](2x+1).

Since this is based on the subdivision of the N-hypercube, this multiscale relationship
exists in any dimension, d, and can be used to develop non-separable wavelets that use box
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splines as the scaling functions [62, 63].

3.3.4 Explicit formulae in 2-D
For d = 2, we now show that the x-ray transforms of box splines are polynomial splines
of degree (N− 1). The geometric configuration is the one shown in Figure 3.4 with the
projection matrix given by Pθ⊥ = [cosθ sinθ ]. The application of Theorem 3.5 together
with the convolution formula (3.38) yields

PθMΞ(y) =
(
Mζ1
∗Mζ2

∗ · · · ∗MζN

)
(y) (3.45)

with ζn = Pθ⊥ξn = [ξn]1 cosθ +[ξn]2 sinθ , and

Mζn(y) =
1
ζn

box
(

y
ζn

)
,

which is a rectangular box of width ζn when ζn 6= 0. Note that the convolution factors
with ζn = 0 may be eliminated from (3.45) since M0(y) = δ (y). To evaluate the above
convolution product, we write Mζn(y) as

Mζn(y) = ∆ζnu(y) (3.46)

where ∆h f (y) = f (y)− f (y−h)
h is the finite-difference operator with step h, and where u is the

unit-step (or Heaviside) function. By substituting (3.46) in (3.45), we find that

PθMΞ(y) = (∆ζ1
u∗ · · · ∗∆ζN u)(y)

=
∆ζ1
· · ·∆ζN yN−1

+

(N−1)!
(3.47)

where we have used the fact that the (n− 1)-fold convolution of a step function is yn
+

n!
with yn

+ = max(y,0)n. Finally, we may expand the finite-difference operators which yield
a linear expansion of PθMΞ(y) in terms of some shifted versions of yN−1

+ . The result
therefore implies that PθMΞ(y) is a non-uniform polynomial spline of degree (N−1), or
less if some ζn vanishes. We can also infer that this box spline function is bell-shaped and
that its support is ∑

N
n=1 ζn.

A case of special interest is when the 2-D basis function (or generator) is the tensor-
product B-spline of degree n within ϕ(x) = β n(x1)β

n(x2) [64]. In the present formalism,
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this corresponds to a box spline with direction vectors ξ1 = (1,0) and ξ2 = (0,1), each
having a multiplicity (n+ 1) so that N = 2n+ 2. The specialization of (3.47) for these
particular values yields an explicit formula for the Radon transform of a separable B-spline
of degree n:

Pθ{β n(x1)β
n(x2)}(y) =

∆
n+1
cosθ

∆
n+1
sinθ

y2n+1
+

(2n+1)!
(3.48)

which corresponds to the spline bikernel identified by Horbelt et al. in [65]. A MATLAB
routine for computing the centered versions of these functions is provided in Appendix B.

The general result (3.47), which is valid for any 2-D box spline, is new to the best
of our knowledge. For instance, the Zwart-Powell element [66] is represented by the box
spline directions:

Ξ =

[
1 0 1 −1
0 1 1 1

]
. (3.49)

According to Theorem 3.5, its projection along the angle θ provides the univariate box
spline that is specified by the directions:

Z =
[

cosθ sinθ cosθ + sinθ cosθ − sinθ
]
.

This integration process is illustrated in Figure 3.4. By applying (3.47), we find that the
Radon transform of the Zwart-Powell box spline has the explicit closed-form representa-
tion:

Pθ{MΞ}(y) =
∆cosθ ∆sinθ ∆cosθ+sinθ ∆cosθ−sinθ y3

+

3!
. (3.50)

3.4 Optimized Kaiser-Bessel window function
We showed that isotropy is incompatible with the partition of unity condition for compactly
support functions. Here, we investigate to which extent the problem can be deviated by
adjusting the parameters of KBWF. The generalized family of KBWFs is isotropic, which
makes it advantageous for the representation of the imaging operator. Our goal here is
to review briefly this family and then to determine the optimal set of parameters to best
attempt to recover an approximation of the partition-of-unity condition.
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ξ1

ξ2

y

ζ1 ζ2

Z = [cos(θ), sin(θ)]

(a) (b)

Figure 3.4: The (non-separable) Zwart-Powell element which is a box spline
associated with the directions in (3.49). The Radon transform of the Zwart-Powell
box spline can be derived, exactly, using our approach.

3.4.1 Generalized Kaiser-Bessel window functions
The generalized KBWF, defined as

ϕ(x) =





(√
1−(‖x‖/a)2

)m
Im
(

α

√
1−(‖x‖/a)2

)

Im(α) 0≤ ‖x‖ ≤ a

0 otherwise ,
(3.51)

is specified by three parameters: 1) the order m of the modified Bessel function Im; 2) the
window taper α; 3) the support radius a of the function. The parameter m allows us to
control the smoothness of the function and the parameter α determines its shape. This
function is isotropic, which makes the computation of the imaging operator significantly
faster. However, it is worth noting that this function does not satisfy the partition of unity
(see Theorem 3.2).

3.4.2 Measure of optimality of a basis function
If a basis function satisfies the partition-of-unity condition, then, as the sampling step van-
ishes, the error of approximation tends to zero. For those bases that do not satisfy the
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partition of unity, we define the residual error

Aϕ = sup
f∈L2

‖ f‖−1
L2

lim
T→0

ε f (T ) (3.52)

for f ∈ L2(Rd), which shows the deviation from the partition of unity. A basis function
ϕ with lower residual error is more desirable as generating function for the reconstruction
space.

Theorem 3.6. The residual error of a function ϕ ∈ L2(Rd) is the quantity

Aϕ =
∑n6=0|ϕ̂(2πn)|2
|ϕ̂(0)|2 . (3.53)

Proof. Let f ∈ L2(Rd). From (3.12), we have a formula for ε f in terms of Eϕ as defined
in (3.13). We represent Eϕ using its Taylor series

Eϕ(Tω) =
N

∑
|n|=0

∂ nEϕ(0)

n!
(Tω)n +o(‖ω‖N+1) , (3.54)

where n=(n1,n2, ...,nd) with nonnegative integer values, |n|=∑
d
i=1 ni,ω=(ω1,ω2, ...,ωd),

n! = n1!n2!...nd!, ωn = ω
n1
1 ω

n2
2 ...ω

nd
d , and

∂
nEϕ(0) =

∂ n1

ω1

∂ n2

ω2
· · · ∂

nd

ωd
Eϕ(0) . (3.55)

Therefore, we can rewrite the approximation error ε f as

ε f (T ) = ‖ f −PT{ f}‖L2

=

(∫

Rd

(
N

∑
|n|=0

∂ nEϕ(0)

n!
(Tω)n

)
| f̂ (ω)|2 dω

2π

)1/2

+ ε , (3.56)

where ε = o(‖ω‖N+1)+ εcorr. Then, Fubini’s theorem implies that

ε f (T ) =

(
N

∑
|n|=0

∂ nEϕ(0)

n!
T |n|

∫

Rd
ω

n| f̂ (ω)|2 dω
2π

)1/2

+ ε

=

(
N

∑
|n|=0

∂ nEϕ(0)

n!
T |n|

∥∥∥ f (n/2)
∥∥∥

2

L2

)1/2

+ ε , (3.57)



42 Discretization Scheme

where

f (n) =
∂ n1

∂x1

∂ n2

∂x2
· · · ∂

nd

∂xd
f . (3.58)

We now have that
lim
T→0

ε f (T ) = Eϕ(0)
1/2 ‖ f‖L2

. (3.59)

Therefore,

sup
f∈L2

‖ f‖−2
L2

(
lim
T→0

ε f (T )
)2

= sup
f∈L2

Eϕ(0)

=
∑n6=0|ϕ̂(2πn)|2
|ϕ̂(0)|2 . (3.60)

3.4.3 Optimal parameters for the Kaiser-Bessel window function
There are three parameters that describe KBWFs. The radius parameter a determines its
support. We set it to a = 2; this allows us to compare the optimal KBWF with the cubic
B-spline. The order of the modified Bessel function is set to m = 2.

In the context of 3-D imaging, Matej and Lewitt [45] empirically tune the window
taper parameter α to improve the quality of reconstructed constant images. In contrast,
we base our analysis on approximation-theoretic properties and determine α to minimize
the residual error Aϕ . Interestingly, this leads to a condition similar to the complicated
criterion of [45]. But we go one step farther and provide a simplified equivalent condition
in (3.53). The measure for different values α is depicted in Fig. 3.5(b). This plot indicates
that values of α in the range [6,11.2] are good choices for reconstruction, with two local
optima of α = 7.05,10.45 of comparable magnitude. The latter value is very close to 10.4,
which is the value proposed in [45].

There are modalities where the reconstruction problem is separable into a set of inde-
pendent 2-D problems: x-ray parallel-beam tomography, transmission electron microscopy
with single-axis tilting, two-dimensional positron emission tomography systems with septa,
and single-photon emission computed tomography with parallel or fan-beam collimators.
Then, it is worthwhile to consider the problem in dimension two. We illustrate in Fig. 3.5(a)
the residual error with respect to the parameter α in a two-dimensional space. Again, it
appears that values of α in the range [7,11.5] are good choices for 2-D reconstruction, with
α = 7.91,10.83 being the two best choices.
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Figure 3.5: Optimality measure with respect to different values of α in the 2-D
(a) and 3-D (b) domains.

3.5 Numerical evaluation
In this section, we first compare different members of the family of Box-splines family with
each other and with the MATLAB radon implementation. Then, We separately investigate
the performance of Kaiser-Bessel window functions with different α parameters. The
experimental results validate that the Kaiser-Bessel window function with the proposed
parameter has the best performance. We then compare the cubic B-spline function with the
Kaiser-Bessel window function with optimal parameter. Finally, we discuss and conclude
when one should use which family.

3.5.1 Box splines and Kaiser-Bessel window functions
We study the accuracy of the family of separable B-spline models as well as the non-
separable Zwart-Powell box spline and compare our method with the traditional implemen-
tation of the x-ray transform. We concentrate on the piecewise linear and cubic B-spline
solutions with n = 1,3 in (3.48), respectively.

Our reference algorithm is the function radon in Matlab, which proceeds in a hierar-
chical fashion. It first subdivides each pixel into four sub-pixels of equal intensity and then
projects each of the subcomponents using a triangular profile function (splatting). This
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Figure 3.6: Comparison of different methods with respect to processing time.

implies that the Matlab function is at least 4 times more demanding than the first-order
version (linear B-spline) of our method.

Algorithm Speed

The present family of forward models (B-spline Radon transform) was coded in C and
linked to Matlab as a mex file. The adjoint operator is implemented similar to the forward
model by changing the direction of the flow graph. The Radon transform of the B-splines
were precomputed once and stored in a 2-D lookup table for best efficiency. To measure
the speed, we computed the Radon transforms of a series of images of increasing size M.
The expected computational cost is O(M3) with a proportionality factor that depends on
the choice of algorithm and the size of the underlying basis function. The results are docu-
mented in Figure 3.6 and are consistent with the prediction. The Matlab implementation is
the slowest, while the cubic B-spline version of our algorithm is approximatively 8 times
more costly than the piecewise-linear version. The Zwart-Powell box spline is notably
faster than cubic B-spline and is very close to the performance of linear B-splines.
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Consistency of the Forward Model

In order to examine the ability of the proposed discretization method to capture sharp
image details, we considered an analytical phantom whose Radon transform is known an-
alytically.

Proposition 3.1. The Radon transform of the function

f (x) =

{
‖x‖2 ‖x‖< a
0 otherwise,

(3.61)

where a ∈ R+, is

Rθ{ f}(y) =
{

2
3

√
a2− y2(a2 +2y2) |y|< a

0 otherwise.
(3.62)

This can be readily verified by evaluating the integral

Rθ{ f}(y) = 2×
∫ √a2−y2

0
(x2 + y2)dx.

Using the linearity and the projected shift-invariance property of the x-ray transform, we
use this result to determine the Radon transform of the object

I(x) = ∑
k

αk f (x−xk) ,

where αk ∈ R and xk ∈ R2 are some prescribed parameters. For our experiments, we
considered the analytical phantom shown in Figure 3.7. Starting from a 1024×1024 rep-
resentation, we calculated its Radon transform along 1024 directions with the help of the
different algorithms and compared the output with the analytical one. Examples of pro-
jections are shown in Figure 3.8. The higher-order versions of our spline models produce
the sinograms that are the most faithful to the analytical ones. The Matlab results in 3.8(c)
are not quite as favorable as the cubic B-spline 3.8(e) and Zwart-Powell box spline 3.8(d),
although they oscillate less than the linear spline version 3.8(b). This ranking is confirmed
by the global signal-to-noise ratio (SNR) presented in Table 3.1.
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(a) (b)

Figure 3.7: (a) The analytical phantom includes 30 circles with different
quadratic intensity distributions. (b) Lung image used for the evaluation of for-
ward model and reconstruction. These datasets at the resolution of (1024×1024)
serve as the ground truth for our experiments.
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Figure 3.8: Radon transform of the phantom along θ = π

4 . Both the Zwart-Powell
box spline and the cubic B-spline outperform Matlab’s Radon operator.
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Table 3.1: Comparison of different discrete models of X-ray Transform.
Method MATLAB Degree1 Zwart-Powell Degree3

SNR(dB) 43.85 39.88 44.65 52.75

Reconstruction error as a function of grid size

In a well-conditioned scenario with a sufficient number of measurements, we can expect
the quality of the reconstruction to be depend on the grid size (the degrees of freedom of
the reconstruction model). Yet, we also know from approximation theory that not all basis
functions are equally good at representing arbitrary signals at a fixed resolution. From a
sampling point of view, B-splines are optimal in the sense that they have the maximal order
of approximation for a given support.

To investigate the dependence upon the sampling rate, we conducted a series of exper-
iments using the framework described in Section 3.2 where the grid size is progressively
reduced. The reference object and signal-to-noise computations are defined with respect to
the fine grid (e.g., 1024× 1024). The coarse grid measurements are obtained by suitable
angular and spatial resampling of the fine-grid Radon transform of the object. An ideal
lowpass filter is applied in the spatial domain prior to downsampling to avoid aliasing. The
object is reconstructed on the coarse grid using the different flavors of the forward model.
The reconstruction is calculated iteratively and corresponds to the least squares solution.
Finally, the result is interpolated back to the finer grid (resampling of the spline model)
for quality assessment. For the Matlab version, we used a linear interpolation which was
found to give better results than a cubic interpolation (for upsampling).

Analytical phantom for analysis of accuracy

In the case of the phantom in Figure 3.7(a), we used the analytical calculation of the Radon
transform as initial fine-grid measurements. We then performed the various signal recon-
structions for M = 1024, 512, 256, and 128 using the corresponding down-sampled ver-
sions of the input data. The evolution of the signal-to-noise ratio as a function of the down-
sampling factor is shown in Figure 3.9. Figure 3.10 compares the reconstruction results for
a central region of the phantom that is reconstructed from 256 projections (down-sampling
by (4,4)). The specific region of the phantom is depicted in Figure 3.10. Note that the
best results are obtained with the cubic B-spline (3.10(e)) and Zwart-Powell box spline
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Figure 3.9: Evolution of the signal-to-noise ratio for the least-squares reconstruc-
tion of the analytical phantom as both the grid size and the number of measure-
ments are reduced.

(3.10(d)) models. In particular, we can distinguish some of the fainter circles (e.g., at the
bottom left) that are barely visible in the other reconstructions. The differences between
the Matlab model and the linear B-spline reconstruction are less significant, although there
may be a slight preference towards the former because of its smoother appearance.

Biomedical data

Next, we considered the cross section of the Lung image shown in Figure 3.7(b) as repre-
sentative example of a medical image. Its Radon transform was calculated using the dif-
ferent forward models and the results averaged to specify a fine-scale set of measurements
that is not biased towards one of the methods. We then performed the same experiments as
in the previous case. The corresponding evolution of the SNR is shown in Figure 3.11. Fig-
ure 3.12 presents a region of interest that was reconstructed from 256 projections. The con-
clusion that can be drawn are essentially the same as in the previous experiment; namely,
that the cubic B-spline (3.12(e)) and Zwart-Powell box spline (3.12(d)) basis functions
outperform the others. This is significant specially when considering the computational
performance offered by these two algorithms.
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Figure 3.10: Reconstructed phantom from 256 projections using different dis-
crete forward models. Both Zwart-Powell box spline and cubic B-spline outper-
form the Matlab’s reconstruction. Besides having smaller artifacts in the recon-
struction, the faint circle in the bottom left is better reconstructed in (d) and (e).

In addition, we did also reconstruct images using the quintic B-spline version of the
method which is computationally more expensive, but did not observe any significant im-
provement over the cubic spline reconstruction which appears to offer an excellent trade-
off in terms of cost/quality. We believe that the present cubic B-spline and Zwart-Powell
box spline versions of the Radon transform are to be preferred over the standard Matlab
implementation because they consistently yield better quality results while being compu-
tationally quite competitive.

We also performed experiments with real biomedical data (i.e., Human bicuspid calcific
heart valve derived nodule) acquired from a CT scanner. The computational advantages of
our spline model as well as improvements in the accuracy of reconstruction, afforded by
higher order basis functions, were similar to the Lung data experiments reported in Fig-
ure 3.12. Moreover, we have performed an experiment to reconstruct edges of a test image
to evaluate the impact of higher order basis functions on the sharpness of reconstruction.
This experiment illustrates, numerically, that the higher order basis functions do provide a
more accurate reconstruction for preserving the edges.
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Figure 3.11: Evolution of the signal-to-noise ratio for the least-squares recon-
struction of the lung as both the grid size and the number of measurements are
reduced.

3.5.2 Optimality of the proposed taper parameter for KBWFs
We now present experiments where we numerically evaluate the discretization scheme
based on KBWFs, with the parameters suggested in the Section 3.4.

Influence of the discretization step

It is clear that the optimal reconstruction in the least-square sense is the orthogonal projec-
tion of the sample on the reconstruction space, independently of the chosen algorithm. To
investigate the dependence upon the grid size, we compute the optimal reconstruction with
respect to different grid sizes when the generating function of the reconstruction space
is a KWBF with different parameters. The reference object and signal-to-noise (SNR)
computations are defined with respect to the fine grid. The SNR is defined as the relative
mean-square with respect to the reference (oracle). The grid size is progressively increased,
which shows the dependence upon the sampling rate.

We choose two medical samples: a coronal section of a human lung and a coronal
section of a rat brain. Also, a region of interest has been chosen as shown in Figs. 3.13(a)
and 3.13(b). We first tested the KBWF with α = 2, which is well outside of the optimal
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Figure 3.12: Central region of the reconstructed lung (a) from 256 projections
using different discrete forward models. The linear B-spline (b) is comparable
to the Matlab’s approach , while both Zwart-Powell box spline (d) and Cubic B-
spline (e) provide the most accurate reconstructions. The difference in the recon-
structions are mostly visible in areas close to edges as well as the white structures
within the gray areas.
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interval [7,11.5], and the results were very poor (SNR= 4 dB). We then compared the
performance for the value α = 5 and α = 7.91. The former is close to, but outside of the
optimal interval, while the latter is the first of our proposed choices. Their performances
are depicted in Figs. 3.13(c) and 3.13(d). It confirms that using KBWFs with the proposed
parameter has better optimal reconstruction compared to α = 5 for different grid sizes. This
experiment shows that the “optimal choice” based on the asymptotical behavior (see (3.52))
is also always better for different grid sizes.

Reconstruction of an analytical phantom

As data, we use the two-dimensional synthetic phantom presented in [36] and shown in
Fig. 3.14. (a). The analytical formula for computing imaging transforms of the phantom is
given in [36, Section 4.4].

Conventional tomography

The first experiment is as follows: The size of the phantom for this experiment is (2,048×
2,048) pixels. The sinogram of the phantom is computed analytically with 1,800 viewing
angles that are chosen uniformly between 0 and π; we consider it as the measurements.
We use the framework suggested in Section 3.2.

The object is reconstructed on a grid that is (4×4) times coarser than the discretization
grid. Then, the basis function helps us to resample the object on a finer grid. We use the
conjugate-gradient algorithm for the minimization. As the number of directions is on the
order of the size of the object, we do not use any regularization. The signal-to-noise ratio
(SNR) of the reconstructions and the projection versus different values of the window
taper of KBWFs are shown in Fig. 3.14(c) and 3.14(d). The best performance is obtained
by using a KBWF with α = 7.75, which is very close to the first minimum of our criterion
function in Fig. 3.5. However, values of α in the range [7,11.5] do also perform reasonably
well, which is consistent with the theoretical analysis of Section 3.4.3.

Differential phase-contrast tomography

We evaluate the performance of KBWFs with the proposed parameters in x-ray differential
phase-contrast tomography. The mathematical model of this imaging modality is based on
the derivative of the Radon transform.
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Figure 3.13: (a) Coronal section of a human lung and region of interest. (b)
Coronal section of a rat brain and region of interest. The performance of the
optimal solution with respect to the grid size is depicted in (c) and (d).

The differentiated sinogram of the phantom with size (512×512) pixels is again com-
puted analytically with 1,800 viewing angles that are chosen uniformly between 0 and π;
we consider it as the measurements. As there is a large number of views for the reconstruc-
tion, we minimize the least-squares error for the reconstruction. This is done for different
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Figure 3.14: 2-D analytical phantom with isotropic elements (a). Zoomed version
of the proposed measure (b). The accuracy of the reconstruction of the analyti-
cal phantom versus the window taper parameter of KBWFs is shown in (c). Its
Radon- transform error in the same coarse grid is depicted in (d).

discretizations of the forward model using KBWFs with different taper parameters. There-
fore, the quality of the reconstructed image depends on how well the discretization scheme
represents the imaging operator, as shown in Fig. 3.15(a). We also compute the SNR in
the transform domain (Fig. 3.15(b)). The results validate the importance of using KBWFs
with optimized parameters in order to improve the reconstruction performance. We also
repeated those experiments with measurements corrupted by additive Gaussian noise with
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different noise levels (10 dB, 20 dB, 30 dB). The results suggest that using KBWF with the
proposed parameters results in better performance. The SNR of the reconstructions was
improve by close to 3 dB with respect to α = 5.
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Figure 3.15: Performance of the reconstruction (a) and projection (b) using KB-
WFs for differential phase-contrast tomography versus the window taper param-
eter.

3.5.3 B-splines vs Kaiser-Bessel

KBWFs with the optimal parameter converge to cubic B-spline

We first compute the mean square error of the tensor product of two cubic B-splines (see
Figure 3.16 (a)) with the Kaiser-Bessel window functions of the same support with re-
spect to different window taper parameters α as shown in Figure 3.16 (c). Interestingly,
Kaiser-Bessel window functions with the optimal window taper parameter are the closset
one to the cubic B-spline based on the mean square error. It shows that the KBWF with
optimal parameter resembles to cubic B-spline function. Kaiser-Bessel window function
with optimal parameter and its difference with cubic B-spline are depicted in Figures 3.16
(b) and 3.16 (d), respectively. On the other hand, it suggests that the tensor product of two
cubic B-spline functions is approximately isotropic.
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Figure 3.16: (a) Tensor product of two cubic B-splines. (b) Kaiser-Bessel win-
dow function with the proposed α = 8. Mean-square error between the tensor
product of two cubic B-splines and Kaiser-Bessel window functions versus dif-
ferent α values. (d) Difference of functions in (a) and (b).
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Table 3.2: Comparison of the projection and reconstruction accuracy using cubic
B-splines and KBWFs with the parameters proposed in [57].

SNR (dB) KBWF a = 2, m = 2, Cubic B-spline
α = 2 α = 10.4 α = 7.95

Projection 23.59 27.15 29.19 29.26
Reconstruction 37.31 43.42 48.59 48.54

performance comparison

For the reconstruction of x-ray differential phase-contrast tomograms, it was shown in [36]
that the use of cubic B-splines results in better performance than using KBWFs with the
parameters chosen as in [45]. Here, we compare the performance of three basis functions
for the phantom with size (2,048× 2,048) pixels. The projection operator is computed
using KBWFs with the parameter proposed in [44] (α = 10.4) and with the parameter
suggested in Fig. 3.15 (α = 7.95); furthermore, we also perform the comparison with cubic
B-splines. The computed SNR shown in Table 3.2 suggests that the proposed parameter
provides a significantly better performance in computing the projection operator.

We conclude that a KBWF with the proposed parameters improves the performance of
the discretization scheme in comparison with [44, 45]. In addition, its performance is as
good as that of cubic B-splines in terms of quality, while its isotropy allows for a drastic
reduction in its computational costs.

3.6 Discussion and Conclusion

We investigated two favorable generating function families, box splines (in particular B-
splines), and Kaiser-Bessel windows. For a fixed support, B-spline functions have a better
order of approximation than Kaiser-Bessel window functions (KBWFs). We showed that,
by adjusting the taper parameter of KBWF using the proposed approximation-theoretic
framework, these functions perform almost as well as B-splines. In two-dimensional to-
mography or three-dimensional tomography with fixed rotation axis, B-splines are prefer-
able owing to their order of approximation. In addition, the separability of the tensor prod-
uct of cubic B-spline functions allows one to decompose the different three-dimensional
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reconstruction in parallel-beam geometry with fixed rotation axis into some easier two-
dimensional and one-dimensional subproblems. It results in the development memory-
efficient reconstruction framework. In the three-dimensional problem with random orien-
tations, the implementation of the x-ray transform using B-splines is too complicated and
it is therefore more practical to use KBWFs.



Chapter 4

Reconstruction Algorithms

1 We have already presented a direct method for objet reconstruction in the context of
straight-ray imaging by inverting (2.31), namely the generalized filtered back-projection
(GFBP) described in Algorithm 1. To apply the Radon adjoint in step 2 of this algorithm,
we use the method proposed in Section 3.1. However, for large images with a limited
number of measurements, direct methods such as FBP are not accurate enough. In order to
improve the reconstruction quality, one requires to model the imaging process precisely and
to formulate the problem as an inverse problem. This leads to the application of iterative
reconstruction schemes; This is a hot topic for all clinical CT for the past few years, owing
to the large computational capacities of normal work stations besides the ongoing efforts
towards lower dose in CT.

We have chosen to categorize iterative techniques into three types: 1) iterative meth-
ods that are purely algebraical without any statistical modeling, 2) statistical methods that
model the photon-counting statistics, and 3) model-based methods that go beyond statisti-
cal modeling (we refer the reader to a nice review paper [68] for more information). The
first step in most of these methods is to formulate the reconstruction as an optimization
problem and then to develop a proper iterative algorithm to minimize the given cost func-
tion in order to reconstruct the object of interest.

Model-based methods have been widely used in the context of absorption-based com-
puted tomography [68], including iterative coordinate descent (ICD) methods [3], block-

1A part of this chapter has been presented in [36] and [67]

59
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based coordinate descent [4], ordered-subset algorithms based on separable quadratic sur-
rogates [5], preconditioned nonlinear conjugate-gradient methods [6] and alternating-direction
method of multipliers (ADMM) [7]. These methods have been also recently developed for
different types of phase-contrast tomography [33–35, 67, 69].

We develop a unified approach to the reconstruction problem in straight-ray imaging
modalities. The reconstruction problem is formulated as a penalized likelihood estimator
in Section 4.1. The estimator takes the form of the minimization of penalized weighted
least squares. We develop an iterative reconstruction scheme to solve the minimization
problem based on alternating direction method of multipliers using two variable-splitting
scenarios in Subsection 4.2.1. This yields a fast (practically reasonable) reconstruction
scheme. The first variable splitting is a classical approach similar to the one proposed
in [7]. We then present a novel variable splitting that improves the reconstruction quality
as its last step is a denoising operator. A problem-specific preconditioner is proposed that
speeds-up the convergence of the linear optimization step considerably. In Subsection 4.3,
we modify the proposed reconstruction scheme to promote memory efficiency in parallel-
beam three-dimensional reconstruction with fixed rotation axis. We then generalize the
proposed ADMM scheme for a general noise model, fan-beam or cone-beam geometry,
and limited field of view in Subsection 4.2.2.

4.1 Reconstruction as an optimization problem
Considering the statistical behavior of systematic noise besides the deterministic model
of the imaging operator, one can formulate the reconstruction as a maximum-likelihood
estimator. The deterministic model of the imaging system was described in Section 3.1
and is given by

g = Hc , (4.1)

where g ∈ RM is the measurement vector, H ∈ RM×N is the system matrix, and c ∈ RN is
the discrete representation of the unknown object. The measurement vector {g[k]}M

k=1 is
typically modeled as a random vector with conditional probability p(g|c). The maximum-
likelihood estimator of the unknown object of interest c is that given by

ĉ = argmax
c∈C

{p(g|c)}

= argmin
c∈C

−
M

∑
k=1

log p(g[k]|c[k]) . (4.2)
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The conditional probability p(g|c) is linked to the model of noise in the imaging sys-
tem. Two main ingredients are Gaussian electronic noise and the number of photons that
hit the detector which are usually described by a Poisson distribution. Most researchers
approximate it as either i.i.d. zero-mean Gaussian with variance σ2,

−log(p(g|c)) = 1
2σ2 ‖g−Hc‖2 , (4.3)

or as a Poisson distributed where the mean is the average of the received intensity in that
pixel that is proportional to e−{Hc}k . Then, the likelihood estimator is given by

−log(p(g|c)) =C+∑
k
(−{Hc}k +g[k]log{Hc}k) , (4.4)

where g[k] and {Hc}k are the k th entry of g and Hc, respectively.
A second-order Tailor approximation of the latter equation results in the square weighted-

norm formulation [70, 71],

−log(p(g|c))≈ ‖g−Hc‖2
D , (4.5)

with diagonal weight matrix D = diag
(

e−g[k]
)

.
As the reconstruction problem with a limited number of views is ill-posed, one typically

includes additional prior information in order to resolve the ambiguity associated with the
non-empty null space of the forward imaging operator. Then the estimator can be written
in the form of

ĉ = argmin
c∈C

{−log(p(g|c))+Ψ(c)}

= argmin
c∈C

{
1
2
‖g−Hc‖2

D +Ψ(c)
}
, (4.6)

where Ψ is the so-called regularization or potential function. The solution of (4.6) is called
penalized likelihood estimator. There are different types of regularization. One of the
popular regularization in the context of image reconstruction is the `1 penalty. The idea of
`1 was introduced by Huber’s [72] work on robust statistics and a work of Claerbout [73]
in geophysics. Some classical papers on the subject are total variation [74], compressed
sensing [75–77] , soft thresholding [78], basis pursuit [79] , lasso [80], and structural
learning of sparse graphical models [81].
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By selecting the regularization term as the potential function which is (−log(p(c)))
where p(c) is the statistical model of the object, the penalized likelihood can be equivalent
to maximum a posteriori estimator. Briefly, the maximum a posteriori estimator is given
by

ĉ = argmax
c
{log(p(c|g))} , (4.7)

where p(c|g) is the conditional probability. Using Bayes’s rule, (4.8) can be rewritten as

ĉ = argmin
c
{−log(p(g|c))− log(p(c))} . (4.8)

The first part is the likelihood term. Note that the a priori information,−log(p(c)), can
have different forms. In the simplest case, it is equivalent to an `2-norm with a Gaussian
assumption. Moreover, it has the form of total-variation regularization when a p-variation
distribution is assumed [82,83]. Consequently, the reconstruction problem is formulated as
a penalized weighted-norm least square. In the next section we aim at developing iterative
techniques in order to solve the optimization problem (4.6). Due to the explosion in the
size and complexity of modern imaging systems, it is really important to be able to do
the reconstruction and solve the corresponding optimization problem with a very large
dimension in a reasonable computational time. In the next section, we use the alternating-
direction method of multipliers and demonstrate that it is well suited to reconstruct real-
world images.

4.2 Reconstruction algorithm
We formulate the reconstruction as a constrained optimization problem with a generalized
weighted `2-norm data term. Specifically, we aim at finding the vector c0 such that

c0 = argmin
c∈C





1
2
‖Hc−g‖2

D +λ1Ψ1(c)+λ2Ψ2(c)
︸ ︷︷ ︸

J(c)





, (4.9)

where C is a convex set that enforces support and positivity constraints. The regular-
ization parameters λ1 and λ2 ∈ R control the strength of the regularization. We sepa-
rate the regularization to the quadratic term Ψ1 and non-quadratic term Ψ2. Typically
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Ψ2(c) = ∑i Ψ(i)(L(i)c). Here, we consider only one term that we note it by Ψ2(Lc). The
functions Ψ1 and Ψ2 are called potential functions and L is the regularization operator.

There has been a considerable development of optimization algorithms to solve such
problems including gradient projection [84, 85], proximal gradient [86–88], augmented-
Lagrangian methods [89], interior-point methods [90], Bergman iterative algorithms [91],
and alternating-direction method of multipliers [92].

4.2.1 Alternating direction method of multipliers

High-dimensional regularized problems with a non-smooth potential function are typically
solved using the family of iterative shrinkage/thresholding algorithms (ISTA). The con-
vergence speed of these methods depend on the conditioning of HT DH. In our case, the
x-ray transform and its differential variants are particularly ill-conditioned operators lead-
ing to very slow convergence when D is the identity matrix. To overcome this difficulty,
we use a variable-splitting scheme to map our general optimization problem into simpler
ones [93–97]. We present two different variable-splitting scenarios:

A) Alternating-direction method of multipliers using a preconditioned conjugate
gradient (ADMM-PCG): Specifically, we introduce the auxiliary variable u = Lc and
reformulate the reconstruction problem (4.9) as a linear equality-constrained problem

c = argmin
c,u

{
1
2
‖Hc−g‖2

D +λ1Ψ1(c)+λ2Ψ2(u)
}

subject to u = Lc . (4.10)

We can map this into an unconstrained problem by considering the augmented-Lagrangian
functional

Lµ(c,u,α) =
1
2
‖Hc−g‖2

D +λ1Ψ1(c)+λ2Ψ2(u)

+αT (Lc−u)+
µ

2
‖Lc−u‖2 , (4.11)

where α is the vector of Lagrange multipliers. The advantage of using an augmented La-
grangian instead of the Lagrangian (including the quadratic term) is to bring robustness to
the dual-ascent method for updating the Lagrangian multipliers and, in particular, to relax
the assumption of strict convexity on the main cost function. The method of multipliers for
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minimizing (4.11) has the form of




(
ck+1,uk+1)← argmin

c,u
Lµ(c,u,αk)

αk+1←αk +µ(Lck+1−uk+1).

The first step is a joint minimization which is costly to solve. In this regard, we adopt
the cyclic update scheme known as alternating-direction method of multipliers, which con-
sists of the iterations 




ck+1← argmin
c

Lµ(c,uk,αk)

uk+1← argmin
u

Lµ(ck+1,u,αk)

αk+1←αk +µ(Lck+1−uk+1).

Hence, Lµ(c,uk,αk) is a quadratic function with respect to c. Its gradient is

∇Lµ(c,uk,αk) =
(
HT DH+µLT L+λ1∇Ψ1

)
︸ ︷︷ ︸

A

c−
(

HT g+µLT
(

uk− α
k

µ

))

︸ ︷︷ ︸
b

.

We minimize Lµ(c,uk,αk) iteratively using the conjugate-gradient (CG) algorithm to
solve for Ac = b. For speeding up the convergence of the CG algorithm, we introduce
two different strategies.

1. Since A has a large condition number, it is helpful to introduce a preconditioning
matrix M−1. This matrix is chosen such that M−1

(
HT DH+µLT L+λ1I

)
has a

condition number close to 1. To design this problem-specific preconditioner, we use
the following proposition.

Proposition 4.1. The successive application of the derivatives of the Radon trans-
form and their adjoint is a highpass filter with frequency response ‖ω‖2n−1 such
that

R(n)∗R(n){ f}(x) = 2π (−4)
2n−1

2 { f}(x) . (4.12)

Proof. This follows from ( ∂

∂y )
∗ =− ∂

∂y and Proposition 2.1.
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This shows that R(n)∗R(n) has a Fourier transform that is proportional to ‖ω‖2n−1

while LT L is a discretized Laplace operator whose continuous-domain frequency
response is ‖ω‖2. Thus, the preconditioner M−1 that we use in the discrete domain
in the case of identity weight D is the discrete filter that approximates the frequency
response 1

‖ω‖2n−1+µ‖ω‖2+λ1
.

2. In the case of a non statistical formulation of the cost function, we propose to use
a weighting matrix that is the discrete counterpart of the convolution operator q
in (2.32), with a slight modification of the frequency-domain singularity at zero. We
modify it with the frequency response 1

|ω|2n−1+β
, where β is an appropriate positive

parameter; it is a positive-definite operator.

The solution of the minimization of Lµ(ck+1,u,αk) with respect to u is the proximal
map linked to the regularization Ψ2,

proxΨ2,λ ,PC
(z) = argmin

c∈C

{
1
2
‖z−v‖2

2 +λΨ2(v)
}
, (4.13)

where z = Lck+1 + αk

µ
and λ = λ2/µ2.

The complete reconstruction method is summarized in Algorithm 2 below. Note that
normally the initial estimate of a CG procedure would be zero. Here we use a warm
initialization in the sense that the starting point of each inner PCG iteration is the outcome
of the previous PCG iteration.

B) Constrained regularized weighted-norm reconstruction (CRWN): We solve the
nonlinear regularized problem by defining another variable splitting u = c and using an
augmented-Lagrangian (AL) scheme. This in turn is equivalent to finding critical point of
the augmented Lagrangian (AL)

Lµ(c,u,α) =
1
2
‖Hu−g‖2

D +λ1Ψ1(u)+λ2Ψ2(c)

+αT (u− c)+
µ

2
‖u− c‖2

2 , (4.14)

where α is the vector of Lagrange multipliers that imposes the constraint u = c. The
classical AL scheme alternates between a joint minimization step and an update step, so
that 




(ck+1,uk+1)← argmin
c∈C ,u

Lµ(c,u,αk)

αk+1←αk +µ(uk+1− ck+1). (4.15)
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Input: phase measurements g(y j,θi), ∀i, j.
Output: reconstructed image f (x).
initialization λ1, λ2, µ , c(0), u(0), and B-spline degree m;
while stopping criterion is not satisfied do

ck+1← argmin
c

Lµ(c,uk,αk), using the preconditioned CG method with an

initial estimate c(0);
uk+1← proxΨ2,λ ,PC

(
Lck+1 + αk

µ

)
;

αk+1←αk +µ(Lck+1−uk+1);
c(0)← ck+1;
k← k+1;

end
return f (x) = ∑k ckβ m(x−k).

Algorithm 2: ADMM-PCG WITH WARM INITIALIZATION RECONSTRUCTION
METHOD

Moreover, we use ADMM [93] to separate the joint minimization into the succession of
simpler partial problems





uk+1← argmin
u

Lµ(ck,u,αk) (Step 1)

ck+1← argmin
c∈C

Lµ(c,uk+1,αk) (Step 2)

αk+1←αk +µ(uk+1− ck+1). (Step 3) (4.16)

Since the zero frequency is in the nullspace of the forward operator, we use the Tikhonov
regularization term Ψ1(u) = 1/2‖u‖2.

In Step 1, ck and αk are fixed, therefore Lµ(ck,u,αk) is a quadratic function of u with
gradient

∇Lµ(ck,u,αk) =
(
HT DH+(µ +λ1)I

)
u

−
(

HT Dg−
(
αk−µck

))
. (4.17)

We use the CG method to solve this step. One can choose the weight D such that the
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condition number of the matrix HT WH+(µ +λ1)I becomes quite small, Then the corre-
sponding iterative algorithm converges rapidly.

Step 2 of ADMM, which minimizes Lµ(c,uk,αk) with respect to c, is the constrained
denoising problem

argmin
c∈C

{Lµ(c,uk+1,αk) =αkT
(uk+1− c)+

µ

2

∥∥∥uk+1− c
∥∥∥

2

2
+λ2ψ2(c)}

= argmin
c∈C

{
1
2

∥∥∥∥uk+1 +
αk

µ
− c
∥∥∥∥

2

2
+

λ2

µ
Ψ2(c)

}
. (4.18)

The common expression for the regularizer is

Ψ2(c) = ‖Rc‖ , (4.19)

where ‖·‖ is a non-quadratic norm and R : RN →R(NK) is the regularization operator (e.g.,
gradient with K = 2 or Hessian with K = 2× 2). For the identity regularization operator
R = I, (4.18) typically admits a direct threshold-based solution.

For the general case of the regularization operator, we aim at solving the denoising
problem. This is equivalent to the proximal map

prox‖·‖,λ ,PC
(z) = argmin

c∈C

{
1
2
‖z− c‖2

2 +λ ‖Rc‖
}
, (4.20)

where PC is the convex projection that corresponds to the constraint. In order to find the
solution of (4.20), we use the Fenchel duality to rewrite the regularization term as

‖Rc‖= max
p∈B

〈
RT p,u

〉
, (4.21)

where RT : R(NK) → RN is the adjoint of the operator R, p ∈ R(NK), and B = {p ∈
R(NK)|‖p‖∗ ≤ 1} with ‖·‖∗ the dual norm.

It can be shown that the solution of (4.20) is PC (z−λRT p∗), where

p∗ = argmin
p

f (p)+1B , (4.22)

with ∇ f (p)=−λRPC (z−λRT p). We apply the fast iterative-shrinkage-thresholding al-
gorithm (FISTA) [87] to solve (4.22). The step size is constrained by the Lipschitz constant
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Input: z, λ , τ ≤ L−1, PB , PC

Output: c (optimal solution of (4.32))
initialization p0, t1 = 1;
while stopping criterion is not satisfied do

pk←PB(yk + τλRPC (z−λRT pk));

tk+1←
1+
√

1+4t2
k

2 ;

yk+1← pk +
(

tk−1
tk+1

)
(pk−pk−1);

k← k+1;
end
return c = PC (z−λRT p).

Algorithm 3: DENOISING ALGORITHM

L of ∇ f (p) that depends on the regularization operator R. The other important component
is the orthogonal projection onto the set B that is specified by the chosen norm. Let us
denote it by PB . Algorithm 3 describes the denoising algorithm.

The benefits of the proposed splitting are: 1) the transformation of a complex recon-
struction problem into a sequence of simpler optimizations where the constraint is applied
as a simple projection in each iteration of the denoising step. Note that there is no simple
way to impose the convex constraint to the linear step of the ADMM-PCG method; 2) any
regularization term can be handled by knowing its corresponding denoising function; 3) the
output of the algorithm is the solution of the denoising step, which results in an improved
quality of reconstruction. The reconstruction method is summarized in Algorithm 4. Here,
the starting point of each inner CG iteration is the outcome of the previous CG iteration
called as warm initialization.

4.2.2 Generalization of the proposed reconstruction scheme

In some applications such as fan-beam and cone-beam imaging modalities, we do not have
access to the whole projection along each direction because of the limited field of view of
the imaging system. For this reason, we express the forward operator as MH where M is a
suitable mask. Thus, the general form of the estimator is
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Input: g, H, λ1, λ2, PC

Output: ( f (x) reconstructed image)
set λ1, λ2, µ , and B-spline degree m;
initialization c0, u0 and α0;
while stopping criterion is not satisfied do

uk+1← argmin
u

Lµ(ck,u,αk), using CG method with initial estimate uk (“warm

initialization”);
ck+1← prox‖·‖, λ2

µ
,PC

(uk+1 +αk/µ);

αk+1←αk +µ(uk+1− ck+1);
k← k+1;

end
return f (x) = ∑k ckβ m(x−k)

Algorithm 4: CONSTRAINED REGULARIZED RECONSTRUCTION WITH WEIGHTED
NORM (CRWN).

ĉ = argmin
c∈C





1
2
‖MHc−g‖2

D +λ1Ψ1(c)+λ2Ψ2(Lc)
︸ ︷︷ ︸

J (c)





, (4.23)

To solve (4.23), we extend ADMM-PCG by defining the new auxiliary variables u =
Hc and v = Lc and reformulate the minimization (4.23) as the linear equality-constrained
problem

c = argmin
c,u,v

{
1
2
‖Mu−g‖2

D +λ1Ψ1(c)+λ2Ψ2(v)
}

subject to u = Hc ,v = Lc . (4.24)

When the matrix D is a circulant matrix and the mask matrix M does not exist, there is no
need to define the auxiliary variable u.

We then map (4.24) to an unconstrained problem by considering the augmented- La-
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grangian functional

Lµ1,µ2(c,u,v,α1,α2) =
1
2
‖Mu−g‖2

D +λ1Ψ1(c)+λ2Ψ2(v)

+αT
1 (u−Hc)+

µ1

2
‖u−Hc‖2

2

+αT
2 (v−Lc)+

µ2

2
‖v−Lc‖2

2 (4.25)

whereα1 andα2 are the vectors of Lagrange multipliers that impose the constraints u=Hc
and v = Lc. The advantage of using an augmented Lagrangian instead of the Lagrangian
(including the quadratic term) is to bring robustness to the dual-ascent method for updating
the Lagrangian multipliers and, in particular, to relax the assumption o strict convexity on
the main cost function.

The classical method of multipliers alternates between a joint minimization step and
update steps, so that





(ck+1,uk+1,vk+1)← argmin
c∈C ,u,v

Lµ1,µ2(c,u,v,α
k
1,α

k
2)

α1
k+1←α1

k +µ1(uk+1−Hck+1)

α2
k+1←α2

k +µ2(vk+1−Lck+1). (4.26)

The first step is a joint minimization which is costly to solve. In this regard, we adopt
a cyclic update scheme also known as ADMM, which consists of the iterations





ck+1← argmin
c∈C

Lµ1,µ2(c,u
k,vk,αk

1,α
k
2) (Step 1)

uk+1← argmin
u

Lµ1,µ2(c
k+1,u,v,αk

1,α
k
2) (Step 2)

vk+1← argmin
v

Lµ1,µ2(c
k+1,uk+1,v,αk

1,α
k
2) (Step 3)

α1
k+1←α1

k +µ1(uk+1−Hck+1) (Step 4)
α2

k+1←α2
k +µ2(vk+1−Lck+1) (Step 5). (4.27)

The solutions of the steps are as follows:
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1. The criterion Lµ1,µ2(c,u
k,vk,αk

1,α
k
2) is a quadratic cost function with respect to c

whose gradient is

∇Lµ1,µ2(c,u
k,vk,αk

1,α
k
2) =

(
µ1HT H+µ2LT L+λ1∇Ψ1

)
︸ ︷︷ ︸

A

c

−
(

µ1HT
(

u− α1

µ1

)
+µ2LT

(
vk− α

k

µ2

))

︸ ︷︷ ︸
b

. (4.28)

We minimize Lµ1,µ2(c,u
k,vk,αk

1,α
k
2) iteratively using the conjugate-gradient algo-

rithm to solve for Ac = b. For speeding up the convergence of CG algorithm, we
introduce two different strategies:

2. The second step is the minimization with respect to u while the other variables are
fixed. This is in the form of

uk+1 = argmin
u

{
1
2
‖Mu−g‖2

D +αT
1 (u−Hc)+

µ1

2
‖u−Hc‖2

2

}
. (4.29)

Its gradient with respect to u is given by

∇Lµ1,µ2(c
k+1,u,v,αk

1,α
k
2) =

(
MT DM+µ1I

)
u

−
(

MT Dg+µ1

(
Hck+1 +

α1
k

µ1

))
.

In order to retrieve the critical point, one requires to find the zeros of the gradient
function. Since M is a mask matrix and D is diagonal, the solution is a point-wise
operator that takes the form

uk+1[n] =
1

µ1 +{D}n,n {M}n,n

{
MT Dg+µ1

(
Hck+1 +

α1
k

µ1

)}

n,n
. (4.30)

3. Step 3, the minimization with respect to v, is

vk+1 = argmin
v

{
αT

2 (v−Lck+1)+
µ2

2

∥∥∥v−Lck+1
∥∥∥

2

2
+λ2Ψ2(c)

}
. (4.31)
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This is the denoising step. The solution is the proximal map linked to the regulariza-
tion Ψ2,

proxΨ2,λ ,PC
(z) = argmin

c∈C

{
1
2
‖z−v‖2

2 +λΨ2(v)
}
, (4.32)

where z =
(
Lck+1−α2/µ2

)
and λ = λ2/µ2.

4. The variables α1 and α2 are updated in Steps 4 and 5.

Among all steps, the most computationally costly is the second. It involves the com-
putation of HT H and HT g (see (4.28)). The value of HT g is only computed once and is
used in all iterations, while HT H of v is computed in each iteration. Accordingly, in order
to speed up the proposed algorithm, we require to derive a fast implementation of HT H.

4.3 Memory efficient and fast 3D reconstruction in parallel-
beam tomography

Typically to discover the 3D object in parallel-beam imaging modalities with single axis
tilting (the object is rotated along a fixed axis), its 2D slices are reconstructed separately.
In practice, there are two crucial drawbacks to this technique. The aliasing effects along
the z direction and grating interferometer drifting during the imaging process can intro-
duce artifacts in the reconstructed image, for instance the horizontal stripes on the vertical
coronal section of the sample shown in Figure 4.1.

One can also formulate the 3-D reconstruction as an inverse problem equipped with
three-dimensional total-variation regularization. The main drawback is the size of the 3-D
specimen which is often extremely large. Therefore, the 3-D forward operator requires
a drastically large memory space which is completely inefficient. To avoid this state of
affairs, we reformulate the problem as a combination of simpler optimization problems in
lower dimensions. Concerning the discretization framework, the forward imaging operator
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(b)(a)

Figure 4.1: (a) In parallel-beam geometry, 3-D reconstruction is decomposed into
several 2-D slice reconstruction. (b) Horizontal artifacts appear on the vertical
coronal section of the sample.

with x3 as rotation axis is

g[i, j,k] = [H3Dc]i, j,k3

= ∑
k

c[k]R(n) {β (x1)β (x2)}(y j− k1 cosθi− k2 sinθi)β (k− k3)

= ∑
k1,k2

(
∑
k3

c[k1,k2,k3]β (k− k3)

)
R(n) {β (x1)β (x2)}(y j− k1 cosθi− k2 sinθi) .

(4.33)

Thus, the forward imaging operator is written in the form of

g[i, j,k] = [H3Dc]i, j,k
= [H2D {u[·, ·,k]}]i, j , (4.34)

where

[H2D {u[·, ·,k3]}]i, j = ∑
k1,k2

u[k1,k2,k3]R
(n) {β (x1)β (x2)}(y j− k1 cosθi− k2 sinθi) ,

(4.35)
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and
u[k1,k2,k3] = (c[k1,k2, ·]∗β [·]) [k1,k2,k3] , (4.36)

where ∗ denotes the discrete convolution operator, β [·] is the B-spline function sampled at
the integer values. The convolution operator can be written in the matrix form

u[k] = [B{c[k1,k2, ·]}]k ,∀k1,k2 , (4.37)

where B is the interpolating matrix.
Therefore, the reconstruction problem is expressed as

argmin
c





1
2
‖H3Dc−g‖2

D +λ1Ψ1(c)+λ2Ψ2(c)
︸ ︷︷ ︸

J(c)





. (4.38)

We separate the regularization on each 2D horizontal plane from the regularization
along the rotation axis. We introduce total variation along with Tikhonov regularization as
prior information. Then, the minimization (4.38) can be rewritten in the form of minimiz-
ing

J(c) =
1
2 ∑

k
‖H2D {{Bc} [·, ·,k]}−g[·, ·,k]‖2

D +
λ1

2
‖c‖2+λ2 ∑

k
‖L2D {c[·, ·,k]}‖1+

λ3 ∑
k1,k2

‖Lx3 {c[k1,k2, ·]}‖1 ,

(4.39)

where L2D and Lx3 are the gradient operators on the horizontal plane and along the vertical
coordinate, respectively. These operators are computed consistently with the splined-based
discretization framework.

In order to decompose the three-dimensional reconstruction (4.39) into a set of op-
timization problems in lower dimensions, first, we use variable-splitting techniques by
introducing

u1 = c
u2[k1,k2, ·] = B{u1[k1,k2, ·]} ,∀k1,k2 (4.40)
u3[k1,k2, ·] = Lx3 {u1[k1,k2, ·]} ,∀k1,k2 . (4.41)
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These auxiliary variables yield the constrained optimization problem

argmin
c,u1,u2,u3

{1
2 ∑

k
{‖H2D {u2[·, ·,k]}−g[·, ·,k]‖2

D +λ2‖L2D {c[·, ·,k]}‖1}

+
λ1

2
‖u1‖2 +λ3 ∑

k1,k2

‖u3[k1,k2, ·]‖1}

subject to u1 = c ,u2[·, ·,k] = {Bu1}[·, ·,k] and u3[k1,k2, ·] = Lx3 {u1[k1,k2, ·]} ,∀k1,k2 ,∀k .
(4.42)

The augmented-Lagrangian function of the constrained optimization problem is

Lµ1,µ2,µ3(c,u1,u2,u3,d1,d2,d3) =

1
2 ∑

k

{
‖H2D {u2[·, ·,k]}−g[·, ·,k]‖2

D +λ2‖L2D {c[·, ·,k]}‖1
}
+

λ3 ∑
k1,k2

‖u3[k1,k2, ·]‖1 +
µ1

2
‖u1− c+d1‖+

λ1

2
‖u1‖2+

µ2

2 ∑
k1,k2

‖u2[k1,k2, ·]−B{u1[k1,k2, ·]}+d2[k1,k2, ·]‖2+

µ3

2 ∑
k1,k2

‖u3[k1,k2, ·]−Lx3 {u1[k1,k2, ·]}+d3[k1,k2, ·]‖2 , (4.43)

where µ1, µ2, and µ3 are penalty parameters of the augmented Lagrangian and where d1,
d2 and d3 are the augmented-Lagrangian variables.

Since (4.42) is strictly convex, the joint minimization of (4.43) converges to the unique
solution of the constrained optimization problem (4.42). To solve it, we separate the prob-
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lem into basic optimizations by taking advantage of the ADMM




uk+1
2 ← argmin

u2

Lµ1,µ2,µ3(c
k,uk

1,u2,uk
3,d

k
1,d

k
2,d

k
3)

uk+1
1 ← argmin

u1

Lµ1,µ2,µ3(c
k,u1,uk+1

2 ,uk
3,d

k
1,d

k
2,d

k
3)

uk+1
3 ← argmin

u3

Lµ1,µ2,µ3(c
k,uk+1

1 ,uk+1
2 ,u3,dk

1,d
k
2,d

k
3)

ck+1← argmin
c

Lµ1,µ2,µ3(c,u
k+1
1 ,uk+1

2 ,uk+1
3 ,dk

1,d
k
2,d

k
3)

dk+1
1 ← dk

1 +uk+1
1 − ck+1

dk+1
2 [k1,k2, ·]← dk

2[k1,k2, ·]+uk
2[k1,k2, ·]−B

{
uk

1[k1,k2, ·]
}
,∀k1,k2

dk+1
3 [k1,k2, ·]← d3[k1,k2, ·]+u3[k1,k2, ·]−Lx3 {u1[k1,k2, ·]} ,∀k1,k2 .

For simplicity in notation, we denote the concatenation of two-dimensional matrices
B{u1[·, ·,k]} ,∀k by the three-dimensional matrix Bu1. As first step, the minimization with
respect to u2,

argmin
u2

∑
k

{
1
2
‖H2D {u2[·, ·,k]}−g[·, ·,k]‖2

D +
µ2

2
‖u2[·, ·,k]−Bu1[·, ·,k]+d2[·, ·,k]‖2

}
,

(4.44)

can be parallelized into a set of two-dimensional quadratic problems. We use CG to mini-
mize each quadratic function

J1,k(u2,k) =
1
2
‖H2D

{
u2,k
}
−g[·, ·,k]‖2

D +
µ2

2
‖u2,k−{Bu1}k +d2,k‖2 , (4.45)

where u2,k = u2[·, ·,k] and {Bu1}k = Bu1[·, ·,k]. Its gradient with respect to u2,k is

∇J1,k(u2,k) =(HT
2DDkH2D +µ2I)u2,k︸ ︷︷ ︸

A

−

(HT
2DDk {g[·, ·,k]}+µ2({Bu1}k +d2[·, ·,k]))︸ ︷︷ ︸

b

.

We can choose the matrix Dk such that the condition number of A becomes close to one,
and then it can be expected that the corresponding iterative scheme converges reasonably
fast.
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As second step, the minimization with respect to u1 is a set of 1D optimization prob-
lems for each pair (k1,k2)

argmin
u1[k1,k2,·]

{λ1

2
‖u1[k1,k2, ·]‖2 +

µ1

2
‖u1[k1,k2, ·]− c[k1,k2, ·]+d1[k1,k2, ·]‖+

µ2

2 ∑
k1,k2

‖u2[k1,k2, ·]−B{u1[k1,k2, ·]}+d2[k1,k2, ·]‖2+

µ3

2 ∑
k1,k2

‖u3[k1,k2, ·]−Lx3 {u1[k1,k2, ·]}+d3[k1,k2, ·]‖2} , (4.46)

whose direct solution is

u1[k1,k2, .] =((µ1 +λ1)I+µ2BT B+µ3LT
x3

Lx3)
−1

(µ1 (c[k1,k2, ·]−d1[k1,k2, ·])+µ2BT (u2[k1,k2, ·]+d2[k1,k2, ·])+
µ3LT

x3
(u3[k1,k2, ·]+d3[k1,k2, ·])) . (4.47)

This can be implemented using recursive filters since the kernel is symmetric. Moreover,
the inversion can also be performed in the FFT domain with a point-wise division.

As third step, the minimization with respect to u3,

argmin
u3[k1,k2,·]

{
λ3‖u3[k1,k2, ·]‖1 +

µ3

2 ∑
k1,k2

‖u3[k1,k2, ·]−Lx3 {u1[k1,k2, ·]}+d3[k1,k2, ·]‖2

}
,

(4.48)

is the point-wise soft-thresholding operator

u3[k1,k2, ·] = proxλ2/µ3

(
Lx3 {u1[k1,k2, ·]}−d3[k1,k2, ·]

)
. (4.49)

In Step 4, the minimization with respect to c is a set of two-diminutional total-variation
denoising problems. To solve the nonlinear TV problem, we develop a modified version of
the gradient-based fast iterative-shrinkage-thresholding algorithm [98], which requires the
repeated evaluation of the proximal map of the non-smooth part J2(c) = ∑

k
‖{Lc}k‖1. The

last steps are the updates of the Lagrangian variables.
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Chapter 5

FFT-cost implementation of HT H

In chapter 4, we presented unified reconstruction frameworks for straight-ray tomography
using the alternating direction method of multipliers. Their main advantage is that one can
obtain a reasonable solution in a few number of iterations. There is a strong incentive to
reduce the computational cost of each iteration to speed up the reconstruction procedure
even further. The dominating computational cost is the matrix-vector multiplications HT g
where g is the measurement vector and the multiplication of the matrix HT H with an up-
dated vector. The vector HT g is precomputed once and then is used in each iteration. Then,
in this chapter, we propose fast and efficient implementation of the matrix multiplication of
HT H with a vector. This way of speeding-up the reconstruction procedure is well-known
in magnetic resonance imaging and has been widely used [99, 100], while in the context
of computed tomography, it has not much been developed [101]. In this regard, we first
derive the necessary conditions to make it equivalent to a digital convolution operator. We
then present the corresponding kernel, so that one can apply this operator at minimal cost
(in the order of FFT).

5.1 Notations

Our formulation uses infinite matrices and vectors. Obviously, in practice these are trun-
cated to finite length. Matrices and vectors are denoted by bold letters. The entries of a
matrix A is denoted by [A]p,k where p and k specify the position of the entry of interest.

79
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The k-th entry of a vector c is denoted by c[k] or [c]k.

Thus, the matrix formulation of (3.5) is

g[p] = ∑
k
[H]p,kc[k] , (5.1)

where p = (i, j) for simplicity in notation.

5.2 Computation of HT H

5.2.1 Review

As discussed in Chapter 3, the classical discretization approach considers basically pixel
values of the object as its discrete representation, and the projection is approximated by a
discrete line integral over each pixel. In the case of differential variants of the x-ray trans-
form, the derivative operators are implemented with finite-differences. The other way to
reduce the complexity of the implementation and improve its speed is to rely on Fourier-
based techniques which are applicable in a parallel geometry [102, 103]. The Fourier slice
theorem relates the Fourier transform of the projection to the Fourier transform of the ob-
ject in polar coordinates. In the direct Fourier implementation, the polar frequency data
are interpolated on a Cartesian grid. Afterwards, the inverse of FFT is applied. To achieve
acceptable reconstruction quality, the interpolation step relies on sampling. When the num-
ber of projection views is not large enough, the interpolation steps perform poorly, which
distributes a significant error in the reconstruction.

An alternative technique is the pseudo polar Fourier transform [104–106]. Its drawback
is that it requires the number of orientations to be in the order of the image size. Moreover,
all these approaches are valid in the parallel-beam geometry only. In the context of diver-
gent beams, measurements are interpolated to fill the whole sinogram which is typically
performed using rebinning techniques. Since the Fourier transform is a non-local operator,
the interpolation error is distributed in the space domain representation of the reconstructed
object.



5.3 FFT-cost implementation of HT H in parallel beam geometry 81

5.2.2 Generalized sampling based implementation
Based on the discretization scheme described in Chapter 3, the computation of HT Hc can
be decomposed as the computation over each projection angle

HT Hc = ∑
i

HT
θi

Hθic (5.2)

where Hθ denotes the system matrix corresponding to the orientation θ . We start with
two dimensional images and then extend the approach to higher dimensions. Let gθ be the
projection vector along the direction θ. Then, the backprojection of gθ is in the form of

[HT
θ gθ ]k = ∑

j
gθ [ j]P {ϕh}( j−h〈k,θ〉) . (5.3)

Lemma 5.1. The entries of the vector c̃θ = HT
θ

Hθ c are given by

c̃θ [l] = ∑
k

c[k]Rθ [k, l] , (5.4)

where Rθ = HT
θ

Hθ is the bi-infinite normal matrix whose entries are

Rθ [k, l] = ∑
j

P {ϕh}( j−h〈k,θ〉 ,θ)P {ϕh}( j−h〈l,θ〉 ,θ) . (5.5)

The computational cost of the calculation of c̃,

c̃ =
K

∑
i=1

c̃θi =
K

∑
i=1

∑
k

c[k]Rθi [k, l] , (5.6)

is on the order of
(
N2×a×h×K

)
, where the number of entries of c is (N×N), a is

the support of ϕ , and K is the number of orientations. Thus, the number of multipliers
is directly proportional to the number of orientations, the scale ratio h, the support of the
basis function, and the number of entries of c.

5.3 FFT-cost implementation of HT H in parallel beam ge-
ometry

In this section, we derive the necessary conditions to make HT H translation invariant so
that we can speed up its computational cost with the help of FFT.
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Definition 5.1 (Radial Nyquist criterion). The function ϕ satisfies the radial Nyquist cri-
terion with respect to the grid Zd if ϕ̂(ω) = 0 for all ‖ω‖ ≥ π .

Proposition 5.1. For any pair of function ( f ,g) satisfying the Nyquist condition, it holds
that

∑
n∈Z2

f (n)g(n) =
∫

R2
f (x)g(x)dx , (5.7)

where n = (n1,n2) and x = (x1,x2).

Proof. Since the functions f and g satisfy the Nyquist condition, we can apply Shannon’s
theorem and expand them using the sinc functions.

f (x) = ∑
k

f (k)sinc(x−k) ,

g(x) = ∑
k

g(k)sinc(x−k) , (5.8)

where sinc(x) = sinc(x1)sinc(x2). The orthonormality of the sinc function and its shifts
yields the desired result.

Theorem 5.1. if ϕ satisfies the radial Nyquist criterion for all h≥ h0, then for all h≥ h0

1. HT
θ

Hθ is a discrete convolution matrix with [HT
θ

Hθ ]k,l = rθ [k− l] where

rθ [k] = (Pθ ϕh(·)∗Pθ ϕh(−·))(h〈k,θ〉)
= Pθ {ϕh(·)∗ϕh(−·)}(h〈k,θ〉) (5.9)

2. As HT H = ∑i HT
θi

Hθi , HT H is a discrete convolution whose impulse response is

r[k] = ∑
i

rθi [k] (5.10)

Proof. Starting from (5.5),

Rθ [k, l] = ∑
j

Pθ {ϕh}( j−h〈k,θ〉)Pθ {ϕh}( j−h〈l,θ〉)

(1)
=
∫

Pθ {ϕh}(y−h〈k,θ〉)Pθ {ϕh}(y−h〈l,θ〉)dy

(2)
=
∫

Pθ {ϕh}(y−h〈l−k,θ〉)Pθ {ϕh}(y)dy

= rθ [l−k] . (5.11)
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As ϕh satisfies the radial Nyquist criterion, the Fourier slice theorem implies that Pθ{ϕh}
satisfies the Nyquist condition. Then, Proposition 5.1 yields the equality (1), and while (2)
is the result of the change of variable y = y−h〈k,θ〉 and dy = dy.

This theorem shows that HT
θ

Hθ is a circulant matrix that can be implemented using
FFT operator. It is conveniently summarized by its impulse response

rθ [k] =
∫

Pθ {ϕh}(y−h〈k,θ〉)Pθ {ϕh}(y)dy

= (Pθ {ϕh}(·)∗Pθ {ϕh}(−·))(h〈k,θ〉) , (5.12)

which is obtained by resampling the autocorrelation of the continuous-domain function
Pθ {ϕh} which is the x-ray transform of ϕh. In practice, the number of entries of c is lim-
ited, typically (N×N), but the support of the introduced kernel is the whole space. In order
to use the FFT-cost implementation of HT H, first the kernel is computed using (5.29) in a
window with size ((2N−1)× (2N−1)) as summarized in Algorithm 5. In the cases that
is not possible to analytically compute the autocorrelation function, one can numerically
calculate (interpolate) its value in the sampling points. The matrix-vector multiplication
HT Hc can be computed by convolving the kernel and c. This can be done using a FFT
operator. For more details, we refer the reader to Algorithm 6. Accordingly, the compu-
tational cost is on the order of (2N)2 log(2N). The cost does not depend on the number
of orientations, scale ratio, and the support of the basis function ϕ . Note that in itera-
tive reconstruction scheme, the kernel r is computed once and then is being used in each
iteration.

5.3.1 Error of approximation

The operator HT H can be computed at a computational cost comparable to one FFT along
with inverse of FFT operations when the support of the generating function ϕ in the Fourier
domain is bounded to the closed circle around the origin with radius π . This introduces a
significant improvement in computational performance. For example, if the image size is
(1024×1024), and 512 different orientations exist with h = 2 and a = 4, then

ratio of speed improvement =
10242×512×4×2

(2×1024)2× log 2048
≈ 310 . (5.13)
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Input: ϕ , Θ = {θ1,θ2, . . . ,θK} (set of all orientations)
Output: r (the kernel)
initialization r = 0 and i = 1;
while i≤ the number of orientations do

rθi [k] =
(
Pθi {ϕh}(·)∗Pθi {ϕh}(−·)

)
(h〈k,θi〉) where

k = {−(N−1), . . . ,(N−1)}×{−(N−1), . . . ,(N−1)};
r← r+ rθi ;
i← i+1;

end
return r̂ = F{r}, discrete Fourier transform of the kernel r.

Algorithm 5: COMPUTATION OF THE KERNEL CORRESPONDING TO HT H

Input: c, r̂ (discrete Fourier transform of the kernel r)
Output: c̃ = HT Hc
zero-pad c and extend it to size (2N−1×2N−1) ;
c̃ = iFFT (FFT (c)∗ r̂);
return cropped version of c̃ with the same size as the input c.

Algorithm 6: FFT-COST IMPLEMENTATION OF HT Hc

The generating functions that are typically used are compactly supported in the spatial do-
main and consequently are not bandlimited; in other words, they only satisfy the condition
in Theorem 5.1 approximately).

Definition 5.2. We define a π-energy concentration measure for the basis function ϕ as

Eπ(ϕ) =

∫
‖ω‖≥π

|ϕ̂h(ω)|2dω
∫
R2 |ϕ̂h(ω)|2dω

. (5.14)

A basis function ϕ satisfies the necessary conditions in Theorem 5.1 if and only if
Eπ(ϕ) = 0. The measure Eπ(ϕ) shows how suitable a given basis function ϕ is for being
used in Theorem 5.1 (lower values are more preferable). In other words, this measure
computes the relative part of the energy of a given basis function that is outside the Nyquist
region.

In Chapter 3, box splines (particularly B-splines) and Kaiser-Bessel windows were pre-
sented as two favorable families of basis functions. The Fourier transform of polynomial
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Figure 5.1: The values of the error measure (5.14) for different basis function supports.

B-splines with degree n is in the form of

β̂ (n)(ω1,ω2) =

(
sin(ω1/2)

ω1/2

)n+1( sin(ω2/2)
ω2/2

)n+1

, (5.15)

and the Fourier transform of Kaiser-Bessel window functions with parameters a, α , and m
is given by

ϕ̂KB(ω1,ω2) =





(2π)n/2anαmIn/2+m

(√
α2−(a‖ω‖)2

)

Im(α)
(√

α2−(a‖ω‖)2
)n/2+m a‖ω‖ ≤ α

(2π)n/2anαmJn/2+m

(√
(a‖ω‖)2−α2

)

Im(α)
(√

(a‖ω‖)2−α2
)n/2+m a‖ω‖ ≥ α .

(5.16)

The values of the measure (5.14) for B-splines and Kaiser-Bessel windows with differ-
ent supports are depicted in Figure 5.1. Note that the parameters of Kaiser-Bessel func-
tions are computed by minimizing the residual error (3.53). The parameters are reported
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in Table 5.1. It suggests that it is more desirable to use Kaiser-Bessel windows with large
supports than B-splines.

a and m: support and smoothness parameters 2 3 4 5 6 7 8
α: window taper 7.95 17.25 19.63 16.36 14.89 19.67 17.69

Table 5.1: Optimal taper parameter of Kaiser-Bessel window functions with dif-
ferent supports.

For simplicity in the notation, we denote HT
θ

Hθ by Rθ and the convolution kernel by
rθ , respectively. Then the error between the entries of these two kernels is

e[l,k] = Rθ [l,k]− rθ [l−k] . (5.17)

Proposition 5.2. The approximation constant between the kernel rθ and the exact calcu-
lation of HT

θ
Hθ is given by

Ckernel = ‖e‖∞ = max
k,l
|Rθ [k, l]− rθ [l−k]| ≤C

∫

‖ω‖≥π

|ϕ̂(ωh)|dω , (5.18)

which is zero when the used basis function satisfies the radial Nyquist criteria.

Proof. Equation (5.33) can be written in the form of

Ckernel =max
k,l
|Rθ [k, l]− rθ [l−k]|

=max
k,l
|∑

j
P {ϕh}( j−h〈k,θ〉)P {ϕh}( j−h〈l,θ〉)−

(Pθ {ϕh}(·)∗Pθ {ϕh}(−·))(h〈l−k,θ〉)|

=max
k,l
|∑

n∈Z
sk(n)sl(n)−

∫

R
sk(x)sl(x)dx| , (5.19)
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where sk(x) = P {ϕh}(x−h〈k,θ〉). So we have

|∑
n∈Z

sk(n)sl(n)−
∫

R
sk(x)sl(x)dx|=

|
∫

π

−π
∑
k

ŝk(ω +2πk)∑
p

ŝl(−ω +2π p)dω−
∫

R
ŝk(ω)ŝl(−ω)dω|

= |
∫

R
ŝk(ω)∑

p
ŝl(−ω +2π p)dω−

∫

R
ŝk(ω)ŝl(−ω)dω|

= |
∫

R
ŝk(ω)

(
∑
p

ŝl(−ω +2π p)− ŝl(−ω)

)
dω|

≤C|
∫

∞

π

ŝ0(ω)dω|

≤C
∫

∞

π

|ŝ0(ω)|dω

≤C
∫

‖ω‖≥π

|ϕ̂(ωh)|dω . (5.20)

It yields the desired result.

The derived FFT-cost implementation of HT H is going to be used in the proposed
reconstruction frameworks. Interestingly, ADMM converges to the fixed point of the prob-
lem even if each subproblems are solved approximately under some conditions specified
in [107]. It implies that, the proposed iterative reconstruction framework using the derived
kernel can converge to the same solution as using the exact formulation.

5.4 General cases

5.4.1 Differential variants of x-ray projection
The derivatives of the x-ray transform are also used to describe the mathematical model
of some imaging modalities. For instance, the mathematical model of differential phase
contrast tomography is based on the first derivative of the x-ray projection.

Let us denote the derivatives of the projection by

P(n) { f}(y,θ) = ∂ n

∂yn P(n) { f}(y,θ) . (5.21)
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We recall (3.4) for derivations of the projection as

P(n) { f}( j∆y,θi) = ∑
k

c[k]P(n) {ϕh}( j∆y−h〈k,θi〉) . (5.22)

Therefore
[
H(n)

]
(i, j),k

= P(n) {ϕh}( j∆y−〈k,θi〉 ,θ).

Corollary 5.1. Extension to differential variants of x-ray projection
For every function f (x) = ∑k∈Z2 c[k]ϕ(x/h− k) ∈ L(R2), if ϕ satisfies the radial

Nyquist criterion for all h ≥ h0, then for all h ≥ h0, c̃ = H(n)T
H(n)c can be computed

using

c̃[k] = (c[·]∗ r[·])[k] , (5.23)

with r[k] = ∑i rθi [k] and

rθi [k] =
(
P

(n)
θi
{ϕh}(·)∗P(n)

θi
{ϕh}(−·)

)
(h〈k,θ i〉) . (5.24)

Proof. Since the derivative operator does not modify the bandwidth of the input function,
the function P

(n)
θ
{ϕh} satisfies the Nyquist condition. So the proof is the same as that of

Theorem 5.1.

5.4.2 Weighted norm and speed of convergence
The weighted norm formulation of the data fidelity term results in the computation of
HT WHc for deducing the gradient in each iteration. In order to speed up the convergence
rate, typically W is a circulant matrix. It is the filter which is used in filtered back projec-
tion (FBP) method, for example, the frequency response of the filter used in conventional
computed tomography (CT) is ‖ω‖ in the projection domain. Then, the digital filter which
is used in the practical application of CT has the same frequency response as the continuous
filter in one period as shown in Figure 5.2.

Proposition 5.3 (Filtered Back-Projection).

P(n)∗{(q∗P(n) f (·,θ))(y)}(x) = f (x) , (5.25)
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Figure 5.2: Frequency response of the digital filter used in the FBP method for
conventional CT.

where P(n)∗ is the adjoint of the n-th derivative of the x-ray projection and the transfer
function of q(y) is

q̂(ωy) =
1

2π
× 1

|ωy|2n−1 .

Then with the assumption c̃ = HT
θ

WHθ c, we have

c̃θ [l] = ∑
k

c[k]rθ [k, l] , (5.26)

where

rθ [k, l] = ∑
j

Pθ {ϕh}( j−h〈k,θ〉)
(
qd,θ [·]∗P {ϕh}(·−h〈l,θ〉)

)
[ j] . (5.27)

Theorem 5.2. Extension to HT WH
If ϕ satisfies the radial Nyquist criterion for all h≥ h0 and Wθ is a discrete convolution

matrix that corresponds to the continuous kernel q, then HT
θ

Wθ Hθ is a convolution matrix
as well and

[HT
θ Wθ Hθ ]k,l = rθ [k− l] , (5.28)

where

rθ [k] =
(
P

(n)
θ
{ϕh}(·)∗q(·)∗P(n)

θ
{ϕh}(−·)

)
(h〈k,θ〉) . (5.29)
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Proof. The generating function ϕ is band-limited, supp{ϕ̂} ⊂Ω2
h. It implies that its x-ray

transform is also band-limited so that it satisfies the Nyquist condition. Therefore
(
qd,θ [·]∗Pθ ϕ[·]

)
[ j] = (qθ (·)∗Pθ ϕ(·))( j) , (5.30)

where f [·] defines the sequence of the sampled point values of the continuous function f .
The rest of the proof is the same since (qθ (·)∗Pθ ϕ(·))(y) is band-limited.

5.4.3 Extension to higher dimension
Theorem 5.3. Extension to higher order dimension For every function
f (x) = ∑k∈Zd ckϕ(x/h− k) ∈ L(Rd), if ϕ satisfies the radial Nyquist criterion for all
h≥ h0, then for all h≥ h0, c̃ = HT

θHθc can be computed using

c̃[k] = (c[·]∗ r[·])[k] , (5.31)

with
r[k] = (Pθ {ϕh}(·)∗Pθ {ϕh}(−·))(hPθ⊥k) . (5.32)

The matrix Pθ⊥ ∈ Rd×d−1 is the projection matrix described in (2.4).

5.5 Experimental validation

5.5.1 One-by-one comparison
X-ray transform

In order to validate the digital convolution implementation of HT H, we test it on two
different objects as shown in Figure 5.3. The first one is a Shepp-Logan phantom and
the next one is a coronal section of a human lung. We first compute HT Hc where H
is the system matrix corresponding to conventional CT. Equation (5.5) is used for exact
computation. Different scale parameters h = 1,2,4,8 for 180 orientations which have been
uniformly distributed between 0 and π are investigated. We then use the proposed digital
filter implementation with the kernel suggested in (5.29). The signal-to-noise ratio between
two different implementations and their computation times are given in Table 5.2 and 5.3,
respectively. The results of two different implementations are depicted in Figures 5.4 (a)
and 5.4 (b). Note that the speed of the implementation using the proposed digital kernel
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is independent of the support of the given basis function, the number of orientations, and
the scale ratio h. Its computational cost is proportional to N2 logN where the object size
is (N×N). On the other hand, the computational cost of the typical implementation is
proportional to

(
number of orientations×h×N2× support of the basis function

)
.

h = 1 h = 2 h = 4 h = 8
t1 (second): kernel implementation (5.29) .3 .08 .02 .005

t2 (second): 93.03 39.8 23.8 11.8
exact implementation using (5.5)

t2/t1 310 497.5 1190 2360

Table 5.2: Time ratio between the kernel implementation in (5.29) and (5.5).

(a) (b)
Figure 5.3: (a) Shepp-Logan phantom with size (1024×1024). (b) A coronal
section of a lung with size (751×751).
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h = 1 h = 2 h = 4 h = 8
phantom (cubic B-spline) (dB) 94.2 102 105 105

phantom (dB) 95 102.3 105 105
(KBWF a = 2, m = 2, α = 8)

lung (cubic B-spline) (dB) 95.8 100 100 100
lung (dB) 96 100 100 100

(KBWF a = 2, m = 2, α = 8)

Table 5.3: Signal-to-noise ratio between the kernel implementation in (5.29)
and (5.5) in conventional CT.

0.3(s) 94.5(s)SNR	
  =	
  94	
  dB
300	
  times	
  faster(a) (b)

Figure 5.4: Comparison of the HT H using the kernel implementation and direct
application

The first derivative of the x-ray transform

We then conduct the same experiment in the case of the first derivative of the Radon trans-
form (mathematical model of differential phase-contrast imaging). The approximation
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constant in the context of differential variants of the x-ray transform is given in the follow-
ing proposition:

Proposition 5.4. The approximation constant between the kernel r(n)
θ

and the exact calcu-

lation of H(n)T
θ H(n)

θ
is given by

Ckernel = ‖e‖∞ = max
k,l
|Rθ [k, l]− rθ [l−k]| ≤C

∫

‖ω‖≥π

‖ω‖2n|ϕ̂(ωh)|dω , (5.33)

which is zero when the basis function satisfies the radial Nyquist criteria.

This proposition implies that, in the context of differential phase contrast tomography,
the approximation constant is linked to the relative energy outside the radial Nyquist cri-
teria of the Laplacian of the basis function. The signal-to-noise ratio values are given in
Table 5.4.

h = 1 h = 2 h = 4 h = 8
phantom (cubic B-spline) (dB) 18.7 19.4 28.4 48.9

phantom (dB) 22.6 33.7 43.5 57.7
(B-spline degree 5) (dB)

lung (cubic B-spline) (dB) 20 25 27 47
lung (dB) 20.8 32.4 38.3 58

(B-spline degree 5)

Table 5.4: Signal-to-noise ratio between the kernel implementation in (5.29)
and (5.5) in the case of the first derivative of the x-ray transform.

5.5.2 Performance evaluation of the kernel in different reconstruction
frameworks

The main reason of the proposed kernel is to improve the speed of the reconstruction by
proposing a convolution framework instead of the exact calculation of HT

θ
H. In this part,

we evaluate the performance of different reconstruction schemes in two different imple-
mentations. In order to evaluate their performance, we plot the cost function with respect
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to the iteration number using the exact formulation and the kernel implementation. We
first use conjugate gradient. The cost function values with respect to the iteration number
is shown in Figure 5.5(a). Then, the performance of ADMM-PCG and CRWN techniques
described in Chapter 3 are depicted in Figure 5.5(b) and Figure 5.5(c), respectively. It
substatiates claim that, although the kernel implementation is not exact when we use cubic
B-spline, it still yields a cost function that promotes convergence to the same value.
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Figure 5.5: Cost function versus iteration number when either the exact formula-
tion of HT H is used or the proposed kernel formulation for (a) conjugate gradient
(b) ADMM-PCG (c) CRWN reconstruction frameworks.



Chapter 6

X-ray Grating Interferometry:
potentially in vivo imaging
modality

1 In this chapter, we first briefly explain the physical setup of grating-based x-ray imag-
ing (GI) and derive its physical model based on the wave equations. Our basic approach
(ADMM-PCG) is developed in the context of GI to reconstruct the real part of the refractive
index of the imaged sample. We finally evaluate the performance of our basic methodology
with state-of-the-art techniques by conducting experiments on real data.

6.1 Motivation

Weitkamp et al. [13] and Momose et al. [19] developed a new X-ray imaging method
based on grating interferometry (GI). It has attracted increasing interest in a variety of
fields owing to its unique combination of imaging characteristics. First, GI provides a
high sensitivity to electron-density variations, down to 0.18e/nm3 [26]. This makes the
technique particularly suitable for soft-tissue specimens. It has been applied successfully

1A part of this chapter has been presented in [36]

95



96 X-ray Grating Interferometry: potentially in vivo imaging modality

to biological samples such as insects [13, 26], rat-brain tissue, and even human as breast
tissue [108]. Second, GI produces three complementary types of information; namely, at-
tenuation, phase-shift, and dark-field measurements. In differential phase-contrast imaging
(DPCI), one focuses exclusively on the phase information, which in principle allows one
to reconstruct the real part of the refractive index distribution of the object. Third, GI does
not require a highly monochromatic source, which means that conventional laboratory X-
ray tubes can be used. The combination of the aforementioned characteristics makes GI
suitable for a broad range of applications, such as material sciences (e.g., material test-
ing), biomedical research (e.g., monitoring drug effects), or even clinical diagnostics (e.g.,
mammography).

6.2 Physical Model

An X-ray plane wave can be characterized by its intensity and phase. However the intensity
is the only directly measurable part. Therefore, to extract the phase it is necessary to
map this information into intensity patterns. In DPCI, this is achieved by using grating
interferometers. The principle has been described in detail in [13,109,110], and we briefly
review it here.

The physical setup of GI is depicted in Figure 6.1. It consists of an object on a rotation
stage, a phase grating (G1), and an analyzer absorption grating (G2) which are behind the
sample. Typically the phase grating produces a phase shift of π on the incident wave.
After passing through the object, the X-ray reaches the phase grating which introduces a
periodic phase modulation. It essentially splits the beam into its first two diffraction orders.
A periodic interference pattern perpendicular to the optical axis is formed. To measure this
pattern with high resolution, one then uses a phase stepping technique (PST) [13]. To that
end, an absorption grating is placed in front of the detector with the same periodicity and
orientation as the interference pattern. In this technique, the absorption grating is moved
perpendicular to the optical axis and the intensity signal in each pixel in the detector plane
is recorded as a function of the grating position xg. The recorded intensity is called the
phase stepping curve (PSC).

When an object is placed on the optical path, the illumination wave is attenuated and
refracted. The refraction causes a local shift of the interference pattern. This displacement
is given by

4xg(y,θ) = dγ(y,θ),
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Figure 6.1: Grating-based X-ray imaging setup. The phase grating introduces a
phase shift of π in the transmitted wave. The absorption grating is necessary for
measuring the received wave given the limited resolution of the detector.

where d is the distance between the two gratings. The refraction angle γ is proportional to
the derivative of the phase of the output wave with respect to y, like in

γ(y,θ) =
λ

2π

∂φ(y,θ)
∂y

, (6.1)

where γ(y,θ) is the refraction angle in radians and λ is the wavelength. The phase shift
induced by the object on the transmitted beam is given by

φ(y,θ) = P{α}(y,θ) . (6.2)

For a given photon energy E, α takes the form

α =
r0}2c2

2πE2 ρe , (6.3)

with r0 the classical electron radius, } the reduced Planck’s constant, and c the speed of
light. These relations yield

g1(y,θ) =
1
d
4 xg(y,θ) =

∂P{α}
∂y

(y,θ) . (6.4)
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For our purpose, (6.4) characterizes the forward model of DPCI: α is the quantity of inter-
est and g1 is the physically measurable signal.

In addition to the introduced displacement on the PSC, the object causes the average
and the amplitude of the PSC vary. The average of the PSC is linked to the average of
the intensity on that pixel. This measurement corresponds to the conventional CT whose
mathematical model is the x-ray transform of the imaginary part of the refractive index of
the object,

g2(y,θ) = P{β}(y,θ) . (6.5)

The β can be expressed as
β =

(
mZn +b

)
ρe (6.6)

where ρe is the electron density, Z the effective atomic number, and m, n, b parameters
that depend only on the details of the experimental implementation and not on sample
properties [111].

The variation of the amplitude is known as the visibility. Its formulation is given by

g3(y,θ) =
amax(y,θ)−amin(y,θ)
amax(y,θ)+amin(y,θ)

, (6.7)

where amax(y,θ) and amin(y,θ) are the maximum and the minimum value of the PSC for
the the index (y,θ). This is modeled by

g3(y,θ) = P{s}(y,θ) , (6.8)

where s is a generalized scattering parameter that quantifies the local scatter strength [93].

6.3 Differential phase-contrast imaging
X-ray phase-contrast imaging (PCI) is a promising alternative to absorption-based com-
puted tomography (CT) for visualizing many structures in biological samples, in particular
soft-tissues. PCI is based on the phase shift induced by the propagation of a coherent wave
through the investigated object. Various PCI methods have been developed including ana-
lyzer based [8–10], interferometric [11–13], and free space propagation methods [14–16].
These methods differ substantially in terms of the physical signal that is measured and the
required experimental setup.
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DPCI essentially yields the derivative of the Radon transform of the real part of the
refractive-index map of the object. This map can therefore be retrieved using a suitable
variant of the filtered back-projection (FBP) algorithm known from conventional tomog-
raphy. However the FBP method requires a large number of viewing angles, and thus the
acquisition time is very long. The long radiation time can also damage biological samples.
This provides a strong motivation for developing algorithms that can handle fewer views,
so as to reduce the exposure time.

6.3.1 Mathematical Consideration
Available descriptions of X-ray DPCI only provide a qualitative explanation of this inter-
ferometric system [13,112,113]. However we are not aware of a self-contained theoretical
description of X-ray DPCI. We have thus developed a concise mathematical model that is
solely based on wave optics. Such a characterization is necessary for quantitative imaging
and for recasting the computerized reconstruction as a linear inverse problem. At the same
time it clarifies which approximations are used to model the system and under which con-
ditions imaging can be performed. Our main contribution is a concise physical derivation
of the relationship between the displacement of the interference fringes and the derivative
of the phase of the incoming wave. In addition we give several conditions that need to
be fulfilled to make imaging possible. We rely exclusively on standard wave optics so as
to make the presentation accessible. For simplicity we consider only one lateral dimen-
sion, but our description can easily be extended to 2 dimensions since the geometry of the
interferometer is separable.

A simplified X-ray DPCI setup is represented in Figure 6.2 and the corresponding
notations are summarized in Table 6.1.

Regarding the propagation of waves within the interferometer we make the following two
assumptions:

Assumption 6.1 (Fresnel diffraction). (y− x)2� D2.

In addition we assume that the phase of the incoming wave varies slowly.

Assumption 6.2 (Taylor approximation). For l ∈ Z and x ∈ [(l−1/2)d,(l +1/2)d],

φ(x)' φ(ld)+(x− ld)φ ′(ld) . (6.9)
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Figure 6.2: Setup of grating-based x-ray imaging in 2D.

In other words, we are approximating the phase with a piecewise-linear function. We
can then show that, at the imaging plane, the diffracted wave is a sum of shifted versions
of the Fourier transform of the grating profile (up to some phase factors).

Proposition 6.1. The wave field at the imaging plane is proportional to

∑
l∈Z

exp(iφ(ld))exp
(
iφ(y− ld)

)
ψ
(
y− ld−λDφ

′(ld)/2π
)
, (6.10)

where

φ(y) = exp
(

iπ
y2

λD

)

ψ(y) = F

{
ψ(x)exp

(
iπ

x2

λD

)}(
2π

λD
y
)
. (6.11)

Most importantly, the position of these patterns depends linearly on the derivative of
the phase.
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Notation Description Typical value/Definition
x Input-plane coordinate
y Imaging-plane coordinate
z Axial coordinate
λ Wavelength 1.38(Å)
d1 Phase-grating period 4(µm)
D Distance between input plane and imaging plane 2.32(cm)
φ(x) Phase of the input-plane wave field
ψ(x) Phase-grating profile ψ(x) = rect(2x/d)−2rect(x/d)
F Fourier transform operator F{ f}(ω) =

∫
∞

−∞
f (x)e−iωxdx

Table 6.1: Description of notations.

Proof. From Assumption 6.1 we can apply the Fresnel diffraction formula (see [114])

∫ +∞

−∞

exp(iφ(x))

(
∑
l∈Z

ψ(x− ld)

)
exp
(

iπ
(y− x)2

λD

)
dx . (6.12)

From there we use Assumption 6.2 (Taylor approximation) to get

∑
l∈Z

exp(iφ(ld))
∫ +∞

−∞

exp
(
i(x− ld)φ ′(ld)

)
ψ(x− ld)exp

(
iπ

(y− x)2

λD

)
dx . (6.13)

Next we rewrite the integral using the change of variable x′ = x− ld and obtainn

∑
l∈Z

exp(iφ(ld))
∫ +∞

−∞

exp
(
ixφ
′(ld)

)
ψ(x)exp

(
iπ

(y− ld− x)2

λD

)
dx . (6.14)

Developing the quadratic term then yields

∑
l∈Z

exp(iπ(ld))
∫ +∞

−∞

exp
(
ixφ
′(ld)

)
ψ(x)exp

(
iπ

(y− ld)2 + x2−2(y− ld)x
λD

)
dx .

(6.15)
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Finally separating the exponential into individual factors leads to

∑
l∈Z

exp(iφ(ld))exp
(

iπ
(y− ld)2

λD

)∫ +∞

−∞

ψ(x)exp
(

iπ
x2

λD

)

exp
(

i2π
y− ld−λDφ ′(ld)/2π

λD

)
dx .

(6.16)

It remains to observe that the integral is actually a Fourier transform.

6.3.2 Imaging requirements

In this section we discuss under which conditions one can extract the derivative of the
phase from the diffraction pattern.

Separable fringe patterns

The first requirement is that the individual diffraction patterns in the sum of Property 1 do
not overlap too much, so that we can separate them. To obtain a quantitative condition, we
use the simplifying assumption that the grating profile is

ψ(x) = rect(x/d) (6.17)

and we will also neglect the additional phase factors. Then

F{ψ}
(

2πy
λD

)
= dsinc

(
dy
λD

)
(6.18)

and the Rayleigh criterion for separating two such functions is given in the Condition 6.3.1.

Condition 6.3.1 (Separability).
λD/d < ∆y . (6.19)

Using the values in Table 1, λD/d ' 0.8×10−6.
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Measurable displacement

For the diffraction patterns to be separable, the displacement due to the derivative of the
phase should only be a fraction of the Rayleigh distance. At the same time, it should
be large enough to be measurable using a phase-stepping technique (that is, moving the
intensity grating along the y axis). This motivates the arbitrary condition λDφ ′(ld)/2π '
λD/10d.

Condition 6.3.2 (Measurability). φ ′(ld)' 2π/10d .

This means that the practical phase gradients that can be measured with this technique
are on the order of one cycle (2 radians) per 40µm when the values of Table 6.1 are taken
into account.

Optimal contrast

Another issue is how to best choose the distance D between the phase grating and the imag-
ing plane. We address this problem in the case where there is no sample before the phase
grating ( (x) = constant). Introducing an object in the beam path amounts to perturbing this
reference case.

Proposition 6.2. If the wave arriving at the phase grating is plane, the field at the imaging
plane is proportional to

∫
∞

−∞

ψ(x)∑
l∈Z

exp
(
−iπ

l2d2

λD

)
exp(i2π(y− x)/d)dx . (6.20)

In particular, if D = d2/2Nλ where N ∈ N, the field reduces to ∑l∈Z ψ(x− ld).

The fact that the grating profile is repeated at distances that are integer multiples of
2d2/λ is known as the Talbot effect. Note that when using a phase grating such configura-
tions are not desired because the contrast vanishes (constant intensity).

Proof. In the case of a plane wave, the Fresnel diffraction formula (1) reduces to

∫ +∞

−∞

ψ(x)∑
l∈Z

exp
(

iπ
(y− x− ld)2

λD

)
dx . (6.21)
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Figure 6.3: (a) Talbot carpet for phase grating. The intensity curves correspond
to two different distances from the grating as specified in (a) by vertical lines. The
intensity of (1) and (2) is depicted in (b) and , respectively.
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The integral (6.21) is a convolution. To compute the second function involved in this
convolution (the sum) we use the Poisson summation formula

∑
l∈Z

f (t− ld) =
1
d ∑

l∈Z
F{ f}(2πλ/d)exp(i2πlt/d) (6.22)

with t = y−x. Here f (t) = exp(iπt2/λD) and thus F{ f}(ω) =
√

iλDexp(−iλDω2/4π),
which yields the general result. If D = d2/2Nλ we have F{ f}(2πl/d) ' 1. Noting
that this also happens when f (t) is the Dirac distribution δ (t) and applying the Poisson
summation formula in the other direction yields the particular case (convolution with a
stream of Diracs).

6.4 Reconstruction framework using ADMM with precon-
ditioned CG

We develop the proposed reconstruction framework in the context of GI. In this regard, we
formulation the reconstruction as an optimization problem 4.9.

6.4.1 Discretization of the Forward model

The mathematical model of differential phase contrast tomography is based on the first
derivative of the x-ray transform of the real part of the refractive index of the object. The
model of the dark field and the attenuation part are linked to the x-ray transform. In order
to discretize the forward imaging operator, we use the discretization scheme introduced in
Section 3.1.

6.4.2 problem specific regularization

The regularization term is chosen based on the following considerations: First, we observe
that the null space of the derivatives of the Radon transform contain the zero frequency
(constant). To compensate for this we incorporate the energy of the coefficients into the
regularization term. Second, to enhance the edges in the reconstructed image, we impose
a sparsity constraint in the gradient domain. This leads to
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Ψ1(c) = ‖c‖2 ,

Ψ2(c) = ∑
k

‖{Lc}k‖1 , (6.23)

where λ1 and λ2 are regularization parameters and {Lc}k ∈R2 denotes the gradient of the
image at position k. More precisely, the gradient is computed based on our continuous-
domain image model

∂ f
∂x1

[k1,k2] = (h1[·, ·]∗ c[·, ·])[k1,k2]

∂ f
∂x2

[k1,k2] = (h2[·, ·]∗ c[·, ·])[k1,k2] , (6.24)

where h1 = (∂/∂x1)ϕ and h2 = (∂/∂x2)ϕ .
If the basis function is the tensor product of B-splines, the following property holds:

Proposition 6.3. Let f (x) = ∑k∈Z2 ckβ n(x−k). The gradient of f on the Cartesian grid
is

∂ f
∂x1

[k1,k2] = ((h1[·,k2]∗ c[·,k2])[k1, ·]∗b2[k1, ·])[k1,k2]

∂ f
∂x2

[k1,k2] = ((h2[k1, ·]∗ c[k1, ·])[·,k2]∗b1[·,k2])[k1,k2] , (6.25)

where k1,k2 ∈ Z, hi[k1,k2] = β n−1(ki +
1
2 )−β n−1(ki− 1

2 ), and bi[k1,k2] = β n(ki) for i =
1,2.

This property allows one to compute the gradient operator for the case of cubic B-
splines at the cost of simple finite difference. It is consistent with the continuous-domain
image model.

A standard result for FISTA-type algorithms is that the solution of the minimization of
Lµ(ck+1,u,αk) with respect to u is given by the shrinkage function [87, 115]

uk+1 = max
{∣∣∣∣Lck+1 +

αk

µ

∣∣∣∣−
λ2

µ
,0
}

sgn(Lck+1 +
αk

µ
). (6.26)
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6.4.3 Parameter selection

From a statistical point of view, the Baysian estimator for the additive Gaussian white noise
inverse problem g = Hc+n can be written as

ĉ = argmin
c

{
1
2
‖Hc−g‖2−σ

2
n log p(c)

}
, (6.27)

where σ2
n is the noise variance and p(c) is the prior density of the signal. Assuming that

the gradient sample values uk = {Lc}k are i.i.d. Laplace distributed, we have

− log p(c) ∝
1

σu
∑
k

‖uk‖1 ,

where σ2
u is the variance of the gradient values. On the other hand, by definition SNR =

10log(‖Hc‖2
2 /Nσ2

n ) where N is the number of pixels in the image. Therefore σ2
n =

10−.1SNR ‖Hc‖2
2 /N. In practice ‖Hc‖2

2 can be approximated by ‖g‖2
2 and σ2

u is propor-
tional to ∑k ‖uk‖2

2 which is empirically estimated using ‖g‖2
2. This leads to the following

rule of thumb for setting the TV regularization parameter: λ2 ∝ 10−.1SNR ‖g‖2. Therefore,
the TV parameter is proportional to the norm of the measurement. The proportionality
constant is related to its signal-to-noise ratio.

The Tikhonov parameter is chosen as small as possible and is set to λ1 = 10−5. Here
we use λ2 = ||g||2× 10−3. Based on our experience, the parameter µ can be chosen ten
times larger than λ2. The number of inner iterations for solving the linear step plays no
role in the convergence of the proposed technique, but affects speed; we suggest to choose
it as small as possible, typically 2 or 3. We use cubic B-splines with m = 3 as the basis
functions.

6.4.4 Convergence and inexact minimization

In ADMM-PCG, we use conjugate gradient in order to solve the first step of ADMM
because there is no direct solution. One main advantage of ADMM is that it can con-
verge even when the minimization steps have been solved approximately using an iterative
method, if the minimizations satisfy an appropriate condition, such as being summable [92,
107].
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6.4.5 Stopping criteria
Is has been shown in [92] that there is a bound on the objective function of the current
point which involves primal and dual residuals. The primal and dual residuals are denoted
by r and s, respectively. Their definitions are

rk = Lck−uk

sk = LT
(

uk−uk−1
)
. (6.28)

This suggests that a reasonable termination criteria is when the norm of primal and
dual residuals is small.

6.4.6 Convergence speed in practical problems
In general, ADMM can be slow for high accuracy convergence. However, it converges to
a sufficiently accurate solution for many applications within a few iterations. This makes
it practically valuable for the cases when modest accuracy is sufficient. Fortunately, this is
usually the case of the large-scale reconstruction problem. Note that typically there is not
enough prior information of the object of interest, then the proposed cost function is based
on some approximations [83].

6.5 Experimental Validation

6.5.1 Performance metrics
We use the structural similarity measure (SSIM) [116,117] and signal-to-noise ratio (SNR)
for measuring the quality of the reconstructed image. SSIM is a similarity measure pro-
posed by Z. Wang et al. which compares the luminance, contrast, and structure of images.
SSIM is computed for a window of size (R×R) around each image pixel. The SSIM
measure for two images x and x̂ for the specified window is

SSIM(x, x̂) =
(2µxµx̂ +C1)(2σxx̂ +C2)

(µ2
x +µ2

x̂ +C1)(σ2
x +σ2

x̂ +C2)
, (6.29)

where C1 and C2 are small constant values to avoid instability. µx and µx̂ denote the empir-
ical mean of the images x and x̂ in the specified window, respectively. The empirical vari-
ance of the corresponding images are σx and σx̂. The covariance of two images is denoted
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by σxx̂ for the corresponding window. In our experiments, we choose C1 =C2 = (.001∗L)2

where L is the dynamic range of the image pixel values. SSIM for the total image is ob-
tained as the average of SSIM over all pixels. It takes values between 0 and 1 with 1
corresponding to the highest similarity.

Our other quality measure is the SNR. If x is the oracle and x̂ is the reconstructed image
we have

SNR(x, x̂) = max
a,b∈R

20log
||x||2

||x−ax̂+b||2
. (6.30)

Higher values of the SNR correspond to a better match between the oracle and the recon-
structed image.

6.5.2 Experimental result

To validate our reconstruction method, we conducted experiments with real data acquired
using the TOMCAT beam line of the Swiss Light Source at the Paul Scherrer Institut in
Villigen, Switzerland. The synchrotron light is delivered by a 2.9 T super-bending magnet.
The energy of the X-ray beam is 25keV [118]. We used nine phase steps over two periods
to measure the displacement of the diffraction pattern described in Section 2. For each step
a complete tomogram was acquired around 180 degrees; we used 721 uniformly distributed
projection angles. Image acquisition was performed with a CCD camera whose pixel size
was 7.4µm.

For our experiments we used a rat brain sample. The sample is embedded in liquid
paraffin at room temperature. This is necessary to match the refractive index of the sam-
ple with its environment, so that the small-refraction-angle approximation holds. Finally
the projections were post-processed, including flat-field and dark-field corrections, for the
extraction of the phase gradient.

Figure 6.4 contains a comparison of the performance of the proposed algorithm against
FISTA. For comparison, the convergence in [35] requires at least 65 iterations to converge.
This allows for a rough yet informative comparison of computational costs, in terms of
number of evaluations of the forward model or its adjoint (which are the most expensive
operations in the schemes discussed here). In [35], it is required to compute the forward
operator twice per iteration. Therefore, the cost estimate is 65×2 = 130 evaluations of the
forward operator. Meanwhile, our reconstruction scheme converges after 5 outer iterations
with 2 conjugate-gradient inner iterations. Each conjugate gradient step requires one ap-
plication of the forward operator and one application of its adjoint. Since the number of
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viewing angles is typically less than the size of the object, the cost of the adjoint opera-
tor is less than the computation of the forward operator. If we neglect this fact, we need
(2×2×5) = 20 evaluations of the forward operator. Based on these considerations, we
expect our algorithm to be substantially faster. It demonstrates the benefits of using a warm
initialization as well as a problem-specific preconditioner for the linear optimization step.

Figure 6.4: Speed of convergence of different iterative techniques for solving
our regularized problem. Significant gains over the standard FISTA algorithm
can be obtained using our ADMM-based scheme. Observe that the number of
inner iterations in the ADMM-PCG method does not significantly influences its
convergence.

We further investigated the performance of the direct filtered back-projection and of the
proposed iterative reconstruction techniques on a coronal section of the rat brain. The
reconstructed images with 721 angles using GFBP and those produced by our method are
shown in Figure 6.5. In terms of quality, for real data, our results are more less equivalent
to using the Kaiser Bessel Window functions proposed in [35].

The GFBP reconstruction contains artifacts at the boundary of the image and at specific
anatomical features. For example, the bottom-right sub images in the reconstructions of
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Figure 6.5 show the mammal-thalamic tract in this coronal section. One can clearly see
oscillatory artifacts in the GFBP reconstruction. This could confuse the biologist or au-
tomated diagnostic systems for determining the nucleus and immoneurins in that region.
The middle-right and top-right images show a part of the thalamus and the region between
the thalamus and the hippocampus, respectively. To reduce the artifacts in the GFBP
technique, we also implemented a smoothed version of the GFBP algorithm. Specifically,
we modified the filter in the third step of Algorithm 3 as

q̂(ωy) =
1

2π

1
|ωy|
×hk(ωy) , (6.31)

where h(ωy) is a lowpass filter and k is an exponent that acts as a smoothing parameter.
We chose h(ω) to be the standard Hamming window. The reconstructions are shown in the
bottom row of Figure 6.5. They suggest that with GFBP there is a tradeoff between artifacts
and image contrast. Note that for these experiments the parameter k was optimized so as
to achieve the best SNR. The figure of merits (SNR and SSIM) are indicated below each
image in Figure 6.5. Visually the reconstructed image with 721 angles using our proposed
technique is more faithful in comparison with the GFBP approach. Therefore, we consider
it as our gold standard for investigating the dependence of our algorithm on the number
of views as shown in Figure 6.6. The SNR and SSIM values are computed for the main
region of the sample which includes the brain. they suggest that we can reduce the number
of views with our method at least fourfold while essentially maintaining the quality of the
standard reconstruction method (FBP with a complete set of views).
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SSIM = .96
SNR   = 35 dB

SSIM = .78
SNR   = 28 dB

SSIM = .91
SNR   = 36.9 dB

SSIM = .15
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SNR   = 28 dB

SSIM = .91
SNR   = 27.3 dB
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Figure 6.5: Comparison of the reconstruction results for 721 viewing angles (first
column) and 181 viewing angles (second column). (a,d) GFBP, (b,e) GFBP with
smoothing kernel, (c,f) the iterative ADMM. The sub-images correspond to the
region between the thalamus and the hippocampus (top), a part of the talamus
(middle), and the Fornix (bottom). Notice the oscillatory artifacts produced by
GFBP. Applying a smoothing kernel reduces the artifacts but also blurs the recon-
struction.
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Figure 6.6: The SNR and SSIM metrics for images reconstructed from a subset
of projections.
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Chapter 7

Improved Reconstruction Scheme
for X-ray Grating Interferometry

1 In Chapter 6, we applied our basic reconstruction framework (ADMM-PCG) in the con-
text of GI. Our experimental results show the feasibility of our framework. They suggest
that the proposed technique outperforms the-state-of-the-art methods. The drawback of
ADMM-PCG is that there is not a clear way to impose the convex constraints such as the
positivity of the refractive index on the solution. Moreover, some line artifacts were visible
on the reconstruction. In this chapter, we consider a GI problem with the same physical
model as discussed in Chapter 6. We first use the constrained regularized weighted norm
(CRWN) to improve the reconstruction. In the context of differential phase contrast imag-
ing, we then investigate the situations in which the measurements are wrapped. We develop
a reconstruction framework in order to simultaneously unwrap and reconstruct the object
of interest.

One advantage of GI is that it provides simultaneously an absorption-contrast and a
phase-contrast information. In this regard, we develop a reconstruction framework to si-
multaneously retrieve the real and the imaginary part of the refractive index (complex
refractive index reconstruction).

1A part of this chapter has been presented in [67]
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7.1 Constrained regularized weighted norm
The CRWN algorithm is described in Section 4.2.2. The main step is the choice of the
regularization and its proximal map.

7.1.1 Problem specific regularization
As for the regularization, we consider two distinct options.

1) Our first option is the use of a total-variation (TV) regularization term to enhance
the edges in the reconstructed image. Therefore, we set

Ψ2(c) = ‖Lc‖1,1 (7.1)

with ‖Lc‖1,1 = ∑i ‖{Lc}i‖1, where the sum is computed on all B-spline coefficients and
{Lc}i ∈ R2 is the gradient vector of the image at position i. The discrete gradient operator
L : RN → RN×2 is computed according to Proposition 2 in [36]. Here, the regularization
operator is the discrete gradient operator and the mixed `1 − `1 norm is chosen as the
potential function. As the dual norm of the `1 norm is `∞, the dual ball is defined as

B∞,∞ = {p = [pT
1 ,p

T
2 , ...,p

T
N ]

T ∈ RN×2 :
‖pi‖∞

≤ 1, ∀i = 1,2, ...,N} . (7.2)

Therefore, the orthogonal projection of y ∈ RN×2 = [yT
1 ,y

T
2 , ...,y

T
N ]

T onto this ball is ỹ =
PB∞,∞(y) with

[ỹi] j = sgn([yi] j)min(|[yi] j|,1),
∀i = 1,2, ...,N, j = 1,2 , (7.3)

where [·] j is the jth entry of the corresponding vector and ỹ = [ỹT
1 , ỹ

T
2 , ..., ỹ

T
N ]

T . This regu-
larization is well-matched to piecewise-constant images.

2) Owing to the fact that biological and medical specimens consist mostly of filament-
like and complicated structures, we investigate higher-order extensions of total variation.
We apply the Hessian Schatten-norm regularization (HS) as our second option. It can elim-
inate the staircase effect of TV regularization and results in piecewise-smooth variations
of intensity in the reconstructed image. We set

Ψ2(c) = ‖Hc‖1,S1
, (7.4)
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where H :RN→RN×2×2 is the discrete Hessian operator and ‖Hc‖1,S1
is the mix of `1 and

nuclear norm. The norm can be computed with ‖Hc‖1,S1
= ∑i(σ1,i +σ2,i), where σ1,i and

σ2,i are the singular values of the Hessian matrix at position i. Therefore, the corresponding
unit-norm dual ball is defined as

B∞,S∞
= {p = [pT

1 ,p
T
2 , ...,p

T
N ]

T ∈ RN×2×2 :
‖pi‖S∞

≤ 1, ∀i = 1,2, ...,N} , (7.5)

where ‖·‖S∞
is the `∞-norm of the singular values of the corresponding matrix (for more

details, we refer the reader to [119]).

7.1.2 Parameter setting

The proposed algorithm has several parameters.

• Parameters λ1 and λ2: We use the approach proposed in [36]; λ1 = 10−5 and λ2 =
10−4 ‖g‖. The experimental results suggest that this choice of parameters yields the
optimal performance.

• Parameter µ: This parameter affects the convergence speed of ADMM. Since the
algorithm is not too sensitive to it, we use a fixed value (µ = 1).

• Parameter λ : This is a parameter of the proximal map operator in (4.32). Since the
second step of ADMM is solving (4.18), we have λ = λ2/µ .

• Lipschitz constant L: The Lipschitz constant of ∇ f (p) = −λRPC (z−λRT p) is
approximated by the Lipschitz constant of the same operator without the convex
projection PC since the projection on the convex set is firmly non-expansive. Thus,

L≈ λ
2×λmax(RRT ) , (7.6)

where λmax(A) is the maximum eigenvalue of the matrix A. For our regularization
scheme λmax(RRT )≤ γ where γ = 8 for the TV regularization for two-dimensional
problems, and its value is 64 for the HS regularization as computed in [119].

• Parameter τ: We set it to τ = 1/10×L−1.
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(a) (b)

Figure 7.1: Two reference samples (a) and (b).

7.1.3 Experimental result
We compared the proposed algorithm to FBP and to ADMM-PCG, which appears to be
the current state of the art for the reconstruction of X-ray-DPCI tomograms [36].

All experiments involved real data acquired at the TOMCAT beam line of the Swiss
Light Source at the Paul Scherrer Institut in Villigen, Switzerland. The common approach
for these experiments is to use a reconstruction from a large number of projections as a
reference for evaluating results obtained with significantly fewer projections. In addition,
the convex constraints that we apply are the positivity of the refractive index combined
with the support-related constraint that the solution should be zero outside the tube that
contains the specimen.

In order to identify the benefits of the proposed algorithm (CRWN), we first tested
the algorithms under extreme conditions: We used only 72 projections as input, while the
reference was reconstructed from 1,200 projections. For this first experiment we used a
phantom that was composed of a tube and three cylinders containing liquids with different
refractive indices as shown in Figure 7.1(a).

The performance of different algorithms are compared in Table 7.1. Clearly, the new
method outperforms ADMM-PCG [36]. Applying the convex constraint improves the
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The proposed algorithm (CRWN)
Constrained Unconstrained
TV HS TV [120] HS ADMM-PCG [36] FBP

Phantom
SNR(dB) 27.49 23.91 25.89 21.82 17.62 2.177

SSIM 0.509 0.369 0.339 0.196 0.145 0.07
Scaffold

SNR(dB) 25.34 25.58 22.91 22.25 20.09 6.45
SSIM 0.673 0.699 0.574 0.566 0.512 0.186

Scaffold ROI
SNR(dB) 26.51 27.05 23.78 23.75 23.58 23.09

SSIM 0.968 0.974 0.944 0.958 0.852 0.516

Table 7.1: Performance of different reconstruction techniques that have been ap-
plied on Phantom and Scaffold samples.

signal-to-noise ratio (SNR) and the structural similarity index measure (SSIM) [116] even
further. The result of the algorithm proposed in [120] is the same as CRWN-TV without
CC, but it is slower since it uses FISTA. As expected, owing to the piecewise-constant
structure of the sample, TV outperforms HS regularization.

We conducted another experiment with a coronal section of a scaffold that is used for
surgery. The reference image was built from 2,000 projections as depicted in Figure 7.1(b).
The algorithms were then benchmarked on a subset of 250 projections. Although these
conditions are less severe, FBP still produces high-frequency patterns that are visible in
Figure 7.2(a). ADMM-PCG almost completely suppresses these artifacts, at the expense of
light smoothing as shown in Fig. 7.2(b). Overall, CRWN yields sharper images, as shown
in Figure 7.2(c) and 7.2(d), which is also reflected by the quality metrics. In addition,
Hessian type regularization eliminates the staircase effect of TV which is more visible in
the selected region of interest.

It is seen in Figure 7.3(a) that CRWN is significantly faster at minimizing the cost func-
tional than the standard FISTA algorithm. In addition, it appears that the convergence speed
is not very sensitive to the number of inner iterations as we use a warm initialization. We il-
lustrate in Figure 7.3(b) the robustness of CRWN with respect to the number of projections
in terms of SNR. Owing to the poor performance of FBP in reconstructing boundaries, we
compute the SNR for the region specified by a dashed circle in Figure 7.1(b).
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SNR 20.09 dBSNR 23.61 dB
SSIM .889

SNR 25.58 dBSNR 27.05 dB
SSIM .9739

SNR 25.34 dBSNR 26.51 dB
SSIM .9686

SSIM .512

SSIM .699 SSIM .673

SNR 6.45 dBSNR 23.09 dB
SSIM .882 SSIM .186

(a) (b)

(c) (d)

Figure 7.2: Scaffold reconstruction with 250 projections using (a) FBP, (b)
ADMM-PCG, (c) CRWN with HS regularization and (d) CRWN with TV reg-
ularization.

7.2 Joint phase unwrapping and radiation dose reduction
in DPCI

Phase measurements are ambiguous. In the case of X-ray differential phase-contrast to-
mography, the measured phase is the wrapped version of the physical phase shift, as shown
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Figure 7.3: The reconstruction performances concerning speed and quality is
shown in (a) and (b), respectively.

in Figure 7.6 (a) and Figure 7.6 (b). Note that the wrapped measurements introduce strong
line artifacts in the reconstructed object.

The wrapping operator can be defined as (the principal domain for the phase is chosen
as ]−π,π] here)

W (ϕ) = ϕ +2kπ, with k ∈ Z such thatW (ϕ) ∈ ]−π,π] . (7.7)

Observe that (7.7) implies that

W (a) = a ⇔ |a|6 π . (7.8)

The ambiguity comes from the fact that W is a non-injective operator. Finding the original
phase ϕ from the wrapped phase φ = W (ϕ) is known as the phase unwrapping prob-
lem. Phase unwrapping is an ill-posed problem because infinitely many original phase
solutions φ exist for any given phase measurement ϕ . The discrete space of solutions
Sc = {φ +2kπ | k ∈ Z} contains ϕ . There is no general way of finding the best solution
to phase unwrapping and problems should be studied in a case by case manner. Additional
knowledge has to be provided in order to determine a particular solution. One possibility
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is to use side measurements such as attenuation contrast [121] to correct pixels that are
suspected to be incorrectly wrapped. Another procedure is to use prior knowledge about
the data. Typically, phase shift values could theoretically take any value, but it can reason-
ably be assumed that they span a finite range for objects with finite dimensions. Moreover,
refractive indices are bounded by the highest and lowest values of the materials present in
the sample and the type of objects being imaged.

Itoh pioneered phase unwrapping theory by proposing a solution that minimizes the
phase differences [122]. His solution is obtained by computing the finite differences of the
observed phase, wrapping them, and then summing them again to recover the unwrapped
phase values (see Figure 7.4). The original phase is recovered under the condition that
|∆ϕi| < π ∀i, which is known as Itoh’s condition. This is a central condition for several
phase unwrapping algorithms, as it combines a condition on sampling rate and phase evo-
lution. Note that applying the algorithm on the reversed signal leads to the same solution
up to a constant, because of the integration step. The principle of the algorithm can be seen
as using the previous point as an estimator for the current point and to take the solution in
S that is the closest to the estimator (while the wrapped phase can be seen as using 0 as an
estimator). Based on this observation, other algorithms for direct phase unwrapping can
be built, by simply choosing a different estimator.

High sensitivity to electron density variations in DPCI provides on one hand the pos-
sibility to measure small phase shifts. On the other hand, it implies that a phase wrapping
on small deflection angle can lead to strong artifacts in the differential phase-contrast im-
ages and their reconstructions. In order to eliminate the artifacts, one can first unwrap the
phase measurements. Note that DPCI measurements are the spatial gradient of the phase
which makes the unwrapping problem more challenging. Recently, Epple formulated the
unwrapping procedure as a maximum likelihood estimator by taking advantage of the poly-
chromatic spectrum provided by conventional X-ray sources. Thus, one can first apply the
proposed iterative scheme [123] to unwrap the phase measurements and then reconstruct
the object of interest. This technique is computationally costly.

Here, we aim at developing a reconstruction framework such that it 1) removes the line
artifacts on the reconstructed object and 2) reduces the radiation dose by decreasing the
required number of orientations for the reconstruction. The goal is to avoid the introduc-
tion of extra computational cost in the reconstruction algorithm. We develop two distinct
algorithms. We validate each one using real data measurements. The sample is an aortic
heart valve with two leaflets. Normally, the aortic heart valve has three leaflets. However
around 1% to 2% of the human population have a genetic defect that results in the forma-
tion of only two leaflets [124]. This can have severe effects on the quality of life so that
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Figure 7.4: Itoh’s Phase Unwrapping; Illustration of Itoh’s algorithm for phase
unwrapping.

surgery is often recommended. The main problem is the performance reduction of the heart
due to the inflammation around and calcification of the valves, which we want to monitor.
Therefore, it is required to be able to segment different tissues and calcifications in the 3-D
reconstructed heart. GI, by providing three different complementary information, shows
significant potential in this case. Modregger [125] showed that effective atomic number by
deviding the imaginary part of the refractive index by its real part show better contrast to
segment different parts. Unfortunately, on the given measurements, the phase information
(the real part of the refractive index) suffers from wrapping problem as shown in Figure 7.6
(a). In the sequel, we validate the proposed methods using this real data measurements.
The sinogram corresponds to the absorption (imaginary part of the refractive index) and
the phase are depicted in Figure 7.5.

1) Unlike filtered back projection type methods, iterative reconstruction algorithms
do not need the whole sinogram. Therefore, we first detect the wrapped points on the
sinogram using the Itoh’s rule, and then we remove them from the measurements. This can
be performed by introducing a mask M in front of the system matrix H or, equivalently,
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(a) (b)

Figure 7.5: The GI setup provides the absorption and the phase measurements
simultaneously. Sinogram of (a) the absorption and (b) the phase measurements.

formulating the reconstruction problem as the minimization

c0 = argmin
c∈C

{
J(c) =

1
2
‖Hc−g‖2

M +λ1Ψ1(c)+λ2Ψ2(c)
}

(7.9)

with a weighted norm data fidelity term where M is the mask matrix whose entries are
one except at the unwrapped points discovered by Itoh’s rule where they take zero val-
ues. Total variation is chosen as regularization. We use the generalization of the ADMM
reconstruction algorithm to solve the optimization problem.

To validate the method, we use an aortic heart valve real data measurement. Since
there is a correlation between the real and the imaginary part of the refractive index of this
sample, we compare visually the reconstructions with the imaginary part as depicted in
Figure 7.7 (a).

First we use Itoh’s unwrapping operator on the real data phase measurements and then
we apply a standard iterative scheme with total variation regularization. The reconstructed
object is shown in Figure 7.7 (b). The strong artifacts are pointed out by yellow arrows.
It suggests that the typical regularization scheme with Itoh’s unwrapping operator is not
sufficient to remove the wrapping artifacts.

Second, we detect the wrapped points by Itoh’s rule, and then we construct the mask
as shown in Figure 7.6(c). We minimize the cost (7.9) using the generalized ADMM in-
troduced in Section 4.2.2. The reconstruction result is shown in Figure 7.7 (c ). It suggests
that the proposed approach mostly eliminates the line artifacts on the reconstructed object.
In addition, the number of views is reduced fourfold.
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(a) (b)

(c) (d)

wrapped points using Itoh rule Gaussian kernel around the wrapped points 

Figure 7.6: (a) The wrapped DPCI sinogram. (b) A zoomed region of the
wrapped sinogram in which the wrapped points are more visible. (c) Detected
wrapped points using Itoh’s rule. (d) Gaussian weighted norm around the wrapped
points in the sinogram.

2) Although the wrapped points of the sinogram suggested by Itoh’s rule are removed,
some line artifacts are still visible in the reconstructed object. It implies that there are still
wrapped points which have not been detected. Instead of removing points from the mea-
surements, one can assign a weight to each point of the sinogram. The weight specifies
how suspected this point is for being wrapped. The points determined by Itoh’s rule are
wrapped with high probability. Moreover, the points around them are nominated with prob-
ability inversely linked to their distance to these points. Therefore, we dedicate a Gaussian
curve around the suggested points by Itoh’s rule as weights. The weighted operator is de-
picted in Figure 7.6(d). The reconstructed object is shown in Figure 7.7(d). In order to
compare different reconstruction schemes more precisely, the region of interest specified
by a yellow rectangle in Figure 7.7 (a) is shown in Figure 7.8. The specified edge is well
shaped using the reconstruction framework with the suggested Gaussian weight.
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7.3 Complex refractive index reconstruction
The GI setup provides simultaneous information about the phase shift and the attenuation
introduced on the transmitted wave. In this regard, we develop a reconstruction scheme
to simultaneously reconstruct phase and absorption distribution. The forward model, as
stated in Section 6.2, is in the form of

{
g1(y,θ) = ∂P{α}

∂y (y,θ)+n1(y,θ)
g2(y,θ) = P{β}(y,θ)+n2(y,θ),

(7.10)

where n1 and n2 represent the absorption and phase noise that is present in the measure-
ments g1 and g2. Then, the forward discretization of (8.18) is

g = Hc+n, (7.11)

where g is the vector of measurements, and

H =

[
H(1) 0

0 H(0)

]
. (7.12)

There, H(n) is the system matrix that corresponds to the nth derivative of the x-ray trans-
form given in (3.6). Moreover, c = (c1,c2) collects in a single column vector each B-spline
coefficient of the real and the imaginary part of the refractive index. We say that c is the
discrete representation of the object.

7.3.1 Model Fitting
We formulate the joint-retrieval problem of c in the framework of a penalized least-square
estimation. Our goal is to find the minimizer of

J (c) =
1
2
‖Hc−g‖2 +Ψ(c), (7.13)

where Ψ is a regularizing term made of two components.
Letting the first component be Ψ1, we promote the enhancement of the edges by en-

couraging sparsity in the gradient of the real and the imaginary part of the refractive index
images. We define

Ψ1(c) = ‖Lc‖1 , (7.14)
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with Lc = [Lc1 Lc2].
As second component Ψ2, we choose the nuclear total variation, which is a vectorial

extension of TV [126]. Its purpose is to strengthen the correlation of AC and DPC over
edges. It is given by the point-wise sum of Schatten 1-norms of the Jacobian matrix J and
is expressed as

Ψ2(c) = ‖Jc‖1,S 1

= ∑
k∈Z2

∥∥∥∥
[

[Dx1 c1]k [Dx2 c1]k
[Dx1 c2]k [Dx2 c2]k

]∥∥∥∥
S 1

.

(7.15)

To be consistent with (8.18), the directional derivative operator must be such that

[Dx1 ]p =
∂ϕ

∂x1
(p) , [Dx2 ]p =

∂ϕ

∂x2
(p) , (7.16)

where p = (p1, p2). There, [·]p specifies the pth entry of a vector. The Schatten 1-norm
‖·‖S 1 is the `1 norm of the singular values of its matrix argument. Note that the Schatten
1-norm is a convex operator. The discrete Jacobian operator J maps RN to RN×2×2, where
N is the total number of coefficients within one image. All directional derivatives are
computed in accordance with the discretization scheme suggested by (8.22).

7.3.2 Optimization
We aim at determining ĉ such that

ĉ = argmin
c

{
1
2
‖Hc−g‖2

+λ1 ‖Lc‖1 +λ2 ‖Jc‖1,S 1

}
. (7.17)

We reformulate this unconstrained optimization problem as a problem constrained over the
auxiliary variables u ∈ RN and v ∈ RN×2×2 such that

ĉ = argmin
c,u=Lc, v=Jc

{
1
2
‖Hc−g‖2

+λ1 ‖u‖1 +λ2 ‖v‖1,S 1

}
. (7.18)
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The scaled form of its augmented-Lagrangian formulation is

Lµ1,µ2(c,u,v,d1,d2) =
1
2
‖Hc−g‖2

+λ1 ‖u‖1 +
µ1

2
‖Lc−u+d1‖2

+λ2 ‖v‖1,S 1 +
µ2

2
‖Jc−v+d2‖2 . (7.19)

We use the alternating-direction method of multipliers (ADMM) to minimize (7.19).
This results in





ck+1 ← argmin
c

{
Lµ1,µ2(c,u

k,vk,dk
1,d

k
2)
}

uk+1 ← argmin
u

{
Lµ1,µ2(c

k+1,u,vk,dk
1,d

k
2)
}

vk+1 ← argmin
v

{
Lµ1,µ2(c

k+1,uk+1,v,dk
1,d

k
2)
}

dk+1
1 ← dk

1 +Lck+1−uk+1

dk+1
2 ← dk

2 +Jck+1−vk+1.

(7.20)

The first minimization step is a quadratic problem. Its gradient is given by

∇Lµ1,µ2(c,u
k,vk,dk

1,d
k
2) =

(H∗H+µ1 L∗L+µ2 J∗ J) c−H∗ g

−µ1 L∗
(

uk−dk
1

)
−µ2 J∗

(
vk−dk

2

)
, (7.21)

where the superscript symbol ∗ indicates the adjoint operator. We take advantage of a
conjugate-gradient approach to solve this first step. The second step of (7.20) is a mini-
mization in terms of the auxiliary variable u. It takes the form

uk+1 = argmin
u
{λ1 ‖u‖1

+
µ1

2

∥∥∥Lck+1−u+dk
1

∥∥∥
2
}
. (7.22)

Therefore, the solution involves a point-wise soft-thresholding operation (i.e., the proximal
map of the `1 norm), which leads to

uk+1 = prox`1,λ1/µ1

(
Lck+1 +dk

1

)
. (7.23)
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The third step of (7.20) is

vk+1 = argmin
v

{
λ2 ‖v‖1,S1

+
µ2

2

∥∥∥Jck+1−v+dk
2

∥∥∥
2
}
, (7.24)

which involves the N optimization problems indexed by m

{v}m = argmin
v

{
λ2 ‖v‖S1

+
µ2

2

∥∥∥
{

Jck+1−v+dk
2

}
m

∥∥∥
2
}
, (7.25)

where {·}m ∈ R2×2 is the mth (2×2) matrix. Solving (7.25) requires the proximal map of
the Schatten 1-norm

proxS1,λ
(z) = argmin

u

{
1
2
‖u− z‖2 +λ ‖u‖S1

}
. (7.26)

It has been shown in [126] that the solution of (7.26) can be obtained by considering the
singular-value decomposition (SVD)

z = PΛQ (7.27)

and by rewriting Eq. 7.26 as

proxS1,λ
(z) = Pprox`1,λ

(Λ)Q. (7.28)

Since z ∈ R2×2, the determination of SVD is easy. Consequently, the third minimization
step of (7.20) is summarized as

{v}k+1
m = Pprox`1,λ

(Λm)Q, (7.29)

where Λm is the singular-value matrix of
{

Jck+1 +dk
2
}

m. The remaining two steps of (7.20)
are updates of the augmented Lagrangian parameters. More precisely, λ1 is chosen pro-
portional to the variance of the phase measurement and λ2 is adjusted according to the
side information of how much correlation there is between phase and absorption. The
parameters µ1 and µ2 are fixed to 1.
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7.3.3 Experimental result
We use the heart data described in Section 7.2. The reconstructions are depicted in Fig-
ure 7.9. The background of the reconstructed phase is more homogenous than with the
scheme in Section 7.2. In addition, the retrieved edges are sharper. It shows the advantage
of simultaneously reconstructing phase and absorption.
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(a) (b)

(c) (d)
Figure 7.7: (a) The imaginary part of the refractive index of one coronal section
of an aortic heart valve with two leaflets. The real part of the refractive index is
reconstructed using (a) CRWN without unwrapping; (b) a weighted norm formu-
lation whose weight is the mask given by Itoh’s rule and taking advantage of a
generalized ADMM; (d) a weighted norm whose weight is the Gaussian weight
around the wrapped points and the use of a generalized ADMM.
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(a) (b)

(c) (d)
Figure 7.8: The ROI of Figures 7.7. (b) The edges are totally eliminated owing
to the wrapping of the measurement. (c) Removing the wrapped points from the
sinogram improves the quality of the reconstruction and the edges have a higher
contrast. (d) Adding a Gaussian weight improves the contrast significantly.
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(a) (b)

(c) (d)
Figure 7.9: Reconstructed (a) imaginary part and (b) real part of the refractive
index with one fourth number of orientations. The nice background and enhanced
reconstructed edges are more visible in the depicted ROI (c) and (d).
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Chapter 8

Grating-Based Radiography:
Enhanced Contrast Radiographs
in Mamography

1 The radiography is not a tomography problem, but it is relevant clinically, and can benefit
from the general inverse problem modeling we described in Chapter 4. In this chapter, we
develop the proposed discretization and reconstruction scheme in the context of Grating-
based radiography.

8.1 Phase Retrieval in Differential Phase contrast Imag-
ing

Differential phase contrast imaging using X-ray grating interferometer is a promising tool
to revolutionize conventional radiography. With an incremental modification to the conven-
tional X-ray imaging apparatuses, this technology is able to yield three different physical
contrasts of the underlying sample simultaneously: the conventional absorption contrast,
the differential phase contrast (DPC), and the small-angle scattering contrast. This re-

1A part of this chapter has been presented in [127]
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sults in much richer information than the traditional absorption-based imaging approaches
[24, 110, 112, 128]. Successful experiments have been demonstrated for mammography
[108] and hand imaging [129, 130] using an X-ray tube-based configuration.

The phase contrast, which is obtained by detecting the phase shifts of the X-ray waves
when passing through the sample, has many advantages in imaging soft tissue (low-absorption
materials) compared to the absorption contrast [12,16,110]. The optical properties of a tis-
sue can be characterized by its complex refractive index n = 1−α + iβ . The quantity
α is the decrement of the real part of the refractive index responsible for the phase shift,
whereas the imaginary part β describes the attenuation properties of the materials. At diag-
nostically relevant photon energies (i.e., between 10 and 150 keV), the phase shift plays a
more prominent role than the attenuation for soft tissue because α is typically three orders
of magnitude larger than β . The phase shift induces refraction of the X-ray wave traveling
through the tissue while the grating interferometry is designed to detect the resulting overall
refraction angle efficiently. In clinical applications such as mammography and computed
tomography, when comparing various tissue samples, such relative differences in angular
deviations are larger than the corresponding relative changes in intensity (related to the
X-ray absorption). As a result, the phase contrast is expected to yield improved contrast
when compared with conventional methods [131]. Moreover, for many tissue types, the
phase differences drop less than their corresponding absorption differences as the X-ray
energies go higher [131, 132]. Therefore, phase imaging can be applied at higher energy
while still keeping the same contrast as the absorption-based approach, but with a lower
dose deposition.

A potential shortcoming is that the grating interferometer does not measure the phase
shift of X-rays directly, but only its first derivative. That is why this technique is called
“differential” phase contrast imaging. Although the DPC image provides significant in-
formation on the edges of the sample structure, it doesn’t allow a quantitative analysis of
the phase profile, for instance, giving the contrast between different tissues or comparing
with absorption contrast directly. Theoretically, the phase retrieval problem can be solved
by a trivial one-dimensional direct integration in the spatial domain, which is equivalent
to dividing by spatial frequency in the Fourier domain. However in practice, the direct in-
tegration fails to generate phase images of satisfactory quality because the noises are also
cumulated during the integration. The resulting phase image suffers from stripe artifacts.
The problem becomes especially severe when the image size is very large and a lower dose
is used, which means a lower signal-to-noise ratio (SNR), as is common in the medical
imaging.

For phase retrieval in grating-based DPC imaging, two noteworthy methods are the
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bidirectional method [49] and the non-linear regularization method proposed by our group
[133]. The bidirectional approach has shown to be well-suited for reducing stripe artifacts;
however, it requires longer scanning time and possibly higher dose deposition. Besides,
the two-scan approach requires one to rotate the gratings or the sample and to register two
images precisely, which is hard to be implemented in clinical situation. The non-linear
regularization method is more practical because the earned benefits are actually from the
mathematic tools; therefore no additional efforts (e.g., more image acquisitions or system
modifications) are needed, and it shows promising results [133]. Sperl et al. showed that
the regularization can also be done in the Fourier domain [134].

Our major interests is to apply the differential phase contrast imaging to clinical appli-
cations, especially to mammography. In mammography, the image is usually quite large,
with a typical size of (6000×4000). Such an application requires fast phase retrieval
algorithms which can deliver accurate and quantitative phase information for diagnostic
purpose. Our contributions are:

• The proposal of a more accurate discretization scheme for the directional derivative
operator based on the B-spline calculus.

• The proposal of a better regularization strategy that penalizes discontinuities in all
directions and also addresses the issue of the undetermination of the zero frequency
part of the solution.

• The application of constrained regularization weighed norm (CRWN) algorithm in
order to have more robust and faster phase retrieval scheme in comparison to [133].
We use the positivity and boundary condition to improve the performance of our
retrieval algorithm more which is one main advantage of using CRWN.

• The experimental evaluation of the method using real data. We evaluated the al-
gorithm with the phase contrast mammography data and directly compared the re-
trieved phase image with the absorption image. We demonstrated that the proposed
method is able to produce high-quality phase image which can provide higher con-
trast of different tissues than conventional absorption-based image.
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8.1.1 Methods

Phase retrieval in differential phase contrast imaging

The phase retrieval problem in DPC imaging has been described thoroughly in [133].
Briefly, the grating interferometer measures the phase shift ϕ(x,y) of two phase-stepping
curves (PSC), from an object scan and a reference scan without object, for each detector
pixel at the spatial position (x,y). On one hand, the phase shift ϕ(x,y) is linked to the
refraction angle α(x,y) by

ϕ(x,y) = 2π
d
p2

α(x,y), (8.1)

where p2 is the pitch of the analyzer grating, and d is the distance between the two gratings.
On the other hand, the refraction angle α(x,y) (namely, the DPC signal) can be expressed
by [16]

α(x,y) =
λ

2π

∂φ(x,y)
∂x

, (8.2)

where λ is the wavelength of the x-ray photons and φ(x,y) is the target quantity (phase
profile) that we want to obtain.

By combing (8.1) and (8.2), the phase retrieval problem is expressed as

ϕ(x,y) = g
∂φ(x,y)

∂x
, (8.3)

where g = λd
p2

is a constant that depends on the system design parameters. A direct inte-
gration then yields the phase image

φ(x,y) = g
∫ x

0
ϕ(x′,y)dx′. (8.4)

However, due to the presence of noise, a more realistic form of the phase retrieval is

ϕ̃(x,y) = ϕ(x,y)+n(x,y) = g
∂φ(x,y)

∂x
+n(x,y), (8.5)

where ϕ̃(x,y) denotes the actual measured signal and n(x,y) represents the noise. In most
cases, the direct integration fails because of the noise accumulation and lack of knowledge
of the boundary conditions.
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Regularization-based phase retrieval method

Retrieving the phase from (8.5) can be considered as an inverse problem and can be often
solved by regularized optimization [133]. That is, to minimize the cost-function

J(φ) = ‖Dxφ −ϕ‖2
l2 +Ψ(φ), (8.6)

where Dx is the derivative operator along the x-direction. The first term of the right side is
the fidelity term and Ψ(φ) is the regularization term. In [133], we chose the regularization
term to be

Ψ(φ) = λ
∥∥Dyφ

∥∥
l1

(8.7)

in order to suppress the strips along the y-direction which is perpendicular to the x-direction.
The l1 norm is preferred because it generates more quantitative results compared to l2 norm.
Benefiting from the regularization term, it was shown that the regularization-based method
suppresses the strip artifacts significantly. The resulting phase images provide an improved
contrast-to-noise ratio (CNR) and reveal more details of the sample.

To discretize the derivative operator Dx (also Dy), the finite difference model is used
which is given by

Dxφ(i, j) =
{

φ(i+1, j)−φ(i, j) i f 1≤ i < Ni,
0 i f i = Ni

(8.8)

where i and j are discrete coordinates (pixel coordinates) and Ni is the image size in x-
direction.

The discretization model in (8.8) is very simple. In practice, our major concerns are
to get quantitative information and diagnosis-level high quality image. This requirement
calls for an accurate discretization model, and a corresponding algorithm for solving (8.6)
and handling large data effectively. Here, we replace (8.8) with a more reliable model
that uses polynomial B-splines and propose an efficient algorithm to solve (8.6) using the
constrained regularized weighted-norm algorithm which will be described in the next two
sections.

Discretization of the derivative operator using B-spline calculus

To formulate (8.5) as an inverse problem, a necessary step is to discretize the forward
model. In this regard, we use a generalized sampling scheme and represent the object φ on
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the principal shift-invariant space whose generating function is the tensor product of two
centered B-spline functions β (x),

φ(x) = ∑
k∈Z

ckβ
n(x−k) , (8.9)

where k = (k1,k2), x = (x1,x2), and β (x) is the tensor product of two centered B-spline
functions

β
n(x) = β

n(x1,x2) = β
n(x1)β

n(x2) . (8.10)

Definition 8.1. The centered B-spline is β n(x) = ∆
n+1
1 xn

+
n! , where ∆

n+1
1 is the n times appli-

cation of finite difference ∆h f = f (x+h/2)− f (x−h/2)
h and x+ = max{x,0}.

The polynomial B-splines are well-known to offer the best cost/quality trade-off among
interpolators. Since the mathematical model of our problem is based on the derivative
along the direction x1, we have

ϕ(x) = g
∂

∂x1
φ(x)

= g ∑
k∈Z

ck
∂

∂x1
β

n(x1− k1)β
n(x2− k2) . (8.11)

. This equation leads to the matrix formulation of (8.3),

ϕϕϕ = Hc, (8.12)

where c is a vector of B-spline coefficients in lexical order, ϕϕϕ is the measurement vector,
and H is the system matrix with

[H]l,k = g
∂

∂x1
β

n(l−k). (8.13)

Phase retrieving method

Now, we formulate the phase retrieving task as an inverse problem. We reformulate the
method proposed in [67] for our problem. We aim at finding c where

c = argmin
c∈C

{1
2
‖Hc−g‖2

W +λ1 ∑
i
‖{Lc}i‖1 +λ2 ‖c‖2}

︸ ︷︷ ︸
J (c)

, (8.14)
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where the sum is computed on all the B-spline coefficients and {Lc}i ∈ R2 is the gradient
vector of the image at position i. We constrain the solution through the convex set C . It
can be the restriction on the positivity of the refractive index and the information of the
boundary of the object. Here we choose the weight W as identity operator along with the
usual `2-norm.

Since the phase retrieval problem is ill-posed, we use the total variation (TV) regular-
ization term to enhance the edges in the phase image. Since the null space of the imaging
operator contains zero frequency, we also use the Tikhonov regularization term. In order
to be consistent with the discretization scheme, the discrete gradient operator is computed
using the following equations,

∂ f
∂x1

[k1,k2] = ((h1[.,k2]∗ c[.,k2])[k1, .]∗b2[k1, .])[k1,k2]

∂ f
∂x2

[k1,k2] = ((h2[k1, ·]∗ c[k1, ·])[·,k2]∗b1[·,k2])[k1,k2] (8.15)

where k1,k2 ∈Z, hi[k1,k2] = β n−1(ki+
1
2 )−β n−1(ki− 1

2 ) and bi[k1,k2] = β n(ki) for i= 1,2.
In order to solve (8.14), we use a constrained regularized weighted norm (CRWN)

algorithm with total variation regularization. We also choose parameters of the algorithm
based on the suggested parameter selection scenario in Chapter 6.

Retrieval of the object boundary

In DPC image, the background of the image is meant to be zero. It does not contribute to
quantitative information but only to noise when retrieving the phase. Therefore delineating
the boundary of the object and masking the background out can significantly reduce the
noises in the phase retrieving procedure. One advantage of grating-based imaging is the
access to the information of the intensity and phase simultaneously. In order to retrieve the
boundary of the object, we use both information.

We apply Canny edge detection on both measurements (absorption and phase). As we
are interested in the boundary of the object, we choose the first and the last detected edge
positions along each horizontal and vertical line inside the object. Afterwards, we apply
median filter along each of the four boundary curves separately in order to remove some
sudden jumps owing to not detecting some edges. We finally obtain two masks: one on
the absorption measurements and the other on the phase information. We choose their
intersection to mask the object. The constraint that is applied to the algorithm is that the
reconstructed image should be zero outside this mask.
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8.1.2 Experiments
Quantitative evaluation with tomographic dataset

It has been demonstrated in [133] that the regularization-based method works well with
simulated data. In this section we directly evaluated the proposed method using experi-
mental data. As a first step, we evaluated the quantitativeness of the proposed method.
To establish a ground-truth for comparison, we generated a phase projection from phase
tomographic dataset of a plastic phantom by forward-projection. The phase tomographic
dataset was acquired at the TOMCAT beamline of the Swiss Light Source (SLS) using
a Talbot interferometer. The differential phase signal was obtained by taking the one-
dimension derivative of the phase projection. The retrieved phase from this differential
phase projection was then compared with the ground-truth and the results were shown in
Fig.8.1. By generating the differential phase signal in this way, we included the experi-
mental noise in the image. Due to presence of the noise, quantitative recovery of the phase
is very challenging, however as shown in Fig.8.1(d), the profile comparison indicates that
the agreement between the retrived phase and the ground-truth is fair.
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Figure 8.1: Quantitative comparison on phase tomographic data. (a) The phase
projection obtained by forward-projection on a phase tomographic dataset. The
projection image was used as the ground-truth in this experiment. (b) The differ-
ential phase contrast image obtained by taking the one-dimension derivative from
the ground-truth. (c) The retrieved phase using the proposed method. (d) The pro-
file (red line in (a)) comparison between the retrieved phase and the ground-truth.

Evaluation with mammographic data

In this section, we evaluated the potentials of the proposed method in medical imaging with
mammographic data. The goal here is to show that the proposed method can yield phase
images with useful diagnostic information, which are not accessible with conventional
direct integration approach. All the data were obtained from the differential phase contrast
mammography study conducted at Paul Scherrer Institut, Switzerland and Kantonsspital
Baden, Switzerland [108, 135] and the details of the experimental system can be found
in [108].
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Biopsy sample experiment

The biopsy sample experiment was to evaluate how the proposed method works with high
SNR signals. It is considered as a benchmark experiment which can evaluate the method
without being too much intruded by the noise. The sample was a biopsy breast tissue with a
carcinoma mass. It was first fixed in 4% formalin solution and then put into liquid paraffin
for imaging in order to suppress the phase-wrapping effect at the tissue-air interface. A 32-
step phase stepping scan was performed to generate a relative high quality image. In the
whole breast sample experiment of next section, only 8 steps were used. The relationship
between the number of steps and the noise variance in DPC image is linear [136]. Therefore
the experiment here generated DPC images which were four times less noisy than in the
ex-vivo whole breast experiment.

The results are shown in Fig.8.2. Visually the DPC image in Fig.8.2(b) showes the
edges clearly; however, no quantitative comparison can be done from it. The direct inte-
grated phase image in Fig.8.2(c) contained obvious stripe artifacts. Although some struc-
tures of the sample can be distinguished due to the high SNR in this case, the artifacts
still degraded the image significantly, making it impossible to interpret. On the contrary,
the proposed method gave a strip-artifact-free phase image. The image had a similar ap-
pearance as the absorption image (Fig.8.2(a)) but with enhanced contrast and details. Pro-
file comparisons of the horizontal and vertical red lines in Fig.8.2(a) was shown in the
Fig.8.2(e) and (f), respectively. The contrast-to-noise ratio (CNR) is used as figure of
merit:

C =
Is− Ib

σb
, (8.16)

where Is and Ib were the mean values of selected ROIs in Fig.8.2(e) and (f) which represent
the signal and background, respectively, and σb is the standard deviation of the background
ROI. Note that the scales of the absorption and phase images are different since they are
completely different physical quantities.

It is clear that the phase image gives a higher contrast compared to absorption image.
Quantitatively, for the horizontal line (Fig.8.2(e), the phase CNR is 28 while the absorption
CNR is 13; and for the vertical line (Fig.8.2(f), the phase CNR is 25 while the absorption
CNR is 37. The results show that the phase image indeed can provide superior contrast
than the absorption image. Clinically it would help increase the diagnostic accuracy.
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Ex-vivo whole breast experiment

It is worth mentioning that the whole breast DPC image was formed by stitching several
smaller acquisitions together due to the limited field of view (FOV) of the current system.
Stitching artifacts were hard to avoid especially because of the sample deformation hap-
pened from time to time. Moreover, the background of each acquisition was not uniform
because of the systemic drifts during the scans. Therefore the whole breast DPC data was
“inconsistent” in the sense that not only noise corrupted the images but also the inhomo-
geneity of each block. Considering those factors as well as the large image size, the direct
integrated phase image was uninterpretable for radiologists. The structure features were
concealed in severe strip artifacts as the common case showed in Fig.8.3(c); therefore no
useful clinical information was available from the integrated phase image.

A phase retrieval example of a whole breast that would be obtained inspire of those
difficulties is shown in Fig.8.3. The sample selected here contained a large tumor mass
and many spiculations. Spiculations were strong indications of the existence of malignant
mass. For this particular sample, we want to explore what we can gain from the phase
image compared to the absorption image, therefore they are compared directly. We applied
the new algorithm to the whole image as well as a selected ROI where the carcinoma
located.

The stitching artifacts are clearly seen in Fig.8.3(b) and are especially obvious at the
background region. Those artifacts also cause inhomogeneous background in the retrieved
phase. To suppress this effect, a background mask was generated using the absorption
image as described in Section.8.1.1 and applied to the retrieved phase to create a clear
background as showed in Fig.8.3(d). To the best of our knowledge, this is the first time
ever that an image of the line integral of the phase signal from a whole breast sample
obtained with a conventional X-ray tube has been presented.

The results of the selected ROI are shown in Fig.8.4. In principle, when operating on
an ROI, the boundary conditions and thus the starting wave front profile φ(x = 0,y) for
the integration are unknown. The loss of the boundary information will worsen the strip
artifacts and even cause shadow artifacts. An equivalent effect is the “phase wrapping”
happening at the border between the skin and air. The refraction angle there is so large
that the induced fringe shift is larger than one detector pixel and therefore it cannot be
measured by the grating interferometer. This effect also causes the loss of information at
the boundaries. Usually the phase wrapping effect can be avoid by immersing the breast
in a liquid solution. However, this option is not feasible in practice and, at the end, it will
also reduce the contrast in the absorption image. Nevertheless the resulting phase image
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(Fig.8.4(b)) is quite good and the spiculations are better seen. Three lines (indicated in
Fig.8.4) across the spiculations were selected and their profiles were given in Fig.8.4(c) (d).
The profiles clearly showes that the phase image provides much higher contrast of the
spiculations compared to the absorption image.

It is worth mentioning that the contrast of the calcifications is higher in the absorption
image than in the phase image (see Fig.8.4(a) and (b)). This is because the complex re-
fractive index of the calcium is similar to the soft tissue. Detecting microcalcifications is
important for early breast cancer screening. To this extent, the phase image will not be
able to replace the absorption image completely but be a very useful complement. The
third contrast, scattering contrast, on the other hand could play an important role in mi-
crocalcification detection. The parameters only need to be be adjusted once for a given
protocol and the algorithm can then be run on the whole data set.

Comparison with former method

We also compared the new algorithm with the state-of-the-art algorithm proposed in [133]
and the comparison are shown in Fig.8.4(b) (c). The corresponding regularization param-
eter was λ = 10−3 and this parameter was decided by trial and error to find the best result.
Visually the new algorithm gave a superior results. The details were more visible due to
fewer artifacts.

8.2 Joint absorption and phase retrieval in Grating-based
X-ray radiography

A refinement upon the previous scheme is to take advantage of the high correlation be-
tween DPC (where the contrast between features is pronounced) and AC (which provides
structural details) to simultaneously retrieve PC and denoise AC. We therefore propose to
jointly retrieve the phase from the differential-phase image and to attenuate noise in the
absorption image. This is the first attempt of the nature, to the best of our knowledge.

By employing a grating interferometer, one gains direct access to the spatial derivative

g(x) =
∂φ(x)

∂x2
(8.17)

of the phase φ , where x ∈ R2 specifies spatial coordinates. The simplest approach to
retrieve φ from g is line integration. Unfortunately, the phase image thus recovered exhibits
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artifacts due to noise amplification at low frequencies. These problems are exacerbated in
the low-dose regime typically necessitated by biological tissues, which worsens the signal-
to-noise ratio.

At least two advanced phase-retrieval approaches have been proposed in the literature.
The first one, called the bidirectional method, is able to reduce stripe artifacts at the cost
of longer scanning times and high radiation doses; it needs the precise registration of two
images, along with the mechanical rotation of gratings, two requirements that are hard to
achieve [137]. Meanwhile, the second method, called nonlinear regularization, is easier
to deploy because no modification of the practical setup is required. Although it shows
promising results when a total-variation (TV) regularization is applied either in the spatial
domain [129] or in the frequency domain [134], it sometimes fails to achieve a satisfying
attenuation of the stripe artifacts and occasionally results in an insufficient contrast between
regions.

We propose here an inverse-problem approach inspired by nonlinear regularization;
more precisely, we complement TV by another regularizer that leverages the correlation
between DPC and AC. Thus, our main contributions are

• joint denoising and retrieval of the absorption and phase contrasts, respectively;

• simultaneous use of total-variation regularizer and Schatten-norm Jacobian regular-
izer to attenuate reconstruction artifacts.

We develop an alternating-direction method of multipliers to achieve our goals, guided by
B-spline calculus to finesse the necessary discretization schemes. Finally, we illustrate the
application of our method to breast tissue from real mammography data.

8.2.1 Joint absorption and phase retrieval
Forward Model

Letting ρ denote the ideal AC image, our problem is to retrieve an approximation of ρ and
φ from the forward model

{
g1(x) = ρ(x)+n1(x)
g2(x) = ∂φ(x)

∂x2
+n2(x),

(8.18)

where n1 and n2 represent the AC and DPC noise that is present in the measurements g1
and g2.
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For convenience, we discretize the forward model as

ρ(x) = ∑
k∈Z2

c1[k]β n(x−k)

φ(x) = ∑
k∈Z2

c2[k]β n(x−k),

where x ∈ R2 and where β n is the tensor product of two centered B-splines of integer
degree n. (Polynomial B-splines are known to offer the best cost/quality tradeoff among
many interpolators.) Then, the forward discretization of Eq. 8.18 is

g = Hc+n, (8.19)

where g is the vector of measurements, and

H =

[
B 0
0 Dx2

]
. (8.20)

There, B encodes the interpolation process, and Dx2 is the directional (by convention, ver-
tical) derivative operator. Moreover, c = (c1,c2) collects in a single column vector each
B-spline coefficient of Eq. 8.19 and Eq. 8.19. We say that c is the discrete representation
of the object. To be consistent with Eq. 8.18, the directional derivative operator must be
such that

∂φ

∂x2
(x) = ∑

k∈Z2

c2[k]
∂β n

∂x2
(x−k), (8.21)

which amounts to

[Dx2 ]p =
∂β n

∂x2
(p) = β

n(p1)
dβ n

dx2
(p2), , (8.22)

where p = (p1, p2). There, [·]p specifies the pth entry of a vector.
Then we formulate the retrieval procedure as an optimization problem similar to what

we explained in Section 7.3.2. We use the Jacobian regularization along with total variation
term.

Experimental Results

The purpose of this section is to provide a case where the proposed method yields absorp-
tion and phase images that contain useful diagnostic information. In particular, we want to
explore the extent to which AC and DPC are complementary and/or correlated.
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Data

We illustrate the potential of the proposed method on real mammography data that were
obtained from a differential-phase-contrast mammography study conducted at Paul Scher-
rer Institut and at Kantonsspital Baden, both in Switzerland [108]. The sample contained
many spiculations that clearly hint at the presence of a malignant mass.

Individual acquisitions had a limited field of view; this was counterbalanced by an
imaging stitching process. Unfortunately, not only did stitching artifacts arise because of
deformations in the breast tissue, but also systemic drifts during the scan resulted in a
nonuniform background.

Results

We applied the proposed method to data that contains a carcinoma, as revealed in Fig-
ure 8.5. Because of the limited field of view, the integration process for a line can be
determined only up to the (unknown) integration constant that specifies the boundary con-
ditions of the wavefront φ(x1 = 0,x2). However, one of the roles of our regularization is
to promote a consistent choice of this constant across lines, thus avoiding the worsening
of stripe and shadow artifacts. We see in Figure 8.5.b that the PC image we retrieved out
of DPC is quite good; the spiculations are easier to recognize there than in the AC image
shown in Figure 8.5.a.

At the same time, however, the micro-calcifications are better contrasted in AC than in
PC. (The early detection of micro-calcifications is an important tool for oncologists.) This
difference in the quality of contrast is to be expected since the complex refractive index of
calcium is similar to that of soft tissue, thus leading to an absence of contrast in the phase
image. It then follows that AC and PC offer truly complementary modalities. To illustrate
one possible way to take full advantage of this complementarity, we have fused AC and PC
in Figure 8.5.c, where AC corresponds to the green channel and PC to the red channel of a
color representation.

Comparison to the State-of-the-Art

We now focus on the region of interest (ROI) delineated in Figure 8.5. This allows for
a detailed comparison of the outcome of our method with that of [129]. We present the
corresponding visual results in Figure 8.6. In the PC image, we observe that the state-of-
the-art method (top right) fails to remove the stripe artifacts, while our proposed method
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(bottom right) is clearly more successful. In addition, a substantial amount of noise has
disappeared from our version of the AC image (bottom left), at no cost in the visibility of
structural details.

8.3 Conclusion
Grating-based x-ray imaging provides simultaneously absorption and differential-phase
images. Thus, the (integrated) phase image—which is the quantity of interest—must be
retrieved computationally. This retrieval is challenging, which has limited the use of the
phase in practical radiographic applications. In this work, we propose a new iterative
method to retrieve the phase image and to jointly denoise the absorption image. The present
study is a proof of concept that demonstrates that it is indeed possible to improve the clarity
of phase features that have a clinical relevance (e.g., spiculations). At the same time, the
contrast of complementary features in the absorption image (e.g., micro-calcifications) is
improved, too. This suggests that a wider deployment of joint retrieval absorption and
phase could have a beneficial clinical impact in the early diagnosis of breast cancers.
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Figure 8.2: The phase retrieval results of the biopsy sample (High SNR case). (a)
The absorption image; (b) the differential phase contrast image; (c) the phase im-
age obtained by direct integration; (d) the iterative-retrieved phase image; (e) (f)
are the profile comparisons of the vertical and horizontal lines in (a), respectively.
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Figure 8.3: The phase retrieval results of the mastectomy breast sample (Low
SNR case). (a) The absorption image; (b) the differential phase contrast image;
(c) the phase image obtained by direct integration; (d) the phase image obtained
by the proposed method. The images are showed in the best display window
selected manually to reveal as many structures as possible.
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Figure 8.4: The results of a selected ROI from the whole breast phase retrieval.
(a) The absorption image; (b) the phase image obtained by the proposed method,
(c) the phase image obtained by our former method proposed in [133]. (d)-(e),
the line profile comparisons of the lines indicated in (a).
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Figure 8.5: Top-left: denoised absorption image whose location corresponds to
ROI in Figure 8.4. Top-right: retrieved phase. Bottom-left: multichannel visual-
ization. Bottom-right: caption.



8.3 Conclusion 155

(a) (b)

(c) (d)

Figure 8.6: Top-left: raw absorption image whose location corresponds to the
ROI in Figure 8.5. Top-right: phase retrieved by [129]. Bottom-left: absorption
image after our joint denoising and retrieval process. Bottom-right: phase image
that we retrieved from the differential phase.
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Chapter 9

Single Particle Analysis: A Step
Towards Interpretation of Atomic
Models

X-ray crystallography and NMR spectroscopy allow scientists to determine 3-D structure
of the biomolecules at high resolution (1− 5 Å). These techniques are limited to small
molecules. In contrast, single particle analysis (SPA) from cryo electron microscopy (cryo-
EM) can provide the structure of molecules with sizes in wide range 10− 150 Å, e.g.,
ribosomes, proteins, and viruses. The main challenge in SPA is to improve the resolution
of 3-D reconstruction to 4 Å or better to allow for the interpretation of its atomic structure.
Single particle analysis deals with thousands of x-ray projections of identical samples (EM
images) which have been taken in several micrographs. In addition, each EM images have
been also modulated by the contrast transfer function of the microscope (CTF). In order
to improve the resolution, it is necessary to develop more sophisticated reconstruction
scheme which can also include the effect of the CTF. In this regard, we demonstrate the
proposed discretization and reconstruction framework in the context of SPA. We show that
using the proposed FFT-cost implementation of HT H improves the speed of reconstruction,
significantly. The main advantage is that the computational cost of the application of the
proposed kernel is independent of the number of orientations. Moreover, we include the
CTF into the derivation of the kernel with no additional computational cost which results

157
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in significant resolution improvements.

9.1 Physical Model
In transmission electron microscopy, high energy electrons (e.g. 100 kev) are emitted to-
ward the specimen which can be highly scattered. For example, the mean free path of
120 kev electron in vitreous ice is around 2800 Å. This is the reason why one can only
image thin specimens using transmission electron microscopy. The de Broglieu wave-
length associated to an accelerated electron with 100 key energy is λ = 0.037 Å. Although
imaging with short wavelength particles (electron or electromagnetic waves) can provide
high resolution images, the lens aberration limits the resolution. Today’s highest resolution
transmission electron microscopy are on the order of 1−2 Å.

Electrons scatter in air. Consequently, the transmission electron microscope should
operate in a vacuum media. However, naturally hydrated state of the biological specimens
is incompatible with being in vacuum media. The cryo electron microscopes solve this
incompatibility. In cryo-EM the sample is embedded in vitreous ice. This makes it possible
to obtain images of fully hydrated macromolecules.

9.1.1 The Weak-Phase Object Approximation in cryo-EM
In our analysis, we assume that the object of interest is a phase object, so that it does not
attenuate the transmitted wave. From the wave-optical point of view, the object introduces
a phase shift Φ(y) in the interacted electron beam. The phase shift is linked to the x-ray
transform of the real part of the refractive index of the object,

Φ(y) =
2π

λ

∫
α(y,z)dz , (9.1)

where λ the wavelength, α the imaginary part of the refractive index, z is the optical axis,
and y specifies a coordinate on a plane perpendicular to the optical axis. If the incoming
field is a plane wave, u0(y,z) = exp(jk z), then the wave function exiting the specimen is

u(y,z) = u0 exp(jΦ(y)) . (9.2)

Using the Taylor series of the exponential function, one can rewrite it as

u(y,z) = u0

[
1+ jΦ(y)− 1

2
Φ

2(y)+ · · ·
]
. (9.3)
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Under the weak-phase object approximation, Φ(y)� 1, the wave function (9.2) is approx-
imated by its first two taylor terms,

u(y,z) = u0 [1+ jΦ(y)] . (9.4)

The Equation (9.4) interprets the received wave function as the sum of an unmodified wave
function and a scattered wave. The scattered wave is 90 ◦ out of phase with respect to the
unmodified wave.

In the imaging mode of the transmission electron microscopy, the image plane is placed
far from the object and the observation is obtained close to the optical axis. These condi-
tions are well-matched to the Fraunhofer approximation of the diffraction theory. Conse-
quently, the measured wave function is the Fourier transform of the wave equation (9.4).
The imaged plane is placed in the back-focal plane of the objective lens. Since the applied
lens is not ideal, it introduces a deflection on the transmitted wave. This aberration can
be modeled as a frequency-dependent phase shift on the Fourier transform of the wave
function u. Moreover, the aperture performs as a low-pass filter whose cut-off frequency
depends on its size and the wavelength of the transmitted wave. Its frequency response
A(ω) is

A(ω) =

{
1 for‖ω‖ ≤ 2π

λ
θ1 ,

0 elsewhere .
(9.5)

where θ1 is the angle that corresponds to the radius of the objective aperture. Then, the
wave function on the imaging plane in the Fourier domain can be written as

ûz(ω) = F{u(·,z)}(ω)A(ω)exp{jγ(ω)} , (9.6)

where ω the frequency coordinate, and γ(ω) = 2πχ(ω). The wave aberration function χ

in a polar coordinate system is

χ(ω,φ) =−1
2

λ

[
∆z+

za

2
sin(2(φ −φ0))

]
ω

2 +
1
4

λ
3Csω

4

ω = ‖ω‖ , φ = tan−1(ω1,ω2) . (9.7)

Note that the detector measures the intensity of the received wave,

I(y) = |uz(y)|2 . (9.8)

Investigating the relation of the measured intensity with the phase function Φ and the
properties of the optical systems is the subject of contrast transfer theory [138–142]. Here,
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we briefly derive the mathematical relation between the object of interest and the received
intensity. The Fourier transform of the wave function (9.4) is

û(ω) = exp(jk z)(δ (ω)+ jΦ̂(ω)) . (9.9)

By replacing Eq. 9.9 in Eq. 9.6, the wave function on the imaging plane in the Fourier
domain is

ûz(ω) = exp(jk z)(δ (ω)+ jΦ̂(ω))A(ω)exp{ jγ(ω)}
= exp(jk z)

(
δ (ω)− Φ̂(ω)A(ω)sin(γ(ω))+ jΦ̂(ω)A(ω)cos(γ(ω))

)
. (9.10)

Accordingly,

uz(y) = exp(jk z)
(
1−
(
Φ(·)∗F−1 {A(·)sin(γ(·))}(·)

)
(y)+ j

(
Φ(·)∗F−1 {A(·)cos(γ(·))}(·)

)
(y)
)
.

(9.11)

By making the weak phase object assumption, we neglect the higher order terms of the
phase shift Φ so that

Î(ω) = δ (ω)−2Φ̂(ω)A(ω)sinγ(ω) . (9.12)

The function sinγ(ω) is called the phase contrast transfer function (CTF). According
to (9.7), the rate of oscillation of the function γ increases with respect to the frequency. In
summary, the measurement is linked to the convolution of the x-ray transform of the real
part of the refractive index of the object with the point spread function of the microscope
(aberration of the lens and the aperture limitation),

g(y) =
I(y)−1

2
= (P{α}(·,θ)∗hi(·))(y) , (9.13)

where hi is the point spread function of the microscope whose Fourier transform is the
microscope is CTF (ĥi). Since the CTF can vary from one particle to the other, we indexed
h by the particle number i. The CTF is typically a plateau followed by a rapid oscillation.
Its main effect on the measured information is a combination of limiting the resolution by
low-pass filtering and high-pass distortion by its rapid oscillations. Owing to the fact that
the CTF has several zeros whose frequencies depend on the defocus position, typically
several micrographs are imaged in different defocus positions such that the measurements
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cover the whole frequency. Consequently, the CTF can be different from one micrograph
to the other. In practical situation where the electron beam is partially coherent, the CTF
dampens in the high spatial frequencies. It can be modeled as a factor in the CTF function:

ĥ(ω) = E(ω)A(ω)sin(γ(ω)) , (9.14)

where the dampen function E is modeled as an exponential function; we refer the reader to
these references [143, 144] for more information.

9.2 General Overview
Single particle analysis deals with 2-D images taken from 3-D frozen-hydrated identical
particles with random orientations. Note that in SPA, the radiation dose is limited in order
to reduce the damage on the particles. Consequently, the measurements have extremely
low signal-to-noise ratio. It makes the 3-D structure determination of the specimen a com-
plicated and challenging process.

9.2.1 Iterative Refinement
In order to reconstruct the 3-D structure of the macromolecules, it is demanded to estimate
the position and orientation of each image. The positions and orientations are estimated
by random-conical tilt techniques or common-lines based approaches. The images are
classified and partitioned based on their similarity in the viewing angle and then averaged
over whole class to enhance the signal-to-noise-ratio (SNR). The enhanced SNR images
are used to reconstruct the initial volume as shown in Figure 9.1.

Then the resolution of the initial volume is improved through a series of refinement iter-
ation. The projections of the reconstructed volume along a given set of orientations are
computed. These projections are used to reestimate the positions and orientations of the
collected images. Then, the refined volume is reconstructed. The iteration continues up to
convergence. The convergence is when the mean square error between the projection of the
reconstructed volume along the estimated orientations and the measurements is minimized.
According to the above explanation, a fast and accurate reconstruction scheme is crucial
component for initial volume and refinement reconstruction, as depicted in Figure 9.2.
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Figure 9.1: First, several micrographs are collected in single particle analysis.
The particles are detected, aligned and classified. Each class average is computed
to provide images with sufficient signal-to-noise-ratio. The initial volume is re-
constructed.

9.2.2 Literature review

Several iterative and non-iterative reconstruction techniques have been developed in the
context of SPA. Among the iterative techniques, algebraic reconstruction technique (ART) [145,
146] and simultaneous iterative reconstuction technique (SIRT) [147] are the pioneers.
These techniques find the optimal volume in the sense of the least square error. The ad-
vantage of iterative techniques is that they allow us to incorporate of prior information
and positivity constraints. Their disadvantage is the high computational cost which makes
them extremely slow in comparison with the direct reconstruction techniques. Recently,
more sophisticated iterative scheme have been developed in the context of SPA [148,149].

From the computational time point of view, direct reconstruction techniques are more
favorable. Among them, weighted back projection approach (WBP) [150–152], Gridding
direct fourier reconstruction (GDFR) [153], and nearest neighbor direct inversion recon-
struction algorithm (4NN) [154, 155] are used in the context of SPA. These techniques
are limited to the cases where there is no major gap among the viewing directions of the
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Figure 9.2: To improve the resolution of the initial reconstructed volume, several
refinement iterations are performed. In each iteration, the orientations and posi-
tions of the particles are re-estimated and the volume of interest is reconstructed.

images.
Note that the measurements are not only the projections of the particles. They are also

modulated by the contrast transfer function of the microscope whose functionality is highly
dependent on the defocus distance. This degrades the performance of the reconstruction
scheme. It is necessary to incorporate the contrast transfer function into the reconstruction
procedure to enhance the resolution of the reconstruction.

In this regard, one can 1) first reconstruct the object using each defocus group (the
measurements with the same defocus distance) and then correct the CTF effect by smartly
combining the reconstructions, Or 2) first correct the CTF effect and then reconstruct the
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object of interest. In order to correct the CTF effect, the Wiener filter is applied to find the
least square solution. These techniques perform the reconstruction and the CTF correction
separately [156, 157].

In contrast, Penczek et al. incorporated the CTF model into the forward imaging op-
erator and then applied an ART in order to retrieve the object of interest [158]. Their sim-
ulation results suggest that the incorporation of the CTF into the forward imaging model
outperforms the techniques which separate both steps. The computational time in this
technique is extremely high which is its main drawback. Afterwards, the direct approach
4NN is modified such as to handle CTF correction and object reconstruction simultane-
ously [154, 155]. Recently, Wang et al. incorporate the contrast transfer function in the
forward imaging operator. They formulate the reconstruction as an optimization problem
without introducing any regularization. To speed-up the implementation process, they take
advantage of the non-uniform FFT.

9.2.3 Contrast Transfer Function Correction

In order to improve the resolution of the determined 3-D structure of the specimen, it is
necessary to correct the effect of CTF on the measurement. Since there are several zeros
in the CTF, one cannot correct its effect by simple division. As discussed before, in the
two-step reconstruction scenarios, the traditional way to correct the CTF effect can be a
simple phase flipping or the application of a more complicated Wiener filter.

Phase Flipping

The CTF modifies the phase and the amplitude of the Fourier transform of the projection of
the particle (9.14). Since the CTF oscillates between negative and positive values, a simple
scheme can be correcting the phase with the following formulation

ĝ(ω) =

{
−ĝ(ω) For ĥ(ω)≤ 0
ĝ(ω) For ĥ(ω)≥ 0 .

(9.15)

Then ĝ(ω) has the correct phase information; however, the amplitude of the projection is
still distorted.
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Wiener Filtering

The idea behind the Wiener filter solution is to find the linear estimator that minimizes the
mean square error. Let us denote the measurement corresponding to the i-th particle by gi.
It has been modulated by the CTF, hi. We assume that the measurements are corrupted by
additive Gaussian noise and that the noise is independent of the signal. Then, the linear
least square estimator in the frequency domain is in the form of

ĝi(ω) =
ĥ∗i (ω)

|ĥ(ω)|2 +PN(ω)/Pg(ω)
ĝi(ω) , (9.16)

where PN and Pg are the power spectra of noise and the projection, respectively. Note that
the transcription of the proposed estimator in the object domain for merging the recon-
structed objects from different defocus groups involves using the contrast transfer function
in the object domain in combination with the power spectra of the noise in the object do-
main and the power spectra of the object.

9.3 Reconstruction framework
Here, we aim at formulating the reconstruction as an inverse problem in order to incor-
porate the CTF correction inside the reconstruction framework. We develop a fast and
accurate reconstruction algorithm. Interestingly, one of our important finding is that the
incorporation of the CTF in the forward imaging operator using the proposed framework
is performed without additional computational cost for each iteration. In addition, the pro-
posed framework allows to impose the prior information and positivity constraints on the
reconstruction.

9.3.1 Discretization scheme
We assume that the orientations, positions and the corresponding contrast transfer functions
are known for measured particles. We aim at reconstructing the volume using the given
measurements

gi(y) = (P{ f}(·,θi)∗hi(·))(y) , (9.17)

where i is the particle number. The measurements are the x-ray transform of the object
of interest f along different orientations which have been also modulated by the contrast
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transfer function. In order to formulate the reconstruction as an inverse problem, we first
need to discretize the imaging operator. We use the discretization scheme presented in
Section 3.1. The reconstruction space
V = { f (x) = ∑k∈Z3 c[k]ϕ(x−k)} is specified by the choice of the generating function ϕ .
The coefficient vector c is considered as the discrete representation of the object.

To discretize the forward imaging operator, we recall the matrix formulation (3.6).
The x-ray transform of function f using the pseudo shift-invariant property of the x-ray
transform (2.17) is written as

P{ f}(y,θ) = ∑
k∈Z3

c[k]P{ϕ}(y−P
θ⊥i

k,θ) . (9.18)

In practice, the measurement gi is acquired in the sampled points y j = j∆ where ∆

specifies the sampling step. For simplicity in the notation, we assume ∆ = 1. Based on the
presented discretization scheme, the entries of the system matrix corresponds to the x-ray
transform along the orientation θi is

[Hi]j,k = P{ϕ}(j−P
θ⊥i

k,θi) . (9.19)

As described in the physical model, the measurements are the filtered version of the
x-ray transform of the particles by the contrast transfer function of the microscope. Ac-
cordingly, the discrete model of the CTF operator can be in the form of a circulant matrix
Ki in the discrete space. Then, the matrix form of the imaging operator is

KiHic = gi , ∀i = 1, · · · ,N . (9.20)

In the classical approach, the reconstruction is done in two steps. First, each orien-
tation is deconvolved to retrieve the x-ray transform of the object and then, the practical
algorithms for inverting the x-ray transform is applied. The drawback of this approach is
that there is no direct deconvolution step owing to the non-empty null space of the CTF
operator and the noisy measurements. On the other side, using more sophisticated ap-
proaches (iterative algorithms) for doing deconvolution is very costly because there are
thousands of orientations in single particle analysis. Our approach is to treat the two task
simultaneously, as explained next.
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9.3.2 Image Reconstruction

Linear inverse problem formulation

The discrete form of the imaging operator of the single particle analysis can be written in
the form of

Htotc = g , (9.21)

where

g =




g1
g2
...

gN


 , Htot =




K1H1
K2H2

...
KNHN


 . (9.22)

We aim at finding c such that

c = argmin
c∈C

{
1
2
‖Htotc−g‖2 +λΨ(c)

}
, (9.23)

where Ψ is the regularization and C is a convex constraint, e.g., positivity of the the object
of interest. In order to minimize (9.28), we use the reconstruction algorithms ADMM-
PCG and CRWN introduced Chapter 4. As we discussed in the Chapter 5, the main com-
putational cost of each iteration is the matrix-matrix multiplication HT

totHtotc that can be
expanded as

HT
totHtotc =

N

∑
i=1

HT
i KT

i KiHic . (9.24)

Since Ki is a circulant matrix, the matrix KT
i Ki is also circulant. According to Theo-

rem 5.3, if ϕ satisfies the radial Nyquist criteria, then the matrix-matrix multiplication
HT

i KT
i KiHic can be calculated using a discrete convolution (c∗kernel) where ∗ is a con-

volution operator. This is our crucial observation for our approach. The kernel is computed
with the use of (5.29) and is given by

yθi [k] = (Pϕ(·,θi)∗ k(·)∗Pϕ(−·,θi)∗ k(−·))(P
θ⊥i

k) . (9.25)

The fact that the matrix HT
totHtot is poorly conditioned, which makes the inverse problem

challenging.
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Conjugate-gradient based linear inverse problem formulation

The measurements are modulated by the contrast transfer function of the microscope. A
simple CTF correction is flipping the phase of the measurement in the frequency space in
which the CTF has negative values. The flipped phase CTF and the measurement vector
are denoted by K+

i and g+i . Then, the matrix formulation of the of the forward model is

K+
i Hic = g+i , ∀i = 1, · · · ,N . (9.26)

Since K+
i is a semi-positive definite operator, one can reformulate (9.26)

HT
i K+

i Hic = HT
i g+i , ∀i = 1, · · · ,N . (9.27)

We then propose the volume of interest is reconstructed by minimizing the modified cost
function,

J (c) =





1
2

cT Ac− cT
N

∑
i=1

HT
i g+i

︸ ︷︷ ︸
D(c)

+λΨ(c)





, (9.28)

where

A =
N

∑
i=1

HT
i K+

i Hi . (9.29)

Now, the matrix A is positive definite, then the data fidelity term is a convex function.
By using a convex regularization, one can use any convex optimization to reconstruct the
volume. The Gradient of the data fidelity term D(c) is

∇D(c) = Ac−
N

∑
i=1

HT
i g+i . (9.30)

Note that the condition number of the system matrix A is better than the condition
number of HT

totHtot. This yields better convergence speed. If ϕ satisfies the radial Nyquist
criteria, then one can implement Ac using FFT s. The corresponding kernel is

y[k] = ∑
i

yθi [k] = ∑
i
(Pϕ(·,θi)∗ k+(·)∗Pϕ(−·,θi))(Pθ⊥i

k) . (9.31)

We use ADMM-PCG to minimize the cost function (9.28) described in Algorithm 2.
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9.4 Experimental result
To validate the proposed reconstruction scheme, we conduct two experiments in the context
of single particle analysis. The first one is on a simulated dataset and the second one is on
a real dataset.

9.4.1 Implementation details
In all experiments, we use total variation as regularization. The ADMM-PCG algorithm is
applied to reconstruct the volume by minimizing the cost function (9.28). The positivity
constraint is imposed on the solution. A kaiser Bessel window function with radius support
4 and parameters α = 19 and m = 2 is used as generating basis function. We run the
experiment for twenty outer iterations and three inner iterations.

We compare the reconstruction using our reconstruction framework with the standard
Xmipp solution. The software Xmipp is one of the well-known software in the context
of electron microscopy. It uses an optimized version of Fourier gridding techniques. We
remark that our proposed framework has been also completely implemented in the Xmipp
software.

9.4.2 Performance metric
To evaluate the performance of the proposed framework, we first compare the reconstruc-
tions visually by looking at the slices side by side. For the simulated dataset, we measure
the resolution of the reconstructions using Fourier shell correlation. The Fourier shell cor-
relation is defined by

FSC(f1, f2) =
∑k f̂1[k] · f̂∗2[k]√

∑k |̂f1[k]|2 ·∑k |̂f∗2[k]|2
, (9.32)

where f̂ is the discrete Fourier transform of the volume f. For more information, we refer
the reader to [159].

9.4.3 Simulation-based analysis
The simulated dataset is produced as follows: The 3D density map of the 50S ribosome
subunit bound with ObgE with pixel size 1.5 Å is generated using the structure 4csu.pdb
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(Figure 9.3 (a-c)). The size of the density map is 256× 256× 256. A set of 2-D images
are obtained by computing the x-ray transform of the density map along 300 random ori-
entations using Xmipp software. Each image is modulated by a realistic contrast transfer
function and then corrupted by additive Gaussian noise. Example of collected images are
depicted in Figure 9.3 (d).

The volume is reconstructed using Xmipp with Fourier gridding and also with our
proposed framework. The reconstructions are shown in Figure 9.4. The Fourier shell
correlation is evaluated for the reconstructed volumes. The results show that the 0.5 FSC
resolution of the reconstruction using ADMM-PCG (3.57 Å) is around 1.5 times better than
the Fourier-based reconstruction (5.55 Å) when we assume the measurements are only the
x-ray transform of the particle. Our method improves the performance even further when
we consider CTF (around two times improvement of the resolution).

9.4.4 Real data experiment
We then run an experiment on a real SPA dataset. The dataset corresponds to the Bovine
papilloma virus type 1. The human papilloma virus is a Baltimore Class I virus. The
genome is double stranded circular DNA surrounded by an icosahedral capsid; it has 60
fold symmetry. The orientations, positions, and microscope contrast transfer functions are
estimated by running the standard workflow of the Xmipp software. We considered three
micrographs with three different defocuses. There are 245 EM-images. The projections
are down-sampled by factor 2 and the volume is with 2.474 Å resolution. The size of
the volume is 256× 256× 256. Since the virus has 60 fold symmetry, the projection
measurements are replicated 60 times considering its symmetry coordinates.

The volume is reconstructed using our method and the Xmipp traditional technique.
The results are depicted in Figure 9.5. It suggests that the direct reconstruction frameworks
performs poorly in high resolution reconstructions.

9.4.5 Implementation remarks
Symmetry volumes

In the case of volumes which is M-fold symmetry, one can replicate the measurements
along its symmetry coordinates. This way of implementations increases the computational
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cost of the kernel and the application of the adjoint of the x-ray transform on the mea-
surement vector by factor M. Let us denote the volume by v and represent its symmetry
properties through a set of rotation operators Ri , ∀i = 1, · · · ,M; equivalently,

v = Riv , ∀i = 1, · · · ,M . (9.33)

In order to improve the performance of the calculation of the kernel and the application of
the adjoint of the x-ray transform on the measurement vector, Instead, one can compute
them as follows:

b̃ =
M

∑
j=1

R jb

rtot =
M

∑
j=1

R jr , (9.34)

where b = ∑
N
i=1 HT

i g+i and r is the kernel corresponds to the given set of orientations.

Application of the adjoint of the x-ray transform on the measurement vector

In the proposed framework, the main computational cost is the pre-computation of the
kernel and the application of the adjoint of the x-ray transform on the measurement vec-
tor, ∑

N
i=1 HT

i g+i . In order to apply the adjoint operator on the measurement vector, we use
the algorithm given in Section 3.1.2. This is computationally heavy. To reduce its com-
putational time, we reinvestigate the application of the adjoint of the x-ray transform for
specific orientation, θ on a given measurement vector g. The operation can be written in
the form of

f̃[k] = ∑
j∈Z2

g[ j1, j2]P{ϕ}( j1−〈r1,k〉 , j2−〈r2,k〉 ,θ)

=

(
∑

j∈Z2

g[ j1, j2]P{ϕ}( j1− i1, j2− i2,θ)

)

i1=〈r1,k〉,i2=〈r2,k〉

. (9.35)

In order to speed up its computational cost, one can first convolve the measurement
vector g with the kernel P{ϕ}, computes its values on a fine grid, and stores it in a
look-up table. Then, its values on points (〈r1,k〉 ,〈r2,k〉) are computed using a simple
interpolation procedure.
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9.5 Conclusion
We formulated the reconstruction from several noisy micrographs in single particle analy-
sis as a constrained regularized optimization. We were able to directly include the contrast
transfer function in the system matrix without any extra computational cost. The experi-
mental results suggested that our approach brings a significant improvement in the quality
of the reconstruction. Our framework also provided an important step toward the applica-
tion of SPA for the atomic interpretation of macromolecular models. The corresponding
algorithms have been implemented in Xmipp.
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Figure 9.3: (a) 4CSU, 50S ribosome subunit count with ObgE with 1.5 Å, (b)
4CSU density map, (c) some slices of the volume, (d) the x-ray transform of
the density map modulated by a realistic CTF is computed. It then corrupted by
additive Gaussian noise.
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(a) (c)

(b) (d)

(e) (f)

Figure 9.4: The reconstructed volume using ADMM-PCG and its slices are de-
picted in (a) and (b), respectively. The correspondent images using Xmipp tech-
nique are shown in (c) and (d). The Fourier shell correlation (e), (f) shows the
significant improvement of using ADMM-PCG in comparison with the Xmipp
technique in two different scenarios: 1) there is no CTF, 2) there is a CTF.
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Figure 9.5: The Bovine papilloma virus type 1 (a). The reconstructed volume
using ADMM-PCG and its slices are depicted in (b) and (c), respectively. The
correspondent images using Xmipp technique are shown in (d) and (e).
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Chapter 10

Conclusion

In this thesis, we developed high performance and competitive reconstruction frameworks
in the context of straight-ray imaging modalities. Here, we first summarize the main re-
search directions. We then present our results in the context of grating-based imaging
(GI) and single particle analysis (SPA). Then, potential areas of interest for future research
related to our work are listed in the last section.

10.1 Summary of Results

10.1.1 Reconstruction Framework

Our approach is based on 1) a rigorous discretization of the forward model using a gener-
alized sampling scheme; 2) a variational formulation of the reconstruction problem; and 3)
iterative reconstruction algorithms that use the alternating-direction method of multipliers.

• Discretization Scheme: In order to formulate the reconstruction as an inverse prob-
lem, one requires to discretize the imaging operator. In this regard, we specified the
reconstruction space as V = { f (x) = ∑k c[k]ϕ(x−k)}. We considered the coeffi-
cient vector c as discrete representation of the object of interest. The discretization
problem was summarized in the choice of basis function ϕ . We investigated box
splines and kaiser-Bessel window functions as two main families.
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The choice of the box spline generator should be determined by computational and
approximation theoretic considerations. Basis functions with larger support and
smoothness usually offer better approximation quality, but they also require more
computations. This suggests the possibility of a tradeoff between approximation
order and the density of the reconstruction grid. In particular, it demonstrated that
it is computationally advantageous asymptotically to switch to a higher-order basis
function than to increase the sampling rate. Tensor-product B-splines constitute a
preferred set of basis functions because they are made up from univariate B-splines
building blocks which are widely studied and efficient to evaluate. We should note,
however, that the present box spline framework includes other non-separable basis
functions with increased isotropy (e.g., Zwart-Powell box spline) and same approx-
imation order, but lower polynomial degree and smaller support than their tensor-
product counterparts.

Kaiser-Bessel window functions (KBWF) are isotropic. The projections of isotropic
functions are independent of the viewing angle. Therefore, they are attractive candi-
dates as generating functions of principal shift-invariant spaces for discretizing the
imaging operators. The generalized Kaiser-Bessel window function is widely used
in the context of straight-ray imaging. There are several parameters for KBWFs that
should be adjusted. In this thesis, we proposed a measure to determine the perfor-
mance of a basis function for the discretization scheme. Furthermore, we suggested
a method to optimize the parameters of the KBWF based on this measure. By nu-
merical experiments, we confirmed that using the proposed method improves the
performance of the discretization scheme.

For a fixed support, B-spline functions have a better order of approximation than
Kaiser-Bessel window functions (KBWFs). We showed that, by adjusting the taper
parameter of KBWF using the proposed approximation-theoretic framework, these
functions perform almost as well as B-splines. In two-dimensional tomography or
three-dimensional tomography with fixed rotation axis, B-splines are preferable ow-
ing to their order of approximation. In addition, the separability of the tensor product
of cubic B-spline functions allows one to decompose the different three-dimensional
reconstruction in parallel-beam geometry with fixed rotation axis into some easier
two-dimensional and one-dimensional subproblems. It results in the development
memory-efficient reconstruction framework. In the three-dimensional problem with
random orientations, the implementation of the x-ray transform using B-splines is
too complicated and it is therefore more practical to use KBWFs.
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Note that, the approach is applicable with minor adjustment to non-parallel geome-
tries as long as the projections are line integrals or obtained by taking “point” mea-
surements (i.e., ideal samples) of the Radon transform, or, with a very slight ex-
tension, that all the rays hitting one detector (pixel) are parallel. Since the Radon
transform of the B-spline/box spline is available to us in closed-form, the handling
of a non-parallel geometry then essentially amounts to a proper bookkeeping of the
angles: For every ray angle in the non-parallel geometry, the proper ray direction
in the parallel geometry can be looked up. The hypothesis of pure line integrals is
implicit to all the discretization methods that we are aware of.

• Variational formulation and iterative reconstruction: We formulated the recon-
struction of straight-ray tomograms as a constrained optimization problem. To im-
prove the quality of the reconstruction, we took advantage of total-variation regular-
ization and its higher-order variants. In addition, the prior information on the support
and the positivity of the refractive index were both considered. We showed that side
information such as the support-related constraints and positivity of the refractive
index can significantly improve the quality of reconstruction. We introduced itera-
tive algorithms that use the alternating direction method of multipliers to solve our
constrained regularized reconstruction problem. In addition we derived an impor-
tant practical twist which is the introduction of a problem-specific preconditioner.
We showed that it significantly speeds up the quadratic optimization step of the al-
gorithm. One can obtain a reasonable reconstruction in few number of iterations
using the proposed reconstruction scheme. This is an important issue in practical
applications. In order to speed-up the reconstruction even further, we reduced the
computational cost of each step by exploring the structure of HT H. We showed that
under some conditions the operator HT H is indeed a digital convolution in which
one can take advantage of FFT for implementation.

The two challenging applications to which we applied the methods of our framework are
grating-based x-ray imaging (GI) and single-particle analysis (SPA).

10.1.2 Grating-based X-ray Imaging

Up to now, in-vivo tomography with grating interferometry faces the challenge of large
dose deposition, which potentially harms the specimens e.g., in small rodent scanners.
To reduce the total scanning time, we first demonstrated the reconstruction framework
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in GI. We presented experimental results to validate the proposed discretization method
and corresponding iterative technique. Our finding confirms that the proposed method is
quite competitive for solving TV-regularized problems. Moreover, our method allows for a
substantial dose reduction while preserving the image quality of FBP-type method. This is
a crucial step towards the diffusion of DPCI in medicine and biology. We then improved the
reconstruction framework even further by considering the correlation between the phase
and absorption measurements. We added Jacobian-type regularization to simultaneously
reconstruct phase and absorption. The experimental results confirmed the power of our
method.

Unlike DPC tomography where the phase information can be recovered effectively by
reconstruction algorithm, retrieving phase image from DPC projection remains challenging
and limits the exploration of the advantages of the phase information in radiographic appli-
cations. We used the proposed iterative algorithm for differential phase contrast imaging.
The algorithm utilized a novel discretization model of differential operator using B-spline
calculus. The algorithm was evaluated with breast biopsy and mastectomy samples. The
present study demonstrated that DPC signal is indeed capable of providing higher contrast
in clinical relevant features, like the spiculation etc. These results could help to improve
breast cancer diagnosis.

In addition, we proposed a new iterative method to retrieve the phase image and to
jointly denoise the absorption image. The present study is a proof of concept that demon-
strates that it is indeed possible to improve the clarity of phase features that have a clinical
relevance (e.g., spiculations). At the same time, the contrast of complementary features
in the absorption image (e.g., micro-calcifications) is improved, too. This suggests that a
wider deployment of joint retrieval absorption and phase could have a beneficial clinical
impact in the early diagnosis of breast cancers. Our algorithms have been implemented in
the TOMCAT laboratory of the Paul Scherrer Institute.

10.1.3 Single Particle Analysis
In the context of near-atomic-resolution SPA, we need to cope with hundreds or thousands
of noisy projections of macromolecules onto different micrographs. Moreover, each pro-
jection has an unknown orientation and is blurred by some space-dependent point-spread
function of the microscope. Consequently, the determination of the structure of a macro-
molecule involves not only a reconstruction task, but also the deconvolution of each pro-
jection image. We formulated this problem as a constrained regularized reconstruction.
We were able to directly include the contrast transfer function in the system matrix with-
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out any extra computational cost. The experimental results suggested that our approach
brings a significant improvement in the quality of the reconstruction. Our framework also
provided an important step toward the application of SPA for the atomic interpretation of
macromolecular models. The corresponding algorithms have been implemented in Xmipp.

10.2 Outlook
The research presented in this thesis opens several interesting directions for future investi-
gation. Some of them are listed below.

• Optimal scenario for radiation dose reduction: The radiation dose reduction can
be achieved by either a reduction in the intensity of the photons or in the number
of projection angles. In the context of grating-based imaging, we investigated the
scenario in which the number of projection angles is reduced. The question is what
the optimal strategy to reduce the radiation dose is? What is the optimal intensity
of the photons and the number of projection angles while using the proposed re-
construction frameworks in the context different straight-ray imaging modalities? It
is worthwhile to investigate this problem mathematically and also to validate it by
conducting some real experiments.

• Optimal regularization parameters: One of the main challenges in the regularized
formulation of the reconstruction is the adjustment of regularization parameters. In
the context of differential phase contrast tomography, we presented a candidate for
the parameters. It is worthwhile to extend the proposed framework to straight-ray
imaging modalities. In addition one can propose a new candidate for the optimal
regularization parameter in the context of straight-ray imaging.

• Generating function ϕ with radial Nyquist criteria: We showed that if the basis
function ϕ satisfies the radial Nyquist criteria, then HT H is a digital convolution. We
then investigated B-splines and Kaiser-Bessel window functions as the ones which
approximately satisfy the necessary condition. It is an interesting question to con-
sider the shift invariant space introduced by a generation function ϕ which satisfies
the necessary condition. The goal of this research direction is to investigate theoret-
ically the space generated by a function ϕ that is a band-limitted function.

• Extension to diffraction tomography: We proposed a discretization scheme using
generalized sampling. We showed that in the context of parallel beam imaging,
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HT H is a digital filter under radial Nyquist condition. The next step is to extend
this philosophy in the context of diffraction tomography. The derivation of efficient
solutions to these problems are important in the context of optical tomography, based
on the results obtained in this thesis.

• Speeding up the matrix-vector multiplication of HT g (back-projection opera-
tor): In order to speed-up the proposed reconstruction framework, we derived the
necessary conditions to reduce the computational cost of the matrix-vector multipli-
cation HT H in each iteration. Since the back projection of the measurement vector
is precomputed and then is used in each iteration, we didn’t investigate this operator
in this thesis. It is likely that future research will investigate to reduce the computa-
tional cost of HT g.

• Orientation estimation and initial volume reconstruction in single particle anal-
ysis: Single particle analysis deals with thousands of projection images of identical
particles with random orientations. In order to reconstruct the 3-D structure of the
macromolecules, it is demanded to estimate the position and orientation of each im-
age. The positions and orientations are estimated by random-conical tilt techniques
or common-lines based approaches. The images are classified and partitioned based
on their similarity in the viewing angle and then averaged over whole class to en-
hance the signal-to-noise-ratio (SNR). The enhanced SNR images are used to recon-
struct the initial volume. It is advantageous to involve the proposed reconstruction
framework in orientation estimation and initial volume reconstruction.



Bibliography

[1] M. C. Teich and B. E. A.Saleh, Fundamentals of photonics, Wiley Interscience,
1991.

[2] D.Attwood, Soft X-rays and extreme ultraviolet radiation: principles and applica-
tions, Cambridge university press, 1999.

[3] C. Bouman and K. Sauer, “A unified approach to statistical tomography using coor-
dinate descent optimization,” IEEE transactions on image processing : a publica-
tion of the IEEE Signal Processing Society, vol. 5, no. 3, pp. 480–92, 1996.

[4] T. M. Benson, B. De Man, and J. Thibault, “Block-based iterative coordinate de-
scent,” in IEEE Nuclear Science Symposuim & Medical Imaging Conference. Oct.
2010, Ieee.

[5] F. J. Beekman and C. Kamphuis, “Ordered subset reconstruction for X-ray CT,”
Physics in medicine and biology, vol. 46, no. 7, pp. 1835–44, 2001.

[6] N. H. Clinthorne, T. S. Pan, P. C. Chiao, W. L. Rogers, and J. Stamos, “Precondi-
tioning methods for improved convergence rates in iterative reconstructions.,” IEEE
transactions on medical imaging, vol. 12, no. 1, pp. 78–83, Jan. 1993.

[7] S. Ramani and J. A. Fessler, “A splitting-based iterative algorithm for accelerated
statistical X-ray CT reconstruction,” IEEE Transactions on Medical Imaging, vol.
31, no. 3, pp. 677–688, 2012.

[8] V. N. Ingal and E. A. Beliaevskaya, “X-ray plane-wave tomography observation of
the phase contrast from a non-crystalline object,” Journal of Physics D: Applied
Physics, vol. 28, no. 11, pp. 2314–2317, 1995.

183



184 BIBLIOGRAPHY

[9] T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W.Wilkins, “Phase-
contrast imaging of weakly absorbing materials using hard x-rays,” Nature, vol.
373, pp. 595–598, 1995.

[10] D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmr,
Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced X-ray imag-
ing,” Physics, Medicine and Biology, vol. 42, pp. 2015–2025, 1997.

[11] U. Bonse and M. Hart, “An X-ray interferometer,” Applied Physics Letters, vol. 6,
no. 8, pp. 155–156, 1965.

[12] A. Momose, T. Takeda, Y. itai, and K. Hirano, “Phase-contrast x-ray computed
tomography for observing biological soft tissues,” Nature Medicine, vol. 2, pp.
473–475, 1996.

[13] T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and
E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express,
vol. 13, no. 16, pp. 6296–6304, 2005.

[14] A. Snigirev and I. Snigireva, “On the possibilities of X-ray phase contrast mi-
croimaging by coherent high-energy synchrotron radiation,” Review of Scientific
Instruments, vol. 66, no. 12, pp. 5486–5492, 1995.

[15] K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin, and Z. Barnea, “Quanti-
tative phase imaging using hard x rays,” Physical review letters, vol. 77, pp. 2961–
2964, Sep 1996.

[16] S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-
contrast imaging using polychromatic hard X-rays,” Nature, vol. 384, no. 6607, pp.
335–338, 1996.

[17] A. Bravin, “Exploiting the X-ray refraction contrast with an analyzer: the state of
the art,” Journal of physics D: Applied physics, vol. 36, pp. 24–29, 2003.

[18] P Suortti and W Thomlinson, “Medical applications of synchrotron radiation.,”
Physics in medicine and biology, vol. 48, no. 13, pp. R1–35, July 2003.

[19] A. Momose, “Phase-sensitive imaging and phase tomography using X-ray interfer-
ometers,” Optics express, vol. 11, no. 19, pp. 2303–14, Sept. 2003.



BIBLIOGRAPHY 185

[20] R. Lewis, “Medical phase contrast X-ray imaging: current status and future
prospects,” Physics in Medicine and Biology, vol. 49, no. 16, pp. 3573–3583, Aug.
2004.

[21] Shu-Ang Zhou and Anders Brahme, “Development of phase-contrast X-ray imag-
ing techniques and potential medical applications.,” Physica medica : PM : an
international journal devoted to the applications of physics to medicine and biology
: official journal of the Italian Association of Biomedical Physics (AIFB), vol. 24,
no. 3, pp. 129–48, Sept. 2008.

[22] Yunzhe Zhao, Emmanuel Brun, and Paola Coan, “High-resolution, low-dose phase
contrast X-ray tomography for 3-D diagnosis of human breast cancers,” Proceedings
of the National Academy of Sciences, 2012.

[23] A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical
applications towards clinics,” Physics in medicine and biology, vol. 58, no. 1, pp.
R1–35, Jan. 2013.

[24] C. David, B. Nohammer, H. Solak, and E. Ziegler, “Differential X-ray phase contrast
imaging using a shearing interferometer,” Applied physics letters, vol. 81, no. 17,
pp. 3287–3289, 2002.

[25] M. Bech, A. Tapfer, A. Velroyen, A. Yaroshenko, B. Pauwels, J. Hostens, P. Bruyn-
donckx, A. Sasov, and F. Pfeiffer, “In-vivo dark-field and phase-contrast X-ray
imaging,” Scientific reports 3, 2013.

[26] F. Pfieffer, O. Bunk, C. Kottler, and C. David, “Tomographic reconstruction of three-
dimensional objects from hard X-ray differential phase contrast projection images,”
Nuclear Instrument and Methods in Physics Research, vol. 580, no. 2, pp. 925–928,
2007.

[27] D. Bharkhada, H. Yu, and S. Ge, “Cardiac computed tomography radiation dose re-
duction using interior reconstruction algorithm with the aorta and vertebra as known
information,” Journal of computer assisted tomography, vol. 33, no. 3, pp. 338–347,
2009.

[28] S. M. Hashemi, S. Beheshti, and P. R. Gill, “Efficient Low Dose X-ray CT
Reconstruction through Sparsity-Based MAP Modeling,” arXiv preprint arXiv:
1402.1801, pp. 1–10, 2014.



186 BIBLIOGRAPHY

[29] L. Yu, X. Liu, and S. Leng, “Radiation dose reduction in computed tomography:
techniques and future perspective,” Imaging in medicine, vol. 1, no. 1, pp. 65–84,
2009.

[30] D. J. Brenner and E. J. Hall, “Computed tomography–an increasing source of ra-
diation exposure,” The New England journal of medicine, vol. 357, no. 22, pp.
2277–84, 2007.

[31] R. Smith-Bindman, J. Lipson, R. Marcus, K. Kim, M. Mahesh, R. Gould,
A. Berrington de González, and D. L. Miglioretti, “Radiation dose associated
with common computed tomography examinations and the associated lifetime at-
tributable risk of cancer,” Archives of internal medicine, vol. 169, no. 22, pp. 2078–
86, 2009.

[32] R. L. Morin, T. C. Gerber, and C. H. McCollough, “Radiation dose in computed
tomography of the heart,” Circulation, vol. 107, no. 6, pp. 917–922, Feb. 2003.

[33] Z. Qi, J. Zambelli, N. Bevins, and G. Chen, “A novel method to reduce data acqui-
sition time in differential phase contrast computed tomography using compressed
sensing,” Proc. of SPIE, vol. 7258, pp. 4A1–8, 2009.
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