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Abstract:  The objective of this paper is to describe an integral approach - 
based on the use of a super-resolution frequency estimation method - to 
phase shifting interferometry, starting from phase step estimation to phase 
evaluation at each point on the object surface. Denoising is also taken into 
consideration for the case of a signal contaminated with white Gaussian 
noise.  The other significant features of the proposal are that it caters to the 
presence of multiple PZTs in an optical configuration, is capable of 
determining the harmonic content in the signal and effectively eliminating 
their influence on measurement, is insensitive to errors arising from PZT 
miscalibration, is applicable to spherical beams, and is a robust performer 
even in the presence of white Gaussian intensity noise.  
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1. Introduction 

Phase Shifting has been widely adopted in optical interferometry for retrieving phase 
information encoded in the interference fringes [1-5]. The technique functions primarily by 
acquiring a number of intensity images with phase increments between successive frames. 
These phase increments are generally applied using a piezoelectric device (PZT). Although 
three frames are normally sufficient to compute the phase distribution, the measurement 
process is sensitive to various systematic [6-18] and random errors [19-24]. The large number 
of frames has been shown to decrease the sensitivity to these errors.  
      This method, commonly known as temporal technique for phase measurement, can be 
broadly classified to fall into two categories: conventional and generalized. While the step 
widths are typically multiples of π/2, in the former case, these are arbitrary in the latter case 
[25-26]. As far as conventional techniques are concerned, several algorithms have been 
reported to compensate for errors that are introduced during phase evaluation. The systematic 
errors occurring in the phase shift device have been investigated. The corresponding 
algorithms insensitive to these errors are described in the literature. Most of these algorithms 
aim at minimizing the errors arising due to the nonlinear characteristic inherent in the 
piezoelectric device PZT. These algorithms termed as self-compensating [1,8-10,12,22,27] 
have proved to be effective while compensating deterministic phase shift error, even until 
third order nonlinearities. Some of the algorithms minimize the effect of other systematic 
errors such as optical system aberrations [5,18], parasitic fringes [6,28], photodetection errors 
[29,30] and quantization errors [17,31]. Random errors due to thermal or shot noise have also 
been observed to influence the phase measurement [21]. Random errors in measurement of 
phase can also crop up because of turbulent and laminar air flows in the optical path [30], 
vibrations [19-20,22], electronic noise [32] originating in the photodetection during 
amplification, and optical noise commonly known as speckle [33]. The statistical properties of 
phase-shift algorithms have been investigated for the case of additive Gaussian intensity 
noise. It has been shown that some advanced systematic-error-compensating algorithms are 
sensitive to random noise [21].  
      The error in phase measurement can also arise if the fringe profile is not purely sinusoidal 
because of detector nonlinearity or multiple-beam interference. The algorithm proposed by 
Hibino et al [14] offers the possibility to reduce the calibration error in the presence of higher 
order harmonics. Hibino et al [14] and Surrel [11] showed that 32 +κ  and 22 +κ  samples 

are respectively necessary to minimize the effect of the thκ order harmonic, with the phase 
step ( )2/2 +κπ  between samples. The restriction on the free use of phase steps represents a 
drawback and a possible limitation for the methods wide spread application. The other 
important limitations of the algorithm reside in its inability to function in configurations 
requiring multiple PZTs.  
      While conventional phase shifting has demonstrated its ability to overcome various 
sources of systematic errors, generalized phase shifting technique though flexible as far as the 
selection of phase steps is concerned hasn’t been successful in overcoming most of the 
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systematic errors discussed earlier. Although the algorithm proposed by Carré [1] is 
insensitive to first order calibration error and enables the use of arbitrary phase steps, the 
study imposes a restriction on the choice of the phase step value in order to minimize certain 
other errors referred in [34]. The algorithm proposed by Lai and Yatagai [35] requires an 
additional optical setup for the generation of Fizeau fringes and can only handle fringes that 
are not straight and equally spaced [36]. Farrell and Player [37-38] describe an ellipse fitting 
technique that uses Bookstein algorithm [39] - a forced fit method - to fit the data set into an 
ellipse. The data set fits into a hyperbole for noisy data [40]. The statistical approach proposed 
by Cai et al [41] to extract reference phase steps imposes requirements on the spatial 
resolution of the CCD camera  (which in turn dictates the sampling number of the speckle 
intensity). The max-min algorithm proposed by Chen et al is computationally exhaustive and 
requires a large number of data frames (15 or more) for reliable operation [42]. The algorithm 
based on iterative least squares estimation proposed by Han and Kim is suitable only for 
compensating linear first order errors in PZT and requires the initial guess of the phase step to 
be as close as possible to its true value [43].  The concept of identifying the reference phase 
steps proposed by Jüptner et al is suitable for only linear miscalibration error and can produce 
large number of outliers for noisy interferograms [44]. Although the five frame algorithm 
proposed by Stoilov and Dragostinov gives the flexibility of using arbitrary phase steps, its 
use is limited only to linear errors encountered in the PZT [45]. The stochastic approach [46] 
to detect the PZT nonlinearity in PZT proposed by Patil et al [47] is sensitive to random 
sources of error.  
      To the best of authors knowledge no generalized phase shifting technique has been 
reported so far which at a time caters to the presence of multiple PZTs in an optical 
configuration, is insensitive to errors due to nonsinusoidal waveforms, to PZT miscalibration 
and to additive white Gaussian intensity noise, and has the ability to work with diverging as 
well as converging beam.  The use of multiple PZTs has been introduced in an optical 
configuration by Rastogi [48-49] for automating the extraction of information conveyed by 
both carrier and moiré in a holographic moiré setup. With the field of phase shifting 
interferometry advancing rapidly, the possibility of incorporating multiple PZTs in an 
interferometric configuration is a significant conceptual progress which should be useful for 
developing multiple channel measurement capabilities in moiré based interferometers.  
      The aim of this paper is to propose an integral generalized approach which first caters to 
the presence of multiple PZTs in an optical configuration, second is capable of handling 
harmonics, third is insensitive to errors arising from PZT miscalibration, fourth is applicable 
to spherical beams, and fifth is a robust performer even in the presence of white Gaussian 
intensity noise. We intend to apply the super-resolution frequency estimation approach which 
basically takes the advantage of the fact that a polynomial can be associated to a periodic 
intensity fringe pattern recorded by a CCD. Another polynomial termed as annihilating filter 
[50] is designed which has zeroes at the frequencies that are associated with the polynomial 
for the intensity fringes. The discrete convolution of the filter and the intensity fringe yields 
zero. The spectral information embedded in the signal corresponds to the phase steps imparted 
by the multiple PZTs in the interferometric setup. Hence, the parametric estimation of this 
annihilating filter yields the desired spectral information embedded in the signal, which in our 
case are the phase steps. Although the discrete Fourier transform is an efficient tool for the 
estimation of well separated frequencies, the separation of closely spaced frequencies in the 
presence of noise and less number of samples can be handled efficiently with high resolution 
techniques [51]. This method for frequency estimation is also sometimes referred to as super-
resolution technique because of its ability to resolve spectral lines (frequencies) separated in 
frequency πω 2/=f  by less than N/1  cycles per sampling interval (here, ω  and N  refers 
to angular frequency and number of samples, respectively), which is the resolution limit for 
the classical periodogram-based methods, such as Fourier transform. As a case study, we 
show the effectiveness of our algorithm to extract the dual phase steps in holographic moiré. 
Since, the proposed technique functions by extracting the phase step at each pixel location of 
the acquired frames, this method allows the use of diverging as well as converging beams. 
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The advantage of using any arbitrary phase step between 0 and π radians overcomes the 
limitation exhibited by previously reported methods. We also show that the robustness of our 
algorithm to additive white Gaussian noise can be enhanced by incorporating a denoising step 
using the concept of truncated singular value decomposition [52-53].  
      In what follows, we first present a brief introduction to holographic moiré. Section 3 
presents the design of annihilating filter for phase step determination. Section 4 deals with the 
identification of the harmonic content of the waveform. Section 5 shows the denoising 
procedure. Section 6 shows the simulation results for phase step extraction and retrieval of 
phases in holographic moiré in the presence of noise. 

2. Holographic moiré 

Although holographic interferometry has proved its effectiveness for measuring displacements 
along the line of sight, it does not provide means for obtaining whole field distribution of 
displacements orthogonal to the line of sight. This limitation has led to the development of 
more complex interferometers to obtain direct visualization of displacement components and 
their derivatives. The method referred to as holographic moiré has proved its usefulness in 
determining in-plane displacements [54], slopes and curvature [55], and difference 
displacements [56] of objects.  
     The application of phase-stepping to holographic moiré is a relatively complex procedure 
in which a dual-phase stepping is applied in the two arms of a holographic moiré setup [48-
49]. Besides providing automation to the method, one of the significant advances of 
holographic moiré is that it offers retrieving simultaneously the phase information carried on 
moiré and carrier at any point on the object surface. The recorded fringe intensity at a point 

( )yx, for thm  phase step is given by 

            (1) 
 

where, ka  and kb  is the complex Fourier coefficient of the thk order harmonic, 1−=i  and 

dcI is the local average value for intensity; and pairs 1ϕ and 2ϕ , and, α  and β , represent 
phase differences and phase shifts, respectively, in the two arms of the holographic moiré 
setup. The coefficients ka  and kb are in fact real and are related to the appropriate choice of 
phase origin at a point where the intensity reaches a maximum.  
     Phase shifted holographic moiré offers the advantage of extracting simultaneously the 
phase values 1ϕ  and 2ϕ . Phase information corresponding to moiré,Φ , and carrier,Ψ , are 
consequently obtained by and which, for example, in a holographic moiré configuration are 
directly related to in-plane and out-of-plane displacement components, respectively. 
  
                                                              1 2ϕ ϕΦ = −                                                                 (2) 
 
                                                              1 2ϕ ϕΨ = +                                                                 (3) 

3. Theory of estimation of phase steps using a super-resolution method 

In order to explain the basis of the spectral estimation procedure, let us write Eq. (1) as 
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where, ( )1exp ϕikakk =� , ( )αikuk exp= , ( )2exp ϕikbkk =℘ , ( )βikvk exp= ; superscript ∗  

denotes the complex conjugate; 1ϕ and 2ϕ , and, α  and β , are the unknown parameters; 

( )myxI n ;,  corresponds to the thn frame, where 0=n  refers to the data frame 
corresponding to the first phase shifted intensity pattern. Equation (4) represents the complex 
valued sinusoidal signals where  κββκββκαακαα −−−− ,...., ;,...., ;,...., ;,....,  represent the 
frequencies embedded in the signal, and by estimating them, the phase steps α and β , 
imparted by the PZTs can be determined. Frequency estimation of sinusoids is a classical 
problem in spectral estimation and as mentioned in Section 1 can be better handled using a 
super-resolution method. In this method we first transform the discrete time domain signal nI  
in Eq. (4) into a complex frequency domain by taking its Z-transform. Let the Z-transform of 

nI  be denoted by ( )zI . The objective here is to design another polynomial ( )zP  termed as 

annihilating filter which has zeros at frequencies associated with ( )zI , which in turn would 

result in ( ) ( ) 0PI =zz . Since the frequencies translate into zeros, spectral estimates feature 

high resolution. In what follows we will derive the expression for ( )zP and explore the 

condition for which the multiplication of ( )zP and ( )zI is zero.  
      The Z-transform of Eq. (4) is written as  
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which after expansion and simplification can be written as 
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where,  
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      Taking into account the terms  sD' and  sP' and substituting them in Eq. (6), we obtain  
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Equation (7) can be represented as  
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                                                        ( ) ( ) ( )zzz DPI =                                                (8) 
 
where, ( )zD represents the numerator and ( )zP  the denominator in the right hand side of 
Eq. (7), with the latter being given by 
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Given the complex form of ( )zD , let us consider for the sake of simplicity writing only its 
first term,   
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      From Eq. (10) we observe that some coefficients of ( )z1C , 

specifically, κ41......21,11,01 CCCC , and κ421 1......1,1,1 +++ NNNN CCCC  depend 
upon the unknown amplitude and frequency. We observe that the 
coefficients 1342414 1......,1,1,1 −+++ NCCCC κκκ  are identically zero for 14 +≥ κN . 
This condition is at the essence of the design of annihilating filter ( )zP . In what follows we 

show that the ( )th14 +κ degree polynomial ( )zP , when discretely convolved with ( )zI  
yields zero.  
      Since the multiplication of two signals in frequency domain corresponds to its discrete 
convolution in time domain, inverse Z-transform of Eq. (8) gives 

 
                  nnn DpI =⊗                                (11) 

 
where, ⊗  represents the convolution operator. In Eq. (11), np  is the inverse Z-transform of 

( )zP defined by 
 
       ( ) ( ) ( ) ( )14.......21 14210 −−++−+−+= + κδδδδ κ npnpnpnpp n         (12) 
 
where, ( )nδ  is the unit impulse signal. Equation (11) can be further written as 
 

                     4,.....,,......,1,0for  ;            
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κ
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+==∑
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− NNnDpI
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nkkn               (13) 

 
 Using the fact, 
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we can express Eq. (13) in a matrix form as 
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We partition the first matrix on the left hand side of Eq. (15), select the middle 24 −− κN  
rows equations corresponding to zero row values in the matrix on the right hand side, and 
form a new matrix as follows: 
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      We can infer from Eq. (16) that the polynomial ( )zP  is an annihilating filter which when 
convolved with the moiré intensity signal yields zero. It can further be deduced that at least 

28 +≥ κN  samples are required to extract the roots of the polynomial ( )zP . This enables us 
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to find the unknown values ku and kv . The phase steps α and β , can hence be computed 

using ( )iu /ln 1ℜ=α  and ( )iv /ln 1ℜ=β .  
 

4. Detection of nonsinusoidal waveform and the corresponding harmonic content 

The occurrence of nonsinusoidal waveform - a consequence of detector nonlinearity or 
multiple  reflections in laser cavity - results in an error in the computation of phase. This 
section explains how to deduce the number of harmonics κ  present in the signal, which can 
subsequently be applied in the design of the Vandermonde system of equations in Section 6 
for the determination of phase values 1ϕ and 2ϕ . Let us rewrite Eq. (1), for the case 1=κ  (i.e. 
pure sinusoidal wave) and noiseless signal, as  
 

                        

( ) ( )[ ] ( )[ ]
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   (17)  

 
      Initially we assume 01 ≠Τ and 02 =Τ , a case in which the intensity ( )myxI ;, in Eq. (17) 

corresponds to two wave interferometry. Fourier transform of ( )myxI ;,  for Nm ,1,2,......=  

should result in three peaks in frequency domain corresponding to dcI ,α and α− . Similarly 
for 01 ≠Τ  and 02 ≠Τ , a case in which the intensity ( )myxI ;, in Eq. (17) corresponds to 

holographic moiré interferometry, Fourier transform of ( )myxI ;,  for Nm ,1,2,......=  should 

result in five peaks in frequency domain corresponding to dcI ,α , α− , β , and β− . 
However, with limited data samples, the resolution of closely spaced frequencies is 
troublesome in the presence of noise. Also because of the “leakage” phenomenon, energy in 
the main lobe can leak into the side lobes obscuring and distorting other spectral responses. 
      Interestingly, the singular value decomposition of R in Eq. (16), represented as 

TUSVR = , yields more reliable information than the Fourier transform method regarding the 
number of harmonics present in the signal, where S is a diagonal matrix with M nonzero 
and MN −  zero singular values; U and V are unitary matrices [57]. When 01 ≠Τ and 02 =Τ , 
in Eq. (17), and for a noiseless case, the number of nonzero diagonal entries in S is 3=M  
(corresponding to dcI ,α , and α− ). On the other hand, for 01 ≠Τ  and 02 ≠Τ , the number 
of nonzero diagonal entries is 5=M  (corresponding to dcI ,α , α− , β , and β− ) . Hence, if 
Η is the number of PZTs used in the optical setup, the number of harmonics κ  in the signal 
can be determined using 1 2 += ΗκM . In the presence of noise, M principal values of S 
would still tend to be larger than the MN −  values which were originally zero. In addition, 

the M  eigenvectors corresponding to the M eigen values of RRT are less susceptible to 
noise perturbations in comparison to the remaining MN − eigenvectors. 
      Figure 1 illustrates typical singular values for S when the number of samples (data frames) 
used are 25=N . In this example we assume the presence of second order harmonics in the 
signal, 2=κ , and the presence of two PZTs in the optical configuration, 2=Η . In this case 
and for a noiseless signal we should expect 912 =+= ΗκM diagonal entries of S in Fig. 1 to 
be significantly larger in magnitude; the 9−N  diagonal entries being zero. Even in presence 
of noisy data for the case with (SNR = 10 dB), 9=M  principal values are still larger in 
magnitude than the 9−N  diagonal values. Hence by selecting only those significant values of 
S (which in this example, corresponds to 9=M ), the number of harmonics κ  is determined 
to be 2=κ . The plot thus allows for a reliable estimation of the number of harmonics present 
in the signal. 
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Fig. 1. Plot showing the magnitude of diagonal values in matrix S versus N data points. From 
the plot the number of harmonics κ  in the signal can be computed using 1 2 += ΗκM . In 

figure ( )o  and ( )+  represent the diagonal values for noiseless and noisy (SNR=10 dB) 

signals, respectively. 

5. Denoising the signal 

There are various sources of noise in optical interferometry and the relative contribution of 
each noise source depends on the particular system and its application [58].  Denoising is thus 
an important step towards reducing the effect of noise.  We consider white Gaussian noise to 
contaminate the signal; the reason being that many distributions can be approximated by a 
Gaussian function. It should also be noted that many noise sources are known to follow a 
Gaussian noise source in accordance to the central limit theorem [21]. To enhance the signal 
in the presence of white Gaussian noise, we apply the concept of truncated singular value 
decomposition. In the present case, number of data frames 28 +≥ κ are needed for applying 
the denoising procedure.  
      The concept of TSVD involves the following steps [52-53]. The matrix R is first written 

in Hankel matrix form, say R̂ , and its singular value decomposition Tˆˆˆ VSUR = shows the 

nonsingular principal values of S  which are significantly different from zero. After setting 

the non significant MN − singular values of S  to zero, a matrix Ŝ  is formed. A denoised 

matrix Tˆˆˆ VSUΖ =M which approximates R̂  in the least squares sense, is then obtained by 

using the first M columns of Û , Ŝ  and V̂ ; Û  and V̂  being unitary matrices. Finally, a 
denoised signal nI  is retrieved by arithmetic averaging along the anti-diagonals (or diagonals) 
of MΖ  using  
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where, ( )[ ]1ˆ rows ofnumber ,1max +−= Rnr  and ( )[ ]nq  ,ˆ rows ofnumber min R= . The 

denoised signal nI  is subsequently applied in Eq. (16).  

6. Evaluation of phase steps and phase distributions in presence of noise 

The next step after denoising the signal is to extract the phase steps. We present the 
application of super-resolution technique for the extraction of phase steps by simulating moiré 
fringes given by  
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where, ( )00 , yx  is the origin of the X Y× pixels for fringe pattern with pitch 1λ ; ( )00 , yp is 

the origin of YX ×  pixels for fringe pattern with pitch 2λ ; ξ  is some arbitrary constant; 
2=κ  and the phase steps are selected as 4/πα =  and 3/πβ = . A white Gaussian noise 

with SNR from 0 to 100 dB is added to test the robustness of the proposed concept. Fringes 
shown in Fig. 2(a)-(c) correspond to Eq. (19) for 1=κ  and for three different noise levels. On  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

Fig. 2. Holographic moiré for 1=κ  and for noise levels (a) 0 dB (b) 10 dB , and (c) 60 dB 
additive white Gaussian noise. 

 
the other hand, fringes shown in Figs. 3(a)-(c) corresponds to Eq. (19) for second order 
harmonic, 2=κ , but for same noise levels as in Figs. 2(a)-(c), respectively. These fringes 
have been generated under the assumption 5.02 ,1  ,02 ,1  ,0 == ±±±± ba . 
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Fig. 3. Holographic moiré for 2=κ  and for noise levels (a) 0 dB (b) 10 dB , and (c) 60 dB 
additive white Gaussian noise. 

       
      Figure 4(a) shows the plot for phase step extraction when the noise level is considered 
from 0 to 100 dB; eighteen data frames are used to obtain this plot. As can be seen from the 
plot, the phase steps cannot be accurately determined for SNR level below 40 dB. In order to 
extract the phase steps reliably at a lower SNR, additional data frames are mandatory so that 
denoising procedure explained in Section 5 can be successfully applied. Figures 4(b) and 4(c) 
show a plot for the phase step extraction when twenty seven and thirty six data frames are 
used in the computation of phase steps and denoising procedure is applied. The plot shows an 
increase in reliability in the computation of phase steps with a larger number of frames. Large 
data frames can induce unwanted noise in the measurement, if controlled environment is not 
used. Our denoising technique works well when random noise follows a Gaussian profile, 
which is the case most of time. For noise which does not follow a Gaussian profile (air 
turbulence, or vibrations), reference 30 provides an insight into the measures which can be 
taken to minimize their influence on the measurement of phase distribution. 
 
 
 
 
 

(c) 

100 200 300 400 500

100

200

300

400

500

(a) (b) 

100 200 300 400 500

100

200

300

400

500
100 200 300 400 500

100

200

300

400

500

(C) 2004 OSA 4 October 2004 / Vol. 12,  No. 20 / OPTICS EXPRESS  4693
#5062 - $15.00 US Received 16 August 2004; revised 15 September 2004; accepted 15 September 2004



 

 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Plot of phase steps α  and β  versus noise when computation is done over (a) eighteen 

(b) twenty seven, and (c) thirty six frames. Plots in. (b) and (c) are obtained after applying the 

denoising procedure. Large number of frames are due to the presence of two PZTs ( )2=Η  

and two harmonics 2=κ , which in turn impose lower limit on data samples ( )24 +Ηκ  as 

eighteen for phase step estimation. 
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      Once the phase steps are estimated the parameters k� and k℘ can be solved using the 
linear Vandermonde system of equations obtained from Eq. (4). The Vandermonde system of 
equations always has full rank as long as si 'α  and si 'β  are distinct. The matrix thus obtained 
can be written as  
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      (20) 
 
where ( )11,βα , ( )22 ,βα , ( )33 ,βα ,..and ( )NN βα , are the phase steps for frames 0I , 1I , 

2I ,.., and 1−NI , respectively. The phases 1ϕ and 2ϕ  are subsequently computed from the 

argument of 1�  and 1℘ . Figures 5(a) and 5(b) show typical errors in the computation of 

phase 1ϕ without and with the application of the denoising procedure, respectively.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Plot of error in the computation of phase 1ϕ  when SNR = 30 dB obtained a) without 

and b) with the application of the denoising procedure.  
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The noise level is assumed to be 30 dB. In this simulation phase steps obtained in Fig. 4(c) are 
used for the computation of phase. Similarly Figs. 6(a) and 6(b) show errors in the 
computation of phase 2ϕ  without and with the application of the denoising step, respectively, 

all the other parameters remaining the same. Figure 7 shows the wrapped phases 1ϕ and 2ϕ  
obtained with the denoising step. 

 
 
 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Plot of error in the computation of phase 2ϕ  when SNR = 30 dB obtained a) without 

and b) with the application of the denoising procedure.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Wrapped phase distributions 1ϕ (solid line) and 2ϕ  (broken line) as functions of pixel 

position when SNR = 30 dB. Denoising procedure has been applied for obtaining these results. 
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7. Conclusion 

To conclude, we have presented a novel integral approach - based on the use of a super-
resolution frequency estimation method - to phase shifting interferometry, starting from phase 
step estimation to phase evaluation at each point on the object surface. A significant 
advantage of this approach is that it also offers the possibility to identify the harmonic content 
of the signal. The described method holds promise for determining simultaneously multiple 
phase distributions in the presence of higher order harmonics and in optical configurations 
with multiple PZTs. The proposed technique works well with the diverging as well as 
converging beams since the phase steps are retrieved point by point before being applied to 
the Vandermonde system of equation. The robustness of the algorithm to white Gaussian 
noise is enhanced by the incorporation of denoising step before the extraction of phase step. 
Further research will focus on estimating the lower bounds of the distance between phase 
steps that can be resolved using the high resolution method.  
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