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Sampling—50 Years After Shannon
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It has been 50 years since Claude Shannon laid the foundation for
information theory with the publication of “Communication in the
Presence of Noise.” In that paper, Shannon articulated the theorem
that information could be quantified and coded by a mathematical
process of sampling. The intervening years have proved Shannon’s
paper to be a major theoretical work, one that has had the greatest
impact on modern electrical engineering. In this tutorial, the author
revisits Shannon’s original sampling paradigm to see how well it
stands up to modern requirements and how it may be extended to
accommodate today’s larger selection of sampling functions. This
includes an examination of standard sampling methodology as it
relates to current technology, the application of Shannon’s theorem
to wavelet theory, methods for controlling approximation error, and
variations and extensions of sampling theory.

An optimum information system is one in which the flow
of information equals the capacity of the transmitting channel.
The objective is to compact the information while minimizing
the distortion, and thus utilize channel capacity to maximum ef-
ficiency. This capability assumes special importance in today’s
information-driven society. Shannon’s theory provides that ca-
pability. The key to his theory lies in the orthogonality of the
underlying basis functions. An analog signal (or lightwave) is
imaged on a two-dimensional Cartesian plane, then sampled at
key ordinates to develop an identifiable profile, or signature.
These ordinates are then converted into a sequence of numbers
that can be processed digitally, transmitted, and reconstructed
with absolute fidelity at the receiving end. The approach works
perfectly, provided that the input wave (or function) is bandlim-
ited; i.e., it has no frequencies above the Nyquist limit. When
the input is not bandlimited, it needs to be ideally low-pass
filtered prior to sampling in order to avoid aliasing. In effect,
this process is equivalent to performing the orthogonal pro-
jection of the input signal onto the subspace of bandlimited
functions. In other words, it provides the minimum error rep-
resentation of the input signal within the given bandwidth.

Paradoxically, although Shannon’s theorem is crucial to modern
signal processing and communications, it is rarely applied literally
in practical applications. The primary reason is that the theorem is
based on a nonrealistic model in which word signals and images
are exactly bandlimited. It further assumes the existence of an ideal
low-pass filter to suppress aliasing. Nevertheless, Shannon’s ideal-
ized theory still supplies the underpinning for modern and extended
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versions of sampling. The explanation lies in the recent and intense
activity occurring in the field of wavelet theory.

Ten to fifteen years ago, it appeared that sampling had reached
maturity; research in this area had become very mathematically
oriented and had less immediate relevance to signal processing and
communications. However, subsequent investigations into wavelet
theory demonstrated that the mathematics of wavelets could
also apply to sampling. This prompted researchers to reexamine
Shannon’s theory with a view to adapting its principles to more
generalized, practical formulations that would accommodate the
newer technologies.

The paper next considers extending Shannon’s theorem to other
classes of functions. Doing so requires a sampling scheme that is
practical yet retains the qualities of classic sampling theory. This is
achieved by replacing Shannon’s sinc-function with a more general
template, the generating function. In this approach, functions that
are being defined continuously are characterized by sequences of
coefficients. These coefficients are not necessarily samples. Rather,
they constitute a discrete signal representation that will be used to
calculate signal processing or perform coding. To minimize error,
the coefficients must ensure that the signal model faithfully approx-
imates the input function. The optimal solution for obtaining such
coefficients again relies on orthogonal projection. The algorithm
employed uses straightforward signal processing, and the procedure
is exactly the same as the one dictated in Shannon’s theorem, with
the exception that the filters are not necessarily ideal.

A paramount concern in any practical sampling procedure is that
the results be consistent. Specifically, it should be possible to recon-
struct a signal that yields exactly the same measurements as that
of the originating system. Assuming that the measurements of a
function within a nonlimited bandwidth are obtained by sampling
the original, prefiltered version, it is then possible to approximate
the original function by applying a suitable digital correction filter.
The most basic form of sampling occurs when a signal is defined
in terms of its sample values. The challenge lies in finding coef-
ficients that will interpolate those values not only consistently but
also without error. Since it is not always possible to reconstruct a
signal perfectly, control of approximation error is therefore crucial
to efficient signal processing. The basic device for accomplishing
this lies in selecting a sampling step that will keep approximation
error within an acceptable threshold. The premise is that approxi-
mation error will steadily decay, and eventually vanish, as the sam-
pling step gets smaller. The ability to predict the actual rate of decay,
called order of approximation, is a significant factor in wavelet and
approximation theory.
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The paper compares and evaluates three standard algorithms used
in sampling: sampling without prefiltering, sampling with subop-
timal prefiltering, and least squares sampling. The first approach
corresponds to standard interpolation (the typical example is piece-
wise linear interpolation); the second uses the simplest possible
analog filter (a box function); and the third uses the optimal pre-
filter. Of these options, the first is the least favorable, as the absence
of filtering creates aliasing. The second, which uses oblique projec-
tion rather than orthogonal, lends flexibility to the sampling process
and is only slightly suboptimal. The best, in terms of performance,
is the third, since it is closest to the Shannon paradigm in its use of
ideal filters. This comparison clearly emphasizes the importance of
prefiltering for the suppression of aliasing.

In the final section of the paper, the author considers related
topics that can be considered as variations and extensions of sam-
pling theory. These include wavelets, generalized sampling, finite
elements and multiwavelets, frames, and irregular sampling. He
points out that the analysis tools and mathematics used in wavelet
sampling are essentially the same as those used in modern formula-
tions of sampling theory. In this sense, research into wavelet sam-
pling has supplied positive feedback on sampling and generated re-
newed interest in this field. Generalized sampling includes such re-
cent examples as motion-compensated analysis of television images
and a process called super resolution, which attempts to construct
high-resolution images from a series of samples derived from low
resolution images.

Another interesting generalization is multisampling, which uses
several generating functions instead of one. This corresponds to the
finite-element, or multiwavelet, framework. With finite elements,
the functions typically chosen are as short as possible and involve

minimal overlap. Because of the importance of finite elements in en-
gineering, the quality of this type of approximation has been studied
thoroughly by approximation theorists. Last, a frame is basically a
set of functions that span the entire signaling space but that are not
necessarily linearly independent.

Irregular, or nonuniform, sampling is another area now under-
going intense research. A problem addressed by irregular sampling,
and one that has been studied most extensively, is that of recovering
a bandlimited function from nonuniform samples. In these circum-
stances, stable reconstruction of a signal is important, particularly
because there are sets of samples that uniquely determine a bandlim-
ited function, but for which the reconstruction is unstable. It is pos-
sible, however, to reconstruct bandlimited functions perfectly from
nonuniform samples, and efficient methods for performing such re-
constructions do exist.

Fifty years later, Shannon’s sampling theory still appears
alive and well, part of the basic knowledge of every engi-
neer involved with digital signals or images. Far from being
a closed subject, sampling is likely to grow in use and im-
portance as analog systems increasingly give way to digital
ones in the evolving information age. Researchers representing
different disciplines—engineers involved in signal and image
processing and mathematicians steeped in harmonic analysis,
mathematical physics, and approximation theory—are joining ef-
forts to advance research into sampling theory with substantial
results. The author concludes that the general view of sampling
that has emerged over the past decade will provide a unifying
framework for understanding and improving many techniques
that have traditionally been studied separately.

—Richard O’Donnell
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