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Abstract

We establish in the world of stochastic processes a theoretical relation between sparsity
and wavelets. The underlying principle is to treat stochastic processes as generalized func-
tions, which facilitates the study of their properties in a transform domain. We focus
on symmetric-α-stable (SαS) processes, with α ∈ (0, 2]. They are central to a recently
proposed framework for sparse stochastic processes. The case 0 < α < 2 corresponds
to heavy-tail processes and, thus, to sparse signals with the level of sparsity being more
pronounced for smaller values of α. The limit case α = 2 yields the classical Gaussian
processes, which are not considered to be sparse.

In the first part of the thesis, we identify a particular class of wavelets and show that
they provide an independent-component analysis for SαS AR(1) signals, which form an
important subclass of sparse processes. This contribution can be considered as the first
theoretical result ever found about the optimality of wavelets in a stochastic framework.
It is remarkable that, by decreasing the parameter α, we continuously run the gamut from
Fourier (for α = 2) to wavelets (for α ≤ 1), thus providing a unifying view that sees
Fourier and wavelet transforms as two extremes of a single spectrum.

In the second part of the thesis, we study the wavelet decomposition of self-similar
processes—which form a second important family of sparse SαS processes. In particu-
lar, in the context of the wavelet-based denoising of a stochastic process, we are able to
theoretically predict the exact performance of an arbitrary orthonormal wavelet basis. As
it turns out, our prediction takes a tractable simple form, which allows us to design the
optimal Meyer wavelet as an example of application.

Our theoretical results suggest that the performance depends crucially on the localiza-
tion of wavelets. Consequently, in an image-processing context, we introduce a moment-
based measure of localization and propose an optimization framework to design better
wavelets. We end the thesis with the experimental confirmation that the proposed wavelets
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outperform the previously existing ones.

Keywords: Sparse stochastic processes, symmetric-α-stable, auto-regressive processes,
self-similar processes, independent component analysis, Kullback-Leibler divergence, infi-
nite dimensional optimization, operator-like wavelets, orthonormal wavelet basis, isotropic
wavelet frames, steerable pyramid, calculus of variations, image processing



Résumé

Dans notre travail, nous établissons une relation entre la parcimonie et les ondelettes dans le
monde des processus stochastiques. Nous considérons les processus stochastiques comme
des fonctions généralisées, ce qui facilite leur étude dans un domain de transformation.
Nous nous concentrons sur des processus symétriques et α-stable (SαS), avec 0 < α ≤ 2,
qui sont au coeur de la récente théorie des processus stochastiques parcimonieux. Pour
0 < α < 2, les processus étudiés sont à queue épaisse, et correspondent donc à des
signaux parcimonieux dont le niveau de parcimonie s’accroı̂t lorsque α diminue. Dans le
cas limite α = 2, on retrouve les processus Gaussien, qui ne sont traditionnellement pas
considérés comme parcimonieux.

Dans la première partie de notre thèse, nous identifions une classe d’ondelettes et mon-
trons qu’elles permettent une analyse en composantes indépandantes d’un signal SαS cor-
respondant au modèle AR(1). Cette contribution est le premier résultat théorique jamais ob-
tenu sur l’optimalité des ondelettes pour l’analyse de modèles stochastiques. En réduisant
le paramètre α, il est remarquable de constater le passage continu de la transformée de
Fourier, optimale pour α = 2, aux ondelettes, optimales pour α ≤ 1. Nous offrons ainsi
une vue unifée où les transformées de Fourier et en ondelettes sont les deux extrèmes d’un
spectre unique.

Dans la seconde partie de la thèse, nous étudions la décomposition en ondelettes des
processes auto-similaires, qui sont une seconde famille importante des processus SαS par-
cimonieux. En particulier, nous sommes capable de prédire la performance exacte d’une
base arbitraire d’ondelettes orthonormales pour le débruitage d’un tel processus stochas-
tique. Notre prediction prend une forme particulièrement maniable. Ceci nous permet de
construire l’ondelette de Meyer optimale comme application de notre résultat.

Nos résultats théoriques suggèrent que la performance d’une ondelette dépende forte-
ment de ses propriétés de localisation. Dans le cadre du traitement de l’image, nous intro-
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duisons de ce fait une mesure de cette localisation basée sur les moments de l’ondelette et
proposons une méthode d’optimisation adaptée à la construction de meilleures ondelettes.
La thèse s’achève sur des expériences confirmant que nos nouvelles ondelettes supplantent
celles existantes.

Mots-clefs : Processsus stochastique parcimonieux, SαS, processus auto-régressifs,
processus auto-similaires, analyse en composantes indépendantes, divergence de Kullback-
Leibler, optimisation en dimension infinie, opérateurs adapté à une transformation en on-
delettes, transformée en ondelette isotropique, pyramide orientable, calcul des variations,
traitement de l’image
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Chapter 1

Introduction

Stochastic signal modeling and transform-domain signal processing are tools that pervade
all branches of signal processing. On one hand, stochastic processes are the prime candi-
date to model practical phenomena since they view real signals or operations only through
their statistics. This offers some slack over the actual observed data, whereas the determin-
istic view of data invariably fails to fulfill the idealized assumptions placed upon them [1].
On the other hand, the analysis of most signals is best performed in a transform domain,
which reveals more about their intimate structure than could ever be found in the original
domain. In the intersection of these two fields, the investigation of transform-domain prop-
erties of stochastic processes has naturally emerged in the literature as a fecund approach.

Classical statistical signal processing is predicated upon the notion that processes are
Gaussian. This goes hand-in-hand with a Fourier-transform representation of data, which
is widely used in classical signal processing, the Fourier transform being often the most
appropriate choice to represent Gaussian processes. (Similar observations hold for gen-
eral finite-variance processes up to second-order statistics [2, 3].) Unfortunately, prac-
tical signals often do not exhibit the regular behavior of Gaussian processes; moreover,
global transformations like Fourier are not necessarily the most appropriate match for
them. Therefore, modern signal processing focuses instead on the concepts of sparsity
for signal modeling [4] and on localized transformations like wavelets as the representa-
tion domain [5].

In the late 1980s, the advent of the wavelet transform has opened new avenues of re-
search. It is a prominent component of modern signal processing that has replaced the
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2 Introduction

Fourier transform in many different applications such as signal reconstruction and com-
pression [6, 7, 8]. As further development, new redundant and non-redundant representa-
tions of signals (local cosines, curvelets) have emerged during the past two decades and
have led to better algorithms for data compression, processing, and feature extraction. An
important example is the joint photographic experts group (JPEG) 2000 standard for im-
age compression which gives almost 30% better performance over the older discrete cosine
transform (DCT)-based JPEG method. However, because they were abandoning Fourier,
researchers had also to progressively abandon the modeling of signals as stationary Gaus-
sian stochastic processes, adopting instead a more deterministic approximation-theoretic
point of view. As it turns out, many naturally occurring signals and images happen to be
experimentally sparse in some wavelet basis [9], while a Gaussian process never is.

Since the early 2000s, the different fields of signal processing have seen a tremendous
amount of research been conducted around the concept of sparsity [10]. Loosely said,
a signal is said to be sparse whenever its representation in an appropriate domain has
only a small number of significant values. Signals that have a sparse representation in
some transform domain are easy to compress; similarly, a simple pointwise processing
will be highly successful at attenuating their noise. The concept of sparsity has penetrated
deep into both the stochastic and the deterministic signal-processing frameworks. In the
stochastic framework, studies such as [11] and [12] give mathematically rigorous meaning
to sparsity. In the deterministic framework, sparsity is also a proven property of a particular
class of signals [13].

Attempts have been made to connect wavelets with sparsity. Following an empirical
approach, the authors of [9] and [14] have suggested that some wavelet-like bases tend to
be optimal to control sparsity and for decoupling purposes. Following an approximation-
theoretic approach (without combining it with a stochastic one), the authors of [13] have
demonstrated the theoretical optimality of wavelets. More generally, many other researchers
have actively sought to propose criteria to design and optimize wavelets during the last two
decades, but most of these criteria are driven from approximation-theoretic considerations
rather than statistics. In fact, despite all these efforts, the connection between the concept
of wavelets and that of sparsity has not been well established, at least not from the sta-
tistical signal-processing point of view—even if the statistical behavior of wavelets was
nevertheless studied in a few rare cases [15].

The main reason for this shortage of statistics-related results could be stated to be the
lack of a good stochastic framework for modeling sparse signals. Fortunately, a timely
innovation model has been introduced recently in [16, 17, 18]. It is capable of modeling
a wide range of stochastic processes, from Gaussian to sparse, and brings to the signal-
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processing literature the overly abstract stochastic model originally proposed by Russian
mathematicians [19]. Indeed, the new framework is particularly convenient for investigat-
ing the transform-domain representations of stochastic processes.

Relying on this framework, the general aim of the thesis is to investigate the link be-
tween wavelets and sparsity—from a stochastic point of view. In particular, we harness
the information-theoretic properties of the wavelet coefficients of sparse stochastic pro-
cesses to build, for the very first time, a mathematical model in which we can demonstrate
the fitness of wavelets to sparse stochastic processes. Then, we turn our attention to the
characterization of different wavelet bases for working with sparse stochastic processes.
Finally, we put out theoretical musings to fruition by designing new classes of wavelets
that outperform the ones previously known in the literature, a claim that we are able to
validate with practical experiments. The summary of our thesis is told in more details in
Section 1.1.

1.1 Outline and Contributions of the Thesis
In this section, we give a brief hierarchical outline of the contributions of the thesis. We
put forward the main result of each chapter and highlight a few select intermediate results
as well.

Chapter 2 contains preliminaries on the fundamental concepts of the thesis. There, we
describe the innovation model of sparse stochastic processes and the symmetric-α-stable
processes. Throughout the thesis, these concepts form the basis of our stochastic analy-
sis. Then, we present the theoretical and practical definitions and properties that apply to
conventional and operator-like wavelet bases and frames.

The main body of the thesis starts in earnest after the preliminaries of Chapter 2. It con-
sists of two major parts, namely, theory and applications. The part on theory is contained
in Chapters 3 and 4; the part on applications is contained in Chapter 5, where we use
our theoretical results to design wavelets that perform optimally in an image-processing
context.

We start Chapter 3 by investigating the optimality of wavelets for decoupling stochastic
processes. We show, in particular, that operator-like wavelets are optimal to represent a
certain class of sparse stochastic processes. When we switch to other classes of sparse
stochastic processes, however, optimality may be lost. But, in Chapter 4, we are still able
to distinguish between wavelet bases on the ground of their performance to attenuate noise
for some particular class of sparse stochastic processes.
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In the part on theory, we essentially consider two classes of stochastic processes: 1)
autoregressive processes; and 2) self-similar processes. They are of special importance in
statistical signal processing, both from a theoretical and a practical point of view. They can
be considered as two separate extensions of the Lévy processes, which are at the heart of
the theory of continuous-domain stochastic processes [20].

Autoregressive processes are related to Lévy processes through Markov processes. In-
deed, the class of autoregressive processes of first order (AR(1)) identifies with the class
of Markov processes, which are such that the knowledge of a sample of the process is
enough to decouple past and future—in the sense that it makes them independent. As it
turns out, the Lévy processes are Markov processes. Likewise, self-similar processes are
related to Lévy processes, too. Indeed, an important property of Lévy processes is their
self-similarity. More precisely, they have a fractal property of first order.

All excitation noises that we consider for these processes have an α-stable distribution.
This is a rich family of distributions that runs the gamut from Gaussian distributions to
heavy-tail (and thus, sparse) distributions. This enables us to roam between the classical
and modern schools of signal processing simply by sweeping over α.

Our theoretical results are as follows:

• Proof of the Optimality of Operator-Like Wavelets for Decoupling α-Stable
AR(1) Processes

– Our result on wavelets must be contrasted with the situation where the trans-
form domain is Fourier, in which case finite-variance processes must be con-
sidered instead of α-stable AR(1) ones.

– We derive a closed-form formula for the mutual information of entries of a vast
class of α-stable random vectors. Interestingly, our formula involves `α-norm
calculations that are in common use in the context of sparse-recovery algo-
rithms.

– We relate the sparse-component analysis (SCA) to the independent-component
analysis (ICA). This is of utmost relevance from an information-theoretic point
of view.

• Gauge of the Total Performance of a Wavelet when Attenuating the Noise of
α-Stable Self-Similar Processes

– We show how to determine the time-averaged energy of a signal through its
wavelet coefficients. It is noteworthy to observe that we deal with the wavelet
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decomposition of signals that have a finite average energy, rather that finite-
energy signals.

– We study the behavior of minimum mean-square error (MMSE) functions for
infinite-variance random variables when the width parameter tends to zero. In
particular, we extend to the infinite-variance case some existing results in the
literature about finite-variance random variables.

– We derive the optimal Meyer wavelet for attenuating the noise found inα-stable
self-similar processes [21].

– We obtain closed-form formulæ for the projector of a profile onto the infinite-
dimensional manifold of Meyer wavelets.

The part on applications revolves around solving practical problems found in the con-
text of image processing. More precisely, we consider the two wavelet-based tasks of 1)
attenuating the noise in images and 2) reconstructing images. Inspired by our theoretical
results, we design new wavelets tuned to each one of the considered applications. Our
experiments confirm that the wavelets we designed outperform previously existing ones.

Our practical results are as follows:

• Numerical Design of Maximally Localized Isotropic Tight Wavelet Frames

– We derive a novel closed-form formula for the projector of isotropic wavelets
onto the infinite-dimensional manifold of tight frames.

• Illustration of the Superiority of the Proposed Localized Wavelets Through
Practical Experiments

We conclude the thesis by summarizing our results and suggesting topics for future
studies.
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Chapter 2

Mathematical Preliminaries

There are two major theories that constitute the formulation of this thesis. The first one
is the theory of sparse stochastic processes and the second one is the theory of wavelets.
To have a self-contained text, in this section we give a brief introduction about these two
major topics. Before that, we present the notations that we will use throughout the text.

2.1 Notations

Throughout the paper we use R, Z, N for the set of real, integer, and positive integer
numbers, respectively. The Fourier transform of a function f from Rn to R is denoted by
f̂ . Thus, we have

f̂(ω) =

∫
R
f(x)e−j〈ω,x〉dx (2.1)

and

f(x) =
1

(2π)n

∫
R
f̂(ω)ej〈ω,x〉dω (2.2)

with x = (x1, · · · , xn) ∈ Rn and ω = (ω1, · · · , ωn) ∈ Rn being the space and the
frequency domain variables, respectively. Also, ‖f‖α represents the α-(pseudo)norm of f
for any positive value α. The notation 〈·, ·〉 is the standard inner product of two vectors,
functions or a linear functional with a test function.

7



8 Mathematical Preliminaries

To denote the action of an operator L acting on a function f , we use the forms of Lf or
L{f}(x) depending on if we want to mention the whole function or its value at a specific
point. P(A) and E[X] stand for the probability of the event A and the expected value of
the random variable X .

2.2 Sparse Stochastic Processes
To define a stochastic process, several different approaches have been proposed up to
now. Each approach has its own advantages and limitations. Most of the conventional
approaches are based on constructing the sample paths of the processes. Although this
constructions give us intuitions about how a stochastic process looks like, they have tech-
nical difficulties for certain signal processing procedures. For examples, taking a signal
into a transformation domain is very common in signal processing. But, with these con-
structions of stochastic processes, it is usually complicated to characterize the transform
domain properties of the stochastic processes.

In [19], the authors proposed a framework for defining stochastic processes that are
very convenient for studying transform domain operations. Although it is a relatively old
framework, it did not attract much attention within the signal processing community due
to its mathematical technicalities. Recently, the authors of [17, 18, 22], reinterpreted this
theory into the conventional language of signal processing which is now very handy to
work with. In the following subsections, we give a brief preliminary about this framework.

2.2.1 Innovation Model

In [17], the authors define a sparse stochastic process s as the solution of the linear differ-
ential equation

Ls = w (2.3)

where L is a suitable differential operator and w a Gaussian/non-Gaussian continuous-
domain white noise (or innovation process). However, the more interesting noises are the
non-Gaussian ones which are actually the source of the adjective “sparse” in the name of
these processes. Formally, (2.3) results into the solution

s = L−1w (2.4)
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where the linear operator L−1 is the inverse of the whitening operator L, which also indi-
cates that a sparse stochastic process is a filtered version of a non-Gaussian white noise.

The delicate aspect with this simple operational description is thatw is a highly singular
entity that does not admit an interpretation as a conventional function of the time variable t
(think ofw as the stochastic counterpart of the Dirac distribution δ whose explicit definition
as a tempered distribution is 〈δ, ϕ〉 = ϕ(0) for all “test” functions ϕ). In fact, specifying
a stochastic process s in this framework is equivalent to prescribing the probability law of
the random vector [〈s, ϕ1〉, · · · , 〈s, ϕN 〉]> for any N test functions {ϕ1, · · · , ϕN}. The
mathematical framework for the correct interpretation of (2.4) is Gelfand’s theory of gen-
eralized stochastic processes [19], which is briefly summarized as follows:

White Noise

The theory starts with the definition of the white noise. A generalized white noise is a
probability measure on the dual space of a set of test functions ϕ : R → R (typically,
Schwartz space of tempered distributions) that has the following properties:

• For a given test function ϕ, the statistics of the random variable 〈w,ϕ〉 do not change
upon shifting ϕ, where w denotes a generic random element in the dual space of test
functions .

• If the test functions in the collection {ϕβ}β∈B (B is an index set) have disjoint
supports, then the random variables in {〈w,ϕβ〉}β∈B are independent.

Under some mild regularity conditions, there is a one-to-one correspondence between the
infinitely divisible random variables and the white noises specified above. A random vari-
able X is called infinite divisible if for any n ∈ N, there exists n iid random variables X1

to Xn such that X1 + · · ·+Xn has the same distribution as X . Thus, if the characteristic
function of X is

E
[
ejωX

]
= ef(ω), (2.5)

then for any n ∈ N, exp
(

1
nf(ω)

)
is also a valid characteristic function of a random vari-

able. The function f is called the Lévy exponent of the infinite-divisible random variable
X . Now, the white noise corresponding to the random variable X is the random process w
for which we have

E

[
exp

(
j

N∑
i=1

ωi〈w,ϕi〉
)]

= exp

(∫
R
f

(
N∑
i=1

ωiϕi(x)

)
dx

)
(2.6)
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where ϕ1 to ϕN are N arbitrary test functions. This completely characterizes the white
noise w.

Stochastic Processes

To define the stochastic process s in (2.4), we take advantage of the formula

〈s, ϕ〉 = 〈L−1w,ϕ〉 = 〈w,L−1∗ϕ〉 (2.7)

where L−1∗ is the adjoint operator of L−1. It means that one can readily deduce the statis-
tical distribution of 〈s, ϕ〉 given the white noise w and the operator L−1∗. The combination
of (2.6) and (2.7) gives the complete characterization of the process s, i.e.

E

[
exp

(
j

N∑
i=1

ωi〈s, ϕi〉
)]

= exp

(∫
R
f

(
N∑
i=1

ωiL
−1∗{ϕi}(x)

)
dx

)
(2.8)

for any N test functions ϕ1 to ϕN .

2.2.2 Symmetric-α-Stable (SαS) White Noise
An important family of white noises is the α-stable ones. They are an extension of the
Gaussian white noise that play a central role in the theory of stochastic processes. In
this thesis, we focus on this class of white noises; specifically the symmetric-α-stable
(SαS) white noises. It is a rich family that exhibit a wide range of desirable properties
to model practical signals which will be discussed later. Additionally, such stable models
are attractive for statistical signal processing because they lend themselves well to analytic
calculations [23]. Areas of applications include detection theory [24], communications
[25], and signal denoising [26].

To describe the SαS white noises, we first describe the SαS random variables.

Definition 1. The random variable X is SαS if its characteristic function is of the form

E
[
ejωX

]
= e−‖aω‖

α
α , (2.9)

for some a ∈ R+. Notice that in order for (2.9) to be a valid characteristic function α
needs to be in (0, 2], where α = 2 corresponds to the Gaussian case. The quantity aα is
known as the dispersion parameter which plays a role similar to the variance of Gaussian
random variables.
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We also recall a fundamental property of stable distributions that can also serve as their
definition.

Property 1 (Linear combination of SαS random variables). Let r̄ =
∑N
n=1 anrn where

the rm are iid SαS random variables that have the same distribution as an SαS random
variable r. Then, r̄ is an SαS random variable as well with the same distribution as
‖[a1, · · · , aN ]‖α r [23].

To establish this property, we consider N iid SαS random variables r1, . . . , rN with
common characteristic function exp(−|aω|α), and a corresponding sequence of real-valued
weights a1, . . . , aN . The characteristic function of the random variable r̄ =

∑N
n=1 anrn

is given by

p̂r̄(ω) =

N∏
n=1

e−|a anω|
α

= e−
∣∣a(∑N

n=1 |an|
α)

1/α
ω
∣∣α
. (2.10)

Thus, r̄, which is a linear combination of iid SαS random variables, is an SαS random vari-
able with the same distribution as one of them multiplied by the factor (

∑N
n=1 |an|α)1/α;

i.e.

r̄
d
=
( N∑
n=1

|an|α
)1/α

r1. (2.11)

It is easy to see that stable distributions belong to the class of infinite divisible distri-
butions. Thus, there exist corresponding white noises that are called SαS white noises.
According to (2.5), the Lévy exponent corresponding to r is f(ω) = −|aω|α. Therefore,
according to (2.6), the corresponding SαS white noise w is characterized as follows

E

[
exp

(
j

N∑
i=1

ωi〈w,ϕi〉
)]

= exp

(∫
R

∣∣∣ N∑
i=1

ωiϕi(x)
∣∣∣αdx

)

= exp

(∥∥∥a N∑
i=1

ωiϕi(x)
∥∥∥α
α

)
(2.12)

where ϕ1 to ϕN are any N number of test functions. Specifically, for a random variable
〈w,ϕ〉, we have

p̂〈w,ϕ〉(ω) = E
[
ejω〈w,ϕ〉

]
= e−|a‖ϕ‖αω|

α

(2.13)
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which is the characteristic function of the SαS random variable with dispersion parameter
aα‖ϕ‖αα. This means that the observation of an SαS white noise through any window is an
SαS random variable.

The case of α = 2 is the well studied Gaussian distribution. Except that, the probability
density function (pdf) of an SαS random variable is heavy tailed for α < 2. Precisely, it
decays with the order of x−(α+1) asymptotically. Therefore, according to [11] and [12],
these white noises are good candidates for modelling sparse processes.

2.3 Discrete Wavelet Transform
Another main ingredient of this thesis are the wavelet bases and frames. In this subsec-
tion, we provide a brief preliminaries about them which is enough to comprehend the next
chapters.

The construction of wavelets start with the notion of a multi-resolution analysis for
L2(R). Assume that {Vi}i∈Z is a sequence of linear subspaces of L2(R) that satisfy the
following three conditions:

1. Vi are nested, i.e. for all i ∈ Z, we have

Vi ⊆ Vi+1. (2.14)

2. They generate L2(R), i.e. ⋃
i∈Z

Vi = L2(R) (2.15)

where bar means the set closure operation.

3. Their intersection is empty, i.e. ⋂
i∈Z

Vi = ∅. (2.16)

Also, assume that Vi is generated by the shifted versions of a single function ϕi over a
uniform grid, i.e.

Vi = span
{
ϕij(x)

∣∣ϕij(x) = ϕi(x− jTi)
}

(2.17)

where Ti is the step size of grid corresponds to Vi. Now, this sequence of nested spaces
gives us a multi-resolution basis for L2(R) since by increasing i, projection of a function
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f ∈ L2(R) on Vi results in an approximation of f with an intuitively higher resolution.
This structure implies that there exist hij ∈ R for i, j ∈ Z such that

ϕi(x) =
∑
j∈Z

hijϕi+1,j(x). (2.18)

Now, let Wi be the orthogonal complement of Vi inside Vi+1 (see (2.14)). Thus, we
can write

Vi+1 = Vi ⊕Wi (2.19)

where ⊕ denotes the direct sum of vector spaces. Using this expression recursively, ac-
cording to (2.15), we deduce that, for any fixed i0 ∈ Z,

Vi0 ⊕
∞⊕
i=i0

Wi =

∞⋃
i=i0

Vi = L2(R). (2.20)

Incorporating (2.16), we obtain ⊕
i∈Z

Wi = L2(R). (2.21)

SinceWi is orthogonal to Vi and Vj ⊆ Vi for all j < i,Wi is orthogonal toWj when i 6= j.
Hence, {Wi}i∈Z is a sequence of orthogonal spaces. Moreover, under certain conditions
Wi is also generated by shifted versions of a function ψi on the grid with step size Ti, i.e.

Wi = span
{
ψij(x)

∣∣ψij(x) = ψi(x− jTi)
}
. (2.22)

Thus, relying on (2.20) for any i0 ∈ Z, {ϕi0j}j∈Z ∪
{
{ψij}∞i=i0

}
j∈Z

generates L2(R).

Also, relying on (2.21), {ψij}i,j∈Z generates L2(R) as well. These two basis for L2(R)
are called the wavelet bases.

Similar to (2.18), we can also write

ψi(x) =
∑
j∈Z

gijϕi+1(x− jTi+1) (2.23)

with gij ∈ R for all i, j ∈ Z. These coefficients hij and gij allow us to perform a fast
algorithm for calculating the representation coefficients of a function in the wavelet bases
described above [27].
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2.3.1 Conventional Wavelets
In a conventional wavelet basis, it is additionally assumed that ϕi are dilated versions of a
fixed function ϕ for any i. Precisely, we have

ϕi(x) = 2
i
2ϕ(2ix) (2.24)

(the multiplicative constant is to keep the L2-norm of all ϕi fixed). It is also assumed that
Ti = 2−i. Consequently, we have

ϕij(x) = ϕi(x− jTi) = 2
i
2ϕ(2ix− j). (2.25)

Considering the case of i = 0, by substituting (2.24) in (2.18), we obtain

ϕ(x) = ϕ0(x) =
∑
j∈Z

h0jϕ1

(
x− 2−1j

)
=
√

2
∑
j∈Z

h0jϕ0

(
2x− j

)
=
√

2
∑
j∈Z

h0jϕ
(
2x− j

)
. (2.26)

This equation means that ϕ has a kind of fractal property since it is a linear combination
of shifts of its contracted version. According to (2.26), for any i ∈ Z, we can write

ϕi(x) = 2
i
2ϕ(2ix)

= 2
i+1
2

∑
j∈Z

h0jϕ
(
2i+1x− j

)
=
∑
j∈Z

h0jϕi+1

(
x− jTi+1

)
. (2.27)

Therefore, when (2.24) holds, the hij in (2.18) are equal to h0j irrelevant to i. Thus, we
drop the index 0 in h0j from now on (so we just write hj).

Also, we can deduce that there exist a function ψ(x) such that for any i, we have

ψi(x) = 2
i
2ψ(2ix) (2.28)

and gij in (2.23) equals g0j for all i. We drop the index i for gij , too.
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Therefore, in brief, a conventional wavelet basis is {ϕi0j}j∈Z ∪
{
{ψij}∞i=i0

}
j∈Z

or

{ψij}i,j∈Z that generates L2(R) and in which we have

ϕij(x) = 2
i
2ϕ(2ix− j), (2.29)

ψij(x) = 2
i
2ψ(2ix− j). (2.30)

Also, the function ϕ and ψ satisfy the two-scale relation

ϕ(x) =
√

2
∑
j∈Z

hjϕ
(
2x− j

)
, (2.31)

ψ(x) =
√

2
∑
j∈Z

gjϕ
(
2x− j

)
. (2.32)

They are called the father wavelet (or scaling function) and the mother wavelet, respec-
tively. Moreover, the sequences {hj}j∈Z and {gj}j∈Z are respectively the impulse re-
sponse of a low-pass and a high-pass filter. These filters play a fundamental role in Mallat’s
efficient filter-bank implementation of the wavelet decomposition [27].

The most famous wavelets are Daubechies wavelets [28] that are compactly supported
in the time domain and Meyer wavelets [29] that are compactly supported in the Fourier
domain. We explain the latter later on due to their importance in this thesis.

2.3.2 Operator-like Wavelets

Conventional wavelet bases act as smoothed versions of the derivative operator [30]. How-
ever, there exist multi-resolution wavelet-like bases which essentially behave like a given
differential operator L. These bases are called operator-like wavelets [31]. The operator-
like wavelet at scale i and location j is given by

ψij(x) = L∗{φi}(x− j2−iT ), (2.33)

where φi is a scale-dependent smoothing kernel.
In our study, we work only with operator-like wavelets tailored to first order differ-

ential operators L = D + κI where D is the differentiator and κ is a non-negative real
number (they are also called first order autoregressive (AR(1)) systems). In this case, the
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operator-like wavelets proposed in [31] are very similar to Haar wavelets [32] (or first or-
der Daubechies wavelets). The only difference is that Haar wavelets are piecewise constant
while these operator-like wavelets are piecewise exponential. Indeed, we have

ψij(t) ∝ e−2−iκTβκ,2−iT (t− j2−iT )− βκ,2−iT (t− (j + 1)2−iT )

=


0 t < j2−iT

e−κ(t−(j−1)2−iT ) j2−iT ≤ t < (j + 1)2−iT

−e−κ(t−(j+1)2−iT ) (j + 1)2−iT ≤ t < (j + 2)2−iT

0 (j + 2)2−iT ≤ t

. (2.34)

where βκ,2−iT is the exponential B-spline with parameters κ and 2−iT [18]. In essence,
this amounts to replacing the finite-difference operations of the conventional wavelet trans-
form algorithm by a suitable series of linear prediction errors where the coefficients are de-
termined by the pole of the AR(1) system. In contrast with conventional wavelets, operator-
like wavelets have scale dependent hij and gij coefficients. However, it does not affect the
efficiency of the filter-bank implementation of them.

2.3.3 One-Dimensional Wavelet Frames
The story of conventional wavelets can be told from another point of view. Assume that
for a given function ψ, we define

ψij(x) = 2
i
2ψ(2ix− j) (2.35)

for i, j ∈ Z, the same as what we had in the previous subsection. For {ψij}i,j∈Z to be
a frame (not necessarily a basis) for L2(R) with robust reconstruction, there need to exist
A,B > 0 such that for any f ∈ L2(R), we have [33]

A‖f‖22 ≤
∑
i,j∈Z

|〈f, ψij〉|2 ≤ B‖f‖22. (2.36)

If A = B, then the frame is called a tight frame. Also, there exist a dual frame
{
ψ̃ij
}
i,j∈Z,

which gives us the representation coefficients, i.e.

f(x) =
∑
i,j∈Z
〈f, ψ̃ij〉ψij(x) (2.37)
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for any f ∈ L2(R).
In [33], it is shown that for a given ψ, A and B which satisfy (2.36) can be calculated

as

A = inf
ρ

{∑
i∈Z

∣∣ψ̂(2iρ)
∣∣2 − ∑

k∈Z\{0}

(
θ(2πk)θ(−2πk)

) 1
2

}
(2.38)

and

B = sup
ρ

{∑
i∈Z

∣∣ψ̂(2iρ)
∣∣2 +

∑
k∈Z\{0}

(
θ(2πk)θ(−2πk)

) 1
2

}
(2.39)

where ψ̂ is the Fourier transform of ψ and

θ(s) = sup
ρ

∑
`∈Z

∣∣ψ̂(2`ρ)
∣∣∣∣ψ̂(2`ρ+ s)

∣∣. (2.40)

Therefore, if we assume that ψ is band-limited over [−π, π] and∑
i∈Z

∣∣ψ̂(2iρ)
∣∣2 = 1, (2.41)

then we get a frame which is tight with A = B = 1. These wavelets have two favorable
properties. The first one is norm preservation due to their tight frame property with A =
B = 1. This property implies that the dual frame is the same as the original frame, i.e.

f(x) =
∑
i,j∈Z
〈f, ψij〉ψij(x). (2.42)

for any f ∈ L2(R), which is important in reconstruction applications. The second one is
the band-limitedness that can be translated into an efficient wavelet transform algorithm in
the Fourier domain.

Meyer Wavelet Bases

An interesting subfamily of wavelets that satisfy (2.41) are the Meyer wavelets. Meyer
wavelets are not only tight frames but also orthonormal bases [29, 33]. This subfamily is
characterized by a function v : [0, 1]→ R such that

v(ρ) + v(1− ρ) = 1. (2.43)
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Having this function, the mother wavelet profile in Fourier domain is

ψ̂(ρ) = ejρ/2 ×


sin
(
π
2 v( 3

2π |ρ| − 1)
)
, 2π

3 < |ρ| ≤ 4π
3

cos
(
π
2 v( 3

4π |ρ| − 1)
)
, 4π

3 < |ρ| ≤ 8π
3

0, otherwise
. (2.44)

Notice that the dilation that expands the support of ψ̂(ρ) to
[
− 8π

3 ,− 2π
3

]
∪
[

2π
3 ,

8π
3

]
, rather

than a subset of [−π, π], is crucial to obtain an orthonormal basis and not only a tight
frame. In fact, this specific construction results in miraculous cancelations (stated as such
by Daubechies [33]) that result in the emergence of a basis. Moreover, this charaterization
helps us to easily change different properties of the wavelet such as localization while
keeping it orthonormal.

2.3.4 Two-Dimensional Isotropic Wavelet Frames
Similar to the 1-dimensional case, we can construct a wavelet frame for L2(R2). Let the
mother wavelet ψ be a function from R2 to R. The complete wavelet frame is given by

ψi,k(x) = 2i ψ
(
2ix− k

)
, (2.45)

in which i ∈ Z and k ∈ Z2.
In particular, we are interested in isotropic wavelets. These wavelets are circular sym-

metric, thus, enabling us to obtain orientation-free analysis of images. This means that
the value of a wavelet coefficient at a specific position does not change if one rotates the
underlying image with respect to the center of the wavelet. Mathematically, we can write

ψ(x) = ψ(r), (2.46)

where r = ‖x‖. Here, for simplicity, we use the notation ψ both for the wavelet and for
the radial profile of the wavelet. Let h(ω) be the 2-dimensional Fourier transform of ψ(x).
According to the properties of the Fourier transform, h is also isotropic. Hence, like (2.46),
we write

h(ω) = h(ρ), (2.47)

where ρ = ‖ω‖. According to [34], ψ and h are related through the Hankel transform as

ψ(r) = H{h}(r) =

∫ ∞
0

h(t) J0(rt) tdt. (2.48)
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for r ≥ 0. This formula allows us to calculate the radial profile of an isotropic wavelet in
space domain from its radial profile in Fourier domain through a 1-dimensional integral,
rather than calculating 2-dimensional Fourier transforms.

The second assumption is that ψ creates a tight-frame family. According to [35, 36],
this condition is satisfied if∑

i∈Z
|h(2iρ)|2 = 1 for ∀ρ ∈ R+\{0}. (2.49)

Comparing (2.49) with (2.41), we conclude that by using the Fourier transform of a 1-
dimensional mother wavelet of a tight wavelet family as radial frequency profile, we obtain
a mother wavelet of a 2-dimensional mother wavelet. Also, there is an equivalence between
stating (2.49) for all positive ρ and stating (2.49) for ρ ∈ [π2 , π] because 2iρ, for i ∈ Z, can
reach any arbitrary positive value.

Filter-Bank Implementation of the Isotropic Wavelets

Since in practice we are working with discrete-domain signals, we are interested in obtain-
ing the wavelet coefficients of a discrete signal. To be precise, assume that f [k] for k ∈ Z2

is a discrete-domain signal. Based on it, we construct a continuous-domain signal

f(x) =
∑
k∈Z2

f [k] sinc(x1 − k1)sinc(x2 − k2) (2.50)

where x = (x1, x2) ∈ R2 and k = (k1, k2). Now, we are interested in calculating the
wavelet coefficients of f(x).

To have a straightforward exact implementation of the wavelet transform, we assume
that the wavelet profile h(ρ) is supported on [π4 , π]. We see the advantage of this assump-
tion during the derivation of the method. First, define the highpass hH and lowpass hL
filters as

hH(ω) =


0 ‖ω‖ ≤ π

4

h(‖ω‖) π
4 < ‖ω‖ < π

2

1 π
2 ≤ ‖ω‖

, (2.51)

hL(ω) =


1 ‖ω‖ ≤ π

4

h(2‖ω‖) π
4 < ‖ω‖ < π

2

0 π
2 < ‖ω‖

, (2.52)
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respectively. Notice that for these hH and hL, we have

h(ω) = hL

(ω
2

)
hH(ω), (2.53)

and also according to the tight-frame constraint (2.49), we automatically have that

h2
L(ω) + h2

H(ω) = 1. (2.54)

For i ∈ Z and k ∈ Z2, we have

wi,k = 〈f(x), ψi,k(x)〉 = (f(x) ∗ ψi,0(x))
(
2−ik

)
= F−1

{
f̂(ω)2−ih

(
2−iω

)}
(2−ik). (2.55)

Since the support of f̂(ω) is a subset of [−π, π] × [−π, π], for all i > 1, wi,k = 0. Thus,
we let

w0,k = F−1
{
f̂(ω)hH (ω)

}
(k) (2.56)

which actually accumulates the effect of wavelet coefficients for i ≥ 0. For i < 0, accord-
ing to the properties of the Fourier transform, we have

F−1
{
f̂(ω)2−ih

(
2−iω

)}
(2−ik) = 2i F−1

{
f̂
(
2iω

)
h (ω)

}
(k). (2.57)

Using (2.53), we can write

2i F−1
{
f̂
(
2iω

)
h (ω)

}
(k) = 2i F−1

{
f̂
(
2iω

)
hL

(ω
2

)
hH(ω)

}
(k). (2.58)

Notice that hL(ω) = 0 for ‖ω‖ > π
2 . Thus, downsampling F−1

{
f̂
(
2i+1ω

)
hL (ω)

}
(k)

by factor of 2, we obtain F−1
{
f̂
(
2iω

)
hL
(ω

2

)}
(k) without any frequency aliasing.

Also, notice that
hL

(ω
2

)
hL(ω) = hL(ω). (2.59)

These yield that by filtering F−1
{
f̂
(
2iω

)
hL
(ω

2

)}
(k) with hL(ω) and then downsam-

pling by the factor of 2, we get F−1
{
f̂
(
2i−1ω

)
hL
(ω

2

)}
(k). Combining this fact with
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Algorithm 1: Efficient Recursive Method for Calculating the Wavelet Coefficient of
a Discrete Signal

1: input: f [k] for k ∈ Z2

2: f0 ← f
3: for j = 0 to∞ do
4: wi,k ← F−1

{
f̂i (ω)hH (ω)

}
(k)

5: fi−1[k]←
(

1
2 F−1

{
f̂i (ω)hL (ω)

}
(k)
)
↓ 2

6: i← i− 1
7: end for
8: return {{wi,k}k∈Z2}i∈Z\N

(2.58), one can use the recursive Algorithm 1 for calculating the wavelet coefficients of a
discrete signal f :

Therefore, Algorithm 1 gives us an efficient implementation of the wavelet transform
for discrete signals which is equivalent to the standard decimated filter-bank implementa-
tion of wavelets. The only difference is that we do not down-sample the wavelet coeffi-
cients in the high-pass channel of highest resolution (w0,k) which means that the redun-
dancy factor of these frames are 4/3.
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Chapter 3

Optimal Representation of
Sparse AR(1) Processes

The discrete cosine transform (DCT) is known to be asymptotically equivalent to the
Karhunen-Loève transform (KLT) of Gaussian stationary processes including first-order
auto-regressive (AR(1)) ones. Since being uncorrelated under the Gaussian hypothesis is
synonymous with independence, it also yields an independent-component analysis (ICA)
of such signals. In this chapter, we present a constructive non-Gaussian generalization of
this result: the characterization of the optimal orthogonal transform (ICA) for the fam-
ily of symmetric-α-stable AR(1) processes. The degree of sparsity of these processes is
controlled by the stability parameter 0 < α ≤ 2 with the only non-sparse member of the
family being the classical Gaussian AR(1) process with α = 2. Specifically, we prove that,
for α < 2, a fixed family of operator-like wavelet bases systematically outperforms the
DCT in terms of compression and denoising ability. The effect is quantified with the help
of two performance criteria (one based on the Kullback-Leibler divergence, and the other
on Stein’s formula for the minimum estimation error) that can also be viewed as statistical
measures of independence. Finally, we observe that, for the sparser kind of processes with
0 < α ≤ 1, the operator-like wavelet basis, as dictated by linear system theory, is undistin-
guishable from the ICA solution obtained through numerical optimization. Our framework
offers a unified view that encompasses sinusoidal transforms such as the DCT and a family
of orthogonal Haar-like wavelets that is linked analytically to the underlying signal model.

23
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3.1 Introduction
Transform-domain processing is a classical approach to compress signals, model data, and
extract features. The guiding principle is to produce transform-domain coefficients that
are decoupled statistically so that a simple component-wise processing can be applied; i.e,
each coefficient is processed independently of the others. The reference solution in the
field is the Karhunen-Loève transform (KLT) which yields transform-coefficients that are
uncorrelated and therefore also independent, provided the process is Gaussian. Also, if
the process is stationary with finite variance and infinite length, then the KLT is a Fourier-
like transform [2]. Moreover, it has been shown that the discrete cosine transform (DCT)
[37] is asymptotically equivalent to the KLT for the whole class of stationary processes
[3], including the AR(1) model [38]; thus, for a Gaussian input, all these transforms result
in a fully decoupled (independent) representation. However, this favorable independence-
related property is extinguished for non-Gaussian processes. In this case, the coefficients
are only partially decoupled and the representation of the signal afforded by the KLT is no
longer optimal.

In recent years, wavelets have emerged as an alternative representation of signals and
images. Typical examples of successful applications are JPEG2000 for image compres-
sion [39] and shrinkage methods for attenuating noise [6, 40]. The fact that wavelets are
so effective in transform-domain applications suggests that they are naturally suited to rep-
resent practical processes. This empirical observation was established by early studies
that include [9], where many natural images were subjected to an independent-component
analysis (ICA). It was found that the resulting components have properties that are reminis-
cent of 2D wavelets and/or Gabor functions. Additional ICA experiments were performed
in [14] on realizations of the stationary sawtooth process and of Meyer’s ramp process [41];
for both processes, the basis vectors of ICA exhibit a wavelet-like multiresolution structure.

Despite their empirical usefulness, the optimality of wavelets for the representation of
non-Gaussian stochastic processes remains poorly understood from a theoretical point of
view. An early study can be traced back to [42], where the decomposition of fractional
Brownian motions over a wavelet basis was shown to result in almost uncorrelated coef-
ficients, under some conditions. By contrast, in the deterministic framework, it is well
known that wavelets are optimal (up to some constant) for the N -term approximation of
functions in Besov spaces [13]; the extension of this result to a statistical setting could be
achieved only experimentally.

The general distributional framework for the specification of sparse stochastic pro-
cesses presented in Section 2.2 is particularly well suited to the specification of symmetric-
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α-stable (SαS) white noises. These noises can be used to drive first-order stochastic dif-
ferential equations (SDE) to synthesize AR(1) processes. As it turns out, AR(1) systems
and α-stable distributions are at the core of signal modeling and probability theory. As
discussed in Section 2.2.2, the classical Gaussian processes correspond to α = 2, while
0 < α < 2 yields stable processes that have heavy-tailed statistics and that are prototyp-
ical representatives for sparse signals. Also, specifically heavy-tailed AR have been used
to model phenomena in network [43], sea surface [44], economy and finance [45].

In this chapter, we take advantage of the framework presented in Section 2.2 to es-
tablish the optimality of a certain class of wavelets in a stochastic sense. We start by
characterizing the amount of dependency between the coefficients of stochastic processes
represented in an arbitrary transform domain. To that end, we introduce two performance
criteria. The first assesses the coding performance of the transform: it is given by the
Kullback-Leibler divergence between the joint probability density function (pdf) of the
original signal and the product of the marginals in the transformed domain. The second is
a theoretical prediction of denoising performance under the hypothesis of additive white
Gaussian noise (AWGN). It is based on Stein’s formula for the mean-square estimation
error and also takes the form of a divergence between the joint pdf of the original signal
and the product of the marginals in the transformed domain. Then, we seek the orthogonal
transformation that minimizes these statistical criteria. We confirm the loss of optimality
of the DCT for 0 < α < 2 and validate the superiority of a special brand of operator-like
wavelet transform that is matched to the underlying signal model (see Section 2.3.2). Our
reference method in this comparison is the ICA solution that is determined by numerical
means for different values of α. The remarkable empirical finding of this chapter is that the
ICA solution converges to the operator-like wavelets for values of α below one. Moreover,
the practical relevance of these results is that, unlike ICA, the operator-like wavelets are
known in analytical form in terms of the pole of the underlying system

(
see Eq. (2.34)

)
.

This chapter is organized as follows: In Section 3.2, we introduce two measures of di-
vergence between distributions that are suitable for either noise attenuation or compression
applications. The signal model fundamental to this chapter is discussed in Section 3.3. In
Section 3.4, we derive the explicit form of our performance criteria for the SαS model
in the context of transform-domain compression and noise attenuation. In addition, we
provide an iterative algorithm to find the optimal basis (Section 3.5). Results for different
AR(1) processes and different transform domains are discussed in Section 3.6. The last
section is dedicated to the recapitulation of the main results, the relation to prior works,
and topics for future studies.
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3.2 Information Theoretic Performance Measures
In statistical signal processing, it is of interest to precisely quantify the best-achievable
performance when the model is not perfectly matched to the signal under investigation,
or when certain simplifying hypothesis, such as independence, are being made. In the
following, we address this issue for the two problems of compression and denoising when
the assumed distribution and the real one may differ.

3.2.1 Compression Based on Non-Exact Distribution
It is well-known that, if we have a source s of iid random vectors with common pdf ps,
then the logarithm of measure of the coding set per sample can be at least

H(ps) = −
∫
ps(s) log ps(s)ds (3.1)

which is the entropy1 of the source [46]. However, if we compress s assuming that it is
distributed according to qs (rather than ps), then

H(qs) = H(ps) + D(ps‖qs)

= H(ps) +

∫
ps(s) log

ps(s)

qs(s)
ds (3.2)

in which D(·‖·) is the Kullback-Leibler divergence.
Typically, when there is a statistical dependency between the entries of s, compressing

the vector based on the exact distribution is often intractable. Thus, the common strategy
is to expand the vector in some other basis and to then do the compression entry-wise (ne-
glecting the dependency between entries of the transformed vector). This is equivalent to
doing the compression assuming that the signal distribution is the product of the marginal
distributions. Thus, if the transformed vector is y = Hs, then the normalized redundant
information remaining in the compressed signal is

R(H) =
1

N
(H(py1

(y1) · · · pyN (yN ))−H(ps))

=
1

N
D(py (y) ‖py1

(y1) · · · pyN (yN )), (3.3)

1H(·) is used for the random variable or its pdf interchangeably.
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where N is the number of entries in s. This is the first measure of performance of the
transform H that we use in this chapter. Also, this criterion is commonly used in ICA to
find the “most-independent” representation [47].

3.2.2 Denoising Based on Non-Exact Distribution
Although the Kullback-Leibler divergence is widely used to measure the distance between
two distributions, it is inherently tied to the application of compression. Here, we introduce
a novel measure of divergence between distributions that is more specifically targeted to the
classical denoising task. Consider the problem of estimating s from the noisy measurement

z = s + n (3.4)

where n is an N -dimensional Gaussian random vector with iid entries with variance σ2

that is also independent from s. Our prior knowledge is the N th order pdf ps(·) of the
signal. Under these assumptions and according to Stein [48], the optimal signal estimator
that obtains minimum mean-square error (MMSE) is

E [s|z] = z + σ2∇ log pz(z) (3.5)

where E [s|z] is the expected value of s given z, pz(z) = (ps ∗ pn) (z) is theN th order pdf
of the noisy measurements, and ∇ represents the gradient operator. Thus, the MSE given
z is

E
[
(s− E [s|z])

2 ∣∣z] =

∫
‖s− z‖2 p(s|z)ds− σ4 ‖∇ log pz(z)‖2

= Nσ2 + σ4∆ log pz(z). (3.6)

where ∆ is the Laplacian operator. Averaging over z, we have

MMSE = Nσ2 − σ4

∫
pz(z) ‖∇ log pz(z)‖2 dz

= Nσ2 + σ4

∫
pz(z)∆ log pz(z)dz, (3.7)

However, if we apply this signal estimator based on an incorrect prior qs (instead of
the true distribution ps) as the distribution of s, then by using (3.5)-(3.7), the MSE of
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estimation becomes

MSE(qs) = MMSE + σ4

∫
pz(z)

∥∥∥∥∇ log
pz(z)

qz(z)

∥∥∥∥2

dz (3.8)

where qz(z) is the distribution induced on z in (3.4) when the distribution on s is qs(s).
Here, notice the pleasing similarity between (3.1)-(3.2) and (3.7)-(3.8).

If the entries of s are dependent, then the entries of z are dependent, too. Then, per-
forming the exact MMSE estimator is once again often infeasible. The common scheme is
then to take z into a transform domain, perform an entry-wise denoising (regardless of the
dependency between coefficients), and map the result back into the original domain. This
is justifiable when the transformation H is unitary because the transform-domain noise
remains Gaussian iid while the `2-norm of the signal is preserved. Hence, the expected
performance of this scalar denoising scheme is MSE(pỹ1(ỹ1) · · · pỹN (ỹN )) where pỹn(ỹn)
is the marginal distribution of the nth entry of ỹ = Hz. We write this as a function of H
normalized by the dimensionality of s, with

MSE(H) =
1

N
MSE(pỹ1(ỹ1) · · · pỹN (ỹN )) (3.9)

which is the second measure of performance that we consider in this chapter.

3.3 Continuous-Time SαS AR(1) Processes
In this section, we present a continuous-domain description of a SαS AR(1) process as
the solution of a first-order stochastic differential equation. This differential formulation
is central to our argumentation since it results in the identification of the operator-like
wavelets, as discussed in Section 2.3.2. We also show that the continuous-domain repre-
sentation is consistent with the more standard discrete AR(1) model in the sense that the
latter is the sampled version of the former.

In the case of an AR(1) process, we have that

L = D + κI (3.10)

where D and I are respectively the differentiator and the identity operator; then, s in (2.4)
is a continuous-domain SαS AR(1) process. It follows from the theory of linear systems
that the impulse response of L−1 is the causal exponential

ρκ(t) = e−κt1+(t) (3.11)
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Figure 3.1: Examples of AR(1) processes for different α.

where 1+(t) is the unit step. Thus, as a function of t, we can write

s(t) = (ρκ ∗ w) (t) (3.12)

where ∗ denotes the continuous-domain convolution operation. The AR(1) process is well-
defined for κ > 0. The limit case κ = 0 can also be handled by setting the boundary
condition s(0) = 0, which results in a Lévy process that is non-stationary. Realizations
of AR(1) processes for κ = 0.05 and for different values of α are depicted in Figure 3.1.
When α decreases, the process becomes sparser in the sense that its innovation becomes
more and more heavy-tailed.
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3.3.1 Discretization of AR(1) Processes
Now, for a given integer k and time period T , we set

ϕk(t) = δ(t− kT )− e−κT δ (t− (k − 1)T ) (3.13)

where δ is the Dirac impulse, and define wk as

wk = 〈s, ϕk(t)〉 = s(kT )− e−κT s((k − 1)T ). (3.14)

This means that the sampled version {sk = s ((k − 1)T )}k∈Z of s(t) satisfies the first-
order difference equation

sk = e−κT sk−1 + wk. (3.15)

Also, we have that

wk = 〈s, ϕk(t)〉 = 〈w, (ρ̌κ ∗ ϕk)(t)〉 (3.16)

where ρ̌κ(t) = ρκ(−t) is the impulse response of L−1∗ in (2.7). Also,

(ρ̌κ ∗ ϕk)(t) = βκ,T (t− kT ) = 1[
kT,(k+1)T

)e−κ(t−kT ) (3.17)

where 1[
kT,(k+1)T

) is the indicator function of the set
[
kT, (k + 1)T

)
. The fundamental

property here is that the kernels {βκ,T (· − kT )}k∈Z are shifted replicates of each other
and have compact and disjoint supports. Thus, according to the definition of a white noise
in Section 2.2.2, {wk}k∈Z is an iid sequence of SαS random variables with the common
characteristic function

p̂w(ω) = E
[
ejω〈w,βκ,T 〉

]
= e−|‖βκ,T ‖αω|

α

. (3.18)

The conclusion is that a continuous-domain AR(1) process maps into the discrete AR(1)
process {sk}k∈Z that is uniquely specified by (3.15) and (3.18).

We now consider N consecutive samples of the process and define the random vectors
s = [s1 · · · sN ]

> and w = [w1 · · · wN ]
>.

This allows us to rewrite (3.15) as

s = L−1w (3.19)
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where L−1 =
[
l̄ij
]
N×N and

l̄ij = e−κT (j−i) · 1{j≥i} (3.20)

which is the discrete-domain counterpart of (3.11).
In the next sections, we are going to study linear transforms applied to the signal s (or

s).

3.4 Performance Measures for AR(1) Processes

3.4.1 Mutual Information of Representation Coefficients

From now on, we assume that the signal vector s = [s1 · · · sN ]
> with sk = s ((k − 1)T )

is obtained from the samples of an SαS AR(1) process and satisfies the discrete innovation
model (3.15). The representation of the signal s in (3.19) in the transform domain is
denoted by y = [y1 · · · yN ]> = Hs, where H = [hij ]N×N is the underlying orthogonal
transformation matrix (e.g. DCT, wavelet transform). The idea is now to rely on Property 1
to derive the explicit form of the proposed performance criteria under the SαS hypothesis.
This, in turn, will allow us to determine the optimal transform (ICA solution) based on
numerical optimization.

Let us now use (3.3) to characterize the performance of a given transformation matrix
H. First, we simplify (3.3) to

R(H) =
1

N

N∑
n=1

H(yn)− 1

N
H(y) (3.21)

=
1

N

N∑
n=1

H(yn)−H(w1)− 1

N
log det HL−1,

where H(·) is the differential entropy defined in (3.1). Also, we observe that log det HL−1 =
0. In addition, since the wm is α-stable, according to Property 1, we can write

yn
d
= h̄nw1, (3.22)



32 Optimal Representation of Sparse AR(1) Processes

where h̄n is the α-(pseudo)norm of the nth row of HL−1 given by

h̄n =

(
N∑
r=1

∣∣∣∣∣
N∑
m=1

hnm l̄mr

∣∣∣∣∣
α) 1

α

. (3.23)

It follows that

R(H) =
1

N

N∑
n=1

log h̄n, (3.24)

which can be readily calculated for any given H.

Note 1. This criterion is reminiscent of the sum-of-dispersion criterion
∑N
n=1 h̄n which

is frequently used in the study of α-stable stochastic processes [49, 50]. However, unlike
(3.24), the latter dispersion criterion does not have a direct information-theoretic interpre-
tation.

3.4.2 Denoising-Oriented Decoupling Performance
As a second option, we use the criterion (3.9) to measure the performance of a given
transform matrix H for the denoising task. Similar to the case in (3.21), it can be simplified
to

MSE(H) = σ2 − σ4

N

N∑
n=1

∫ (
p′ỹn(ỹn)

)2
pỹn(ỹn)

dỹn, (3.25)

in which σ2 is the noise variance and ỹn is the nth entry of

ỹ = Hz = Hs + Hn = y + ñ. (3.26)

Since H is a unitary matrix, ñ has the same distribution as n. Also, according to (3.22),

ỹn
d
= h̄nw1 + n1, (3.27)

where n1 is a standard Gaussian random variable. This allows us to deduce the pdf expres-
sion

pỹn(y) =
1

h̄n
pw1

(
y

h̄n

)
∗ pn1(y) (3.28)

which involves the convolution of a rescaled SαS law with a Gaussian of standard deviation
σ. Thus, (3.25) is calculable through one-dimensional integrals.



3.5 Optimization of the Representation Basis 33

3.5 Optimization of the Representation Basis

3.5.1 Gradient of the Measures
Based on equations (3.24) and (3.25), we can now attempt to find the optimal transforma-
tion HICA by minimizing these expressions over the space of all orthonormal matrices of
size N .

To guide this optimization process, we first derive the gradient of the cost functions
R and MSE with respect to H. Specifically, according to (3.23) and (3.24), the partial
derivative of R(H) is

∂R
∂hij

=
1

Nαh̄αi

∂h̄αi
∂hij

(3.29)

where

∂h̄αi
∂hij

= α

N∑
r=1

ljrsgn

(
N∑
n=1

hiklkr

)∣∣∣∣∣
N∑
n=1

hiklkr

∣∣∣∣∣
α−1

. (3.30)

Also, the partial derivative of MSE(H) in (3.25) is

∂MSE
∂hij

= −σ
4

N

∂

∂h̄i

∫ (
p

(1)
ỹi

(u)
)2

pỹi(u)
du× h̄1−α

i

α

∂h̄αi
∂hij

(3.31)

= −σ
4

N

(
2

∫
∂

∂h̄i
p

(1)
ỹi

(u)
p

(1)
ỹi

(u)

pỹi(u)
du−

∫
∂

∂h̄i
pỹi(u)

(
p

(1)
ỹi

(u)

pỹi(u)

)2

du

)

× h̄1−α
i

α

∂h̄αi
∂hij

in which p(k)
ỹi

(y) is the kth derivative of pỹi(y) which, according to (3.28), can be written
as

p
(k)
ỹi

(y) = pyi(y) ∗ dk

dyk

(
1√

2πσ2
e−

y2

2σ2

)
. (3.32)
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Also, we have that

∂

∂h̄i
pỹi(y) = − 1

h̄i
pỹi(y)− y

h̄i
p

(1)
ỹi

(y)− 1

h̄i
p

(2)
ỹi

(y) (3.33)

and

∂

∂h̄i
p

(1)
ỹi

(y) = − 2

h̄i
p

(1)
ỹi

(y)− y

h̄i
p

(2)
ỹi

(y)− 1

h̄i
p

(3)
ỹi

(y). (3.34)

Now, since the yi have nice characteristic functions, we can calculate (3.32) efficiently
through the inverse Fourier transform

p(k)
yi (y) = F−1

ω

{
(jω)ke−|h̄iω|

α−σ2

2 ω
2
}

(y) (3.35)

using the FFT algorithm.
Thus, we can use gradient-based optimization to obtain the optimal transformations for

different values of κ, α, and N . For our experiments, we implemented a gradient-descent
algorithm with adaptive step size to efficiently find the optimal transform matrix. Since
the transform matrix may deviate from the space of unitary matrices, after each step, we
project it on that space using the method explained in the next subsection.

3.5.2 Projection on the Space of Unitary Matrices

Suppose that A is an N ×N matrix. Our goal is to find the unitary matrix H∗ that is the
closest to A in Frobenius norm, in the sense that

H∗ = arg min
H
‖A−H‖F . (3.36)

According to singular-value decomposition (SVD), we can write A = UΛV> where U
and V are unitary matrices and Λ is a diagonal matrix with nonnegative diagonal entries.

Since the Frobenius norm is unitarily invariant, we have that

‖A−H‖F = ‖Λ−U>HV‖F (3.37)

in which U>HV is a unitary matrix that we call K. The expansion of the right-hand side
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of (3.37) gives

‖Λ−K‖2F =
∑

1≤i,j≤N

k2
ij +

N∑
i=1

λ2
ii − 2

N∑
i=1

λiikii

= N +

N∑
i=1

λ2
ii − 2

N∑
i=1

λiikii. (3.38)

Since K is unitary, |kii| ≤ 1 for i = 1, . . . , N . Thus, setting kii = 1, which means setting
K = I, minimizes (3.38). Consequently, the projection of A on the space of unitary
matrices is H∗ = UV>.

3.5.3 Optimization Algorithm
Given the measure of independence C (i.e., R or MSE), the algorithm is as follows:

Algorithm 2: Steepest-Descent Algorithm with Adaptive Step-Size to Apply ICA to
Discrete SαS AR(1) Processes

1: input: N,α, κ
2: initialize: Hold, µ, a ∈ [1,+∞) and b ∈ [0, 1]
3: repeat
4: H̃new = Hold − µ∇C|Hold

5: Set Hnew to the projection of H̃new onto the space of unitary matrices
6: if C(Hnew) < C(Hold) then
7: Hold ← Hnew
8: µ← a · µ
9: else

10: Hnew ← Hold
11: µ← b · µ
12: end if
13: until convergence
14: return Hnew

Algorithm 3 can be viewed as a model-based version of ICA. We take advantage of
the underlying stochastic model to derive an optimal solution based on the minimization
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of (3.24) and (3.25), which involves the computation of `α-norms of the transformation
matrix. By contrast, the classical version of ICA is usually determined empirically based
on the observations of a process, but the ultimate aim is similar; namely, the decoupling of
the data vector.

3.6 Numerical Results and Discussion
The majority of experiments on ICA published in the literature are data-driven. The present
formulation, by contrast, is model-based so that it does not require the generation of sig-
nal samples. To make an analogy, it is to ICA what the Karhunen-Loève transform is to
principal components (PCA). We can therefore rely on (3.24)-(3.25) to compute the per-
formance of a transform analytically. Also, the optimal transform (referred to as ICA) is
found numerically by running Algorithm 2. We recall that our theoretical figures of merit
are relevant to practical signal processing: the first (mutual information) gives in a direct
measure of the coding gain in a compression experiment, while the second measures the
signal-to-noise ratio (SNR) improvement for signal denoising, as justified in Section 3.2.2.

Also, notice that the wavelet coefficients of the signal s are

vij = 〈s, ψij〉 = 〈L−1w,ψij〉 (3.39)

= 〈w,L−1∗L∗φi(· − 2ijT )〉 = 〈w, φi(· − 2ijT )〉.
where we have ψij = L∗φi(· − 2ijT ). Based on this equality, according to (3.18), we
understand that, for any given i and for all j, the vij follows an SαS distribution with
dispersion parameter ‖φi‖αα. Also, since w is independent at every point, intuitively, the
level of decoupling has a direct relation to the overlap of the smoothing kernels φi(· −
2ijT ). For the operator-like wavelets decdibed in Section 2.3.2, the supports of φi(· −
2ijT ) do not overlap within the given scale i. Thus, the wavelet coefficients at scale i are
independent and identically distributed. This property suggests that this type of transform
is an excellent candidate for decoupling AR(1) processes. The illustration of plugging
these wavelets into (3.39) is given in Figure 3.2.

Initially, we investigate the effect of the signal lengthN on the value of R and MSE. We
consider the case of a Lévy process (i.e., κ = 0) and numerically optimize the criteria for
different α and plot it as a function ofN . Results are depicted in Figure 3.3. As we see, the
criteria values converge quickly to their asymptotic values. Thus, for the remainder of the
experiments, we choose N = 64. This is a block size that is reasonable computationally
and large enough to be representative of the asymptotic regime.
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Figure 3.2: Two equivalent interpretations of the wavelet analysis of a sparse process. (a)
Operator-like wavelets at two consecutive scales acting on an Cauchy AR(1) process. (b)
The equivalent windows (smoothing kernels) acting on the underlying Cauchy white noise.
Note that ψ1,0 and ψ1,1 (φ1,0 and φ1,1, respectively) are non-overlapping.

Then, we investigate the performance of different transforms for various processes.
First, we focus on the Lévy processes. In this case, the operator-like wavelet transform
is the classical Haar wavelet transform (HWT). The performance criteria R and MSE as a
function of α for various transforms are plotted in Figures 3.4 and 3.5, respectively. The
considered transformations are as follows: identity as the baseline, discrete cosine trans-
form (DCT), Haar wavelet transform (HWT), and optimal solution (ICA) provided by the
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Figure 3.3: Minimum value of R(H) and MSE(H) for Lévy processes as a function of N
for different values of α. In the second plot σ2 = 1.

proposed algorithm. In the case of α = 2 (Gaussian scenario), the process s is a Brow-
nian motion whose KLT is a sinusoidal transform that is known analytically [51]. In this
case, the DCT and the optimal transform converge to the KLT since being decorrelated is
equivalent to being independent. We see this coincidence in both Figures 3.4 and 3.5. The
vanishing of R at α = 2 indicates perfect decoupling. By contrast, as α decreases, nei-
ther the DCT nor the optimal transform decouples the signal completely. The latter means
that there is no unitary transform that completely decouples stable non-Gaussian Lévy pro-
cesses. However, we see that, based on both criteria R and MSE, and as α decreases, the
DCT becomes less favorable while the performance of the HWT gets closer to the opti-
mal one. Moreover, Figures 3.4 and 3.5 even suggest that the Haar wavelet transform is
equivalent to the ICA solution for α ≤ 1.
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Figure 3.4: R(H) of Lévy processes versus α when N = 64 for different H.

Also, to see the transition from sinusoidal bases to Haar wavelet bases, we plot the
optimal basis which is obtained by the proposed algorithm at two consequent scales. In
Figure 3.6, we see the progressive evolution of the ICA solution from the sinusoidal basis
to the Haar basis while changing the parameter α of the model.

Next, we consider a stationary AR(1) process with e−κT = 0.9 and n = 64. For
α = 2, we get the well-known classical Gaussian AR(1) process for which the DCT is
known to be asymptotically optimal [2, 3]. For such a process, the operator-like wavelet
is known before hand and given by (2.34). The performance criterion R versus α for the
DCT, the HWT, the operator-like wavelet matched to the process, and the optimal ICA
solution are plotted in Figure 3.7. Here too we see that, for α = 2, ICA is equivalent
the DCT. But, as α decreases, the DCT loses its optimality and the matched operator-
like wavelet becomes closer to optimum. Again, we observe that, for α ≤ 1, the ICA
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Figure 3.5: MSE(H) of Lévy processes versus α when N = 64 for different H when
σ2 = 1.

solution is the matched operator-like wavelet described in Section 2.3.2. The fact that the
matched operator-like wavelet outperforms the HWT shows the benefit of the tuning of
the wavelet to the differential characteristics of the process. Also, as shown in Figure 3.8,
experimentally determined ICA basis functions for α = 1 are indistinguishable from the
wavelets in Figure 3.2.

To substantiate those findings, we present a theorem that states that, based on the above
mentioned criteria and for any α < 2, the operator-like wavelet transform outperforms the
DCT (or, equivalently, the KLT associated with the Gaussian member of the family) as the
block-size N tends to infinity.
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Figure 3.6: Two rows of the optimal H (ICA) for α = 2 down to 1 when N = 64. In
each row, we see the evolution from sinusoidal waves to Haar wavelets by increasing the
sparsity of the underlying innovation process.

Theorem 1. If α < 2 and κ ≥ 0, we have that

lim
N→∞

R(OpWT) < lim
N→∞

R(DCT) =∞ (3.40)

and

lim
N→∞

MSE(OpWT) < lim
N→∞

MSE(DCT) = σ2, (3.41)

where OpWT stands for the operator-like wavelet transform.
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Figure 3.7: R(H) versus α when e−κT = 0.9 and N = 64 for different H.

The proof is given in Appendix 3.A.

In addition, this theorem states that, for α < 2 and as N tends to∞, the performance
of the DCT is equivalent to the trivial identity operator. This is surprising because, since
the DCT is optimal for the Gaussian case (α = 2), one may expect that it has a good result
for other AR(1) processes. However, although this theorem does not assert that operator-
like wavelets are the optimal basis, it still shows that, by applying them, we obtain better
performance than trivial transformations. Also, through simulations, we observed that
operator-like wavelets are close to optimal transform as α gets smaller. In such extreme
scenari, the probabilities densities of the signal and of its transformed-domain coefficients
are extremely heavy-tailed which conforms with a statistical notion of sparsity [11, 12].
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Figure 3.8: Three rows of the optimal H for α = 1 and N = 64. Parts (a) and (b) show
the dyadic structure of the wavelets.

It is worth mentioning that, in addition to the gain in performance, operator-like wavelets
are cheaper to compute than the DCT. They can be implemented with the same type of
filter-bank algorithm as the Haar transform, the only difference being that the filters are
scale-dependent. The resulting cost is of O(N) (two operations per coefficient) which
compares favorably with theO(N logN) of the DCT. Using operator-like wavelets is also
immensely more efficient than deploying the full ICA machinery. The latter requires the
estimation of the transform and then its full matrix computation (O(N2)) which cannot
benefit from any acceleration due to lack of structure.

3.7 Summary

In this chapter, we focused on the simplest version (first-order differential system with an
SαS excitation) of the sparse stochastic processes which have been proposed by Unser et
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al [17, 18]. Because of the underlying innovation model and the properties of SαS ran-
dom variables, we could obtain a closed-form formula for the performance of different
transform-domain representations and characterize the optimal transform. This is a novel
model-based point of view for ICA. We proved that operator-like wavelets are better than
sinusoidal transforms for decoupling the sparse AR(1) processes (α < 2). This result is
remarkable since sinusoidal bases are known to be asymptotically optimal for the classi-
cal case of α = 2 [2, 3]. Moreover, we showed that, for very sparse excitations (α . 1),
operator-like wavelets are equivalent to the ICA. As far as we know, this is the first theoret-
ical results on the optimality of wavelet-like bases for a given class of stochastic processes.

Another interesting aspect of this study is that it gives a unified framework for Fourier-
type transforms and a class of wavelet transforms. Now, the Fourier transform and the
wavelet transforms were based on two different intuitions and philosophies. However,
here we have a model in which we obtain both transform families just by changing the
underlying parameters.

The next step in this line of research is to investigate the extent to which these findings
can be generalized to other white noises or higher-order differential operators. Also, study-
ing the problem in the original continuous domain would be theoretically very valuable.

3.A Proof of Theorem 1

Proof of Part 1 (Equation (3.40))

According to (3.24), we have that

R(H) =
1

N

N∑
n=1

log h̄n =
1

N

N∑
n=1

log

(
1

h̄−1
n

)
=

∫
R

log

(
1

γ

)
p (γ) dγ (3.42)

in which p(·) is the empirical distribution of h̄−1
n .

According to SVD, we can write L−1 = UΛV> where Λ is a diagonal matrix with λi
as diagonal entries. Taking s in the KLT domain is equivalent to multiplying it by U>. The
eigenvalues of the covariance of AR(1) matrices are known in closed form and are given
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by [52] and [53], for κ ≥ 0, as

|λi|−1 =

√
(1− e−κT )

2
+ 4e−κT sin2

(ωi
2

)
(3.43)

and

vij =

√
2√

N + (1− e−2κT )λ2
i

sin

(
ωi

(
j − N + 1

2

)
+ i

π

2

)
(3.44)

in which ωi, i = 1, . . . , N , is the ith positive root of

tan (Nω) = −
(
1− e−2κT

)
sinω

cosω − 2e−κT + e−2κT cosω
. (3.45)

Since tan (Nω) is an injective function that sweeps the whole domain of the real numbers
while ω ∈

[
i−1
N π, iN π

]
, for i = 1, . . . , N , (3.45) has a single root in each of such intervals.

Thus, as N tends to infinity, the empirical distribution of the ωi tends to the uniform distri-
bution on [0, π]. Then, starting from (3.43), one can obtain the limit empirical distribution
of |λi| as

pλ(λ) =
2

π

λ√
λ2 − (1− e−κT )

2
√

(1 + e−κT )
2 − λ2

. (3.46)

Now,
∑N
j=1 v

2
ij = 1 means that

N∑
j=1

∣∣∣∣sin(ωi(j − N + 1

2

)
+ i

π

2

)∣∣∣∣2 ∼ O (N) (3.47)

as N tends to infinity. But, for α < 2, we have that(
N∑
j=1

∣∣∣∣sin(ωi(j − N + 1

2

)
+ i

π

2

)∣∣∣∣α
) 1
α

≥ (3.48)

(
N∑
j=1

∣∣∣∣sin(ωi(j − N + 1

2

)
+ i

π

2

)∣∣∣∣2
) 1
α

∼ O(N
1
α ).
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Thus, for α < 2,
(∑N

j=1 |vij |
α ) 1

α grows faster than O(N
1
α−

1
2 ) and thus tends to infin-

ity as N tends to infinity. Consequently, the limit empirical distribution of h̄−1
i can be

represented as

p(γ) =

{
2
π

γ√
γ2−(1−e−κT )2

√
(1+e−κT )2−γ2

α = 2

δ(γ) α 6= 2.
(3.49)

By plugging this result into (3.42), we conclude that, for α < 2, limN→∞ R(KLT) = ∞.
This completes the proof of the right-hand side.

Now, for the proof of the left-hand side, we need to specify the matrix H for the
operator-like wavelet transform. This matrix is given by the recursive construction

Hk =


√

1−e−2κT√
1−e−2k+1κT

0 ~0k−1

0

√
1−e−2κT√

1−e−2k+1κT

~0k−1

~0 >k−1
~0 >k−1 Ik−1

×


`k−1 e−2k−1κT `k−1

−e−2k−1κT `k−1 `k−1

H′k−1 0
0 H′k−1


(3.50)

in which ~0k−1 is the 2k−1-dimension zero row vector, Ik−1 is the 2k−1 × 2k−1 identity
matrix, H′k−1 is the matrix Hk−1 omitting the first row and

`k−1 =
[
1 e−κT . . . e−(2k−1−1)κT

]
. (3.51)

Also, H0 = [1]. Let us denote the empirical distribution of h̄−1
i (the reciprocal of the

α-(pseudo) norm of the rows of HkL2k ) by pk(γ) =
∑k
i=1 piδ(γ − γi). Now, for the

sequence of pi and γi, with respect to k, we have the following recursive relation:

• Replace pk−1 by
(pk−1

2 , pk−1

2

)
• Remove γk−1. Then, if κ > 0, set

γk−1 =

√
1− e−2k+1κT

√
1− e−2κT

(
2k−1∑

i=−2k−1+1

(
e−|i|κT − e−(2k−|i|)κT

1− e−2κT

)α)− 1
α

(3.52)
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and

γk =

√
1− e−2k+1κT

√
1− e−2κT

(
2k∑
i=1

(
1− e−2iκT

1− e−2κT

)α)− 1
α

(3.53)

else, if κ = 0, set

γk−1 = 2
k
2

(
2k−1∑

i=−2k−1+1

(
2k−1 − |i|

)α)− 1
α

(3.54)

and

γk = 2
k
2

(
2k∑
i=1

iα

)− 1
α

. (3.55)

Consequently, according to (3.42), we have that

lim
n→∞

R(HWT) =

∞∑
k=1

2−k log γ−1
k . (3.56)

However, for the case κ > 0 and k < N ,

γ−1
k ≤

2
((

2k − 1
) (

1− e−2kκT
)α) 1

α√
(1− e−2κT )

(
1− e−2k+1κT

)
≤ 2√

1− e−2κT

√
1− e−2kκT√
1 + e−2kκT

(
2k − 1

) 1
α

≤ 21+ k
α√

1− e−2κT
. (3.57)

Thus,

lim
n→∞

R(HWT) ≤
∞∑
k=1

2−k log
21+ k

α√
1− e−2κT

=
( 2

α
+

1

2
log

1

1− e−2κT

)
log 2. (3.58)
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For the case κ = 0 and k < N ,

γ−1
k ≤ 2−

k
2

((
2k − 1

) (
2k−1

)α) 1
α ≤ 2

k
2 + k

α−1. (3.59)

Thus,

lim
n→∞

R(HWT) ≤
∞∑
k=1

2−k log 2
k
2 + k

α−1 =
2

α
log 2. (3.60)

Therefore, the proof is complete.

Proof of Part 2 (Equation (3.41))
Proof: We have that

MSE(H) =
1

N

N∑
n=1

ν(h̄−1
n ) =

∫
R
ν(γ−1)p (γ) dγ (3.61)

in which ν(γ−1) is the MMSE of the estimating w from s in the scalar problem

s = γ−1w + z, (3.62)

where w is a stable random variable with characteristic function p̂w(ω) = exp (−|ω|α)
and z is a Gaussian random variable with variance σ2. We know that ν(·) is a monotone
continuous function that vanishes at zero and tends to σ2 asymptotically. Also, p(·) is the
empirical distribution of the reciprocals of h̄i in (3.23). The proof is then essentially the
same as the one of Theorem 1 but simpler since the function ν(·) is bounded.

For H equal to Fourier transform, the limiting p(γ) was given in (3.49). Thus, for
α < 2, as n tends to infinity, MSE(H) tends to σ2. This completes the proof of the
right-hand side.

For the case that H is the operator-like wavelet transform, the limmit is p(γ) =∑∞
k=1 pkδ (γ − γk) where pk = 2−k and γk were given in (3.52) – (3.55). Thus, we

have that

MSE(OpWT) =

∞∑
k=1

2−kν(γ−1
k ) ≤ 1

2
ν(γ−1

1 ) +
σ2

2
. (3.63)

But, obviously, γ−1
1 <∞; hence, ν(γ−1

1 ) < σ2, which completes the proof.



Chapter 4

Denoising Performance of
Wavelets for Self-Similar SαS
Processes

In this chapter, we investigate the performance of wavelet shrinkage methods for the de-
noising of SαS self-similar stochastic processes corrupted by additive white Gaussian noise
(AWGN), where α is tied to the sparsity of the process. The wavelet transform is assumed
to be orthonormal and the shrinkage function minimizes the mean-square approximation
error (MMSE estimator). We derive the corresponding formula for the expected value of
the averaged estimation error. We show that the predicted MMSE is a monotone func-
tion of a simple criterion that depends on the wavelet and the statistical parameters of the
process. Using the calculus of variations, we then optimize this criterion to find the best
performing wavelet within the extended family of Meyer wavelets, which are bandlimited.
These are compared to the Daubechies wavelets, which are compactly supported in time.
We find that the wavelets that are shorter in time (in particular, the Haar basis) are better
suited to denoise the sparser processes (say, α < 1.2), while the bandlimited ones (in-
cluding the Held and Shannon wavelets) offer the best performance for α > 1.6, the limit
corresponding to the Gaussian case (fBm) with α = 2.

49
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4.1 Introduction
In the previous chapter, we showed that operator-like wavelets are optimal for represen-
tation of SαS AR(1) processes for the compression and denoising applications. Also, we
observed that conventional wavelets, specifically Haar wavelets exhibit a near optimal per-
formance. In this chapter, we are going to study the transform-domain performance of
denoising of another important classes of stochastic processes i.e. self-similar processes.
Inspired by the result of the previous chapter, we focus on the wavelet domain denoising
performance. Also, it makes the mathematical calculations doable. In contrast with the
previous section, we study these processes in the continuous domain rather than discretiz-
ing them.

A classical example of a self-similar process is the fractional Brownian motion (fBm)
[54]. It can be interpreted as the fractional integral of a continuous-domain white Gaussian
noise (a.k.a. innovation) [16, Section 7.5.2]. The order of integration γ provides a direct
control of the degree of fractality, which explains why the fBm is a popular model of
real-world signals such as images [55, 56], traffic in communication networks [57], and
financial processes [58]. Higher-order generalizations of an fBm are characterized in [59].

The non-Gaussian counterpart of an fBm is the fractional stable motion [60, 61], which
is generated by replacing the Gaussian innovation of the fBm by some α-stable white noise
with 0 < α ≤ 2 (the case α = 2 corresponds to the Gaussian distribution and thus results
in fBm). The fractional stable motion has the properties of long-range dependency and
self-similarity and enjoys a wide range of applications [62, 23].

As discussed in Section 2.2.2, for α < 2, however, there is a special feature of α-stable
processes that makes them fundamentally different from their Gaussian cousins: the fact
that all their second-order moments (including the variance) are unbounded. This is equiv-
alent to their statistical distributions being heavy tailed, which is the statistical transcription
of the concept of sparsity. Again, this is very relevant to modern signal processing and to
the development of algorithms for the recovery of sparse signals, including compressed
sensing [63, 64].

To fully exploit the property of sparsity, it is still necessary to expand the signal in an
appropriate basis. In the case of self-similar processes, the natural candidate is the wavelet
transform whose decorrelation properties have been studied extensively in the Gaussian
case [65, 66, 67, 68]. Regarding the α-stable processes, there is some prior work on the
determination of the statistical distribution of wavelet coefficients [69], as well as a recent
demonstration of the ability of the Haar transform to provide an independent-component
analysis of Lévy processes with γ = 1 and α < 1 which is presented in the previous
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chapter. Our focus on wavelets is further motivated by the observation that they perform
remarkably well in a variety of practical signal-processing tasks including coding [7, 70],
signal reconstruction [71, 72], and denoising [73, 74, 75]. This is reinforced by funda-
mental results from approximation theory on the optimality of wavelets for the N -term
approximation of functions in Besov spaces [13].

Our objective in this chapter is to characterize the ability of wavelets to optimally de-
noise self-similar symmetric-α-stable (SαS) processes corrupted by additive white Gaus-
sian noise (AWGN). We focus on the traditional architecture where the wavelet coeffi-
cients are processed independently of each other [76, 77, 78, 79]. Our first objective is
to predict the mean (the expected value) of the averaged estimation error (MAEE), in or-
der to be able to compare the denoising performance of different wavelet bases. Interest-
ingly, we can relate this quantity to a simple criterion: the Lα-norm of the γth fractional
integral of the mother wavelet. The availability of this criterion enables us to develop
an infinite-dimensional optimization algorithm to find the optimal frequency profile for a
Meyer wavelet [29].

Similar to the discussions in Section 3.2.2, the use of a component-wise minimum
mean-square error (MMSE) estimation strategy ensures that the studied wavelet denoisers
are the best solutions among the broad family of wavelet-shrinkage estimators. Moreover,
it attains the global optimum (MMSE signal estimation) when the wavelet coefficients are
perfectly decoupled (independent-component analysis). This suggests that the criterion
can also be used as an indirect measure of the decoupling performance of a given wavelet
basis for the underlying class of stochastic processes. Thus, a good wavelet according to
this criterion should also be a good candidate for other applications such as coding.

To reach our goal, we have to prove two theorems that could be of interest on their
own right. The first is a result that extends the use of the wavelet transform to signals that
are not included in L2(R) but are only locally square-integrable. The second is a high-
level characterization of the performance of the scalar MMSE estimator of an SαS random
variable corrupted by Gaussian noise as a function of the dispersion parameter and the
noise variance. Similar studies for finite-variance random variables have been conducted
in [80]. Here, the fact that the variance of the signal is unbounded requires a more technical
treatment.

The chapter is organized as follows: In Section 4.2, we review the properties of self-
similar SαS processes. Our signal-estimation problem is then formulated in Section 4.3.
In Section 4.4, we address the issue of the calculation of the average energy of a signal
from its wavelet coefficients. In Section 4.5, we specify the MMSE estimator of a scalar
SαS random variable corrupted by AWGN and characterize its performance in terms of the
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dispersions of the signal and noise. The main result of the chapter is presented in Section
4.6. In Section 4.7, using the calculus of variations, we propose an algorithm to find
the optimal Meyer wavelet. The numerical results and the comparison between different
Meyer and Daubechies wavelets are presented in Section 4.8.

4.2 Fractional SαS Lévy Processes
We now start with some preliminaries on self-similar SαS processes that are necessary
for understanding the chapter. We again use the framework introduced in [17, 18, 16]
due to its convenience for the treatment of the wavelet coefficients of stochastic processes.
However, we also make links to conventional stochastic calculus, which is more convenient
for describing the behavior of the process in the time domain [60].

We recall the notion of SαS white noise which was described in Section 2.2.2. Suppose
that w is an SαS white noise with the Lévy exponent −|aω|α for a given a > 0. A process
s is a self-similar SαS process of order γ ≥ 0 if

Dγs = w, (4.1)

where Dγ is the γth order derivative operator that is defined as [16, Chapter 7.5]

Dγ{f}(x) =
1

2π

∫
R
(jω)γ f̂(ω)ejωxdω. (4.2)

For a test function θ, the random variable 〈s, θ〉 can be identified with

〈s, θ〉 = 〈D−γw, θ〉 = 〈w,D−γ∗θ〉 (4.3)

in which D−γ∗ is the Lα-stable adjoint of the inverse operator of Dγ that is defined by (see
[16, Chapter 7.5])

D−γ∗{θ}(x) =
1

2π

∫
R

θ̂(ω)−∑bγ+ 1
α c−1

k=0
θ̂(k)(0)ωk

k!

(jω)γ
ejωxdω (4.4)

when γ > 1− 1
α and either γ ∈ N or γ−bγc > 1

α − 1. Equivalently, in the space domain,
we have that

D−γ∗{θ}(x) =

∫
R
K(x, t)θ(t)dt, (4.5)
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where the kernel of the inverse operator is

K(x, t) =
1

Γ(γ)
(t− x)γ−1

+ −
bγ+ 1

α c−1∑
k=0

tk

k!

(−x)γ−1−k
+

Γ(γ − k)
(4.6)

in which Γ(·) is Euler’s Gamma function where (x)+ = max{0, x}. Consequently, ac-
cording to (2.13) and (4.3), 〈s, θ〉 is an SαS random variable with the characteristic func-
tion

p̂〈s,θ〉(ω) = exp
(
−
∣∣a‖D−γ∗θ‖αω∣∣α) . (4.7)

Despite the unifying aspect of these formulas in terms of α, the behavior of the sample
paths of the process drastically change when we go from the finite-variance case (α = 2)
to the sparse case (α < 2). For α = 2, which is the Gaussian case, the sample paths
are almost-surely continuous for any γ > 1

2 . By contrast, for α < 2, the sample paths
are almost-surely continuous only for γ > 1; otherwise, when γ < 1, the sample paths
are unbounded on any interval with positive length [60, Chapter 10]. For the case γ = 1,
which corresponds to Lévy processes, the sample paths are right-semicontinuous with left
limit [81, Chapter 2]. On the asymptotic behavior of the sample paths, according to [81,
Chapter 9] and [82, Theorem 1.3], we know that, if γ ≥ 1, then there exists a constant
Cη ∈ R for which

|s(x)| ≤ Cη (1 + |x|)η (4.8)

for any η > γ − 1 + 1
α .

We mainly need two properties to describe the effect of the operator D−γ∗. The first
one is that the restriction of D−γ∗ to the subspace of test functions with at least bγ+ 1

αc−1
vanishing moments is a shift- and scale-invariant operator (see (4.4)). More precisely, when
θ is in this subspace, we have that

D−γ∗{θ(c · −b)}(x) = c−γD−γ∗{θ(·)}(cx− b) (4.9)

for any b, c ∈ R. If the test functions do not have enough vanishing moments, then D−γ∗

loses its shift-invariance. In this situation, Lemma 1 applies.

Lemma 1. Suppose γ > max{0, 1 − 1
α} and θ is a function for which there exists a

constant A and n > 1 such that |θ(x)| < A(1 + |x|)−n. Also, assume that θ(x)(1 +
|x|)γ−1 ∈ L1(R) and

∫
R θ(x)dx 6= 0. Under these assumptions, we have that

lim
j→±∞

‖D−γ∗θ(· − j)‖α =∞. (4.10)
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The proof is given in Appendix 4.A.
Lemma 1 means that the dispersion of 〈s, θ(· − j)〉 tends to infinity by letting j tend

to infinity (see (4.7)). This fact results in significant simplifications in the derivation of our
main result in Section 4.6.

4.3 Performance Measure of Denoising of Continuous Pro-
cesses

Assume now that s is the self-similar SαS process defined by (4.1). Also, assume that z
is an AWGN independent from s with variance σ2. Then, the continuous-time stochastic
process

s̃ = s+ z (4.11)

is the noisy version of s.
We consider the following denoising problem: Given a realization of the process s̃, we

want to estimate the corresponding realization of the process s. We denote the estimated
version of s by ŝ. Notice that ŝ is also a stochastic process which depends on s, z, and the
method of estimation.

To quantify the performance of the estimation method, we use the mean of the averaged
estimation error

MAEE(s, ŝ) = lim
T→∞

Es,ŝ

[
1

2T

∫ T

−T

(
s(x)− ŝ(x)

)2
dx

]
. (4.12)

Now, recalling the discussions in Section 2.3.1, assume that ϕ and ψ are the father and
mother wavelets of an orthonormal wavelet family, respectively. Then, for any i0 ∈ Z,

{ϕi0j}j∈Z ∪
{
{ψij}j∈Z

}∞
i=i0

(4.13)

is an orthonormal basis for L2(R) where

ϕi0j(x) = 2
i0
2 ϕ(2i0x− j) (4.14)

and
ψij(x) = 2

i
2ψ(2ix− j). (4.15)
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Here, i0 is the coarsest scale that we take into account. Under the conditions on s and on
the wavelet basis functions discussed in Section 4.4, the equality

s(x) =
∑
j∈Z

Πi0jϕi0j(x) +
∑
i≥i0

∑
j∈Z

Ξijψij(x) (4.16)

holds almost everywhere for almost every realization of s when

Πi0j = 〈s, ϕi0j〉, (4.17)
Ξij = 〈s, ψij〉. (4.18)

Now, the general wavelet-domain denoising method is that based on the wavelet coef-
ficients of s̃, i.e.,

Π̃i0j = 〈s̃, ϕi0j〉, (4.19)

Ξ̃ij = 〈s̃, ψij〉, (4.20)

we want to estimate the wavelet coefficients of s, i.e., Πi0j and Ξij . We denote the corre-
sponding estimated coefficients by Π̂i0j and Ξ̂ij , respectively. Then, our estimation of the
process s would be

ŝ(x) =
∑
j∈Z

Π̂i0jϕi0j(x) +
∑
i≥i0

∑
j∈Z

Ξ̂ijψij(x). (4.21)

To optimally calculate Π̂i0j and Ξ̂ij , we would need to take into account all statistical
dependencies among wavelet coefficients. But this is not computationally tractable except
when the process is Gaussian. Therefore, most of the denoising algorithms calculate Π̂i0j

and Ξ̂ij pointwise, based only on the corresponding wavelet coefficient Π̃i0j and Ξ̃ij of s̃.
In other words, the dependencies to the other wavelet coefficients are neglected. Hence,
these methods are called coefficient-wise denoising.

Our goal in this chapter is to calculate MAEE(s, ŝ) for a given wavelet basis using a
coefficient-wise denoiser and to characterize the optimal solution. Since our criterion is in
fact a function of ϕ, ψ, and i0, we write it as MAEEi0(ϕ,ψ).

First, Theorem 2 tells us that the optimal coefficient-wise denoiser
(
the denoiser that

minimizes MAEEi0(ϕ,ψ)
)

is the coefficient-wise MMSE estimator. Then, we establish in
Theorem 3 some properties for the MMSE function of denoising an SαS random variable.
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Based on these two theorems, we transform (4.12) into a concise formula. This formula
allows us to easily compare different wavelets and to optimize a given design. We will also
show in Section 4.6 that for this denoiser the series on the right-hand side of (4.21) are
convergent. This ensures that ŝ is well-defined.

The studied estimator is globally suboptimal because the denoising is performed coefficient-
wise. This suggests that the denoising result obtained with “more independent” wavelet
coefficients should be closer to the global minimizer of (4.12). Therefore, the derived for-
mula can also measure the ability of a given wavelet basis to decouple self-similar SαS
stochastic processes.

4.4 Calculating Average Energy of a Signal Using Its Wavelet
Coefficients

This section is devoted to the calculation of the average energy of a signal based on its
wavelet coefficients. This is not a trivial task because the functions under consideration are
not included in L2(R). Such a characterization is also required to lend meaning to (4.16).

Consider the wavelet family defined in (4.13)-(4.14). For a function f ∈ L2(R), we
have that

f(x) =
∑
j∈Z
〈f, ϕi0j〉ϕi0j(x) +

∑
i≥i0

∑
j∈Z
〈f, ψij〉ψij(x) (4.22)

and
‖f‖22 =

∑
j∈Z
〈f, ϕi0j〉2 +

∑
i≥i0

∑
j∈Z
〈f, ψij〉2. (4.23)

This means that we can calculate the energy of a square-integrable function from its
wavelet coefficients. In Theorem 2, we show that the concept generalizes to the deter-
mination of the average energy, even for signals that are not square-integrable, provided
that the wavelets have a sufficient decay. Notice that the family of signals that have a finite
average energy is much broader than L2(R) since L2-functions have an average energy of
zero.

Theorem 2. Suppose that the wavelets are such that

|ϕ(x)|, |ψ(x)| ≤ η(x) =
A

(1 + |x|)n+1+ε
(4.24)
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for some A,n, ε > 0. Then, for any function f for which there exists B > 0 that satisfies

|f(x)| ≤ g(x) = B(1 + |x|)n, (4.25)

we have that

lim
T→∞

1

2T

∫ T

−T
f(x)2dx = (4.26)

lim
N→∞

1

2N

 ∑
|j|≤2i0N

〈f, ϕi0j〉2 +
∑
i≥i0

∑
|j|≤2iN

〈f, ψij〉2
 .

The proof is given in Appendix 4.B.
This theorem helps us evaluate (4.12) for a wavelet-domain denoising method. We can

also establish the complementary convergence result whose proof is given in Appendix
4.C.

Proposition 1. Under the assumptions of Theorem 2,

f(x) =
∑
j∈Z
〈f, ϕi0j〉ϕi0j(x) +

∑
i≥i0

∑
j∈Z
〈f, ψij〉ψij(x) (4.27)

holds almost everywhere.

4.5 MMSE Denoising of SαS Random Variables
In this section, we study the MMSE performance of a denoiser that is applied to a scalar
SαS random variable contaminated by Gaussian noise. Suppose that

Y = X + Z, (4.28)

where X is an SαS random variable with dispersion parameter aα and Z is a Gaussian
random variable, independent from X , with mean 0 and variance σ2.

According to Stein’s formula, the MMSE estimator of X given Y is [48]

X̂ = E[X|Y ] = Y + σ2 p
′
Y (Y )

pY (Y )
(4.29)
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in which
pY = pX ∗ pZ . (4.30)

There, pX and pZ are the probability density functions of X and Z, respectively, and ∗
denotes the convolution operator. Stein’s theory also provides the MMSE that is achieved
by this optimal denoiser as (see (3.7)) [83, 84]

E
[
(X − X̂)2

]
= σ2 − σ4

∫ (
p′Y (y)

)2
pY (y)

dy. (4.31)

We call this function MMSE(a, σ), where a and σ are the dispersion of the signal and the
standard deviation of the noise, respectively.

In Theorem 3, we prove some properties of MMSE(a, σ) that we are going to use in
the derivation of our main result. A similar function is studied in [80, 85], mostly in the
scenario where X is a finite-variance random variable. The difficulty here is that SαS
random variables for α < 2 have an infinite variance.

Theorem 3. For any fixed σ ≥ 0, the following properties hold for MMSE(a, σ) as a
function of the dispersion a:

1. Increasing over [0,+∞).

2. Towards infinity, we have that

lim
a→∞

MMSE(a, σ) = σ2. (4.32)

3. Around zero, we have that

lim
a→0

MMSE(a, σ)

aα−ε
= 0 (4.33)

for any ε > 0.

For the proof, refer to Appendix 4.D.
Also, notice that we trivially have that

MMSE(a, σ) ≤ σ2 (4.34)

for any a and σ since the identity estimator, which is X̂ = Y , has the MSE of σ2. This can
also be deduced by using (4.31).

Additionally, we propose Conjecture 1. This conjecture is not required by our analysis
but leads to a nice intuitive interpretation.
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Conjecture 1. Around zero, we have that

lim
a→0

MMSE(a, σ)

aα+ε
=∞ (4.35)

for any ε > 0.

4.6 MAEE of Component-Wise Wavelet-Based Denoising
We now present our main result on the solution of the problem formulated in Section 4.3.
We concentrate on the case where γ ≥ 1 and the mother wavelet ψ has at least bγ+ 1

αc−1
vanishing moments. Also, we assume that

|ϕ(x)|, |ψ(x)| ≤ A

(1 + |x|)η (4.36)

for an η > γ+ 1
α andA ∈ R. These assumptions, along with (4.8) and Proposition 1, yield

s(x) =
∑
j∈Z
〈s, ϕi0j〉ϕi0j(x) +

∑
i≥i0

∑
j∈Z
〈s, ψij〉ψij(x) (4.37)

almost surely.
Also, we can straightforwardly characterize the wavelet coefficients of Ξij = 〈s, ψij〉.

Assume that
φ = D−γ∗ψ. (4.38)

As discussed in Section 4.2 and as a result of the vanishing moments of ψ, we can write

φij(x) = D−γ∗{ψij}(x) = 2i(
1
2−γ)φ(2ix− j). (4.39)

Therefore, according to (4.3) and (4.7), the characteristic function of Ξij (see also (4.18))
is

p̂Ξij (ω) = exp
(
−
∣∣a‖φij‖αω∣∣α) . (4.40)

A crucial point is that ‖φij‖α only depends on the scale index i. It is given by

‖φij‖α = 2i(
1
2−

1
α−γ)‖φ‖α. (4.41)
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Similarly, we find that

p̂Πi0j
(ω) = exp

(
−
∣∣a‖D−γ∗ϕi0j‖αω∣∣α) . (4.42)

But, since ϕ is orthogonal to ψ, it does not have any vanishing moments. Thus, according
to Section 4.2, D−γ∗ϕi0j with j varying are not shifted versions of each other. However,
Lemma 1 is all what we need about them.

The combination of (4.11) with (4.19)-(4.18) implies that

Π̃i0j = Πi0j + Z ′i0j , (4.43)

Ξ̃ij = Ξij + Zij , (4.44)

where

Z ′i0j = 〈z, ϕi0j〉, (4.45)

Zij = 〈z, ψij〉. (4.46)

Thanks to the orthonormality of the wavelet family, the random variables Z ′i0j and Zij are
iid Gaussian with mean 0 and variance σ2. This allows us to determine the coefficient-
wise MMSE estimation of Πi0j and Ξij by the direct application of the scalar estimators
discussed in Section 4.5.

In Section 4.3, MAEEi0(ϕ,ψ) is the mean average error energy of the optimal coefficient-
wise denoising. Thanks to Theorem 2, it is reformulated in the wavelet domain as

MAEEi0(ϕ,ψ) =

lim
N→∞

1

2N
E
[ ∑
|j|≤2i0N

(
Πi0j − Π̂i0j

)2
+
∑
i≥i0

∑
|j|≤2iN

(
Ξij − Ξ̂ij

)2]

= lim
N→∞

1

2N

( ∑
|j|≤2i0N

E
[(

Πi0j − Π̂i0j

)2]
+
∑
i≥i0

∑
|j|≤2iN

E
[(

Ξij − Ξ̂ij
)2])

. (4.47)

Based on this formula, we infer that the optimal coefficient-wise denoiser (the one that
gives us the minimum MAEE) is the one that provides the MMSE for each coefficient. It
is thus the coefficient-wise MMSE denoiser. In this case and according to Section 4.5 and
(4.40)-(4.42), we have that

E
[
(Πi0j − Π̂i0j)

2
]

= MMSE
(
a‖D−γ∗ϕi0j}‖α, σ

)
, (4.48)

E
[
(Ξij − Ξ̂ij)

2
]

= MMSE
(

2i(
1
2−

1
α−γ)a‖φ‖α, σ

)
. (4.49)
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Replacing (4.48) and (4.49) in (4.47), we get

MAEEi0(ϕ,ψ) = (4.50)

lim
N→∞

1

2N

( ∑
|j|≤2i0N

MMSE
(
a‖D−γ∗ϕi0j}‖α, σ

)
+
∑
i≥i0

(2i+1N + 1)MMSE
(

2i(
1
2−

1
α−γ)a‖φ‖α, σ

))
.

Now, (4.41) gives us

MAEEi0(ϕ,ψ) = lim
N→∞

1

2N

∑
|j|≤2i0N

MMSE
(
a‖D−γ∗ϕi0j}‖α, σ

)
+
∑
i≥i0

2iMMSE
(

2i(
1
2−

1
α−γ)a‖φ‖α, σ

)
. (4.51)

Also, the existing limit in the right-hand side of (4.51) can be calculated by combining
Lemma 1 and Part 1 of Theorem 3. Since ϕi0j has no vanishing moments, ‖D−γ∗ϕi0j‖α
tends to infinity as j goes to infinity. Thus, we conclude that

lim
j→∞

MMSE
(
a‖D−γ∗ϕi0j‖α, σ

)
= σ2. (4.52)

This means that there is no asymptotic advantage to denoise the coefficients corresponding
to the scaling functions (the low-pass basis functions) since this denoising performs no
better than the identity estimator whose MSE is σ2. Incorporating (4.52) in (4.51), we
finally obtain

MAEEi0(ϕ,ψ)=2i0σ2 +
∑
i≥i0

2iMMSE
(

2i(
1
2−

1
α−γ)a‖φ‖α, σ

)
. (4.53)

Since γ > 1
2 , there exists ε > 0 for which(1

2
− 1

α
− γ
)
(α− ε) + 1 < 0. (4.54)

Thus, according to Part 3 of Theorem 3, the summation in (4.53) is finite, which is reassur-
ing for our application. If it was otherwise, any coefficient-wise denoising in any wavelet
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domain would result in an unbounded mean average error energy, suggesting that there
would be no advantage in trying to optimize the wavelet basis. Here are other interesting
consequences of our analysis.

Remark 1. The finiteness of MAEEi0(ϕ,ψ) implies that the series in (4.21) are almost
surely convergent when Π̂i0j and Ξ̂ij are the coefficient-wise MMSE estimations of Πi0j

and Ξij from Π̃i0j and Ξ̃ij . Thus, almost every realization of ŝ is a well-defined function
that is locally square-integrable. Notice that the same statement does not hold for s̃ since
almost every realization of z is not a locally L2 function.

Remark 2. If we forget about the time-domain representation and consider (4.47) as our
original definition of performance measure as motivated by Theorem 2, then the story can
also be told with γ less than 1. The parameter γ can be seen as a measure of the spatial
coupling of the process instants: γ = 0 corresponds to white noise with no coupling, and
larger γ leads to more coupling. Then, Conjecture 1 reveals that it is possible to achieve
a finite value for the estimation error by performing a coefficient-wise wavelet-domain
denoising only if γ ≥ 1

2 . This happens when the signal exhibits a sufficient amount of
coupling. This is an interesting duality relation between the amount of dependency that
exists among the spatial instants of the original process and the amount of dependency that
we must utilize among its wavelet coefficients to denoise them.

Moreover, since MMSE(a, σ) ≤ σ2 for any a, a decrease in i0 results in a decrease of
(4.53). This means that the use of more resolution levels in the denoising procedure gives
better results. Thus, by letting i0 tend to −∞, we get the quantity

MAEE(ψ) =
∑
i∈Z

2iMMSE
(

2i(
1
2−

1
α−γ)a‖φ‖α, σ

)
(4.55)

which is the least achievable MAEE by performing a coefficient-wise wavelet-domain de-
noising for recovering SαS self-similar processes embedded in AWGN.

An interesting point about (4.53) and (4.55) is that, although the function MMSE(·, ·) is
not known analytically, a smaller ‖φ‖α results in a smaller MAEE(ψ). This is because we
know that MMSE(·, ·) is an increasing function of its first argument (Part 2 of Theorem 3).
This means that, to compare the denoising performance of two different families of wavelet
for γ-order SαS processes, it is enough to compare the α-norm of the γ-order integration
of their mother wavelets; i.e., ‖D−γ∗ψ‖α. This observation tremendously simplifies the
design of the optimal wavelet. Also, it implies that the optimal wavelet depends neither on
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the dispersion aα of the signal nor on the variance σ2 of the noise. Notice that, although
it is obvious that the multiplication of a and σ by a constant does not affect the optimal
wavelet, the independence of the optimal wavelet from a

σ is not obvious a priori.

4.7 Optimal Meyer Wavelets for Denoising Self-Similar
SαS Processes

Based on the result of Section 4.6 and with the help of the calculus of variations, we now
propose an algorithm to design the optimal wavelet for a given γ and α within the so-called
Meyer family of bandlimited wavelets [29].

According to [29, 33], for a given function v : [0, 1]→ R such that

v(ρ) + v(1− ρ) = 1, (4.56)

the profile

W{v}(ω) =


sin
(
π
2 v( 3

2π |ω| − 1)
)
, 2π

3 < |ω| ≤ 4π
3

cos
(
π
2 v( 3

4π |ω| − 1)
)
, 4π

3 < |ω| ≤ 8π
3

0, otherwise
(4.57)

is the Fourier transform of the mother wavelet of an orthonormal wavelet basis. These
wavelets are called Meyer wavelets.

We just saw that in order to rank the denoising performance of different wavelet bases,
it is enough to compare the α-(pseudo)norm of the γ-order integration of their mother
wavelets. Hence, for a Meyer wavelet, the criterion

Qγα(v) =

∫
R

∣∣∣∣ 1

2π

∫
R

W{v}(ω)

(jω)γ
ejωxdω

∣∣∣∣αdx (4.58)

=
1

πα

∫
R

∣∣∣∣ ∫ 8π
3

2π
3

W{v}(ω)

ωγ
cos
(
ωx− π

2
γ
)
dω

∣∣∣∣αdx

is a predictor of its denoising performance. Next, we apply a projected-gradient-descent
algorithm with adaptive step size to find the function v that minimizes Qγα(v). An adaptive
step size is specially important for α ≤ 1 for which the functional does not have a Lipschitz
gradient. The pseudo-code of our optimization method is given in Algorithm 3. In the
algorithm, ∇Qγα is the infinite-dimensional gradient of the functional Qγα in the Hilbert
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space of L2([0, 1]). Also, P{ṽ} is the projector that maps ṽ to the nearest function that
satisfies (4.56).

Algorithm 3: Optimal Meyer Wavelet
1: input: α, γ
2: initialize: v ∈ L2([0, 1])
3: initialize: η > 0, κ+ ≥ 1 and κ− ≤ 1
4: Q ← Qγα(v)
5: repeat
6: vold ← v and Qold ← Q
7: ṽ ← v − η ∇Qγα{v}
8: v ← P{ṽ}
9: Q ← Qγα(v)

10: if Q ≤ Qold then
11: η ← κ+ · η
12: else
13: v ← vold and Q ← Qold
14: η ← κ− · η
15: end if
16: until v converges
17: return v

According to Appendix 4.E, ∇Qγα is calculated as

∇Qγα{v}(ρ) = (4.59)

1

πα
π2α

3

( 3

2π

)γ cos
(
π
2 v(ρ)

)
(ρ+ 1)γ

×
∫
R
λ

(∫ 8π
3

2π
3

W{v}(ω)

ωγ
cos
(
ωx− π

2
γ
)

dω

)
cos
(2π

3
(ρ+ 1)x− π

2
γ
)

dx

− 2

πα
π2α

3

( 3

4π

)γ sin
(
π
2 v(ρ)

)
(ρ+ 1)γ

×
∫
R
λ

(∫ 8π
3

2π
3

W{v}(ω)

ωγ
cos
(
ωx− π

2
γ
)

dω

)
cos
(4π

3
(ρ+ 1)x− π

2
γ
)

dx,
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where λ(x) = sgn(x)|x|α−1. Also, in Appendix 4.E, we prove that

P{ṽ}(ρ) =
ṽ(ρ)− ṽ(1− ρ) + 1

2
. (4.60)

Thus, we have all the ingredients to implement Algorithm 3.
It is worth mentioning that for α = 2 as long as γ > 1

2 , which in fact includes all
fBms, the minimizer of Qγ2 can be derived analytically. It is indeed the Shannon wavelet,
irrespective of the value of γ. This result is in accordance with the well-known result about
the optimality of Shannon wavelets for the minimum approximation error of processes with
non-increasing spectrum [86]. The formal statement of this result is given in Proposition
2.

Proposition 2. If α = 2 and γ > 1
2 , then

v(ρ) = 1[ 1
2 ,1]

(ρ), (4.61)

which corresponds to the wavelet with the Fourier profile

W{v}(ω) = 1[−2π,−π](ω) + 1[π,2π](ω), (4.62)

minimizes Qγ2(v).

The proof is provided in Appendix 4.F.

4.8 Optimization of Meyer Wavelets and Comparison of
Different Wavelet Families

In this section, we give the wavelet for some values of γ and α optimized according to the
derivation of Section 4.7. Additionally, we compare the performance of Meyer wavelets
which are compactly supported in the Fourier domain with the Daubechies wavelets [28]
that are compactly supported in the time domain.

To implement Algorithm 3, we take the samples of v and W{v} uniformly in the
Fourier and time domain, respectively. Since these wavelets are not compactly supported,
we have to truncate them at some point in the time domain.

We give in Figure 4.1 the outcome of the algorithm for γ = 1 and α = 1.2, 1.8, and
2. We show in Figure 4.2 the plots for the optimal wavelet when α = 1.2 and γ = 1, 2, 4.
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Figure 4.1: Optimal v(ρ) and corresponding wavelet profile W{v}(ω) for γ = 1 and
α = 1.2, 1.8, and 2.

An interesting phenomenon that is observed in these plots is that, by letting either α or γ
increase, the wavelet approaches the Shannon wavelet ((4.61) and (4.62)). Regarding α, re-
member thet Proposition 2 states that the optimal wavelet for α = 2 is exactly the Shannon
wavelet. Regarding γ, we qualitatively shrink the high frequencies as γ increases. Thus, in
order to have a smaller Qγα(v), the frequency content tends toward higher frequencies and
v will have less weight on [0, 1

2 ]. Therefore, the optimal wavelet approaches the Shannon
wavelet which is vanishing on this interval (see (4.61)).

Conversely, the optimal wavelet tends to the Held wavelet (v(ρ) = ρ) when α decreases
[36]. Thus, we can roughly say that, for very sparse cases (small α), it is better to use the
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Figure 4.2: Optimal v(ρ) and corresponding wavelet profile W{v}(ω) for α = 1.2 and
γ = 1, 2, and 4.

Held wavelet; for less sparse cases (α close to 2), it is better to use the Shannon wavelet.
In the next step, we compare the MAEE performance of the optimal Meyer wavelets

and Daubechies wavelets. Meyer wavelets lend themselves well to an FFT-based imple-
mentation due to their compact support in the Fourier domain (band-limitedness). Daubechies
wavelets, on the other hand, are notorious for their minimal support in the time domain,
which is valued in many applications.

According to the discussions in Section 4.6, comparing the MAEE obtained by differ-
ent wavelets for denoising γth-order SαS self-similar processes is equivalent to comparing
the α-(pseudo)norm of the γth-order integration of their mother wavelet. We plotted this
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Figure 4.3: The α-norm of the first-order integral of different mother wavelets versus α.

quantity versus α in Figure 4.3 for the case of Lévy processes (γ = 1).

We observe that for very sparse signals (small α) it is better to use compactly supported
wavelets (Daubechies wavelet). Moreover, we see that a smaller α favors a smaller wavelet
support. Indeed, the Daubechies wavelet of order 1 (the Haar wavelet [32]) has the shortest
support in the time domain and outperforms all the others for α . 1.3. However, in less
sparse cases (α close to 2), a compact support in the Fourier domain (band-limitedness)
becomes more favorable. For special case α = 2, the Shannon wavelet, which has the
shortest support in the Fourier domain, outperforms the others, even if its superiority over
the other Meyer wavelets is marginal.
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4.9 Summary

In this chapter, we studied the performance of the wavelet-domain denoising of self-similar
symetric-α-stable (SαS) processes corrupted by additive white Gaussian noise. We fo-
cused on the most classical denoising which proceeds coefficient-wise. We derived a sim-
ple formula for the mean average energy of estimation error (MAEE) for a given γ, α,
and wavelet family, where γ is the order of the self-similar process under consideration.
We showed that MAEE is an increasing function of the α-(pseudo)norm of the γth-order
integral of the mother wavelet ψ, i.e. ‖D−γ∗ψ‖α. This is an essential property that allows
us to compare different wavelets based on this simple indicator of localization. The fact
that the wavelet coefficients are treated independently is the only source of suboptimality
of these denoisers. Thus, more correct is this assumption, MAEE is smaller. Therefore,
the quantity ‖D−γ∗ψ‖α can also be used to measure the decoupling performance of the
wavelet. Moreover, the simplicity of the derived performance criterion allowed us to pro-
pose an optimization algorithm to find the optimal Meyer wavelet for a given γ and α. We
could then compare the relative denoising performance of Meyer and Daubechies wavelets.
For highly sparse signals (small α) we deduced that, it is better to use wavelets of compact
support in the time domain; while for less sparse signals (α close to 2), it is better to use
wavelets of compact support in the Fourier domain (Meyer wavelets).

To obtain these results, we proved two main theorems that are interesting on their own
right. The first one enables us to calculate the average energy of a signal by using its
wavelet coefficients (Theorem 2). The second one is about the minimum mean-square
error (MMSE) function of estimating an SαS random variable given its summation with
an independent Gaussian random variable (Theorem 3).

4.A Proof of Lemma 1

First, notice that
D−γ∗{θ(−·)}(x) = D−γ∗{θ(·)}(−x). (4.63)

Thus, it is enough to prove (4.10) when letting j tend to +∞. According to (4.5) and (4.6),
for x > 0, we have that

D−γ∗{θ(· − j)}(x) =
1

Γ(γ)

(
(−·)γ−1

+ ∗ θ(·)
)
(x− j) (4.64)
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which implies that

‖D−γ∗{θ(· − j)}‖α ≥
1

Γ(γ)

∥∥∥((−·)γ−1
+ ∗ θ(·)

)
· 1[−j,0]

∥∥∥
α
, (4.65)

where 1[−j,0] is the indicator function of [−j, 0]. Now, since α(γ−1) > −1, it is sufficient
to prove that

(
(−·)γ−1

+ ∗ θ(·)
)
(x) grows (decays) with the same rate as (−x)γ−1

+ when x
tends to −∞; in other words

lim
x→−∞

(
(−·)γ−1

+ ∗ θ(·)
)
(x)

(−x)γ−1
+

= C, (4.66)

where C is a nonzero real number. We first prove this statement when θ is a nonnegative
function such that θ(x) ≥ 0 for all x ∈ R, and then we generalize it to any θ.

Assuming that θ is a nonnegative function, x < −1, and 1
n < r < 1, we write(

(−·)γ−1
+ ∗ θ(·)

)
(x)

(−x)γ−1
+

=

∫
R(t− x)γ−1

+ θ(t)dt

(−x)γ−1
(4.67)

=

∫
R

(
1− t

x

)γ−1

+
θ(t)dt

=

∫
|t|≤|x|r

(
1− t

x

)γ−1

+
θ(t)dt+

∫
|t|>|x|r

(
1− t

x

)γ−1

+
θ(t)dt.

If γ ≥ 1, the first term of this summation is bounded by(
1− 1

|x|r
)γ−1

∫
|t|≤|x|r

θ(t)dt

≤
∫
|t|≤|x|r

(
1− t

x

)γ−1

+
θ(t)dt ≤ (4.68)

(1 +
1

|x|r )γ−1

∫
|t|≤|x|r

θ(t)dt.

Consequently, as x tends to −∞, we obtain that

lim
x→−∞

∫
|t|≤|x|r

(
1− t

x

)γ−1

+
θ(t)dt =

∫
R
θ(t)dt. (4.69)
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As for the second term in the right-hand side of (4.67), we write∫ −|x|r
−∞

(
1− t

x

)γ−1

+
θ(t)dt ≤

(
1− 1

|x|r
)γ−1

∫ −|x|r
−∞

θ(t)dt (4.70)

and, since |x|r < −x, we have that∫ ∞
|x|r

(
1− t

x

)γ−1

+
θ(t)dt ≤

∫ ∞
|x|r

(
1 + t

)γ−1

+
θ(t)dt. (4.71)

Since both integrals on the right-hand side of (4.70) and (4.71) are finite by assumption, by
letting x tend to −∞ we obtain that

lim
x→−∞

∫
|t|>|x|r

(
1− t

x

)γ−1

+
θ(t)dt = 0. (4.72)

Up to now, we have proved that,

lim
x→−∞

(
(−·)γ−1

+ ∗ θ(·)
)
(x)

(−x)γ−1
+

=

∫
R
θ(t)dt, (4.73)

provided that θ is a nonnegative function. For a general function θ, let θ+(x) = (θ(x))+

and θ−(x) = (−θ(x))+. Thus, both of θ+ and θ− are nonnegative functions whilst θ =
θ+ − θ−. Incorporating this fact in (4.73) and using the bilinearity of the convolution
operator, we can generalize (4.73) to any θ ∈ L1(R). Therefore, since

∫
R θ(x)dx 6= 0, the

argument (4.66) is proved for γ > 1.
For γ < 1, the argument is the same except that the upper- and lower-bounds need to

be swapped in (4.68). Thus, (4.69) still holds. In (4.70), the inequality converts to∫ −|x|r
−∞

(
1− t

x

)γ−1

+
θ(t)dt

≤ sup
[x,−|x|r]

|θ(t)| ×
∫ −|x|r
x

(
1− t

x

)γ−1

+
dt

≤ A

(1 + |x|r)n ×
−x
γ

(
1− 1

|x|r
)γ
. (4.74)
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Since nr > 1, the bound tends to zero as x tends to−∞. The corresponding inequality for
(4.71) with γ < 1 is∫ ∞

|x|r

(
1− t

x

)γ−1

+
θ(t)dt ≤

(
1 +

1

|x|r
)γ−1

∫ ∞
|x|r

θ(t)dt, (4.75)

which again tends to zero as x tends to −∞, and which completes the proof.

4.B Proof of Theorem 2
First, notice that the conditions on f , ϕ, and ψ guarantee that the wavelet coefficients exist
and are finite. We prove the result for i0 = 0. It extends to other i0 similarly. Define two
projections

PT {f}(t) = f(t) · 1[−T,T ] (4.76)

in which 1[−T,T ] is the indicator function of [−T, T ], and

QN{f}(t) =
∑
|j|≤N

〈f, ϕ0j〉ϕ0j(t) +
∑
i≥0

∑
|j|≤2iN

〈f, ψij〉ψij(t) (4.77)

for f : R → R satisfying the conditions of the theorem. Later in the proof, we show
that, for a fixed N , (4.77) is a converging series in L2 and thus QNf is well-defined. In
fact, PT is the orthogonal projections onto the space of functions that are supported on
[−T, T ], while QN is the orthogonal projection onto the space generated by {ϕ0j}|j|≤N ∪
{{ϕij}|j|≤2iN}∞i=0. Hence, we want to prove that

lim
T→∞

1

2T
‖PT f‖22 = lim

N→∞

1

2N
‖QNf‖22 . (4.78)

Since PT and QN are orthogonal projection, they do not increase the norm. Thus, we have
that

‖PT f‖2 = ‖PTQNf + PT (1−QN )f‖2
≤ ‖PTQNf‖2 + ‖PT (1−QN )f‖2
≤ ‖QNf‖2 + ‖PT (1−QN )f‖2. (4.79)

Similarly, we have that

‖QNf‖2 ≤ ‖PT f‖2 + ‖QN (1− PT )f‖2. (4.80)
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Therefore, we can write √
T

N

(‖PT f‖2√
T
− ‖PT (1−QN )f‖2√

T

)
≤ ‖QNf‖2√

N
≤ (4.81)√

T

N

(‖PT f‖2√
T

+
‖QN (1− PT )f‖2√

T

)
.

Now, assume that δ > 0 and let N+ = (1 + δ)2T and N− = (1 − δ)2T . Using the
inequalities in (4.81), by letting T tend to infinity we obtain that

(1− δ) lim sup
N→∞

‖QNf‖2√
N

≤

lim
T→∞

‖PT f‖2√
T

+ lim sup
T→∞

‖QN−(1− PT )f‖2√
T

(4.82)

and

(1 + δ) lim sup
N→∞

‖QNf‖2√
N

≥

lim
T→∞

‖PT f‖2√
T
− lim sup

T→∞

‖PT (1−QN+)f‖2√
T

. (4.83)

Hence, it is sufficient to prove that, for any δ > 0, we have that

lim sup
T→∞

‖QN (1− PT )f‖22
T

= 0 if N ≤ (1− δ)T (4.84)

and

lim sup
T→∞

‖PT (1−QN )f‖22
T

= 0 if N ≥ (1 + δ)T. (4.85)

Notice that (4.84), at first hand, yields that (4.77) is a converging series in L2(R) and
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QNf is well-defiend. The reason is that∑
|j|≤N

〈f, ϕ0j〉2 +
∑
i≥0

∑
|j|≤2iN

〈f, ψij〉2 =

∑
|j|≤N

(〈PT f, ϕ0j〉+ 〈(1− PT )f, ϕ0j〉)2

+
∑
i≥0

∑
|j|≤2iN

(〈PT f, ψij〉+ 〈(1− PT )f, ψij〉)2. (4.86)

Using the inequality (a+ b)2 ≤ 2(a2 + b2), we get∑
|j|≤N

〈f, ϕ0j〉2 +
∑
i≥0

∑
|j|≤2iN

〈f, ψij〉2 ≤

2
( ∑
|j|≤N

〈PT f, ϕ0j〉2 +
∑
i≥0

∑
|j|≤2iN

〈PT f, ψij〉2
)

+ 2
( ∑
|j|≤N

〈(1− PT )f, ϕ0j〉2 +
∑
i≥0

∑
|j|≤2iN

〈(1− PT )f, ψij〉2
)

= 2‖QNPT f‖22 + 2‖QN (1− PT )f‖22. (4.87)

Since |PT f(x)| ≤ PT g(x) and PT g ∈ L2(R), PT f also belongs to L2(R). This means
that the right-hand side of (4.86) is finite. Consequently, the left-hand side of (4.86) is
finite, too, and thus QNf belongs to L2(R).

To prove (4.84), we write

‖QN (1− PT )f‖22 =
∑
|j|≤N

(∫
|x|>T

f(x)ϕ(x− j)dx
)2

+
∑
i≥0

∑
|j|≤2iN

(∫
|x|>T

f(x)2
i
2ψ(2ix− j)dx

)2

=
∑
|j|≤N

(∫
|x+j|>T

f(x+ j)ϕ(x)dx
)2

+
∑
i≥0

∑
|j|≤2iN

2−i
(∫
| x+j

2i
|>T

f
(x+ j

2i

)
ψ(x)dx

)2

. (4.88)
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Using the facts that |f(x)| ≤ g(x), |ϕ(x)|, |ψ(x)| ≤ η(x), where g and η are even func-
tions and g is increasing on the positive numbers, along with T −N ≥ δT and (4.88), we
deduce that

‖QN (1− PT )f‖22 ≤ 4T
(∫

x>δT

g(x+ T )η(x)dx
)2

+
∑
i≥0

2−i · 4 · 2iT
(∫

x>2iδT

g(x+ T )η(x)dx
)2

≤ 4T
[( ∫

x>δT

g
(
(1 +

1

δ
)x
)
η(x)dx

)2

+
∑
i≥0

(∫
x>2iδT

g
(
(1 +

1

δ
)x
)
η(x)dx

)2]
. (4.89)

However, we know that there exists c ∈ R that satisfies g
(
(1 + 1

δ )x
)
η(x) < c

x1+ε . Thus,
we have that

‖QN (1− PT )f‖22 ≤ 4T
[( ∫ ∞

δT

c

x1+ε
dx
)2

+
∑
i≥0

(∫ ∞
2iδT

c

x1+ε
dx
)2]

= 4T

(
c2

δ2T 2ε
+
∑
i≥0

c2

22iδ2T 2ε

)
= c′T 1−2ε (4.90)

with c′ independent of T , which completes the proof of (4.84).
To prove (4.85), we write

‖PT (1−QN )f‖22 =

∫ T

−T
|(1−QN ){f}(x)|2dx

≤ 2T
[

sup
|x|≤T

|(1−QN ){f}(x)|
]2
. (4.91)

We have that

(1−QN ){f}(x) =
∑
|j|>N

(∫
R
f(u)ϕ(u− j)du

)
ϕ(x− j) (4.92)

+
∑
i≥0

∑
|j|>2iN

(∫
R
f(u)2

i
2ψ(2iu− j)du

)
2
i
2ψ(2ix− j).
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Using |f(x)| ≤ g(x) and |ϕ(x)|, |ψ(x)| ≤ η(x), and changing the variables of integra-
tions, we get

|(1−QN ){f}(x)| ≤
∑
|j|>N

(∫
R
g(u+ j)η(u)du

)
η(x− j) (4.93)

+
∑
i≥0

∑
|j|>2iN

(∫
R
g
(u+ j

2i
)
η(u)du

)
η(2ix− j).

For |x| < T , exploiting the fact that η is an even function and decreasing on positive
numbers, along with N ≥ (1 + δ)T , we write

|(1−QN ){f}(x)| ≤
∑
|j|>N

(∫
R
g(u+ j)η(u)du

)
η(δ′j) (4.94)

+
∑
i≥0

∑
|j|>2iN

(∫
R
g
(u+ j

2i
)
η(u)du

)
η(2iδ′j),

where δ′ = δ
1+δ . We know that there exists C ∈ R, independent of x and y, that satisfies

(x+ y)n ≤ C(|x|n + |y|n). (4.95)

The same C satisfies

g(x+ y) ≤ C(g(x) + g(y)). (4.96)

Thus, we write

|(1−QN ){f}(x)| ≤ C
∑
|j|>N

(∫
R

(g(u) + g(j))η(u)du
)
η(δ′j) (4.97)

+ C
∑
i≥0

∑
|j|>2iN

(∫
R

(
g
( u

2i
)

+ g
( j

2i
))
η(u)du

)
η(2iδ′j).
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By expanding the summations, we obtain

|(1−QN ){f}(x)| ≤ C
(∫

R
g(u)η(u)du

) ∑
|j|>N

η(δ′j)

+ C
(∫

R
η(u)du

) ∑
|j|>N

g(j)η(δ′j)

+ C
∑
i≥0

[(∫
R
g
( u

2i
)
η(u)du

) ∑
|j|>N

η(2iδ′j)

+
(∫

R
η(u)du

) ∑
|j|>N

g
( j

2i
)
η(2iδ′j)

]
. (4.98)

However, we have that∫
R
g
( u

2i
)
η(u)du ≤ BC

(∫
R
η(u)du+

1

2in

∫
R
unη(u)du

)
, (4.99)

where B and C are as in (4.25) and (4.95), respectively. Likewise, we have that∫
|u|>N

g
( u

2i
)
η(2iδ′u)du ≤ BC

(∫
|u|>N

η(2iδ′u)du+
1

2in

∫
|u|>N

unη(2iδ′u)du
)

≤ BC

2iδ′

(∫
|u|>2iδ′N

η(u)du+
1

(22iδ′)n

∫
|u|>2iδ′N

unη(u)du
)

≤ BC

2iδ′

( ċ

(2iδ′N)n+ε
+

1

(22iδ′)n
c̈

2iδ′N ε

)
. (4.100)

Therefore, using the inequalities in (4.100) and bounding the summations in (4.98) by
integrals, for a large enough N , we get

|(1−QN ){f}(x)| ≤ c1
Nn+ε

+
c2
N ε

+

∞∑
i=0

( c3
2(n+2)i

· 1

Nn+ε
+

c4
2(2n+1)iN ε

)
≤ c′′

T ε
, (4.101)

in which c1 to c4 and c′′ are constants independent of N and T . This completes the proof
of (4.85) and hence the proof of the theorem.
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4.C Proof of Proposition 1
Repeating the proof of (4.85), we show that

lim sup
N→∞

‖PT (1−QN )f‖22 = 0 (4.102)

for any fixed T > 0. This means that QNf converges to f on [−T, T ] almost surely for
any T , which completes the proof.

4.D Proof of Theorem 3
1) Assume that a1 ≥ a2 ≥ 0. We are going to show that M(a1, b) ≥ M(a2, b). Let X1

and X2 be two SαS random variables with dispersion parameters aα1 and aα2 , respectively.
Due to the stability of the distribution, we can write X1 = X2 +X3, where X3 is another
SαS random variable that is independent of X2, with dispersion parameter aα1 − aα2 . If we
denote the probability density function of Xi by pXi , then we have that

pX1
(x) =

∫
pX2

(x− t)pX3
(t)dt

= EX3
[pX2

(x−X3)]. (4.103)

The MMSE of estimating X2 given Y = X2 +X3 +Z and X3, where Z is a Gaussian
random variable with variance σ2, is equal to M(a2, σ). Now, using the fact that the
MMSE functional is a concave function of the input distribution pX , we achieve the desired
result [85].

2) This is a direct implication of [80, Theorem 11] since the distribution of an SαS
random variable is absolutely continuous.

3) For α = 2 (Gaussian distribution), we simply have that

M(a, σ) =
2a2σ2

2a2 + σ2
, (4.104)

which directly gives the result. Hence, we assume that α < 2. The case ε ≥ α is trivial.
Thus, we also assume that ε < α. The sketch of the proof is that we compute the mean-
square error for the estimator

T (y) =

{
0, |y| < ∆

y, |y| ≥ ∆
(4.105)
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and show that, upon an appropriate choice of ∆, the theorem holds for this estimator.
Consequently, it would automatically hold for M(a, σ).

Denote the pdf of X by

fa(x) =
1

a
f
(x
a

)
, (4.106)

where f is the standard SαS pdf with dispersion 1. Also, let

Fa(s, t) =

∫ t

s

fa(x)dx. (4.107)

Moreover, let g be Gaussian pdf with mean 0 and variance σ2 and define

G(s, t) =

∫ t

s

g(x)dx. (4.108)

Then, we have that

MSE(T ) = EX,Z
[
(X − T (X + Z))

2
]

= P (|X + Z| < ∆)EX,Z
[
X2

∣∣ |X + Z| < ∆
]

+ P (|X + Z| ≥ ∆)EX,Z
[
Z2
∣∣ |X + Z| ≥ ∆

]
. (4.109)

According to Bayes’ rule, we can write

fa
(
x
∣∣|X + Z| < ∆

)
=

P (|x+ Z| < ∆) fa(x)

P (|X + Z| < ∆)

=
G (−∆− x,∆− x) fa(x)

P (|X + Z| < ∆)
(4.110)

and, similarly,

g
(
z
∣∣|X + Z| ≥ ∆

)
=

(1− Fa (−∆− z,∆− z)) g(z)

P (|X + Z| ≥ ∆)
. (4.111)

Incorporating (4.110) and (4.111) in (4.109), we obtain

MSE(T ) =

∫
R
x2fa(x)G(−∆− x,∆− x)dx

+

∫
R
z2g(z) (1− Fa (−∆− z,∆− z)) dz. (4.112)
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We investigate the behavior of the two terms on the right-hand side of (4.112) sepa-
rately. For the first term, we know that, for α < 2, we have that

lim
x→∞

f(x)

x−(1+α)
= C, (4.113)

where C is a positive finite value. Thus, we deduce that

x
1
2 +α−δfa(x) ∈ L2(R) (4.114)

for some positive δ < ε. The Cauchy-Schwartz inequality then yields∫
x2fa(x)G(−∆− x,∆− x)dx ≤∥∥∥x 1

2 +α−δfa(x)
∥∥∥

2
·
∥∥∥x 3

2−α+δG(−∆− x,∆− x)
∥∥∥

2
. (4.115)

Notice that

G(−∆− x,∆− x) ≤
{

1, |x| ≤ ∆
σ2

∆ g(x), |x| > ∆
. (4.116)

Hence, since α < 2, we have that∥∥∥x 3
2−α+δG(−∆− x,∆− x)

∥∥∥2

2
≤ ∆4−2α+2δ

2− α+ δ
+

σ

2∆
√
π
. (4.117)

Additionally, we can write

∥∥∥x 1
2 +α−δfa(x)

∥∥∥
2

=

(∫
x1+2α−2δf2

a (x)dx

) 1
2

=

(∫
x1+2α−2δ 1

a2
f2
(x
a

)
dx

) 1
2

= aα−δ
(∫

x1+2α−2δf2 (x) dx

) 1
2

= aα−δ
∥∥∥x 1

2 +α−δf(x)
∥∥∥

2
. (4.118)



4.D Proof of Theorem 3 81

Now, we investigate the second term of the right-hand side of (4.112). We specifically
write ∫

R
z2g(z) (1− Fa (−∆− z,∆− z)) dz =∫

R
z2g(z)

∫
R

(
1− 1[−∆,∆](x+ z)

)
fa(x)dxdz

=

∫
R

∫
R

(
1− 1[−∆,∆](x+ z)

)
z2g(z)fa(x)dzdx

= 2

∫ ∞
∆

∫
R
z2g(z)fa(t− z)dzdt, (4.119)

where we have used the change of variable t = x + z. Since both of t2g(t) and fa(t) are
symmetric functions that decrease on t ≥ σ

√
2, we get∫

R
z2g(z)fa(t− z)dz =∫
|z|< t

2

z2g(z)fa(t− z)dz +

∫
|z|≥ t2

z2g(z)fa(t− z)dz

≤ fa(
t

2
)

∫
R
z2g(z)dz +

t2

4
g(
t

2
)

∫
R
fa(z)dz

= σ2fa(
t

2
) +

t2

4
g(
t

2
) (4.120)

for t ≥ 2σ
√

2. Thus, we have that

2

∫ ∞
∆

∫
R
z2g(z)fa(t− z)dzdt ≤ 2σ2

∫ ∞
∆

fa(
t

2
)dt+ 2

∫ ∞
∆

t2

4
g(
t

2
)dt (4.121)

for ∆ ≥ 2σ
√

2. According to (4.113), there exists C ′ ∈ R for which

f(t) ≤ C ′

t1+α
, (4.122)

and thus

fa(t) ≤ aα C ′

t1+α
. (4.123)
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Also, there exists A ∈ R for which

t2e−
t2

2 ≤ Ae−t. (4.124)

Hence, relying on (4.121), we get

2

∫ ∞
∆

∫
R
z2g(z)fa(t− z)dzdt ≤ aα22+αC ′σ2 1 + α

∆α
+ 2Aσ2

√
2

π
e−

∆
2σ . (4.125)

Now, incorporating (4.115) and (4.125) in (4.112), we obtain

MSE(T ) ≤ aα−δ
∥∥∥x 1

2 +α−δf(x)
∥∥∥

2

(
∆4−2α+2δ

4− 2α+ 2δ
+ 2σ

√
π

)
+ aα22+αC ′σ2 1 + α

∆α
+ 2Aσ2

√
2

π
e−

∆
2σ . (4.126)

Finally, setting

∆ = 2ασ |log a| (4.127)

completes the proof.

4.E Calculation of the Gradient of Qγ
α

According to the definition of the gradient, we have that

DuQ
γ
α(v) =

∂

∂ε
Qγα(v + εu)

∣∣∣
ε=0

=

∫ ∞
0

u(ρ)∇Qγα{v}(ρ)dρ, (4.128)
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where DuQ
γ
α(v) is the Gâteaux derivative of Qγα at point v in the direction of function u.

Using the rules of differentiation of the calculus of variations, we write

DuQ
γ
α(v) =

1

(2π)α

∫
R

∂

∂ε

∣∣∣∣ ∫
R

W{v + εu}(ω)

(jω)γ
ejωxdω

∣∣∣∣α∣∣∣∣
ε=0

dx

=
α

(2π)α

∫
R
λ

(∫
R

W{v}(ω)

(jω)γ
ejωx dω

)(∫
R

W ′{v}(r)ū(ρ)

(jρ)γ
ejρx dρ

)
dx

=
α

(2π)α

∫
R
ū(ρ)
W ′{v}(ρ)

(jρ)γ

(∫
R
λ

(∫
R

W{v}(ω)

(jω)γ
ejωx dω

)
ejρx dx

)
dρ (4.129)

in which λ(x) = sgn(x)|x|α−1,

W ′{v}(ρ) =
π

2
×


cos(π2 v( 3

2π |ρ| − 1)), 2π
3 < |ρ| ≤ 4π

3

− sin(π2 v( 3
4π |ρ| − 1)), 4π

3 < |ρ| ≤ 8π
3

0, otherwise
(4.130)

and

ū(ρ) =

{
u( 3

2πρ− 1), 2π
3 < |ρ| ≤ 4π

3

u( 3
4πρ− 1), 4π

3 < |ρ| ≤ 8π
3

. (4.131)

By breaking the outer integral of (4.129) into two integrals on [ 2π
3 ,

4π
3 ] and [ 4π

3 ,
8π
3 ],

and by changing the variables of integrations, we get

DuQ
γ
α(v) =

(2π)1−αα

3

∫ 1

0

u(ρ)
W ′{v}( 2π

3 (ρ+ 1))

(j 2π
3 (ρ+ 1))γ

×
(∫

R
λ

(∫
R

W{v}(ω)

(jω)γ
ejωx dω

)
ej 2π

3 (ρ+1)x dx

)
dρ

+
2(2π)1−αα

3

∫ 1

0

u(ρ)
W ′{v}( 4π

3 (ρ+ 1))

(j 4π
3 (ρ+ 1))γ

×
(∫

R
λ

(∫
R

W{v}(ω)

(jω)γ
ejωx dω

)
ej 4π

3 (ρ+1)x dx

)
dρ.

(4.132)

Now, incorporating (4.57), (4.130) and some algebra, according to (4.128), we obtain
(4.59).
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Appendix F: Calculation of the Projection Operator P
For a given function ṽ(ρ), define the two functionals

J(v) = ‖v(ρ)− ṽ(ρ)‖22 (4.133)

and
J̄(v) =

1

2

(
‖v(ρ)− ṽ(ρ)‖22 + ‖(1− v(1− ρ))− ṽ(ρ)‖22

)
(4.134)

We are interested in
P{ṽ} = argmin J(v) (4.135)

subject to the constraint
v(x) + v(1− x) = 1. (4.136)

Notice that J(v) = J̄(v) for any function v that satisfies (4.136). Also, notice that for
any function v, J̄(v(ρ)) = J̄(v(1− ρ)). Since J̄(v) is strictly convex, it has a unique min-
imizer. Thus, the minimizer of J̄(v) satisfies (4.136). Hence, P{ṽ} is the unconstrained
minimizer of J̄(v).

To find the minimizer of J̄(v), we set its gradient to zero. According to the calculus of
variation, the gradient of J̄(v) is

∇J̄{v}(ρ) = (v(ρ)− ṽ(ρ))− (1− v(ρ)− ṽ(1− ρ)). (4.137)

By solving ∇J̄{v} = 0, we obtain (4.60).

4.F Proof of Proposition 2
For α = 2, using Parseval, we can directly express Qγ2 in the Fourier domain as

Qγ2(v) =

∫
R

∣∣∣∣W{v}(ω)

(jω)γ

∣∣∣∣2 dω. (4.138)

Based on (4.57), we get

Qγ2(v) = 2

∫ 4π
3

2π
3

sin2
(
π
2 v( 3

2πω − 1)
)

ω2γ
+ 2

∫ 8π
3

4π
3

cos2
(
π
2 v( 3

4πω − 1)
)

ω2γ
dω. (4.139)
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Performing ordinary algebraic manipulations, (4.139) leads to

Qγ2(v) = 2
((2π

3

)1−2γ −
(4π

3

)1−2γ
)∫ 1

0

sin2
(
π
2 v(ρ)

)
(ρ+ 1)2γ

dρ

+
2

2γ − 1

((4π

3

)1−2γ −
(8π

3

)1−2γ
)
. (4.140)

Now, using (4.56), we get

Qγ2(v) = 2
((2π

3

)1−2γ −
(4π

3

)1−2γ
)

×
∫ 1

2

0

sin2
(π

2
v(ρ)

)( 1

(ρ+ 1)2γ
− 1

(2− ρ)2γ

)
dρ

+
2

2γ − 1

((π
2

)1−2γ − π1−2γ
)
. (4.141)

However, since (ρ+1)−2γ−(2−ρ)−2γ is positive on [0, 1
2 ], the function v(ρ) that vanishes

on this interval minimizes Qγ2(v). Consequently, we obtain v(ρ) = 0 on [0, 1
2 ], and v(ρ) =

1 on ( 1
2 , 1] as the minimizer of Qγ2(v).
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Chapter 5

Localized Isotropic Wavelets for
Image Analysis and
Reconstruction

In this chapter, we use the previous theoretical results to gain a practical advantage. We
propose two classes of optimality criteria based on which we design new isotropic wavelets
for image processing applications. The first class specifies the spatial localization of the
wavelet profile, and the second that of the resulting wavelet coefficients. Also, we present
an infinite-dimensional optimization scheme that helps us find the optimal profile for a
given criterion over the space of tight frames. From these metrics and the proposed al-
gorithm, we construct tight wavelet frames that are optimally localized and provide their
analytical expression. In particular, one of the considered criterion helps us finding back
the popular Simoncelli wavelet profile. Finally, the investigation of local orientation esti-
mation, image reconstruction from detected contours in the wavelet domain, and denois-
ing, indicate that optimizing wavelet localization improves the performance of steerable
wavelets, since our new wavelets outperform the traditional ones.

87
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5.1 Introduction
Isotropic wavelets described in Section 2.3.4 are purely radial functions that allow for
an orientation-free decomposition of images, while retaining all other popular features of
classical wavelet bases such as multiresolution analysis. The steerable pyramid [87, 88,
89, 90, 91] is a well-known construction that relies on such wavelets. In this setting, a
purely angular element is included in order to rotate derivatives of the wavelets and impose
a preferred directionality. Some well-known algorithms for denoising ([92], including the
widely-used Bayesian least-squares Gaussian-scale-mixture (BLS-GSM) algorithm [93]),
texture analysis (or synthesis) [94, 95], and regularization with sparsity constraints for
inverse problems [96, 97] rely on the steerable pyramid, although methods that do not
exploit steerability are also available for these tasks. Steerability is a crucial aspect in
many other image-processing applications such as finding the dominant orientation at each
image location, detecting contours [98], or identifying features in a rotation-invariant fash-
ion [99]. More recently, algorithms for image reconstruction from the small subset of
wavelet coefficients called the “primal sketch” have been proposed relying on the steerable
pyramid [100, 101]. In this work, we study the design of wavelet profiles for use in ap-
plications relying on steerable tight frames. The specification of steerable wavelet frames
includes two components: a radial profile and a directional components can be optimized
separately. The angular component is represented using circular harmonics [90]. Here, we
concentrate on the radial profile, which determines the localization.

In order to generate an isotropic wavelet transform, the underlying basis functions must
satisfy several properties, the main ones being isotropy and perfect reconstruction of the
image. Another desirable feature is that the basis functions form a tight frame. In this
way, the wavelet transform is self-reversible, enabling simpler and faster algorithms. As
discussed in Section 2.3.4, the isotropy and perfect-reconstruction conditions are ensured
by choosing a radially bandlimited mother wavelet that satisfies some partition of unity in
the frequency domain [35, 36]. Many such bases have been proposed, which include the
Meyer [33], Papadakis [102], and Simoncelli [103] wavelets. Inspired by the biological
visual system, the Simoncelli wavelet is the one implemented in the original version of the
steerable pyramid and the BLS-GSM denoising algorithm. Due to its good performance in
a wide range of practical applications, it remains a commonly used profile.

It is always interesting to have a simple measure which quantifies the performance of
a wavelet in practical applications. The studies in previous chapters give us a clue about
what the measure of performance should be. In Chapters 3 and 4, we considered two dif-
ferent classes of stochastic processes and in both cases we deduced that the best wavelets
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are the ones that are most localized ones after applying the inverse of the whitening op-
erators. However, the meaning of localization were different for different processes. As
we saw, the localization meant having shortest support for AR(1) processes, and it meant
having smallest Lα-norm for self-similar processes (notice that finite Lα-norm of a func-
tion controls its decay rate). Thus, we can conclude that, in general, localization is the
best candidate for measuring the performance of a wavelet. However, we have to pick a
general meaning for localization for a general purpose wavelet, i.e. when it is not design
for a specific stochastic process. On the other hand, there are also intuitive justifications
about appropriateness of localization measure. On the practical side, steerable wavelets
are bandlimited with infinitely many vanishing moments, which tends to induce oscilla-
tions that can be visually displeasing. It is observed that more-localized wavelets result in
fewer oscillations and are less subject to truncation artifacts.

In this chapter, we introduce a method to design radial profiles for steerable tight
frames. Since the frequency response of steerable wavelets is polar-separable, we can con-
centrate on the task of optimizing the radial frequency profile. We focus on moment-based
measures of localization and propose two different classes of criteria depending on whether
we consider the localization in the spatial domain or in the wavelet domain. Two criteria
can be derived within each class, depending on whether one wants to consider localization
over the whole space or in each radial direction. Ultimately, the choice of a particular
criterion among these is guided by the application. Similar to Section 4.7, we describe an
algorithm using the calculus of variations to optimize the wavelet corresponding to each
measure through gradient descent. We then obtain analytical expressions for the optimally
localized profiles. We then show the benefit of our optimized design in three practical
applications, namely, local orientation estimation, image reconstruction from edges, and
denoising. These experiments highlight different use-cases in which each of the proposed
type of localization (spatial versus wavelet domain) is desirable. In particular, we provide
additional results on the image-reconstruction problem compared to [104], as well as fur-
ther study of the performance of our wavelets for local orientation estimation and for the
BLS-GSM denoising algorithm.

The organization of the chapter is as follows: In the next section, we specify our mea-
sures of localization and propose a step-by-step algorithm to design optimally localized
profiles corresponding to each measure. We then provide the closed-form expression of the
resulting optimal wavelets. Finally, we focus on three practical applications in Section 5.3,
namely, local orientation estimation in filamentous structures, image reconstruction from
a primal sketch and image denoising using BLS-GSM. We use our novel optimally local-
ized wavelet profiles and compare them against well-known wavelet profiles such as the
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Papadakis, Meyer, and Simoncelli wavelets.

5.2 Localized Isotropic Wavelets

In this section, we present a general framework that relies on the calculus of variations to
find the optimal wavelet with respect to a given localization measure. We restrict ourselves
to wavelets specified in Section 2.3.4 and focus on two natural classes of moment-based
measures. Due to lack of our knowledge about the underlying process in practice, the
choice of these natural measures of localization is the most justifiable. Additionally, the
theoretical justifications that come in the sequel along with their nice properties from opti-
mization view point are the other reasons for proposing these criteria.

First, regarding Section 2.3.4, if ψ(r) is the radial profile of the mother wavelet of an
isotropic tight wavelet frame with a fast filterbank implementation, then we have

ψ(r) = H{h}(r) =

∫ ∞
0

h(t) J0(rt) tdt. (5.1)

in which h(ρ) is the radial profile of the Fourier transform of ψ that is supported on [π4 , π]
and satisfies ∑

i∈Z
|h(2iρ)|2 = 1 for ∀ρ ∈ R+\{0}. (5.2)

Now, assume that the functional V is a given measure of localization. We shall con-
sider that this measure operates in the Fourier domain. When V is Gâteaux differentiable,
the natural method of minimizing it would be to use a variation of the steepest-descent
algorithm [105]. To do this, we need the gradient of V . As V is a functional on an infinite-
dimensional space, we have to rely on the calculus of variations to obtain its gradient. The
second issue which should be taken care of is that, during the optimization steps, we have
to be careful not to leave the set of tight frames. Thus, we need to characterize the projector
onto the space of tight wavelet frames. Having these two major components, the outline
of the optimization algorithm is given in Algorithm 4, in which ∇V (h)(ρ) denotes the
gradient of V at ρ, and P denotes the orthogonal projector onto the space of tight wavelet
frames. This corresponds to the standard projected gradient descent algorithm in an infinite
dimensional space [106].
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Algorithm 4: Most Localized Wavelet
1: initialize: h ∈ L2([0,∞])
2: initialize: η > 0
3: repeat
4: h̃← h− η ∇V {h}
5: h← P{h̃}
6: until h converges
7: return h

5.2.1 Measures of Localization
We now propose four measures of localization split between two natural classes. The first
class consists of measures of the variance. Variance is the most well-known measure of
localization as less variance implies more concentration around the center. In addition, we
know from the uncertainty principle that the best achievable localization of a function is
inversely proportional to the localization of its Fourier transform, and vice versa. More
precisely, for a function ψ : R2 → R, we have [107]∫

R2 ‖x‖2ψ(x)2dx∫
R2 ψ(x)2dx

·
∫
R2 ‖ω‖2|F{ψ}(ω)|2dω∫

R2 |F{ψ}(ω)|2dω
≥ 1

16π4
. (5.3)

The first term of the left-hand side is the variance of the wavelet itself, and the second term
is the variance of its Fourier transform. Thus, setting an upper bound on the variance in
one domain imposes a lower bound on the variance in the other domain. In practice, we
are interested in bandlimited wavelets, which implies that the variance of the wavelet in
the Fourier domain is bounded from above. Thus, the variance of the wavelet in the space
domain is bounded from below. Since we are interested in finding the wavelet profile that
attains the minimum value for the variance, our first measure of localization is given by

V2D(ψ) =

∫
R2 ‖x‖2ψ(x)2dx∫

R2 ψ(x)2dx
=

∫∞
0
r2ψ(r)2 rdr∫∞

0
ψ(r)2 rdr

. (5.4)

Isotropic wavelets are often used in a directional framework, for instance by applying
the Riesz transform or by applying an angular mask. This suggests that the variance of
the one-dimensional radial profile of the isotropic wavelet can also be a good candidate
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for the measure of localization. Hence, we propose the second variance-based measure of
localization

V1D(ψ) =

∫∞
0
r2ψ(r)2 dr∫∞

0
ψ(r)2 dr

. (5.5)

It measures the spread of the wavelet along each radial line.
The second class of measures focuses on the localization of the wavelet coefficients

rather than that of the wavelet profile. More precisely, the energy of a function computed
over some spatial neighbourhood should be well represented by the wavelet coefficients
associated to that neighbourhood and its vicinity. According to [108], if f =

∑
m∈Z2 fm

is an L2-function from R2 to R and fm is the restriction of f to the unit square centered at
m, then

|〈fm, ψi,k〉| ≤ Ci
(∫

R2

‖x‖2ψ(x)2dx

)1/2

‖fm‖2 |k−m|−1, (5.6)

where Ci is a constant that only depends on the scale i and is independent of ψ and f . The
`1-norm of a vector is denoted as | · | and the standard L2-norm of a function as ‖ · ‖2.
Thus, as the wavelet ψi,k gets further from position m, the contribution of fm in the
corresponding wavelet coefficient decays. Moreover, the rate of decay is controlled by a
constant that corresponds to the unnormalized variance of the wavelet profile ψ. We hence
propose this value as a third measure of localization, this time for the wavelet coefficients.
We define

U2D(ψ) =

∫
R2

‖x‖2ψ(x)2dx =

∫ ∞
0

r2ψ(r)2 rdr. (5.7)

Accounting for the fact that isotropic wavelets are often used in a directional setting,
we define the unnormalized variance of the one-dimensional radial profile of the wavelet
in analogy to (5.5) as our last measure of localization

U1D(ψ) =

∫ ∞
0

r2ψ(r)2 dr. (5.8)

To summarize, the first class of measures focuses on the localization of the shape of the
wavelet in the space domain while the second class of measures describes the localization
of the wavelet coefficients. We thus expect the first class to match applications that benefit
from a local wavelet analysis. The second class should, on the contrary, be more appro-
priate in the context of applications that involve some form of wavelet-domain N -term
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approximation. For both classes of measures, the index 2D indicates that the spread of the
wavelet is a measure over the whole space. The index 1D, conversely, measures the spread
in each radial direction. In applications where a directionality component is imposed on
top of the isotropic profile (e.g., in detection tasks using steerable filters), we predict that
profiles with the best radial localization should exhibit the best performances.

5.2.2 Gradient of the Functionals and Projector onto the Space of
Tight Frames

In this subsection, we give the explicit expressions of the two major components that are
required for implementing Algorithm 4: the gradient of the localization criterion and the
operator P that projects a solution onto the space of tight wavelet frames.

For formalization purpose, we consider h as a function in the weighted L2-space of
[0,∞], Lw, whose inner product is defined as

〈f, g〉w =

∫ ∞
0

f(ρ)g(ρ)w(ρ)dρ, (5.9)

where w is a strictly positive weighting function.
We shall see that the inclusion of such a weight will provides us with some degrees

of freedom to design the projection operator, which can then be used advantageously to
simplify the implementation. Since we are operating in a Hilbert space, the choice of w
specifies the metric and hence the form of the orthogonal projection operator Pw : Lw →
T , where T is the set of functions satisfying the tight frame property (5.2). Now, if we
switch to another weighting function v, we can define another “orthogonal” projection
operator Pv : Lv → T which is such that Pvh = h for all h ∈ T as well as PvPvf =
Pvf for all f ∈ Lw. In other words, Pv also constitutes a valid projector for the space
Lw (including L2([0,∞]) with w = 1), albeit not necessarily the one that minimizes the
corresponding approximation error. The important point here is that using Pv rather than
Pw will not modify the outcome of the optimization process. Another way to put it is that
the underlying Karush-Kuhn-Tucker conditions of optimality in the Lagrange multiplier
method of optimization (see [109]) are independent of the actual choice of the Hilbert
space Lw.

Now, defining

Am(h) =

∫ ∞
0

rmH{h}(r)2dr, (5.10)
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we see that V2D, V1D, U2D, and U1D can be easily written in terms of Am for different m.
Thus, we only need to compute the gradient ofAm. Using the basic rules of differentiation,
we have

∇V2D{h} =
1

A1(h)
∇A3{h} −

A3(h)

A1(h)2
∇A1{h}, (5.11)

∇V1D{h} =
1

A0(h)
∇A2{h} −

A2(h)

A0(h)2
∇A0{h}, (5.12)

∇U2D{h} = ∇A3{h} (5.13)

and

∇U1D{h} = ∇A2{h}. (5.14)

The main point for our purpose is that the functional Am : Lw → R is Gâteaux differ-
entiable and that its infinite-dimensional gradient can be obtained explicitly as shown in
Appendix 5.A. The ultimate outcome is

∇Am{h}(ρ) =
2ρ

w(ρ)

∫ ∞
0

rmH{h}(r)J0(ρr)dr, (5.15)

where H{h}. Note that this functional gradient depends on the weighting function of the
space, w.

The final ingredient for our algorithm is the operator that projects a function onto the set
of tight-frames. Here, unlike in the case of the gradient, the computational complexity of
the orthogonal projector is strongly dependent on the choice of w. In fact, in the following
theorem, we will see that there is a very specific weighting function w = v for which we
can have a closed-form formula for the required projector.

Theorem 4. Let Lw be the Hilbert space whose inner product is specified by (5.9) and
let T be the set of functions in Lw satisfiying the tight frame property (2.49). Then, the
operator

P{h̃}(ρ) =
h̃(ρ)√∑
i∈Z h̃

2(2iρ)
(5.16)

is a projector from Lw → T . In particular, it is the orthogonal projector Lv → T for the
weighting function

v(t) = 2i for
π

2i+1
≤ t ≤ π

2i
. (5.17)
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The proof is given in Appendix 5.B.
The form (5.16) of the projector is intuitively very reasonnable. The simplification

results from the choice of the appropriate metric in the proof of the theorem. The result
is non-obvious a priori because this is the only instance of w for which we are able to
carry out the computation to the end. Constraint (5.2) is the equation of the unit infinite-
dimensional sphere for each value of ρ. The projector (5.16) is therefore projecting h̃ on
the unit sphere for each value of ρ. The theorem ensures that we have an equivalence
between the `2-norm projection in the space of sequences corresponding to each value of
ρ and a projection in the weighted L2-space of functions on R for the weighting function
v specified by (5.17).

5.2.3 Numerical Optimization
We apply our numerical optimization algorithm for each of the proposed measures of lo-
calization. First of all, it has been shown analytically [108] that the Simoncelli wavelet
minimizes the criterion U2D. Thus, we already know the optimal profile with respect to the
measure U2D. Regarding V2D, V1D, and U1D, we run Algorithm 4 by uniformly taking 512
samples of h(ρ) for ρ in π/4 to π on a logarithmic scale, hence simplifying the computa-
tion of the projection map (5.16). To calculateH{h}(r), we compute the integral of (2.48)
from 0 to 300 relying on the trapezoid method with 3000 intervals. The algorithm is left to
run until absolute variations of V (h) fall under 10−3.

In this optimization settings, we obtain the minimum values 1.73, 0.39, and 1.64 for
V2D(h), V1D(h), and U1D(h), respectively. However, due to the Gibbs phenomenon that
results from the truncation of the Fourier transform, the resulting wavelets exhibit ringing
artifacts. In order to remove these effects and obtain a smooth profile for practical appli-
cations, we fitted a closed-form formula to the numerically obtained wavelets. We thus
propose four wavelets named hV2D

, hU2D
, hV1D

, and hU1D
, which correspond to each of

the considered measures of localization. From (2.51), (2.52), and (2.54), it is sufficient
to specify the wavelet profile either on [π4 ,

π
2 ] or on [π2 , π] to describe it entirely. The

expressions of hV2D and hU2D are more easily given on the interval [π4 ,
π
2 ] as

hV2D
(ρ)
∣∣
ρ∈[π4 ,

π
2 ]

=

√
6−

√
1 + 20( 2ρ

π − 1)2

√
6− 1

, (5.18)

hU2D(ρ)
∣∣
ρ∈[π4 ,

π
2 ]

= cos
(π

2
log2

2ρ

π

)
. (5.19)
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We recall that hU2D corresponds to the Simoncelli wavelet. The profiles hV1D and hU1D

are better expressed on the interval [π2 , π] as

hV1D
(ρ)
∣∣
ρ∈[π2 ,π]

=
(

log2

π

ρ
− 0.005

√
π

ρ
sin
(
π log2

π

ρ

)) 2
5

, (5.20)

hU1D
(ρ)
∣∣
ρ∈[π2 ,π]

=

√
(log2

π
ρ + 0.6)4 − 0.64

1.64 − 0.64
. (5.21)

The radial profiles of these wavelets are shown in Figures 5.1 and 5.2 in Fourier and
space domains, respectively. We have that V2D(hV2D) = 1.74, V1D(hV1D) = 0.40, and
U1D(hU1D) = 1.65. These values are only marginally suboptimal. The values of the dif-
ferent measures of localization for each of these wavelets as well as for more traditional
ones are given in Table 5.1. Moreover, we note that Figure 5.2 confirms our expectation
that hV1D

has the most localized profile shape.

Table 5.1: Localization of Different Wavelets Measured by V2D, V1D,U2D, andU1D (Equa-
tions (5.4)-(5.5) and (5.7)-(5.8))

Wavelet type Localization
V2D V1D U2D U1D

hV2D
(5.18) 1.74 0.44 3.88 2.19

hV1D
(5.20) +∞ 0.40 +∞ 2.03

hU2D
(Simonceli) (5.19)[94] 1.84 0.46 3.55 1.93
hU1D (5.21) +∞ 0.52 +∞ 1.65

Papadakis [102] 2.06 0.49 4.93 2.52
Meyer [33] 2.88 0.66 6.04 2.61

Shannon [89] +∞ +∞ +∞ +∞

The measures V2D and U2D can also be interpreted as the normalized and unnormal-
ized third-order moment of the radial profile of the wavelet, respectively, while V1D and
U1D correspond to its normalized and unnormalized second-order moment. Furthermore,
having finite values for higher-order moments in the space domain implies being smoother
in the Fourier domain. Thus, the minimiziers of V2D and U2D necessarily have finite V1D

and U1D values. However, the converse is not always true.
As we see in Table 5.1, the minimizers of V1D and U1D have infinite values for V2D

and U2D. This is in accordance with the roughness of the profiles at points π
4 , π2 , and π
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Figure 5.1: Wavelet profiles in Fourier domain for (a) the proposed optimal profiles, and
(b) existing ones (Simoncelli, Meyer, and Papadakis).
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(see Figure 5.1). In the case of the Shannon wavelet, the discontinuities of the frequency-
domain profile results in a slow decay in the spatial domain that brings V1D and U1D to
infinity. From Table 5.1, we observe that the Simoncelli wavelet is not only optimal for the
criterion U2D, but also exhibits reasonable values for other measures of localization.

5.3 Applications
We now demonstrate the benefit of well-localized wavelet profiles for practical applica-
tions. In particular, we study the performance of our wavelets and compare them against
other existing popular profiles for the problems of local orientation estimation, image re-
construction from edges and denoising.

5.3.1 Estimation of Local Orientation
In this section, we focus on the task of estimating the local orientation of ridge-like objects
(e.g., filaments) using a steerable ridge detector. We construct Hessian-like wavelets, the
design of which is made easy by selecting an isotropic kernel and applying the generalized
Riesz-wavelet transform using the appropriate shaping matrix, as described in [90, Section
5.1.3]. We refer the reader to [110] for a detailed description on how to steer Hessian filters
to retrieve the orientation corresponding to the best response of the ridge detector at every
point of the image. To perform a multiscale ridge detection at every location using the
Hessian filter, we go through every scale of the wavelet pyramid and select the one where
the strongest filter response can be found. The final output of our experiment is therefore an
angle map with the same dimensions as the input image, and which contains at each pixel
the estimated local orientation yielding the best ridge filter response. The Riesz-wavelet
transform [90] and the extraction of local orientation estimation for each point of the input
image have been implemented as a Java-based plug-in for the open-source image-analysis
software ImageJ [111].

In our experiment, we rely on a 512 × 512 pixels 8-bits image (Figure 5.3a) in which
several regions of interest (ROIs) made of short line segments have been manually se-
lected by an expert, and where local orientation should be estimated. The angle that each
of the manually placed ROI form with the horizontal direction is considered as ground
truth and corresponds to the orientation that shall automatically be retrieved. We estimate
the local orientation of each ROI with the trivial isotropic profile (Shannon [89]), several
popular isotropic wavelet profiles (Simoncelli [94], which corresponds to hU2D (5.19), Pa-



100 Localized Isotropic Wavelets for Image Analysis and Reconstruction

padakis [102], and Meyer [33]), as well as with the wavelets we propose (hU1D (5.21),
hV2D

(5.18) and hV1D
(5.20)). To obtain an estimation of the local orientation of each ROI,

we average the orientation estimates provided by the steerable filter under the ROI (i.e., we
average the values of the pixels that belong to the line segment composing the ROI). We
investigate the quality of each of the local orientation estimate by comparing the ground
truth orientation with the automatically retrieved one (Table 5.2). We also report the abso-
lute error between the ground truth and each of the estimates in Table 5.3. The experiment
is conducted using 4 scales of wavelet decomposition.

(a) (b)

Figure 5.3: Estimation of local orientation. (a) Original filaments image from [112], and
(b) overlaid local regions of interest with their label.

In this experiment, we observe that best results are obtained with hU1D . This can be
explained by the fact that the two classes of wavelets hU and hV are optimized for different
applications. The profiles of hV2D

and hV1D
are most localized in the spatial domain as

they optimize V2D (5.4) and V1D (5.5), while hU2D
and hU1D

optimally localizes wavelet
coefficients following U2D (5.7) and U1D (5.8). The estimation of local orientation is better
when the wavelet response is strong and well localized, as ridges (here, the filaments) are
then more accurately detected. In the present experiment, a profile maximizing wavelet
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coefficients localization, and hence a criterion of the class U , is therefore desirable. This
is confirmed by the results and the good performance obtained by hU1D

and hU2D
. Also,

among the class of hU wavelets, one observes that hU1D
outperforms hU2D

. An argument
for this is that a 1-dimensional design is more suitable for steerable wavelets since they are
inherently directional. In the current application, the wavelets align themselves with ridges
so that the U1D criterion, which measures the spread in each radial direction, is the most
appropriate one.

5.3.2 Image Reconstruction from Edges
The experiment we study here is image approximation from a reduced set of wavelet-
based edges. First, a multiscale primal sketch [100], or edge map [101], is extracted from
the set of wavelet coefficients of the image. An approximation of the original image is then
recovered from this small subset of coefficients relying on constrained optimization.

To extract a multiscale edge map from the input image, we rely on a gradient-like
wavelet framework. It is implemented with the help of the generalized Riesz-wavelet trans-
form [90], and of an appropriate shaping matrix [90, Section 5.1.1] that yields a pair of x-
and y-derivative wavelets. Edges in the multiscale gradient signal are then detected based
on a wavelet-domain version of the Canny edge detector, which includes non-maximum
suppression and hysteresis thesholding [100]. Note that the Canny edge detector requires
an estimation of the strength and orientation of the gradient for each point of the image,
which is obtained by steering the gradient-like wavelets at every scale and location. The
final edge map is composed of the wavelet coefficients retained by the multiscale edge de-
tector. To preserve the graylevel information of the image, all coefficients of the lowpass
residual of the wavelet decomposition are saved.

Reconstruction is then formulated as the constrained optimization problem

minimize ‖z‖1 (5.22)

subject to z = WHf (5.23)
zi = qi, ∀ i ∈ S, (5.24)

with variables z and f , where S is the set of indices for the wavelet coefficients that are
part of the edge map, WH the wavelet-analysis operator, and f an image. Finally, qi
denotes the wavelet coefficient of the original image at location i, where i is an index of
2-D position and scale. This formulation is motivated by two main principles. First, we
aim at conserving the elements of the edge-map in order to reconstruct the image. We refer
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to them as wavelet-based edges, as they are the output of a Canny edge detector applied
on the wavelet transform of the image. This gives us constraint (5.24), which imposes
the elements qi, i ∈ S to be fixed during the optimization process. Second, we want
the estimated missing wavelet coefficients to project back onto an image. Knowing that
images are sparse in the wavelet domain, we impose sparsity by minimizing the `1-norm
of the wavelet transform z of the image, yielding (5.22). Our problem thus amounts to
minimizing a convex functional under a finite set of linear constraints, which guarantees
the existence of a feasible minimum that can be reached using appropriate optimization
algorithms.

Here, we propose an improvement of the reconstruction algorithm in [101] that relies
on a gradient descent of the augmented Lagrangian. Our new algorithm is based on the
alternating-direction method of multipliers (ADMM), which motivates the introduction of
the auxiliary variable z. ADMM is a method known to converge very fast to an acceptable
solution and that guarantees the residual to be brought to zero. In practice, it is observed
that the fast and moderately good estimate provided after 30 iterations of the algorithm is
already visually satisfactory. We refer the reader to [113] for a complete description of the
method.

To reconstruct the image with ADMM, we first form the augmented Lagrangian

L(z,f ,λ) = ‖z‖1 + λT
(
z −WHf

)
+
µ

2

∥∥z −WHf
∥∥2

2
, (5.25)

where µ is a step size that can be adapted to influence the speed of convergence. We
rewrite (5.25) in terms of the scaled dual variable u = λ

µ in order to obtain simpler math-
ematical expressions, yielding

L(z,f ,u) = ‖z‖1 +
µ

2

∥∥z −WHf + u
∥∥2

2
− µ

2
‖u‖22 . (5.26)

The ADMM algorithm for our problem thus consists of the three successive iterations

z(k+1) = arg min
z

L(z,f (k),u(k)), (5.27)

f (k+1) = arg min
f

L(z(k+1),f ,u(k)), (5.28)

u(k+1) = u(k) +
(
z(k+1) −WHf (k+1)

)
. (5.29)
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The update for z can be rewritten in an element-wise manner as

z(k+1) = arg min
z

(
‖z‖1 +

µ

2

∥∥∥z −WHf (k) + u(k)
∥∥∥2

2

)
(5.30)

= arg min
z

(∑
i∈I

|zi|+
µ

2

∑
i∈I

∣∣∣zi − v(k)
i

∣∣∣2) , (5.31)

where we denote by I the set of indices for all wavelet coefficients of the image. We intro-
duced v(k)

i = [WHf (k)]i − u(k)
i for convenience. For all elements i ∈ S, (5.24) imposes

that zi = qi, and no further computations are required. For i /∈ S, zi should be colinear
with vi in order to annihilate the second term in (5.31). Plugging zi = Cvi into (5.31)
and solving for the optimal constant C brings us to the component-wise expression of the
z update

z
(k+1)
i =


qi, if i ∈ S(

1− 1

µ
∣∣∣v(k)

i

∣∣∣
)

+

v
(k)
i , if i /∈ S, (5.32)

where (·)+ = max(0, ·) corresponds to the shrinkage of v(k)
i . Then, updating f boils down

to an unconstrained quadratic optimization problem. It can hence be performed by taking
the partial derivative of the augmented Lagrangian and solving for zero. This yields

f (k+1) = arg min
f

∥∥z −WHf + u
∥∥2

2
(5.33)

=
(
WWH

)−1
W
(
z(k+1) + u(k)

)
. (5.34)

As W forms a tight frame, (5.34) can be further simplified by observing that WWH = I.
Finally, u is simply modified through a linear update.

In practice, the algorithm is initialized with a z(0) composed of all the wavelet coeffi-
cients qi, i ∈ S retained in the edge map and the complete lowpass residual of the image
to reconstruct. Then, f (0) is initialized as an image entirely composed of pixels with value
zero and WHf (0) is obtained by taking its wavelet transform. Finally, u(0) is set as a
pyramid of images composed only of zeros and having the same number of scales and
dimensions as WHf (0). The parameter µ is empirically set to 106. With these settings,
between thirty and fifty ADMM iterations were observed to be sufficient to reach “visual
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convergence”, which corresponds to a situation where additional iterations bring unnotice-
able visual improvements. Note that, through the whole optimization procedure, the left-
multiplication by WH or W corresponds to performing a wavelet analysis or synthesis,
respectively. The algorithm can thus be executed in reasonable time as these two operations
can be performed efficiently with the help of a filterbank implementation. To illustrate this
experiment, we give in Figure 5.4 the original Cameraman image, its reconstruction from
7% of the wavelet coefficients, as well as the mask containing the coefficients retained by
our multiscale wavelet-based edge detector.

We implemented the Riesz-wavelet transform [90] as well as the edge-map extraction
and subsequent image reconstruction using ADMM as a Java-based plug-in for the open-
source image-analysis software ImageJ [111].

We gather results on a set of 5 standard test images, namely, House, Pirate, Peppers,
Lena, Bridge, Cameraman, and Einstein, all being 512 × 512 pixels grayscale images.
We run the same experiments with the trivial isotropic profile (Shannon [89]), several
popular isotropic wavelet profiles (Simoncelli [94], which happens to be hU2D

(5.19),
Papadakis [102], and Meyer [33]), and finally with our proposed wavelets (hU1D (5.21),
hV2D (5.18) and hV1D (5.20)). We investigate the reconstruction performance of the differ-
ent wavelets in terms of the PSNR of the reconstructed image. We start by retaining 7%
of the total number of wavelet coefficients in the image. These 7% are chosen among the
set of wavelet-based edges retained by our multi-scale Canny edge detector1. Note that, as
our test images all have the same size, this percentage corresponds to the same absolute
number of coefficients in each case. All experiments are conducted using 4 scales of de-
composition. Reconstruction results obtained after 30 iterations of the ADMM algorithm
are shown in Table 5.4. In order to allow for a visual comparison of the performance,
we also show in Figure 5.5 close-ups of the Lena image reconstructed using the different
wavelet profiles. We here observe that hU1D

outperforms the other wavelets. Further ex-
periments of reconstruction using a set of edge coefficients corresponding to 1 to 7% of the
total number of wavelet coefficients in the image allows us to reach similar conclusions,
as seen in Figure 5.6. Here, only results on Lena and Cameraman are displayed, as they
are representative of the results observed in the remaining test images. This confirms that
the proposed hU1D

profile is better for reconstruction than the other wavelets considered in
this experiment.

Notice that, in this application, hU1D
followed by hU2D

outperforms in particular hV2D

1In practice, we adapt the percentage of coefficients retained by the multiscale Canny edge detector by chang-
ing the hysteresis thresholding parameters.
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(a) (b)

(c)

Figure 5.4: Wavelet-based edge reconstruction. (a) Original Cameraman image, (b) final
result after reconstruction using hU1D , and (c) binary masks featuring the wavelet coeffi-
cients saved for reconstruction at different scales. Here, 4 scales were used and 7% of the
total number of coefficients were retained.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 5.5: Wavelet-based edge reconstruction. Close-up of reconstruction of Lena relying
on (a) Shannon, (b) Meyer, (c) Papadakis, (d) hU1D , (e) hU2D (Simoncelli), (f) hV1D , and
(g) hV2D . The best PSNR is achieved by hU1D shown in (e). Here, 4 scales were used and
7% of the total number of coefficients were retained.
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and hV1D . As the construction of the edge map in the current experiment relies on the
same kind of framework as the filaments detection for local orientation estimation in Sec-
tion 5.3.1 (namely, multiscale steerable filters), the same arguments hold for explaining
these results. The reconstruction task obtains better results when the edge map contains
sharper elements, which corresponds to better sets of edges. What matters most in this
experiment is therefore again the optimal localization of the wavelet coefficients. This ex-
plains why the best performance is obtained with the profiles optimizing criterion of the
class U (hU1D

and hU2D
). Results can actually directly be interpreted from the values of

U1D provided in Table 5.1. Starting from the optimal hU1D
, the next most localized pro-

files sorted by distance to the optimum are Simoncelli (hU2D
), hV1D

, hV2D
, Papadakis and

Meyer. The quality of reconstruction obtained by the different profiles and shown in Fig-
ure 5.6 follow the same pattern, with Papadakis and Meyer being the worst and followed
by hV2D

and hV1D
, hU2D

(Simoncelli), and finally hU1D
, which achieves the best results.

5.3.3 BLS-GSM Denoising

The BLS-GSM algorithm [93] is a famous and very efficient approach for recovering
noise-corrupted images. The motivation behind this method is the observed strong cor-
relation between wavelet coefficients located at similar positions at various orientations
and scales. More specifically, the properties of the image (i.e., the neighborhood of each
wavelet coefficient) are modeled by a Gaussian scale mixture model (GSM) in the multires-
olution wavelet transform space. The original, noise-free value of each coefficient is then
estimated using Bayesian least squares (BLS) under the Gaussian scale mixture model,
and making use of the correlation between coefficients in the pyramid. The algorithm
therefore improves the denoising by taking advantage of local similarities. In practice,
BLS-GSM is performed on subbands of an oriented multiresolution transformation of the
noise-corrupted image, which corresponds in the original implementation to the steerable
pyramid with Simoncelli’s wavelet profile. We orient readers interested in a more detailed
description of BLS-GSM to the very comprehensive paper of Rajaei [114].

A Matlab implementation of BLS-GSM has been released by the authors of the ini-
tial paper [93]. In order to perform the following experiments, we modify this original
implementation2 by replacing the Simoncelli wavelet by other wavelet profiles.

2BLS-GSM Image Denoising Matlab Toolbox 1.0.3 (latest revision: February 23,
2005), available from http://www.io.csic.es/PagsPers/JPortilla/software/section/

3-bayesian-denoising-in-the-wavelet-domain9/

http://www.io.csic.es/PagsPers/JPortilla/software/section/3-bayesian-denoising-in-the-wavelet-domain9/
http://www.io.csic.es/PagsPers/JPortilla/software/section/3-bayesian-denoising-in-the-wavelet-domain9/
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(a)

(b)

Figure 5.6: Wavelet-based edge reconstruction. Evolution of the PSNR as a function of the
percentage of retained wavelet coefficients using different wavelet profiles on the (a) Lena
and (b) Cameraman images. The legend is sorted by decreasing order of performance.
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We perform several experiments in order to compare performance of different isotropic
wavelet profiles when denoising with the BLS-GSM algorithm. We use the same image
set as previously in 5.3.2. We also compare results between the same collection of wavelet
profiles, namely Shannon, Meyer, Papadakis, Simoncelli (hU2D

), hU1D
, hV2D

and hV1D
.

In our first experiment, we corrupt the images with additive Gaussian noise of standard
deviation σ = 40 and use the default number of orientations for the construction of the
steerable pyramid, namely 4. We evaluate results in terms of the PSNR of the denoised
image, as presented in Table 5.5. From this, one observes that hV1D

(5.20) outperforms all
other profiles. In order to further investigate this, we perform two additional experiments
by varying the parameters of BLS-GSM. We first run the algorithm for each wavelet profile
on images corrupted by noise levels with σ ∈ [20, 70]. Results are displayed in Figure 5.7.
As expected, higher noise levels yield lower PSNR as the image becomes harder to retrieve.
We also study the influence on the number of orientations chosen to built the steerable
pyramid3. Increasing the number of orientations yield better results, but also significantly
increases computation time. We show results for each of the studied wavelet profile in
Figure 5.8. From these two experiments, we observe that hV1D

, followed by hV2D
, yields

consistently better results than all the other popular profiles we tested, outperforming state-
of-the-art results using the steerable pyramid. Although we only show here results on Lena
and Cameraman due to space constraints, the same observation can be made using House,
Pirate, Peppers, Bridge and Einstein.

Unlike hV2D
and hV1D

, we observe that hU1D
yield less impressive results, and in par-

ticular does not compete with the Simoncelli profile (hU2D
) initially used in BLS-GSM,

which gives similar results than hV2D
. This observation is consistent with the way each

of the wavelets are constructed. As explained in Section 5.3.1, the hU maximally local-
izes the wavelet coefficients, while the hV have a profile which is optimally localized
in spatial domain. The most desirable feature here, in comparison with local orientation
estimation and image reconstruction from edges, is a spatially localized profile for the
steerable pyramid. A transformation yielding very localized wavelet coefficients is actu-
ally even counter-productive as it concentrates the neighborhood of each coefficient, and
thus reduces the amount of information that can be exploited by BLS-GSM. The profiles
of choice for this application are hence of the class hV . The values of V1D that can be
found in Figure 5.1 for the different profiles are consistent with these observations: hV1D

is
optimal, then comes hV2D

and hU2D
(Simoncelli), which is the third closest to the optimal

value. The Papadakis and hU1D
follow with V1D values that are about equivalently far from

3The maximum number of orientations allowed by the Matlab implementation is 16.
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the optimum, and the Meyer wavelet finally gets the worse V1D localization value. This
trend is conserved in our results, as seen in Figures 5.7 and 5.8. Sorting the profiles by re-
sult quality (from best to worse) indeed yields hV1D

, hV2D
, hU2D

(Simoncelli), Papadakis,
hU1D

and Meyer.
Note that although the difference in PSNR are marginal, the improvement comes at no

cost as the only modification to the algorithm is a change of the radial wavelet profile. We
also emphasize that these results do not imply that the proposed design should outperform
denoising results based on other non-steerable wavelet frames. Rather, they indicate that
the signal-domain localization of the wavelets is beneficial to the BLS-GSM algorithm.

5.4 Summary
In this chapter, we have introduced a method for designing maximally localized isotropic
tight-frame wavelets. The key ingredient is a measure of localization that can be optimized
in order to derive the corresponding profile. We provide two classes of criterion for mea-
suring localization either in the spatial or in the wavelet domain and express the resulting
profiles optimizing each criterion either over the whole space or along each radial direc-
tion. We then consider three experimental settings in which we compare results obtained
with our wavelets against state-of-the-art. First, we focus on the problem of estimating
local orientation of filamentous structures, and then on the task of reconstructing an image
from a small subset of edges in the wavelet domain. Both of these experiments rely on
steerable filters, either Hessian- or gradient-based. In this setting, the wavelets obtained by
optimizing the localization of wavelet coefficients outperforms existing isotropic wavelet
profiles. Then, we demonstrate the efficiency of the most localized profiles in spatial do-
main in a denoising experiment using the popular BLS-GSM algorithm. These different
use-cases show that both of our classes of localization criterion are relevant depending on
the kind of application being considered, and that the proposed wavelet profiles are inter-
esting candidates for image-processing tasks involving isotropic wavelets. Moreover, our
results experimentally confirm the validity of the proposed localization criterion. The good
or bad performance of the studied wavelet profiles can indeed be interpreted in the light
of these two metrics. This further hints at the fact that our localization criterion are useful
in order to study the localization of a given wavelet either in terms of its spatial profile,
or of the coefficients it generates. In fact, the two proposed localization criteria can serve
as quick estimates to assess the relative performance of any given isotropic tight-frame
wavelet profile based on a simple calculation.
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(a)

(b)

Figure 5.7: BLS-GSM denoising. Evolution of the PSNR as a function of noise using
different wavelet profiles on the (a) Lena and (b) Cameraman images. The legend is sorted
by decreasing order of performance.
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(a)

(b)

Figure 5.8: BLS-GSM denoising. Evolution of the PSNR as a function of the number of
angles using different wavelet profiles on the (a) Lena and (b) Cameraman images. The
legend is sorted by decreasing order of performance.
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5.A Computation of the Gradient
In order to obtain the gradient of the functional Am : Lw → R, we first calculate the
Gâteaux derivative of Am in the direction of a given function g ∈ Lw as

DgAm(h) =
∂

∂ε
Am(h+ εg)

∣∣∣
ε=0

(5.35)

=

∫ ∞
0

rm
∂

∂ε
H{h+ εg}(r)2

∣∣∣
ε=0

dr.

Due to the linearity ofH{·}, we can write

DgAm(h) =

∫ ∞
0

rm
∂

∂ε

(
H{h}(r) + εH{g}(r)

)2∣∣∣
ε=0

dr

= 2

∫ ∞
0

rm H{h}(r)H{g}(r)dr

= 2

∫ ∞
0

rmH{h}(r)
(∫ ∞

0

g(t)J0(tr)tdt

)
dr

= 2

∫ ∞
0

g(t)t

(∫ ∞
0

rmH{h}(r)J0(tr)dr

)
dt. (5.36)

According to the definition of the gradient, we have that

DgAm(h) =

∫ ∞
0

g(t)∇Am{h}(t) w(t)dt. (5.37)

We therefore obtain

∇Am{h}(ρ) =
2ρ

w(ρ)

∫ ∞
0

rmH{h}(r)J0(ρr)dr. (5.38)

5.B Characterization of the Projector onto the Space of
Tight Frames

In order to characterize the orthogonal projector P : Lw → T , we have to solve a mini-
mization problem. For a given h̃ ∈ Lw, we are looking for a function h ∈ T that satisfies∑

i∈Z
|h(2iρ)|2 = 1 for ρ ∈ [

π

2
, π] (5.39)
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and that minimizes the functional

‖h̃− h‖22 =

∫ ∞
0

(h̃(ρ)− h(ρ))2w(ρ)dρ. (5.40)

We solve this problem using an infinite-dimensional Lagrange-multiplier method [115].
Similar to (5.35)-(5.38), we calculate the gradient of constraint (5.39) for each value of ρ
as

∇
{∑
i∈Z
|h(2iρ)|2

}
(t) = 2

h(t)

w(t)

∑
i∈Z

δ(t− 2iρ), (5.41)

where δ is the Dirac delta distribution. The gradient of (5.40) is given by

∇
{
‖h̃− h‖22

}
(t) = 2(h(t)− h̃(t)). (5.42)

According to the Lagrange-multiplier method, there exists a function k supported on [π2 , π]
at the minimizer of (5.40) for which we have that [115]

h(t)− h̃(t) =

∫ π

0

k(ρ)
h(t)

w(t)

∑
i∈Z

δ(t− 2iρ)dρ

=
h(t)

w(t)

∑
i∈Z

2ik(2it). (5.43)

Therefore,

h(t) =
h̃(t)

1− 1
w(t)

∑
i∈Z 2ik(2it)

. (5.44)

Now, we fix the weight function w as

w(t) = 2i for
π

2i+1
≤ t ≤ π

2i
. (5.45)

Equation (5.44) can now be simplified to

h(t) =
h̃(t)

1−∑i∈Z k(2it)
. (5.46)
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To determine k, we substitute (5.46) in (5.39) and obtain

∑
j∈Z

h̃2(2jt)

(1−∑i∈Z k(2i+jt))2
= 1. (5.47)

Since the denominator of (5.46) is invariant to dilations by powers of 2, the denominator
of (5.47) does not depend of j. It means that

1−
∑
i∈Z

k(2it) =
(∑
j∈Z

h̃2(2jt)
) 1

2

. (5.48)

By substituting (5.48) in (5.46), we get that

h(t) =
h̃(t)√∑
i∈Z h̃

2(2it)
. (5.49)



Chapter 6

Summary and Future Studies

In this thesis, we theoretically substantiated the optimality of wavelets for representing
sparse signals in a stochastic framework. Also, we obtained a criteria to distinguish be-
tween different wavelet families. At the end, we employed our theoretical results to gain
practical advantages. In the sequel, we give the contributions in more detail.

6.1 Summary of Results

Optimality of operator-like wavelets for decoupling AR(1) SαS processes: In the first
chapter of the main body of the thesis, we studied AR(1) processes that are driven by
SαS noises. First, we showed that by sampling a continuous-domain AR(1) process, we
obtain a discrete-domain AR(1) process. Then, we focused on discrete-domain SαS AR(1)
processes and derived an exact formulation for the mutual information of their coefficient
in a transform domain. This formula enabled us to run an optimization algorithm to find
the orthonormal basis which maximally decouples such processes. Ultimately, we saw that
for small α, the optimal basis is exactly the operator-like wavelets matched to the process
under consideration. Additionally, we proposed a criterion to measure the coefficient-wise
denoising in a transform domain based on the Stein’s formula. Using that, we also saw
that the optimal basis for small enough α is the matched operator-like wavelet. Moreover,
we proved that for any α less than 2, operator-like wavelets outperform DCT-like bases for
both compression and denoising applications. In fact, we showed that for sparse signals,

119
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the representation in DCT-like bases have no advantage over the original time domain.
Characterizing the performance of a wavelet basis for denoising self-similar SαS

processes: In the second part, we studied another important family of sparse stochastic
processes, namely self-similar processes. In contrast with the previous chapter, we stud-
ied their wavelet decomposition in the continuous domain rather than sampling them. Our
goal was to determine the performance of an arbitrary wavelet basis for the application
of denoising. To achieve this goal, we first proved a theorem about wavelet decomposi-
tion of locally-L2 signals (rather than L2 signals). In the second step, we extended some
existing results for the MMSE function of finite variance signals to SαS signals. Com-
bining these two theorems, we could exactly determine the denoising performance of any
given orthonormal wavelet basis. Also, we could simplify and obtain a very concise cri-
teria to compare different wavelets. At the end, using calculus of variations, we ran an
infinite-dimensional optimization algorithm to find the optimal Meyer wavelet for denois-
ing self-similar SαS processes.

Designing steerable wavelets that outperform the existing ones in image process-
ing applications: In the theoretical chapters while studying the wavelet decomposition
of AR(1) and self-similar processes, we observed in both cases that localization of the
mother wavelet plays the main role in the performance of the basis. In the last chapter,
we exploited this observation to design wavelets for practical image processing applica-
tions. First, we used our intuition about images to propose appropriate criteria for different
image processing applications. Then, similar to the previous chapter, we proposed an
infinite-dimensional optimization algorithm for designing maximally localized steerable
tight wavelet frames. These wavelets have a wide usage in different image processing
applications. Finally, we could demonstrate the benefits of an optimal wavelet design in
several applications.

6.2 Future Studies
Finally, we list some extensions of the work presented in this thesis. First, we may extend
the framework of Chapter 3 from AR(1) processes to general discrete sparse stationary
processes. Also, we can impose the multi-resolution constraint on the matrix under op-
timization to directly derive a wavelet-like basis. Another direction altogether would be
abandon finding the transformation that maximally decouples the signal. While this de-
coupling allows us to apply a coefficient-wise manipulation to get a near-optimal coding
or denoising performance, there are also other patterns of dependency for which we can
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perform the optimal or near-optimal manipulations. For example, for signals with Markov
dependency, we can implement the exact MMSE estimator by using graphical models and
belief propagation [53, 116]. Based on this fact, we can try to find a representation domain
in which the coefficients have maximum Markov dependency, instead of trying to find a
representation with the maximally independent coefficients.

We could also investigate the coding of continuous-domain stochastic processes. In
that case, we actually need to perform a rate-distortion analysis, because in the continu-
ous domain, a wavelet can have small average mutual-information but at the same time
a high approximation error. Therefore, the study should take into account both statistical
dependency of the coefficients and approximation power of the wavelets. Deriving criteria
for stochastic processes more general than self-similar ones and considering the situations
in which partial dependency between the coefficients are taken into account are two other
interesting subjects to work on.

Another open topic is to find the optimal frames rather than bases. This problem can be
seen as a generalized dictionary learning where we try to design overcomplete dictionaries
to represent finite dimensional signals. Finally, a valuable theoretical study is interpreting
the already existing results in SCA as the ICA for heavy-tailed, or more specifically, α-
stable random variables. This way, we can obtain a statistical interpretation for the existing
deterministic methods and then we can use statistical tools to improve them.
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[91] S. Fischer, F. Šroubek, L. Perrinet, R. Redondo, and G. Cristóbal, “Self-invertible
2d log-gabor wavelets,” International Journal of Computer Vision, vol. 75, no. 2,
pp. 231–246, November 2007.

[92] A. A. Bharath and J. Ng, “A steerable complex wavelet construction and its appli-
cation to image denoising,” IEEE Transactions on Image Processing, vol. 14, no. 7,
pp. 948–959, July 2005.

[93] J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli, “Image denoising using
scale mixtures of gaussians in the wavelet domain,” IEEE Transactions on Image
Processing, vol. 12, no. 11, pp. 1338–1351, November 2003.

[94] J. Portilla and E. P. Simoncelli, “A parametric texture model based on joint statistics
of complex wavelet coefficients,” International Journal of Computer Vision, vol. 40,
no. 1, pp. 49–70, October 2000.

[95] G. Tzagkarakis, B. Beferull-Lozano, and P. Tsakalides, “Rotation-invariant texture
retrieval with Gaussianized steerable pyramids,” IEEE Transactions on Image Pro-
cessing, vol. 15, no. 9, pp. 2702–2718, September 2006.

[96] I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding algorithm for
linear inverse problems with a sparsity constraint,” Communications on Pure and
Applied Mathematics, vol. 57, no. 11, pp. 1413–1457, November 2004.

[97] H. Rabbani, “Image denoising in steerable pyramid domain based on a local laplace
prior,” Pattern Recognition, vol. 42, no. 9, pp. 2181–2193, September 2009.



132 BIBLIOGRAPHY

[98] F. Denis and A. Baskurt, “Multidirectional curvilinear structures detection using
steerable pyramid,” Journal of Electronic Imaging, vol. 13, no. 4, pp. 756–765,
October 2004.

[99] Z. Puspoki, V. Uhlmann, C. Vonesch, and M. Unser, “Design of steerable wavelets
to detect multifold junctions,” IEEE Transactions on Image Processing, vol. 25,
no. 2, pp. 643–657, Feb 2016.

[100] D. Van De Ville and M. Unser, “Complex wavelet bases, steerability, and the Marr-
like pyramid,” IEEE Transactions on Image Processing, vol. 17, no. 11, pp. 2063–
2080, November 2008.

[101] N. Chenouard and M. Unser, “3D steerable wavelets in practice,” IEEE Transactions
on Image Processing, vol. 21, no. 11, pp. 4522–4533, November 2012.

[102] J. R. Romero, S. K. Alexander, S. Baid, S. Jain, and M. Papadakis, “The geome-
try and the analytic properties of isotropic multiresolution analysis,” Advances in
Computational Mathematics, vol. 31, no. 1-3, pp. 283–328, October 2009.

[103] E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger, “Shiftable mul-
tiscale transforms,” IEEE Transactions on Information Theory, vol. 38, no. 2, pp.
587–607, March 1992.

[104] P. Pad, V. Uhlmann, and M. Unser, “VOW: Variance-optimal wavelets for the steer-
able pyramid,” in Proceedings of the 2014 IEEE International Conference on Image
Processing (ICIP’14), Paris, France, October 27-30, 2014, pp. 2973–2977.

[105] H. Sagan, Introduction to the Calculus of Variations. New York, NY, USA: Dover
Publications, 2012.

[106] Y. I. Alber, A. N. Iusem, and M. V. Solodov, “On the projected subgradient method
for nonsmooth convex optimization in a hilbert space,” Mathematical Programming,
vol. 81, no. 1, pp. 23–35, March 1998.

[107] G. B. Folland and A. Sitaram, “The uncertainty principle: A mathematical survey,”
Journal of Fourier Analysis and Applications, no. 3, pp. 207–238, May 1997.

[108] J. P. Ward, P. Pad, and M. Unser, “Optimal isotropic wavelets for localized tight
frame representations,” IEEE Signal Processing Letters, vol. 22, no. 11, pp. 1918–
1921, November 2015.



BIBLIOGRAPHY 133

[109] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, United Kingdom:
Cambridge University Press, 2004.

[110] M. Jacob and M. Unser, “Design of steerable filters for feature detection using
Canny-like criteria,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 26, no. 8, pp. 1007–1019, August 2004.
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• École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland 2011 – Present
PhD student at Biomedical Imaging Group
Supervisor: Michael Unser

• Sharif University of Technology, Tehran, Iran 2009 – 2011
MSc in Communications Systems at Multimedia Laboratory
Supervisor: Farokh Marvasti

• Sharif University of Technology, Tehran, Iran 2004 – 2009
Two Degrees: BSc in Electrical Engineering

BSc in Mathematical Sciences

HONORS AND AWARDS

• Awarded $50k Research Grant for Research in Machine Learning 2016
Hasler Foundation, Switzerland

• Best Student Paper Award 2014
IEEE International Conference on Image Processing (ICIP)

• Awarded Fellowship for Graduate Studies 2011
Alcatel-Lucent, Bell-Labs Mobile Network Center, Paris, France

• Best Bachelor Thesis Award 2009
IEEE Iran Section

• Exceptional Talents Admission for BSc and MSc Program 2004 & 2009
Offered Direct Entrance for Sharif Univ. of Tech. (Bypassing the Entrance Exam)

• Member of Iran National Elite Foundation 2005

• Gold Medalist of National Math Olympiad 2003

• Exceptional Talents Admission for High School 2000
National Organization of Development of Exceptional Talents, Esfahan, Iran

PUBLICATIONS

Journal Papers

I P. Pad, K. Alishahi, and M. Unser, “Optimized Wavelet Denoising for Self-Similar α-Stable Processes,” ac-
cepted in IEEE Transactions on Information Theory, 2017.

I P. Pad, V. Uhlmann, and M. Unser, “Maximally Localized Radial Profiles for Tight Steerable Wavelet Frames,”
IEEE Transactions on Image Processing, vol. 25, no. 5, pp. 2275–2287, 2016.

I J. P. Ward, P. Pad, and M. Unser, “Optimal isotropic wavelets for localized tight frame representations,” IEEE
Signal Processing Letters, vol. 22, no. 11, pp. 1918-1921, 2015.

I P. Pad and M. Unser, “Optimality of operator-like wavelets for representing sparse AR(1) processes,” IEEE
Transactions on Signal Processing, vol. 63, no. 18, pp. 4827–4837, 2015.

I U.S. Kamilov, P. Pad, A. Amini, and M. Unser, “MMSE estimation of sparse Lévy processes,” IEEE Transac-
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