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ABSTRACT

We present experimental investigation of a new reconstruction method for off-axis digital holographic microscopy
(DHM). This method effectively suppresses the object auto-correlation, commonly called the zero-order term, from
holographic measurements, thereby suppressing the artifacts generated by the intensities of the two beams employed
for interference from complex wavefield reconstruction. The algorithm is based on non-linear filtering, and can be
applied to standard DHM setups, with realistic recording conditions. We study the applicability of the technique under
different experimental configurations, such as topographic images of microscopic specimens or speckle holograms.
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1. INTRODUCTION

Digital holography (DH) is a measurement technique based on an interferometric principle, which enables the recovery
of both the amplitude and phase of a wavefront. This method has been coupled with microscopy 1 for applications such
as high-precision surface topography,2 or biological investigations.3–5 In the macroscopic case, this measurement
method has been used in many different fields, such as quality check applications or vibration assessment. 6

The principle of holography is based on the measurement of the interference between two waves, where one
interacted with the specimen, commonly called the object wave, and a reference wave having a phase profile which
is precisely controlled. The interference pattern is then measured in intensity on a photographic plate or an electronic
system such as a charge-coupled device (CCD) camera. Due to this acquisition process, different terms are recorded:
the intensities of both waves, usually referred to as the zero-order term, the object wavefront information, and, because
of the real nature of the recorded signal, the complex conjugate of the object wave, called twin-image. This redundant
information makes it more difficult to recover an accurate reconstruction of the object signal, and can even disrupt it.

Reconstructing the signal containing the information about the object complex wavefront requires separating it
from the other terms contained in the interferogram. Two main methods have been employed to accomplish it, either
in the spatial or temporal domain. Spatial separation has been performed by using a reference wave which propa-
gation direction slightly differs from that of the object wave. In this off-axis configuration, the terms contained in
the hologram propagate in different direction, making it possible to isolate the object wavefront. 7 More recently, this
spatial separation has been performed digitally in the Fourier domain. 1 On the other hand, temporal separation can
be achieved through the acquisition of several holograms, giving rise to phase-shifting interferometry (PSI) methods. 8

Phase-shifting is classically done with four-steps or three-steps algorithms. 9 However, these methods need very ac-
curate and equally spaced phase-shifts, therefore requiring expensive devices. More recently, adaptive PSI has been
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developed, making it possible to use holograms without accurately known phase-shifts, 10, 11 at the cost of employing
iterative procedures.

Different methods were proposed to suppress the zero-order term in off-axis holography. First, intensity terms
were considered as constant, making it possible to subtract them with a constant term; 12 linear filtering was also used
with high-pass filters.13 Those methods have the drawback of altering the reconstructed signal, due to their global
filtering effect. Non-linear methods were also proposed by employing approximations on the signal along with square
operators,14 or wavelet-based transforms by using a Taylor development. 15 Another method employing the logarithm
operator has been proposed,16 by neglecting the effect of the zero-order term in this context. The methods cited
above always employ an approximation of the interference equation, or restrict the field of application by using strong
assumptions on the type of object field.

The method presented in this paper is based on non-linear filtering, and provides exact reconstruction, if simple
requirements are fulfilled. It can be applied to off-axis DHM, by filtering the hologram in the cepstral domain, which
is defined as the logarithm of the Fourier transform of the signal. It has no restrictive requirements on the object
nor on the reference. The two main conditions are that the reference amplitude must be stronger than that of the
object, and that the desired imaging order has to be confined to one quadrant of the Fourier domain. Apart from those
conditions which can be easily fulfilled in practice, the method is general. It is non-iterative and its computational cost
is moderate. This technique suppresses the requirement of having a separation constraint between the zero-order and
the diffraction terms, thereby extending the available spectral support of the image.

In previous publications,17, 18 we investigated this method to suppress the zero-order auto-correlation in digital
holographic reconstruction. We showed that the proposed technique suppresses the zero-order term under realistic
conditions. In this article, we address the robustness of the method for use with speckle holograms, and present
experimental results demonstrating the suppression of the artifacts generated by the zero-order. We then extend our
analysis on the improvement in spatial resolution.

2. FUNCTIONING PRINCIPLE

The method we propose is based essentially on the principles developed in spatial filtering method for digital holo-
graphic microscopy (DHM)1, 19, 20 as classically implemented for off-axis holography. Our aim is to employ cepstral
filtering in this context to improve the efficiency of zero-order filtering. We hereby recall the basic principles and
necessary elements for characterizing the performance of the new technique.

2.1 Spatial filtering method
The interference pattern generated by the two beams used for measurement and recorded on the camera plane is

i(x, y) = |r(x, y) + o(x, y)|2
= |o(x, y)|2 + |r(x, y)|2 + o(x, y)∗r(x, y) + o(x, y)r(x, y)∗,

(1)

where o(x, y) is the object wave, r(x, y) is the reference wave, and the asterisk denotes the complex-conjugate op-
erator. The first two terms of Eq. (1) correspond to the so-called zero-order; the last two terms are the +1 and -1
diffraction orders, which are the real and virtual images, respectively. Using different propagation directions for the
two interfering waves modulates the diffraction terms at a carrier spatial frequency, so that they do not overlap spec-
trally. This off-axis configuration leads to a Fourier plane corresponding to the one shown in Fig. 1(a). It thus makes it
possible to recover one of the imaging order by Fourier filtering techniques (FT). 21 In this case, the object wavefront
is given by

oFT (x, y) = rD(x, y)iF (x, y),

iF (x, y) = F−1 {F {i(x, y)} ×W (ωx, ωy)} ,
(2)

where W (ωx, ωy) is the filtering window function in the frequency domain, and i F (x, y) is the filtered hologram; rD is
a digital reference wave, classically taken as the complex conjugate of the reference wave used during the experiment.
In the case the hologram is acquired out-of-focus, such as in Fresnel digital holography, the complex wavefront can
then be numerically propagated to the image plane by employing for instance the Fresnel approximation. 19, 22
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Figure 1: Optimal spectral configuration of the Fourier transform of a hologram in the case of (a) standard Fourier
technique (FT) and (b) non-linear (NL) reconstruction with object auto-correlation suppressed, improving the usable
bandwidth for the imaging order.

2.2 Non-linear filtering

By rearranging the terms in Eq. (1) (spatial coordinates are omitted for the sake of brevity), we obtain
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Next, we can take the logarithm
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which transforms the product into a sum, allowing for the subsequent separation of the interference terms from the
zero-order.

We have shown,17 by employing the Taylor series expansion of the logarithm operator, that if the imaging order
is confined in one quadrant of the Fourier spectrum, the terms on the right of Eq. ( 4) have their spectra contained in
the same quadrant as the usual imaging orders o∗r and or∗. This development requires that the reference amplitude is
higher than that of the object wave, i.e. |r| > |o|. As a result, the two terms can be filtered out spectrally.

It is therefore feasible to retain the desired imaging order by selecting the corresponding quadrant of the hologram
spectrum. The signal is then recovered by the inverse Fourier transformation. In analogy with the classical filtering
operation, the filtered diffraction order in the spatial domain can be calculated as
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where the indicator function 1 [0,∞)×[0,∞) denotes the window used to select the relevant quadrant (in this particular
case, the first quadrant). This filtering operation and the corresponding imaging terms are represented in Fig. 1(b).
Finally, the recovered object wavefront in the hologram plane is given by

oNL(x, y) = rD(x, y) (exp (i′F (x, y)) − 1) , (6)

which specifies our non-linear filtering method (NL).

By comparing Eq. (2) and Eqs. (5-6), we find that the proposed algorithm is similar to the standard Fourier fil-
tering method, except for the non-linear logarithm and exponential operations. The object complex wavefront is
reconstructed by multiplying the filtered signal with a digital reference wave, as in standard off-axis DHM.



The technique described in this Section provides zero-order-free reconstruction, which makes it possible to extend
the available spectral support for the imaging terms. The limit in the framework of this technique is the fact that the
diffraction orders have to be contained in a quadrant of the Fourier plane. The optimal spectral configuration in this
case is shown in Fig. 1(b), which provides an available bandwidth of aNL = N/2, where N is the resolution of the
recorded hologram in pixels. This corresponds to an enlargement of the bandwidth by a factor of approximately 1.5
times.18

2.3 Consequences of the non-linear method on experimental acquisition

The new technique just presented requires some specific conditions to be satisfied during hologram recording. The
first condition, namely |r| > |o|, is usually readily fulfilled in a global sense, since it was shown that higher intensity
in the reference wave yields a better signal-to-noise ratio (SNR) of the phase signal. 23 This condition may not be
fulfilled for every pixel in the hologram plane, particularly in the case of out-of-focus images or speckle holograms,
which may contain strong intensity regions, mainly induced by the highly-diffracting parts of the sample.

It is also required that the spectra of the +1 and -1 diffraction orders do not overlap. This condition is naturally
fulfilled in the case of off-axis DHM. Confining the usable frequency space to one specific quadrant is equivalent to
having interference fringes inclined at 45◦, which corresponds to ideal measurement conditions, i.e. the best spatial
sampling case for those high frequencies.

Moreover, as it can be seen from Eq. (5), prior knowledge of the reference intensity is required, since our algorithm
suppresses the object zero-order, i.e. |o|2, but not |r|2. It corresponds in fact to a subtraction of |r|2 before processing.

It should be noted that the reference is commonly assumed to be a plane wave, so that elimination of its intensity
corresponds to simply subtracting a constant. However, some wavefront aberrations are always present in practice,
which induce irregularities in the reconstructed signal. Nevertheless, our experimental results show that it is possible
to counter those effects by simple subtraction of a reference intensity that is recorded during a calibration step, since
the reference is classically a wave which profile is well controlled and constant during time.

3. SIMULATIONS

In this Section, we present simulation results based on the reconstruction of speckle holograms. In the case speckle
is occurring, the object wave contains very high spatial frequencies, created by the random phase pattern generated
by the specimen roughness. This can be identified in the spectrum of the generated hologram as an approximately
constant spectral energy in the aperture of the optical system, as presented in Fig. 2(b).

The synthetic hologram is based on a representation of a USAF 1951 test target, containing specific spatial fre-
quencies, as shown in Fig. 2(a). In order to simulate the roughness of the object, the phase has been set to a random
value uniformly distributed between [−π/2, π/2]. This simulation considers a low aperture optical system, composed
of a 2f lens system. The field diffracted by the specimen is propagated to the first lens of the optical system, where a
low-pass filter is applied to account for the optical component aperture, and a curvature in phase is applied according to
the focal length of the lens. The field is next propagated to the second lens where its curvature is compensated. Then,
it is propagated to the hologram plane, where the interference with a tilted reference wave is computed. The reference
wave has been designed so that its amplitude is slightly stronger than the maximum value of the object field, to satisfy
the condition required by the non-linear reconstruction method. The optical system was taken for a numerical aperture
of NA = 0.045, a wavelength of λ = 760 nm and a pixel size of the camera of Δx = 6.45 μm. The amplitude
of the object reconstructed through non-linear filtering is presented in Fig. 2(c), where the typical granular texture of
speckle images can be readily identified. We compare in this case the standard reconstruction based on spatial filtering
and the non-linear technique in the spectral domain. The Fourier transform of the hologram is presented in Fig. 2(b),
where the zero-order can be identified in the center of the spectrum, clearly being twice the size of the imaging orders,
situated in the two corners. The strong extent of the zero-order makes it impossible to filter clearly the imaging order
without getting part of the auto-correlation in the reconstruction, which results in artifacts during reconstruction.

On the other hand, the spectrum of the object field after non-linear reconstruction is shown in Fig. 2(d), where
zero-order has been suppressed. This can be readily seen by identifying the constant background around the imaging
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Figure 2: (a) Amplitude of the synthetic object used for simulation, and (b) Fourier transform of the speckle hologram
generated from this object. (c) Amplitude of the object wavefront reconstructed with the non-linear method, after
generation of the speckle hologram, corresponding to (d) a zero-order-free spectrum after reconstruction.

term, showing no zero-order left in the center of the spectrum. The three other quadrants were filtered out during the
reconstruction process, as explained in Section 2.2 and shown in Eq. (5).

The simulation presented in this Section shows that non-linear reconstruction can be applied to rough samples,
giving rise to speckle holograms. However, one should note that this type of signal can lead to several issues if not
handled properly. The non-linear reconstruction method requires that the amplitude of the reference wave has to be
strictly stronger than that of the object. This condition can be difficult to satisfy in the case of rough objects, in which
case random constructive interferences can lead to strong intensities in the object wave.

4. EXPERIMENTS

The measurements presented in this Section were performed on a reflection digital holographic microscope 1 (cf.
Fig. 3). The laser is split into two beams, with the first one reflecting on the specimen after having passed through the
microscope objective (MO). The diffracted wave is collected by the MO, and interferes with the second beam, which
curvature has been matched through a curvature lens. The resulting interference pattern is recorded in the Fresnel zone
with a CCD camera. The reconstruction can then be performed according to the methods described in Section 2.

4.1 Speckle holograms

In order to demonstrate the applicability of our technique to speckle holograms, we measured the reflected field on a
coin, which generates an approximately random phase, as it can identified in the spectrum of the hologram, shown in
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Figure 3: Optical sketch of the reflection holographic microscope. (P)BS: (polarizing) beamsplitter, λ/2: half-
waveplate, M: mirror, BE: beam expander, C: condenser lens, MO: microscope objective, FL: field lens, IM: image
plane, CL: curvature lens.

Fig. 4(a), where the constant spectral energy in the optical aperture indicates the random orientation of the reflected
beam.

The coin was measured with a low aperture system, where the reflected field is collected with an achromatic lens,
providing a magnification of 3×, with a laser wavelength of λ = 760 nm, in a configuration similar to the one shown
in Fig. 3.

(a)

100 um

(b)
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Figure 4: (a) Fourier tranform of the hologram made from the reflection on a coin. Amplitude of the reconstructed
object field with (b) standard linear Fourier filtering and (c) the non-linear method, where the zero-order, identified by
the dotted square is suppressed.

We reconstructed the hologram by filtering a quadrant of the Fourier plane (cf. dashed line in Fig. 4(a)), and
employed both linear and non-linear method. The object is the letter “H” of the word “Helvetia” engraved on a Swiss
coin. The zero-order can be readily identified in the amplitude reconstructed with linear filtering, as presented in
Fig. 4(b), where the object auto-correlation position is emphasized with a dotted square. On the other hand, the non-
linear method provides a zero-order-free amplitude, as shown in Fig. 4(c), where the auto-correlation in the top-right
of the image have been suppressed, and no ghost in the reconstruction can be identified.



4.2 Resolution improvement

As stated before, suppressing the zero-order makes it possible to extend the usable bandwidth for the imaging order.
We showed that in the context of off-axis DHM, enabling the use of a full quadrant of the Fourier plane leads to
diffraction-limited imaging.18 In order to demonstrate the advantage in resolution provided by suppressing the zero-
order, we measured a mirror with a scratch by employing a setup using the configuration shown in Fig. 3, with a 20×
MO having a numerical aperture NA = 0.4, a wavelength of λ = 657 nm, and a camera pixel size of Δx = 6.45 μm.
The scratch generates strong spatial frequencies which disrupt the reconstructed phase signal.

20 um

(a)

NA      = 0.39eff

(b)

NA      = 0.28eff

(c)
Figure 5: (a) Phase of the scratched mirror reconstructed with the non-linear method. (b) Quadrant of the Fourier plane
containing the imaging order for the non-linear reconstruction. (c) Quadrant of the Fourier plane corresponding to the
linear reconstruction, where the imaging order was filtered with a smaller bandwidth to reach the same phase standard
deviation as for the non-linear method on the measured on the line shown in (a). Effective numerical apertures (NAeff)
corresponding to each reconstruction are shown in the spectra.

The reconstructed phase of the scratched mirror is shown in Fig. 5(a), in the case of the non-linear reconstruction
method. In order to estimate the effect of the components of the zero-order which overlap with the imaging order, we
filtered the spectrum after reconstruction to suppress out-of-band noise, as presented in Fig. 5(b). The imaging order
has an extent of a = 209 pixels, so that a circular mask slightly larger was employed for filtering.

Through the diameter of the bandwidth of the imaging order, one can calculate the corresponding effective numer-
ical aperture NAeff of the optical system as18

NAeff =
aMλ

2NΔx
(7)

where M is the magnification of the system, and N is the resolution of the camera in pixels. For the case of non-linear
reconstruction shown in Fig. 5(b), this leads to NAeff,NL = 0.39, which is very close to the nominal value of the MO.

We measured the standard deviation of the phase on a line situated on the flat surface of the mirror (see dashed line
in Fig. 5(a)), which gives a standard deviation for the non-linear reconstruction method of σ NL = 1.44◦. Measuring
the standard deviation at the same location on the phase map reconstructed with the standard linear method yields
σFT = 2.24◦. The large difference can be explained by the remaining zero-order auto-correlation, which induces
artifacts in the phase if not suppressed properly.

We then varied the diameter of the circular filter in the case of standard reconstruction in order to reach back the
phase standard deviation provided by the non-linear filtering, by suppressing the zero-order through standard spatial
filtering. This was reached for a diameter of 151 pixels, as shown in Fig. 5(c), leading to a standard deviation of
σ = 1.43◦. However, a filter of this diameter corresponds to an effective numerical aperture of NA eff,FT = 0.28, thus
dramatically decreasing the spatial resolution of the image. This shows the ability of non-linear filtering to extend the
spatial resolution of images obtained through DHM, without the cost of disrupting the phase signal with artifacts.



5. CONCLUSION

We have experimentally validated a new non-linear reconstruction technique for digital holography. This technique has
been shown to be efficient for suppressing the object zero-order term. We also showed that it improves the resolution
of the reconstruction, since a full quadrant of the Fourier spectrum can be used for recording, contrary to a fraction of
it in the case of standard filtering. We could demonstrate this advantage experimentally in cases where the full optical
resolution can be achieved while not having artifacts of the object auto-correlation. This leads to diffraction-limited
imaging for off-axis digital holographic microscopy, while retaining the one-shot feature of this technique. We also
showed that this method can be employed with low aperture systems for reconstructing speckle holograms.

This algorithm can be applied in standard experimental conditions. The only additional requirement is that the
reference amplitude has to be stronger than that of the object, and that the imaging order has to be contained in one
quadrant of the Fourier spectrum. Experiments showed that this algorithm is effective even in the case of a strong
spectral overlap between the zero-order and the diffraction orders.

The proposed method is therefore particularly suitable for measurements with low magnification, where the overlap
between various orders is inevitable, if one wants to keep the full resolution provided by the optical system. The image
quality improvement can also be used for other recording conditions, since spectral overlap can also occur in case of
high magnification measurements.
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