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Abstract—The discrete cosine transform (DCT) is known to
be asymptotically equivalent to the Karhunen-Loève transform
(KLT) of Gaussian first-order auto-regressive (AR(1)) processes.
Since being uncorrelated under the Gaussian hypothesis is syn-
onymous with independence, it also yields an independent-com-
ponent analysis (ICA) of such signals. In this paper, we present
a constructive non-Gaussian generalization of this result: the
characterization of the optimal orthogonal transform (ICA) for
the family of symmetric- -stable AR(1) processes. The degree of
sparsity of these processes is controlled by the stability parameter

with the only non-sparse member of the family being
the classical Gaussian AR(1) process with . Specifically,
we prove that, for , a fixed family of operator-like wavelet
bases systematically outperforms the DCT in terms of compres-
sion and denoising ability. The effect is quantified with the help
of two performance criteria (one based on the Kullback-Leibler
divergence, and the other on Stein’s formula for the minimum
estimation error) that can also be viewed as statistical measures
of independence. Finally, we observe that, for the sparser kind
of processes with , the operator-like wavelet basis,
as dictated by linear system theory, is undistinguishable from
the ICA solution obtained through numerical optimization. Our
framework offers a unified view that encompasses sinusoidal
transforms such as the DCT and a family of orthogonal Haar-like
wavelets that is linked analytically to the underlying signal model.
Index Terms—Operator-like wavelets, independent-component

analysis, auto-regressive processes, stable distributions.

I. INTRODUCTION

T RANSFORM-DOMAIN processing is a classical ap-
proach to compress signals, model data, and extract

features. The guiding principle is to produce transform-domain
coefficients that are decoupled statistically so that a simple
component-wise processing can be applied; i.e., each coeffi-
cient is processed independently of the others. The reference
solution in the field is the Karhunen-Loève transform (KLT)
which yields transform-coefficients that are uncorrelated and
therefore also independent, provided the process is Gaussian.
Also, if the process is stationary with finite variance and infinite
length, then the KLT is a Fourier-like transform [1]. Moreover,
it has been shown that the discrete cosine transform (DCT)
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[2] is asymptotically equivalent to the KLT for the whole
class of stationary processes [3], including the AR(1) model
[4]; thus, for a Gaussian input, all these transforms result in
a fully decoupled (independent) representation. However, this
favorable independence-related property is extinguished for
non-Gaussian processes. In this case, the coefficients are only
partially decoupled and the representation of the signal afforded
by the KLT is no longer optimal.
In recent years, wavelets have emerged as an alternative

representation of signals and images. Typical examples of suc-
cessful applications are JPEG2000 for image compression [5]
and shrinkage methods for attenuating noise [6], [7]. The fact
that wavelets are so effective in transform-domain applications
suggests that they are naturally suited to represent practical
processes. This empirical observation was established by early
studies that include [8], where many natural images were
subjected to an independent-component analysis (ICA). It was
found that the resulting components have properties that are
reminiscent of 2D wavelets and/or Gabor functions. Additional
ICA experiments were performed in [9] on realizations of
the stationary sawtooth process and of Meyer’s ramp process
[10]; for both processes, the basis vectors of ICA exhibit a
wavelet-like multiresolution structure.
Despite their empirical usefulness, the optimality of wavelets

for the representation of non-Gaussian stochastic processes re-
mains poorly understood from a theoretical point of view. An
early study can be traced back to [11], where the decomposition
of fractional Brownian motions over a wavelet basis was shown
to result in almost uncorrelated coefficients, under some con-
ditions. By contrast, in the deterministic framework, it is well
known that wavelets are optimal (up to some constant) for the
-term approximation of functions in Besov spaces [12]; the

extension of this result to a statistical setting could be achieved
only experimentally.
Recently, a general distributional framework for the specifi-

cation of sparse stochastic processes has been proposed in [13],
[14]. It is particularly well suited to the specification of sym-
metric- -stable white noises, which can be used to drive
first-order stochastic differential equations (SDE) to synthesize
AR(1) processes. As it turns out, AR(1) systems and -stable
distributions are at the core of signal modeling and probability
theory. The classical Gaussian processes correspond to ,
while yields stable processes that have heavy-tailed
statistics and that are prototypical representatives for sparse sig-
nals [15], [16]. Such stable models are attractive for statistical
signal processing because they lend themselves well to ana-
lytic calculations [17]. Areas of applications include detection
theory [18], communications [19], and signal denoising [20].
Also, specifically heavy-tailed AR have been used to model
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phenomena in network [21], sea surface [22], economy and
finance [23].
In this paper, we take advantage of this framework to estab-

lish the optimality of a certain class of wavelets in a stochastic
sense. We start by characterizing the amount of dependency be-
tween the coefficients of stochastic processes represented in an
arbitrary transform domain. To that end, we introduce two per-
formance criteria. The first assesses the coding performance of
the transform: it is given by the Kullback-Leibler divergence
between the joint probability density function (pdf) of the orig-
inal signal and the product of the marginals in the transformed
domain. The second is a theoretical prediction of denoising per-
formance under the hypothesis of additive white Gaussian noise
(AWGN). It is based on Stein’s formula for the mean-square
estimation error and also takes the form of a divergence be-
tween the joint pdf of the original signal and the product of
the marginals in the transformed domain. Then, we seek the
orthogonal transformation that minimizes these statistical cri-
teria. We confirm the loss of optimality of the DCT for

and validate the superiority of a special brand of oper-
ator-like wavelet transform that is matched to the underlying
signal model. Our reference method in this comparison is the
ICA solution that is determined by numerical means for dif-
ferent values of . The remarkable empirical finding of this
paper is that the ICA solution converges to the operator-like
wavelets for values of below one.
The practical relevance of these results is that, unlike ICA, the

operator-like wavelets are known in analytical form in terms of
the pole of the underlying system (see (29)). They are a special
case of the differential wavelets investigated in [24]. They may
also be interpreted as a generalization of the Haar transformwith
scale-dependent filters. In essence, this amounts to replacing the
finite-difference operations of the conventional wavelet trans-
form algorithm by a suitable series of linear prediction errors
where the coefficients are determined by the pole of the AR(1)
system.
This paper is organized as follows: In Section II, we in-

troduce two measures of divergence between distributions
that are suitable for either noise attenuation or compression
applications. The signal model fundamental to this paper is
discussed in Section III.A and III.B. The operator-like wavelets
that are deduced from this model are presented in Section III.C.
In Section IV, we derive the explicit form of our performance
criteria for the model in the context of transform-domain
compression and noise attenuation. In addition, we provide
an iterative algorithm to find the optimal basis. Results for
different AR(1) processes and different transform domains are
discussed in Section V. The last section is dedicated to the
recapitulation of the main results, the relation to prior works,
and topics for future studies.

II. PERFORMANCE MEASURES

In statistical signal processing, it is of interest to precisely
quantify the best-achievable performance when the model is
not perfectly matched to the signal under investigation, or when
certain simplifying hypothesis, such as independence, are being
made. In the following, we address this issue for the two prob-
lems of compression and denoising when the assumed distribu-
tion and the real one may differ.

1) Compression Based on Non-Exact Distribution: It is well-
known that, if we have a source of iid random vectors with
common pdf , then the logarithm of measure of the coding set
per sample can be at least

(1)

which is the entropy1 of the source [25]. However, if we com-
press assuming that it is distributed according to (rather than
), then

(2)

in which is the Kullback-Leibler divergence.
Typically, when there is a statistical dependency between the

entries of , compressing the vector based on the exact distri-
bution is often intractable. Thus, the common strategy is to ex-
pand the vector in some other basis and to then do the compres-
sion entry-wise (neglecting the dependency between entries of
the transformed vector). This is equivalent to doing the com-
pression assuming that the signal distribution is the product of
the marginal distributions. Thus, if the transformed vector is

, then the normalized redundant information remaining
in the compressed signal is

(3)

where is the number of entries in . This is the first measure
of performance of the transform that we use in this paper.
Also, this criterion is commonly used in ICA to find the “most-
independent” representation [26].
2) Denoising Based on Non-Exact Distribution: Although

the Kullback-Leibler divergence is widely used to measure the
distance between two distributions, it is inherently tied to the ap-
plication of compression. Here, we introduce a novel measure
of divergence between distributions that is more specifically tar-
geted to the classical denoising task. Consider the problem of
estimating from the noisy measurement

(4)

where is an -dimensional Gaussian random vector with
iid entries with variance that is also independent from .
Our prior knowledge is the th order pdf of the signal.
Under these assumptions and according to Stein [27], the op-
timal signal estimator that obtains minimum mean-square error
(MMSE) is

(5)

where is the expected value of given
is the th order pdf of the noisy measurements, and

represents the gradient operator. Thus, the MSE given is

(6)

1 is used for the random variable or its pdf interchangeably.
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where is the Laplacian operator. Averaging over , we have

(7)

However, if we apply this signal estimator based on an incorrect
prior (instead of the true distribution ) as the distribution
of , then by using (5)–(7), the MSE of estimation becomes

(8)

where is the distribution induced on in (4) when the
distribution on is . Here, notice the pleasing similarity
between (1)–(2) and (7)–(8).
If the entries of are dependent, then the entries of are

dependent, too. Then, performing the exact MMSE estimator
is once again often infeasible. The common scheme is then to
take into a transform domain, perform an entry-wise denoising
(regardless of the dependency between coefficients), and map
the result back into the original domain. This is justifiable when
the transformation is unitary because the transform-domain
noise remains Gaussian iid while the -norm of the signal is
preserved. Hence, the expected performance of this scalar de-
noising scheme is where
is the marginal distribution of the th entry of . We
write this as a function of normalized by the dimensionality
of , with

(9)

which is the second measure of performance that we consider
in this paper.

III. MODELING AND WAVELET ANALYSIS OF
AR(1) PROCESSES

In this section, we present a continuous-domain description
of a AR(1) process as the solution of a first-order stochastic
differential equation. This differential formulation is central to
our argumentation since it results in the identification of the op-
erator-like wavelets, as discussed in Section III.C.We also show
that the continuous-domain representation is consistent with the
more standard discrete AR(1) model in the sense that the latter
is the sampled version of the former.

A. Differential Modeling of AR(1) Processes
In [13], the authors define a sparse stochastic process as the

solution of the linear differential equation

(10)

where L is a suitable differential operator and a non-Gaussian
continuous-domain white noise (or innovation process). For-
mally, this results into the solution

(11)

where the linear operator is the inverse of the whitening op-
erator L, which is the way of indicating that a sparse stochastic
process is a filtered version of a non-Gaussian white noise.

The delicate aspect with this simple operational description is
that is a highly singular entity that does not admit an interpre-
tation as a conventional function of the time variable (think of
as the stochastic counterpart of the Dirac distribution whose

explicit definition as a tempered distribution is
for all “test” functions ). The mathematical framework for the
correct interpretation of (11) is Gelfand’s theory of generalized
stochastic processes [28], which is briefly summarized as fol-
lows:
A generalized white noise is a probability measure on the dual

space of a set of test functions that has the following properties:
• For a given test function , the statistics of the random
variable do not change upon shifting , where
denotes a generic random element in the dual space of test
functions (typically, Schwartz space of tempered distribu-
tions) and denotes the inner product.

• If the test functions in the collection ( is an
index set) have disjoint supports, then the random variables
in are independent.

Under some mild regularity conditions, there is a one-to-one
correspondence between the infinitely divisible random vari-
ables and the white noises specified above. Thus, specifying a
white noise is equivalent to prescribing the probability law of
the random variable for any test function .
Correspondingly, we have

(12)

where is the adjoint operator of . It means that one
can readily deduce the statistical distribution of given the
process .
Now, if is white noise, then the random variable

has an distribution whose characteristic function is given
by

(13)

where is the -norm of . In the
case of an AR(1) process, we have that

(14)

where D and I are respectively the differentiator and the iden-
tity operator; then, in (11) is a continuous-domain AR(1)
process. It follows from the theory of linear systems that the im-
pulse response of is the causal exponential

(15)

where is the unit step. Thus, as a function of , we can
write

(16)

where denotes the continuous-domain convolution operation.
The AR(1) process is well-defined for . The limit case

can also be handled by setting the boundary condition
, which results in a Lévy process that is non-stationary.

Realizations of AR(1) processes for and for different
values of are depicted in Fig. 1.When decreases, the process
becomes sparser in the sense that its innovation becomes more
and more heavy-tailed.
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Fig. 1. Examples of AR(1) processes for different .

B. Discretization of AR(1) Processes
Now, for a given integer and time period , we set

(17)

where is the Dirac impulse, and define as

(18)

This means that the sampled version
of satisfies the first-order difference equation

(19)

Also, we have that

(20)

where is the impulse response of in (12).
Also,

(21)

where is the indicator function of the set
, is the exponential B-spline with parameters and [14].

The fundamental property here is that the kernels
are shifted replicates of each other and have com-

pact and disjoint supports. Thus, according to the definition of
a white noise, is an iid sequence of random vari-
ables with the common characteristic function

(22)

The conclusion is that a continuous-domain AR(1) process
maps into the discrete AR(1) process that is uniquely
specified by (19) and (22).
We now consider consecutive samples of the process

and define the random vectors and
. This allows us to rewrite (19) as

(23)

where and

(24)

which is the discrete-domain counterpart of (15).
In the next sections, we are going to study linear transforms

applied to the signal (or ). Here, we recall a fundamental

property of stable distributions that we shall use in our
derivations.
Property 1 (Linear Combination of Random Variables):

Let where are iid random variables
with dispersion parameter . Then, is an as well with
dispersion parameter [17].
To establish this property, we consider iid random

variables with common characteristic function
, and a corresponding sequence of real-valued weights

. Then, the characteristic function of the random
variable is given by

(25)

Thus, , which is a linear combination of iid random vari-
ables, is an random variable with the same distribution as
one of them multiplied by the factor ; i.e.,

(26)

C. Operator-Like Wavelets
Conventional wavelet bases act as smoothed versions of the

derivative operator. To decouple the AR(1) process in (16) by a
wavelet-like transform, we need to choose basis functions that
essentially behave like the whitening operator L in (10). Such
wavelet-like basis functions are called operator-like wavelets
and can be tailored to any given differential operator L [24].
The operator-like wavelet at scale and location is given by

(27)

where is a scale-dependent smoothing kernel and the dot is
the placeholder of the index variable of the function to which
the operator is applied. Since is an orthonormal basis
and , the wavelet coefficients of the signal are

(28)

Based on this equality, we understand that, for any given and
for all , the follows an distribution with dispersion
parameter [13]. Also, since is independent at every
point, intuitively, the level of decoupling has a direct relation to
the overlap of the smoothing kernels . The operator-
like wavelets proposed in [24] are very similar to Haar wavelets,
except that they are piecewise exponential instead of piecewise
constant (for ). Indeed, we have

(29)

For these wavelets, the supports of do not overlapwithin the
given scale . Thus, the wavelet coefficients at scale are inde-
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Fig. 2. Two equivalent interpretations of the wavelet analysis of a sparse
process. (a) Operator-like wavelets at two consecutive scales acting on an
Cauchy AR(1) process. (b) The equivalent windows (smoothing kernels) acting
on the underlying Cauchy white noise. Note that and ( and ,
respectively) are non-overlapping.

pendent and identically distributed. This property suggests that
this type of transform is an excellent candidate for decoupling
AR(1) processes. The illustration of plugging these wavelets
into (28) is given in Fig. 2.

IV. SEARCH FOR THE OPTIMAL TRANSFORMATION

From now on, we assume that the signal vector
with is obtained from the

samples of an AR(1) process and satisfies the discrete in-
novation model (19). The representation of the signal in (23)
in the transform domain is denoted by ,
where is the underlying orthogonal transforma-
tion matrix (e.g., DCT, wavelet transform). The idea is now to
rely on Property 1 to derive the explicit form of the proposed
performance criteria under the hypothesis. This, in turn,
will allow us to determine the optimal transform (ICA solution)
based on numerical optimization.

A. Optimizing Coding Performance

Let us now use (3) to characterize the performance of a given
transformation matrix . First, we simplify (3) to

(30)

where is the differential entropy defined in (1). Also, we
observe that . In addition, since the is
-stable, according to Property 1, we can write

(31)

where is the -(pseudo)norm of the th row of given
by

(32)

It follows that

(33)

which can be readily calculated for any given .
Note 1: This criterion is reminiscent of the sum-of-disper-

sion criterion which is frequently used in the study of
-stable stochastic processes [29], [30]. However, unlike (33),

the latter dispersion criterion does not have a direct informa-
tion-theoretic interpretation.

B. Optimizing Denoising Performance
As a second option, we use the criterion (9) to measure the

performance of a given transform matrix for the denoising
task. Similar to the case in (30), it can be simplified to

(34)

in which is the noise variance and is the th entry of

(35)

Since is a unitary matrix, has the same distribution as .
Also, according to (31),

(36)

where is a standard Gaussian random variable. This allows
us to deduce the pdf expression

(37)

which involves the convolution of a rescaled law with
a Gaussian of standard deviation . Thus, (34) is calculable
through one-dimensional integrals.

C. Numerical Implementation
Based on (33) and (34), we can now attempt to find the op-

timal transformation by minimizing these expressions
over the space of all orthonormal matrices of size .
To guide this optimization process, we first derive the gra-

dient of the cost functions R andMSEwith respect to . Specif-
ically, according to (32) and (33), the partial derivative of
is

(38)
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where

(39)

Also, the partial derivative of in (34) is

(40)

in which is the th derivative of which, according
to (37), can be written as

(41)

Also, we have that

(42)

and

(43)

Now, since the have nice characteristic functions, we can cal-
culate (41) efficiently through the inverse Fourier transform

(44)

using the FFT algorithm.
Thus, we can use gradient-based optimization to obtain the

optimal transformations for different values of , and . For
our experiments, we implemented a gradient-descent algorithm
with adaptive step size to efficiently find the optimal transform
matrix. Since the transform matrix may deviate from the space
of unitary matrices, after each step, we project it on that space
using the method explained in Appendix A. Given the measure
of independence (i.e., R or MSE), the algorithm is as follows:

Algorithm 1: Steepest-Descent Algorithm with Adaptive
Step-Size to Apply ICA to Discrete AR(1) Processes

1: input:
2: initialize: and
3: repeat
4:
5: Set to the projection of onto the space of

unitary matrices
6: if then
7:
8:
9: else
10:
11:
12: end if
13: until convergence
14: return

Fig. 3. Minimum value of and for Lévy processes as a func-
tion of for different values of . In the second plot .

Algorithm 1 can be viewed as a model-based version of ICA.
We take advantage of the underlying stochastic model to derive
an optimal solution based on the minimization of (33) and (34),
which involves the computation of -norms of the transforma-
tion matrix. By contrast, the classical version of ICA is usually
determined empirically based on the observations of a process,
but the ultimate aim is similar; namely, the decoupling of the
data vector.

V. RESULTS FOR DIFFERENT TRANSFORMATIONS

The majority of experiments on ICA published in the liter-
ature are data-driven. The present formulation, by contrast, is
model-based so that it does not require the generation of signal
samples. To make an analogy, it is to ICA what the Karhunen-
Loève transform is to principal components (PCA). We can
therefore rely on (33)–(34) to compute the performance of a
transform analytically. Also, the optimal transform (referred to
as ICA) is found numerically by running Algorithm 1. We re-
call that our theoretical figures of merit are relevant to practical
signal processing: the first (mutual information) gives in a direct
measure of the coding gain in a compression experiment, while
the second measures the signal-to-noise ratio (SNR) improve-
ment for signal denoising, as justified in Section II.
Initially, we investigate the effect of the signal length on

the value of R and MSE.We consider the case of a Lévy process
(i.e., ) and numerically optimize the criteria for different
and plot it as a function of . Results are depicted in Fig. 3. As
we see, the criteria values converge quickly to their asymptotic
values. Thus, for the remainder of the experiments, we choose

. This is a block size that is reasonable computationally
and large enough to be representative of the asymptotic regime.
Then, we investigate the performance of different transforms

for various processes. First, we focus on the Lévy processes.
In this case, the operator-like wavelet transform is the classical
Haar wavelet transform (HWT). The performance criteria R and
MSE as a function of for various transforms are plotted in
Figs. 4 and 5, respectively. The considered transformations are
as follows: identity as the baseline, discrete cosine transform
(DCT), Haar wavelet transform (HWT), and optimal solution
(ICA) provided by the proposed algorithm. In the case of

(Gaussian scenario), the process is a Brownian mo-
tion whose KLT is a sinusoidal transform that is known ana-
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Fig. 4. of Lévy processes versus when for different .

Fig. 5. of Lévy processes versus when for different
when .

lytically [31]. In this case, the DCT and the optimal transform
converge to the KLT since being decorrelated is equivalent to
being independent. We see this coincidence in both Figs. 4 and
5. The vanishing of R at indicates perfect decoupling.
By contrast, as decreases, neither the DCT nor the optimal
transform decouples the signal completely. The latter means that
there is no unitary transform that completely decouples stable
non-Gaussian Lévy processes. However, we see that, based on
both criteria R and MSE, and as decreases, the DCT becomes
less favorable while the performance of the HWT gets closer
to the optimal one. Moreover, Figs. 4 and 5 even suggest that
the Haar wavelet transform is equivalent to the ICA solution for

.
Also, to see the transition from sinusoidal bases to Haar

wavelet bases, we plot the optimal basis which is obtained by
the proposed algorithm at two consequent scales. In Fig. 6,
we see the progressive evolution of the ICA solution from the
sinusoidal basis to the Haar basis while changing the parameter
of the model.
Next, we consider a stationary AR(1) process with
and . For , we get the well-known clas-

sical Gaussian AR(1) process for which the DCT is known to

be asymptotically optimal [1], [3]. For such a process, the oper-
ator-like wavelet is known before hand and given by (29). The
performance criterion R versus for the DCT, the HWT, the
operator-like wavelet matched to the process, and the optimal
ICA solution are plotted in Fig. 7. Here too we see that, for

, ICA is equivalent the DCT. But, as decreases, the DCT
loses its optimality and the matched operator-like wavelet be-
comes closer to optimum. Again, we observe that, for ,
the ICA solution is the matched operator-like wavelet described
in Section III.C. The fact that the matched operator-like wavelet
outperforms the HWT shows the benefit of the tuning of the
wavelet to the differential characteristics of the process. Also,
as shown in Fig. 8, experimentally determined ICA basis func-
tions for are indistinguishable from the wavelets in Fig. 2.
To substantiate those findings, we present a theorem that

states that, based on the above mentioned criteria and for any
, the operator-like wavelet transform outperforms the

DCT (or, equivalently, the KLT associated with the Gaussian
member of the family) as the block-size tends to infinity.
Theorem 1: If and , we have that

(45)

and
(46)

where OpWT stands for the operator-like wavelet transform.
The proof is given in Appendix B.
In addition, this theorem states that, for and as tends

to , the performance of the DCT is equivalent to the trivial
identity operator. This is surprising because, since the DCT is
optimal for the Gaussian case , one may expect that it
has a good result for other AR(1) processes. However, although
this theorem does not assert that operator-like wavelets are the
optimal basis, it still shows that, by applying them, we obtain
better performance than trivial transformations. Also, through
simulations, we observed that operator-like wavelets are close to
optimal transform as gets smaller. In such extreme scenarios,
the probabilities densities of the signal and of its transformed-
domain coefficients are extremely heavy-tailed which conforms
with a statistical notion of sparsity [15], [16].
It is worth mentioning that, in addition to the gain in per-

formance, operator-like wavelets are cheaper to compute than
the DCT. They can be implemented with the same type of
filter-bank algorithm as the Haar transform, the only difference
being that the filters are scale-dependent. The resulting cost is
of (two operations per coefficient) which compares fa-
vorably with the of the DCT. Using operator-like
wavelets is also immensely more efficient than deploying the
full ICA machinery. The latter requires the estimation of the
transform and then its full matrix computation which
cannot benefit from any acceleration due to lack of structure.

VI. SUMMARY AND FUTURE STUDIES

In this paper, we focused on the simplest version (first-order
differential system with an excitation) of the sparse sto-
chastic processes which have been proposed by Unser et al.
[13], [14]. Because of the underlying innovation model and the
properties of random variables, we could obtain a closed-
form formula for the performance of different transform-domain
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Fig. 6. Two rows of the optimal (ICA) for down to 1 when . In each row, we see the evolution from sinusoidal waves to Haar wavelets by
increasing the sparsity of the underlying innovation process.

Fig. 7. versus when and for different .

representations and characterize the optimal transform. This is
a novel model-based point of view for ICA. We proved that op-
erator-like wavelets are better than sinusoidal transforms for de-
coupling the sparse AR(1) processes . This result is re-

Fig. 8. Three rows of the optimal for and . Parts (a) and (b)
show the dyadic structure of the wavelets.

markable since sinusoidal bases are known to be asymptotically
optimal for the classical case of [1], [3]. Moreover, we
showed that, for very sparse excitations , operator-like
wavelets are equivalent to the ICA. As far as we know, this is the
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first theoretical results on the optimality of wavelet-like bases
for a given class of stochastic processes.
Another interesting aspect of this study is that it gives a

unified framework for Fourier-type transforms and a class
of wavelet transforms. Now, the Fourier transform and the
wavelet transforms were based on two different intuitions and
philosophies. However, here we have a model in which we
obtain both transform families just by changing the underlying
parameters.
The next step in this line of research is to investigate the ex-

tent to which these findings can be generalized to other white
noises or higher-order differential operators. Also, studying the
problem in the original continuous domain would be theoreti-
cally very valuable.

APPENDIX A
PROJECTION ON THE SPACE OF UNITARY MATRICES

Suppose that is an matrix. Our goal is to find the
unitary matrix that is the closest to in Frobenius norm, in
the sense that

(47)

According to singular-value decomposition (SVD), we can
write where and are unitary matrices and
is a diagonal matrix with nonnegative diagonal entries.
Since the Frobenius norm is unitarily invariant, we have that

(48)

in which is a unitary matrix that we call . The expan-
sion of the right-hand side of (48) gives

(49)

Since is unitary, for . Thus, setting
, which means setting , minimizes (49). Conse-

quently, the projection of on the space of unitary matrices is
.

APPENDIX B
PROOF OF THEOREM 1

A. Proof of Part 1 ((45))
According to (33), we have that

(50)

in which is the empirical distribution of .
According to SVD, we can write where

is a diagonal matrix with as diagonal entries. Taking in
the KLT domain is equivalent to multiplying it by . The

eigenvalues of the covariance of AR(1) matrices are known in
closed form and are given by [32] and [33], for , as

(51)

and

(52)

in which , is the th positive root of

(53)

Since is an injective function that sweeps the whole
domain of the real numbers while , for

, (53) has a single root in each of such intervals. Thus,
as tends to infinity, the empirical distribution of the tends
to the uniform distribution on . Then, starting from (51),
one can obtain the limit empirical distribution of as

(54)

Now, means that

(55)

as tends to infinity. But, for , we have that

(56)

Thus, for grows faster than
and thus tends to infinity as tends to infinity. Consequently,
the limit empirical distribution of can be represented as

(57)

By plugging this result into (50), we conclude that, for
. This completes the proof of the

right-hand side.
Now, for the proof of the left-hand side, we need to specify the

matrix for the operator-like wavelet transform. This matrix
is given by the recursive construction

(58)
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in which is the matrix omitting the first row
and . Also, .
Let us denote the empirical distribution of (the recip-
rocal of the -(pseudo) norm of the rows of ) by

. Now, for the sequence of and
, with respect to , we have the following recursive relation:
• Replace by
• Remove . Then, if , set

(59)

and

(60)

else, if , set

(61)

and

(62)

Consequently, according to (50), we have that

(63)

However, for the case and

(64)

Thus,

(65)

For the case and

(66)

Thus,

(67)

Therefore, the proof is complete.

B. Proof of Part 2 ((46))
Proof: We have that

(68)

in which is the MMSE of the estimating from in the
scalar problem

(69)

where is a stable random variable with characteristic function
and is a Gaussian random variable with

variance .We know that is a monotone continuous func-
tion that vanishes at zero and tends to asymptotically. Also,

is the empirical distribution of the reciprocals of in (32).
The proof is then essentially the same as the one of Theorem 1
but simpler since the function is bounded.
For equal to Fourier transform, the limiting was given

in (57). Thus, for , as tends to infinity, tends
to . This completes the proof of the right-hand side.
For the case that is the operator-like wavelet transform,

the limit is where and
were given in (59)–(62). Thus, we have that

(70)

But, obviously, ; hence, , which com-
pletes the proof.
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