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Abstract

The topic of this thesis is the development of new algorithmic reconstruction meth-
ods for quantitative phase imaging (QPI). In the past decade, advanced QPI has
emerged as a valuable tool to study label-free biological samples and uncover their
3D structural information. This unique tool takes advantage of the scattering of
light that results from the complex interplay between the incident electromagnetic
wave and the specimen of interest. Yet, the reconstruction process presents numer-
ous challenges in part due to the nonlinear nature of light scattering.

In this thesis, we investigate an accurate nonlinear wave-propagation model that
relies on the Lippmann-Schwinger (LiSc) equation and apply it to 3D QPI within
a variational framework. Our first contribution is a proper discretization of LiSc
and a computationally efficient implementation of the nonlinear model.

Using our novel forward model, we formulate an inverse-scattering problem
within a modern variational framework and solve it to recover the 3D refractive-
index (RI) map of a sample when the measurements are complex-valued. In such
a setting, the sample is probed with a series of tilted incident waves, while the
complex-valued waves are recorded for each illumination. Our algorithmic recon-
struction involves a nontrivial proximal gradient-based iterative scheme that re-
quires the Jacobian matrix of the nonlinear operator, for which we are able to
derive an explicit expression. By accounting for multiple scattering and adding
suitable prior knowledge, our results show that we significantly improve the quality
of reconstruction over the state of the art.

We then adapt our LiSc model to intensity-only measurements, which has the
advantage of simplifying the acquisition setup. We solve this harder inverse problem
by leveraging recent advances in proximal algorithms. Our method obtains RI maps
with a quality similar to that obtained from complex measurements.
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Finally, we propose an extension of single-molecule localization microscopy. This
modality delivers nanoscale resolution by sequentially activating a subset of fluores-
cent labels and by extracting their superresolved position. The emission patterns of
each label can be distorted by the sample, which reduces the localization accuracy
if not accounted for. Here, we exploit those sample-induced aberrations to recover
the RI map. We propose an optimization framework in which we reconstruct the
RI map using LiSc and optimize the label positions in a joint fashion. Our results
show that we effectively recover the RI map of the sample and further improve the
localization.

Keywords: Quantitative phase imaging, nonlinear inverse problem, optical
diffraction tomography, Lippmann-Schwinger equation, computational microscopy,
single-molecule localization microscopy



Résumé

Le sujet de cette thèse est le développement de nouvelles méthodes de reconstruc-
tion algorithmique pour l’imagerie quantitative de phase (IQP). Au cours de la
dernière décennie, IQP s’est imposée comme un précieux outil pour étudier des
spécimens biologiques sans marqueur et découvrir leurs informations structurelles
tridimensionnelles (3D). Cet outil unique exploite la dispersion de la lumière qui
résulte de l’interaction complexe entre l’onde électromagnétique incidente et le spé-
cimen étudié. Cependant, le processus de reconstruction présente de nombreux défis,
notamment en raison de la nature non-linéaire de la dispersion de la lumière.

Dans cette thèse, nous étudions un modèle non-linéaire de propagation des ondes
de haute fidélité qui repose sur l’équation de Lippmann-Schwinger (LiSc) et nous
l’appliquons à l’IQP 3D dans un cadre variationnel. Notre première contribution
est une discrétisation appropriée de LiSc et une implémentation efficace du modèle
non-linéaire.

à l’aide de notre nouveau modèle physique, nous formulons un problème de dis-
persion inverse dans un cadre variationnel moderne et le résolvons pour reconstruire
le volume d’indice de réfraction (IR) 3D d’un spécimen lorsque les mesures sont à
valeur complexe. Dans un tel contexte, le spécimen est sondé avec une succession
d’ondes incidentes à orientations variées, tandis que les ondes à valeur complexe
sont mesurées pour chaque illumination. Notre reconstruction algorithmique im-
plique un schéma itératif non trivial basé sur le gradient proximal qui nécessite
la matrice jacobienne de l’opérateur non-linéaire, dont nous sommes capables d’en
dériver une expression explicite. en tenant compte de la dispersion multiple et en
ajoutant des connaissances préalables appropriées, nos résultats montrent que nous
améliorons considérablement la qualité de la reconstruction par rapport à l’état de
l’art.
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Nous adaptons ensuite notre modèle LiSc aux mesures d’intensité uniquement,
ce qui présente l’avantage de simplifier la configuration du système d’acquisition.
Nous résolvons ce problème inverse plus difficile en tirant parti des progrès ré-
cents des algorithmes proximaux. Notre méthode permet d’obtenir des volumes
d’IR d’une qualité similaire à celle obtenue à partir de mesures complexes.

Enfin, nous proposons une extension de la microscopie de localisation de mo-
lécules isolées. Cette modalité permet d’obtenir une résolution à l’échelle nanomé-
trique en activant séquentiellement un sous-ensemble de marqueurs fluorescents et
en extrayant leur position superrésolue. Les patterns d’émission de chaque mar-
queur peuvent être déformés par le spécimen, ce qui réduit la précision de la locali-
sation. Ici, nous exploitons ces aberrations induites par le spécimen pour récupérer
le volume d’IR. Nous proposons un schéma d’optimisation dans lequel nous recons-
truisons le volume d’IR en utilisant LiSc et optimisons la position des marqueurs
de manière simultanée. Nos résultats montrent que nous pouvons reconstruire le
volume d’IR du spécimen et que nous améliorons la localisation.

Mots-clés : Imagerie quantitative de phase, problème inverse non-linéaire, to-
mographie par diffraction optique, équation de Lippmann-Schwinger, microscopie
computationnelle, microscopie à localisation de molécules isolées.



Sometimes science is more art than
science.
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Notations

Scalars and continuously-defined functions are denoted by italic letters (e.g., ⌘ 2 R,
g 2 L2(R)). The complex conjugate of v 2 C is denoted by v⇤. Vectors and matrices
are denoted by bold lowercase and bold uppercase letters, respectively (e.g., f 2 RN ,
G 2 CN⇥N ). For a vector f 2 RN , kfk stands for its `2-norm. Other p-norms will
be specified with an index (i.e., k · kp). The nth element of a vector is denoted as
f [n] or fn. Similarly, the nth column of a matrix X 2 RM⇥N is denoted as xn or
[X]n. The notation G

H refers to the conjugate transpose of the matrix G 2 CN⇥N .
We denote by F the discrete Fourier transform (DFT) defined in 1D by (Fv)[k] =PN/2

n=�N/2+1 v[n]e
�2j⇡
N nk (The higher-dimension DFT follows by recursive applica-

tion of the 1D DFT along each dimension). The notations f̂ and f̂ refer to the
continuous Fourier transform of f and the discrete Fourier transform of f , respec-
tively. Alternatively, F{ · } and F

�1
{ · } denote the continuous Fourier transform

and its inverse, respectively.
The reflection operator of a vector is denoted as f

_. The matrix IN 2 RN⇥N

is the identity matrix and diag(f) 2 RN⇥N is a diagonal matrix formed out of the
entries of f 2 RN . The notation 1M = (1, 1, . . . , 1) 2 RM stands for an M -length
vector of ones. Similarly, 0M denotes a vector of M zeros.

Finally, ⇤, �, and ↵ stand for discrete convolution, Hadamard product and
pointwise division, respectively, and [[1;N ]] := [1 . . . N ].
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Abbreviations

QPI quantitative phase imaging
3D three-dimensional
RI refractive index
ODT optical diffraction tomography
LiSc Lippmann-Schwinger
LSm Lippmann-Schwinger based model
SMLM single-molecule localization microscopy
FRC Fourier ring-correlation
DFT discrete Fourier transform
BPM beam propagation method
IBA iterative Born approximation
SSNP split-step non-paraxial method
MLB multi-layer Born model
SEAGLE series expansion with accelerated gradient descent

on Lippmann-Schwinger equation
2D two-dimensional
DHM digital holography microscopy
FP Fourier ptychography
DDA discrete dipole approximation
GS Gerchberg-Saxton
CG conjugate-gradient method
BiCG biconjugate-gradient stabilized method
NAGD Nesterov accelerated gradient descent
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xvi Abbreviations

TV total variation seminorm
HS Hessian-Schatten seminorm
FBS forward-backward splitting
SNR signal-to-noise ratio
ADMM alternating direction method of multipliers
LFR light-field refocusing
SSIM structural similarity index measure
RMSE root-mean-square error
PUMA phase unwrappping max-flow/min-cut
IRTV iteratively reweighted total variation
CNN convolutional neural network
PUDIP phase unwrapping with deep image prior
GA Goldstein’s algorithm
LS Least-squares algorithm
RSNR regressed signal-to-noise ratio
SLM spatial light modulator
MSE mean-square error
RMSMD root-mean-square minimum distance
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Introduction

Computational microscopy is a research field at the intersection of optics and com-
puter science. It tightly integrates the design of acquisition apparatus with algorith-
mic reconstructions to reveal otherwise-inaccessible information. By relying on such
synergy, quantitative phase imaging (QPI) uncovers the three-dimensional (3D)
structural information of label-free biological samples. The topic of this thesis is
the development of new algorithmic reconstruction methods for QPI. In this intro-
duction, we first give an overview of the scientific context in which this thesis takes
place and we then summarize our contributions.

Background

Optical microscopes are essential tools for observing objects that are too small to
be seen by the naked eye. Since their rise in the late 19th century, these instruments
have played a central role in scientific discoveries with a tremendous impact on our
understanding of diseases, and are now commonly used in medicine and biology.

These apparatus generate magnified images by illuminating objects with visible
light and by using a system of lenses. There are two main categories: incoherent
and coherent microscopes. Incoherent microscopy relies on fluorescent emitters to
generate images. The ability to label specific structures makes it the main imaging
tool for cell biology, but the usage of exogenous agents and intense illuminations
can alter the physiology of the specimens. On the other hand, coherent microscopy
obtains images by collecting the light shone on the sample, which makes it a label-

free microscopy. In the earliest coherent techniques, image contrast arose from the
absorption of light by the sample. However, most biological cells and tissues are

1



2 Introduction

transparent in the sense that they do not absorb light significantly and thus exhibit
very low contrast, i.e., their structures show little difference from the background.

Transparent objects were rendered visible only after the pivotal contribution of
Zernike in the 1940s [3]. Zernike’s phase-contrast microscope generates images from
light scattering. Instead of absorbing light, structures in biological specimens recess
the speed of light unevenly, which causes light scattering. Therefore, contrast stems
from the refractive index (RI) inhomogeneity in the specimen, as RI of a material
affects the speed of light through the material. Awarded the Nobel Prize in 1953
for his invention, Zernike may not have anticipated that phase-contrast microscopy
would be the precursor of the active research field of QPI.

QPI encompasses a family of coherent microscopes that extracts quantitative in-
formation about the sample from light scattering, and has seen exciting applications
in neuroscience and in biomedical studies [4, 5]. It has the ability to reveal nanoscale
features of transparent samples in two or three dimensions [4], which makes it an
appealing and complementary approach to fluorescence imaging modalities [6]. Fur-
ther, in QPI, samples can be studied over an arbitrary period of time without the
limitations of photobleaching and phototoxicity. By varying the characteristics of
the illuminations, optical diffraction tomography (ODT)—a subfield of QPI—even
uncovers the 3D RI maps of samples from a collection of 2D complex-valued mea-
surements. 2 These 3D RI maps are algorithmically reconstructed by resolving
an inverse-scattering problem [10, 11], which requires numerical modelling of the
acquisition process. This essentially involves models of light scattering (Chapter 1).

Early works deployed simplified physical models in the search for computational
efficiency [10–13], which led to a desirable linear relation between the quantity of
interest and the measurements. However, these models are approximative and thus
cannot achieve accurate reconstructions of more strongly scattering samples (e.g.,
thicker).

More recent works circumvented this limitation by partially accounting for the
nonlinear nature of light scattering [14, 15]; more specifically, for multiple-scattering
events. RI maps reconstructed from these nonlinear models exhibited remarkable
improvements over the ones obtained from linear models. These results showed

2 In ODT, 2D complex measurements are acquired by interferometric apparatus such as digi-
tal holography microscopy, which requires a careful design of the imaging system. Alternatively,
ODT from intensity-only measurements has the advantage of simplifying the acquisition appara-
tus [7–9]. However, this simplification makes the corresponding inverse-scattering problem more
challenging (Chapter 2).
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that, although these nonlinear models come at the cost of a computational burden,
they can dramatically improve the quality of reconstruction in QPI. However, the
existing methods do not capture all the multiple-scattering events or reflections,
which hinders the imaging of even more strongly-scattering samples. This calls for
more accurate models to achieve higher quality in such configurations.

Another challenge in ODT is ill-posedness—a common issue in inverse problems—
in the sense that there exist several solutions (i.e., RI maps) that produce similar
measurements. The effects of such ill-posedness are exacerbated in ODT by the so-
called missing-cone problem, which results in an axial resolution that is worse than
the lateral resolution (Chapter 2). To circumvent ill-posedness, the standard prac-
tice is to promote solutions with desirable properties by regularizing the RI map.
This strategy has been deployed for QPI with classical regularization schemes [14,
16, 17], but the particularity of the missing-cone problem offers a unique opportu-
nity to design dedicated and better-performing regularization techniques.

Contributions

This thesis contributes to the field of QPI at different levels. A central theme is
the quest for higher quality of reconstructions and efficient implementation of the
deployed methods. To achieve this objective, we develop more accurate models
of the acquisition process and efficient reconstruction algorithms including novel
learning-based regularization schemes. We consistently formulate our inverse prob-
lems within a variational framework. By doing so, we are able to leverage strong
commonalities between our works, at the mathematical and implementation levels.

The roadmap of the thesis is displayed in Fig. 1. We hereafter summarize our
contributions and refer to the relevant chapters and related publications.

Accurate Discretization of the Lippmann-Schwinger (LiSc)
Equation (Chapter 3)
Under the theory of scalar diffraction, the LiSc equation governs light scattering.
We properly discretize the LiSc equation and propose a computationally efficient
implementation of the obtained nonlinear LiSc based model (LSm). Our method
effectively achieves higher accuracy than existing models while mitigating the com-
putational burden.
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Related Publications

E. Soubies, T.-a. Pham, and M. Unser, “Efficient inversion of multiple-scattering model for
optical diffraction tomography”, Optics express, vol. 25, no. 18, pp. 21 786–21 800, 2017.
doi: 10.1364/oe.25.021786
T.-a. Pham, E. Soubies, A. Ayoub, J. Lim, D. Psaltis, and M. Unser, “Three-dimensional
optical diffraction tomography with Lippmann-Schwinger model”, IEEE transactions on
computational imaging, vol. 6, pp. 727–738, 2020. doi: 10.1109/tci.2020.2969070

ODT from Complex Measurements (Chapter 4)

Using our novel forward model, we formulate an inverse-scattering problem within
a modern variational framework and solve it to recover the 3D RI map of the sam-
ple when the measurements are complex-valued. Our algorithmic reconstruction
involves a nontrivial proximal gradient-based iterative scheme that requires the Ja-
cobian matrix of the nonlinear operator, for which we are able to derive an explicit
expression. By accounting for multiple scattering and adding suitable prior knowl-
edge, we significantly improve the quality of reconstruction over the state of the
art.

Further, we develop a novel adaptive regularization scheme that mitigates the
effects of the missing-cone problem [20]. Our dictionary-learning-based approach
learns 2D features of the lateral planes from the specimen and promotes such fea-
tures on all the planes.

Related Publications

E. Soubies, T.-a. Pham, and M. Unser, “Efficient inversion of multiple-scattering model for
optical diffraction tomography”, Optics express, vol. 25, no. 18, pp. 21 786–21 800, 2017.
doi: 10.1364/oe.25.021786
T.-a. Pham, E. Soubies, A. Ayoub, J. Lim, D. Psaltis, and M. Unser, “Three-dimensional
optical diffraction tomography with Lippmann-Schwinger model”, IEEE transactions on
computational imaging, vol. 6, pp. 727–738, 2020. doi: 10.1109/tci.2020.2969070
T.-a. Pham, E. Soubies, A. Ayoub, D. Psaltis, and M. Unser, “Adaptive regularization
for three-dimensional optical diffraction tomography”, in Proceedings of the seventeenth
IEEE international symposium on biomedical imaging (ISBI’20), Iowa City IA, USA,
2020, pp. 182–186

http://dx.doi.org/10.1364/oe.25.021786
http://dx.doi.org/10.1109/tci.2020.2969070
http://dx.doi.org/10.1364/oe.25.021786
http://dx.doi.org/10.1109/tci.2020.2969070
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ODT from Intensity-only Measurements (Chapter 5)

We propose a versatile reconstruction framework to tackle the corresponding inverse-
scattering problem with any physical model. We split the optimization task in a
way that decouples the complex-field-based reconstruction from the phase retrieval.
This allows us to take advantage of our previous contributions and of proximity op-
erators for phase retrieval [21]. In our experiments, we reconstruct RI maps from
intensity-only measurements with quality similar to the ones recovered from com-
plex measurements. This shows that, in some settings, intensity information is
sufficient for recovering RI maps.

Related Publications

T.-a. Pham, E. Soubies, A. Goy, J. Lim, F. Soulez, D. Psaltis, and M. Unser, “Versatile
reconstruction framework for diffraction tomography with intensity measurements and
multiple scattering”, Optics express, vol. 26, no. 3, pp. 2749–2763, 2018. doi: 10.1364/oe.
26.002749
T.-a. Pham, E. Soubies, J. Lim, A. Goy, F. Soulez, D. Psaltis, and M. Unser, “Phaseless
diffraction tomography with regularized beam propagation”, in Proceedings of the fifteenth
IEEE international symposium on biomedical imaging: From nano to macro (ISBI’18),
Washington DC, USA, 2018, pp. 1268–1271

Single-Molecule Localization Microscopy (SMLM) Meets ODT
(Chapter 6)

SMLM is an incoherent microscopy technique that delivers nanoscale resolution
by sequentially activating a subset of fluorescent labels and by extracting their
superresolved position algorithmically. The emission patterns of each label can be
distorted by the sample, which reduces the localization accuracy if not accounted
for. Here, we exploit those sample-induced aberrations to recover the RI map. We
propose an optimization framework in which we reconstruct the RI map using LSm
and optimize the label positions in a joint fashion. In our numerical experiments, we
effectively recover the RI map of the sample and further improve the localization—
the primary objective of SMLM. Our results lay the foundation of an exciting and
novel extension of SMLM.

http://dx.doi.org/10.1364/oe.26.002749
http://dx.doi.org/10.1364/oe.26.002749
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Related Publications

T.-a. Pham, E. Soubies, F. Soulez, and M. Unser, “Optical diffraction tomography from
single-molecule localization microscopy”, Optics communications, vol. 499, p. 127 290,
2021. doi: 10.1016/j.optcom.2021.127290
T.-a. Pham, E. Soubies, F. Soulez, and M. Unser, “Diffraction tomography from single-
molecule localization microscopy: Numerical feasibility”, IEEE international symposium
on biomedical imaging, 2021

Phase Unwrapping with Deep Image Prior (PUDIP) (Chap-
ter 7)
When acquired by an interferometric setup, the phase of 2D complex measurements
is wrapped (i.e., modulo 2⇡). In ODT from complex measurements, we usually
have to unwrap such 2D phase images from their wrapped counterparts. To tackle
challenging cases such as phase images of organoids, we propose an untrained deep-
learning-based method, which incorporates an explicit feedback mechanism. Our
comparisons show that our method significantly outperforms the state of the art.
While unwrapping challenging 2D phase images has its own merits, this approach
also paves the way for ODT for large samples (e.g., organoids) with higher reliability.

Related Publication

F. Yang, T.-A. Pham, N. Brandenberg, M. P. Lutolf, J. Ma, and M. Unser, “Robust Phase
Unwrapping via Deep Image Prior for Quantitative Phase Imaging”, IEEE transactions
on image processing, vol. 30, pp. 7025–7037, 2021. doi: 10.1109/tip.2021.3099956

Metrics for ODT and SMLM (Chapter 8)
In this chapter, our first contribution is a metric with no ground-truth require-
ment for ODT reconstructions, which could be of use for biological samples. Then,
we leverage the unique features of SMLM (i.e., list of estimated positions, image
rendering) to investigate metrics from new perspectives. Building upon a broad
benchmarking of localization software packages [27], we propose a novel optimal-
transport-based metric for SMLM which captures both detection and localization
performance and relies on solid mathematical foundations. Finally, we derive a

http://dx.doi.org/10.1016/j.optcom.2021.127290
http://dx.doi.org/10.1109/tip.2021.3099956
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closed-form expression of the Fourier ring-correlation (FRC) for the particular case
of SMLM, which allows us to investigate the classical way of computing FRC (i.e.,
SMLM image rendering and discrete Fourier transform (DFT)).

Related Publications

A. B. Ayoub, T.-A. Pham, J. Lim, M. Unser, and D. Psaltis, “A method for assessing
the fidelity of optical diffraction tomography reconstruction methods using structured
illumination”, Optics communications, p. 124 486, 2019. doi: 10 .1016/j .optcom.2019.
124486
Q. Denoyelle, T.-a. Pham, P. del Aguila Pla, D. Sage, and M. Unser, “Optimal-transport-
based metric for SMLM”, in Proceedings of the eighteenth IEEE international symposium
on biomedical imaging (ISBI’21), Nice, French Republic, 2021, pp. 797–801
T.-a. Pham, E. Soubies, D. Sage, and M. Unser, “Closed-form expression of the Fourier
ring-correlation for single-molecule localization microscopy”, in Proceedings of the sixteenth
IEEE international symposium on biomedical imaging: From nano to macro (ISBI’19),
Venice, Italian Republic, 2019, pp. 321–324

http://dx.doi.org/10.1016/j.optcom.2019.124486
http://dx.doi.org/10.1016/j.optcom.2019.124486
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Chapter 1

Physics of Wave Propagation:

Let There Be Light Scattering

Light scattering plays a key role in QPI. This physical phenomenon is governed
by the Maxwell equations, which describe light as vectorial electromagnetic fields.
The theory of scalar diffraction has the tremendous advantage of simplifying such
vectorial fields to complex scalar fields. Although scalar fields do not provide an
exact description of light scattering in an inhomogeneous medium, this framework
remains an excellent approximation [31], and this thesis is developed within this
framework.1

In this chapter, we describe the underlying mathematics of light scattering. In
Section 1.1, we start from the wave equation and derive the equations that dictate
light scattering. In Section 1.2, we present existing numerical models which are
derived from these equations.

1 It is noteworthy that there exist methods that account for the vectorial nature of light, such
as the finite difference time domain [32] or the discrete dipole approximation [33], but at the cost
of a higher computational burden.

9
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Figure 1.1: A sample of RI ⌘(x) is immersed in a medium of index ⌘b and
illuminated by an incident plane wave (wave vector k). The interaction of
the wave with the object produces forward and backward scattered waves.

1.1 Theory of Scalar Diffraction: Continuous-Domain

Formulation

Let us consider an unknown object of RI ⌘ : ⌦! R that lies in the region ⌦ ✓ RD

(D 2 {2, 3}) within a medium of RI ⌘b 2 R, as depicted in Fig. 1.1. This sample is
illuminated by the incident plane wave

uin(x, t) = Re
⇣
u0e

j{k,x}�j!t

⌘
, (1.1)

where the wave vector k 2 RD specifies the direction of the wave propagation,
! 2 R denotes its angular frequency, and u0 2 C defines its complex envelope
(amplitude). The resulting total electric field u(x, t) satisfies the wave equation

�u(x, t)�
⌘2(x)

c2

@2u

@t2
(x, t) = 0, (1.2)
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where � =
DP

d=1

@
2

@x
2

d
is the Laplacian operator and c ' 3 ⇥ 108m/s is the speed

of light in free space. By substituting u(x, t) = Re
�
u(x)e�j!t

�
into (1.2), where

u(x) is the complex amplitude of u(x, t), we obtain the inhomogeneous Helmholtz
equation

�u(x) + k2
0⌘

2(x)u(x) = 0, (1.3)

where k0 = !/c is the propagating constant in free space. The total field u(x) is
the sum of the scattered field usc(x) and the incident field uin(x), which is itself
a solution of the homogeneous Helmholtz equation �uin(x) + k2

bu
in(x) = 0, where

kb = k0⌘b. Accordingly, (1.3) can be rewritten as [12]

�usc(x) + k2
bu

sc(x) = �f(x)u(x), (1.4)

where f(x) = k2
0(⌘

2(x) � ⌘2
b) defines the scattering potential function. It follows

that

usc(x) =

Z

⌦
g(x� x

0)f(x0)u(x0) dx0, (1.5)

where g(x) is the Green’s function of the shift-invariant differential operator (� +
k2
bI), where I is the identity operator. Specifically, g verifies �g(x) + k2

bg(x) =
��(x), where � is the Dirac distribution and the minus sign is a convention used
in physics. Under Sommerfeld’s radiation condition, g(x) is given by [34, and
references therein]

g(x) =

(
j
4H

(1)
0 (kbkxk), D = 2,

1
4⇡

ejkbkxk

kxk , D = 3.
(1.6)

There, H(1)
0 is the Hankel function of the first kind. Finally, the total field u(x) is

governed by the LiSc equation—an integral formulation of the Helmholtz equation

u(x) = uin(x) +

Z

⌦
g(x� x

0)f(x0)u(x0) dx0. (1.7)

In the next section, we present several approximations of (1.3) or (1.7) that
have been introduced in the litterature.



12 Physics of Wave Propagation

1.2 Numerical Models for Wave Propagation

Pioneering works developed simplified models which we denote as linear models,
because they yield a linear relation between the RI / scattering potential and the
total field. More recent studies investigated nonlinear models of wave propagation.
Although these models are computationally more expensive than the linear ones,
they exhibit a higher accuracy. Here, we briefly describe several models, with no
consideration for their respective validity. More complete descriptions can be found
in [14, 15, 35–39]. Without loss of generality and to simplify the presentation, we
consider that D = 3 and ⌦ = [�L/2, L/2]3 for L > 0.

1.2.1 Linear Models
Radon Approximation (X-Ray Transform)

The Radon approximation [35] only accounts for the phase delay of the incident
field that is induced by the scattering potential. Without loss of generality, we
consider that the incident field is a plane wave propagating along the x3-axis (i.e.,
k = (0, 0, kb)). We first denote the total field by

u(x) = a(x)ejkbx3 , (1.8)

where one can interpret (1.8) as a plane wave propagating along x3, modulated by
the complex envelope a : R3

! C [14]. Observing that k2
0⌘

2(x) = f(x) + k2
b
, (1.3)

reads as
�?u(x) +

@2

@x2
3

u(x) + (f(x) + k2
b
)u(x) = 0, (1.9)

where we explicitly write the Laplacian operators along the x3 direction and along
the transverse directions �? = @

2

@x
2

1

+ @
2

@x
2

2

. Separately, we have

@2

@x2
3

a(x)ejkbx3 =
@

@x3

✓
@a(x)

@x3
ejkbx3 + a(x)jkbe

jkbx3

◆

= ejkbx3

✓
@2a(x)

@x2
3

+ 2jkb

@a(x)

@x3
� k2

b
a(x)

◆
. (1.10)

By using (1.10) and substituting (1.8) into (1.9), we obtain

ejkbx3

✓
�? +

@2

@x2
3

+ 2jkb

@

@x3
+ f(x)I

◆
a(x) = 0. (1.11)
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The Radon approximation involves two simplifications. The first is the slowly-
varying envelope approximation [31, 40], which allows us to suppress the second
derivative of a with respect to x3, if |

@
2

@x
2

3

a| ⌧ |kb
@

@x3

|. In the second simplifica-
tion, the diffraction part is assumed to be negligible, i.e., the transverse Laplacian
operator �? is suppressed. Then, (1.11) reads as

@a(x)

@x3
=

j

2kb

f(x)a(x). (1.12)

The solution of (1.12) yields the Radon approximation

a(x) = a0e
j

2kb

R x3

�L/2
f(x1,x2,x

0
3
)dx

0
3 , (1.13)

where a0 = a(x1, x2,�L/2) = uin(x1, x2,�L/2). In (1.13), we see that the phase
of the total field u(x1, x2, L/2) = a0e

j

2kb

R L/2

�L/2
f(x1,x2,x

0
3
)dx

0
3ejkbL/2 is effectively pro-

portional to the line integral of the scattering potential along the direction of the
plane wave propagation.2

Born Approximation

Born approximation [12, 42] assumes that the sample is weakly scattering and
simplifies (1.7) to

u(x) = uin(x) +

Z

⌦
g(x� x

0)f(x0)uin(x0) dx0, (1.14)

where u ⇡ uin in the integral of (1.7). Now we see that the total field is linearly
dependent on the scattering potential. The (first-order) Born approximation only
accounts for single-scattering events.

2 In 2D, the Radon and X-ray transforms are equivalent. In 3D, the Radon transform integrates
along 2D planes while the X-ray transform integrates along lines [41].
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1.2.2 Nonlinear Models
Rytov Approximation

We refer the reader to [36] for a complete derivation of the Rytov approximation.
Here, we report the relation between the total field and the scattering potential

u(x) = uin(x) + exp

✓R
⌦ g(x� x

0)f(x0)uin(x0) dx0

uin(x)

◆
. (1.15)

Note that this (first-order) Rytov approximation only accounts for single-scattering
events.

Beam-Propagation Method (BPM)

In 3D, BPM [14, 43], also known as the multislice model [7, 9, 44, 45], propagates
the wave field along the direction x3 in a slice-by-slice manner. The 2D slice of the
total field u( · , · , x3 + �x3) is obtained from u( · , · , x3) by computing

u(x1, x2, x3 + �x3) = ejk0n(x)�x3

⇥ F
�1

8
<

:F{a( · , · , x3)}⇥ e
�j

!2
x1

+!2
x2p

k2

b
�!2

x1
�!2

x2

�x3

9
=

; . (1.16)

We see that BPM alternates between diffraction and refraction steps and, by con-
struction, ignores reflections.

Iterative Born Approximation (IBA)

IBA [15, 46] improves upon the first-order Born approximation by partially captur-
ing multiple-scattering events. IBA considers the K-term recursive model

uk(x) = uin(x) +

Z

⌦
g(x� x

0)f(x0)uk�1(x0) dx0, (1.17)

where u0 = 0 and k = 1, . . . ,K. Note that this iterative scheme can diverge for
samples with large RI [15].
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Split-Step Non-Paraxial Method (SSNP)

SSNP significantly improves upon BPM by propagating the derivative of the field
as well. We refer the reader to [37, 47, 48] for a detailed description of the method.

Multi-Layer Born Model (MLB)

MLB significantly outperforms BPM by modeling the refraction step more accu-
rately [38], while conserving the fast computation of BPM. We can interpret the
refraction step of BPM as a simple Radon approximation; in MLB, the authors
adopted the first-order Born approximation instead. More precisely, the total field
at each 2D slice acts as the incident field of the next slice (see (1.14)). Further, they
also derive a similar model which is compatible with a reflective imaging system.

Modified Born Series

In [49–51], the authors improve upon IBA by adopting a modified Green’s function
in the recursive formula. This makes the convergence conditions much less stringent
while conserving the fast computation of IBA. This model accounts for multiple-
scattering events as well as reflections.

Series Expansion with Accelerated Gradient Descent on
Lippmann-Schwinger Equation (SEAGLE)

In [52], the authors numerically solve (1.7) to compute the total field, which ac-
counts for multiple-scattering events as well as reflections. We will provide a more
detailed description in Chapter 3.

Machine Learning Regularized Solution of the Lippmann-Schwinger Equa-
tion

In [53], the authors solve (1.7) by using a recurrent neural network with long short-
term memory. Once trained, the network surprisingly generalizes well to scattering
potentials that differ from the training set.
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1.3 Summary

In this chapter, we introduced the Helmholtz and LiSc equations that govern the
physics of light scattering in an inhomogeneous medium. Under diverse assump-
tions, many approximate models can be derived from these equations. In general,
a more accurate model comes at the price of a higher computational cost. In the
next chapter, we will give an overview of QPI. We will see that numerical light
scattering models play a key role in QPI; in particular, their accuracy is crucial to
the quality of the recovered volumes.



Chapter 2

Quantitative Phase

Imaging (QPI)

QPI encompasses a large family of label-free microscopes. They have emerged as
valuable tools for recovering structural information about cells and tissues. This
unique ability makes QPI a complementary method to fluorescence microscopy,
while exhibiting reduced phototoxicity and no photobleaching. In the past decades,
several QPI modalities were developed, going from two-dimensional (2D) to 3D
imaging, with the more recent variants relying on algorithmic reconstructions. By
illuminating the sample with light, QPI modalities have the ability to reveal struc-
tural information without any label. At the heart of this unique feature lies the
complex physics of light scattering which was detailed in Chapter 1. For most bio-
logical specimens, incident light as a complex scalar field will mainly undergo phase
change by the RI inhomogeneity of the sample.

In this chapter, we give an overview of QPI modalities with a particular empha-
size on light-scattering models. We then present a reconstruction framework that
is commonly used in QPI.

17
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2.1 Two-dimensional (2D) QPI: All You Need Is

Phase

2D QPI modalities obtain images that represent quantitative maps of the specimen-
induced phase delays [54].1 Since microscope objectives can only record intensities
of wave fields, several techniques have been developed in the past decades to measure
phase images [4]. Here, we briefly present the main modalities in 2D QPI. Note
that there exist a plethora of other variants that are well described in [4, 55–58].

2.1.1 Digital Holography Microscopy (DHM)

The working principle of DHM stems from the seminal work of Gabor [59], which
exploits interference between the incident and total fields. DHM splits the incident
field into an object beam that illuminates the sample and a reference beam [60].
After its propagation through the sample, the first beam is distorted by the sample,
thus introducing phase delays. By contrast, the reference beam has a controlled
phase perturbation. Both beams are then rejoined by a beam splitter to interfere
and the resulting hologram is recorded by the imaging system. To understand the
rationale behind this technique, consider the recorded hologram with the incident
field uin : R2

! C

I(y1, y2) = |u(y1, y2) + uin(y1, y2)e
j�(y1,y2)|

2

= |u(y1, y2)|
2 + |uin(y1, y2)|

2 + 2hu(y1, y2), u
in(y1, y2)e

j�(y1,y2)i

= |u(y1, y2)|
2 + |uin(y1, y2)|

2

+ 2|u(y1, y2)||u
in(y1, y2)| cos(�(y1, y2)� �(y1, y2)), (2.1)

where � : R2
! R is the controlled phase perturbation, and, u : R2

! C and
� : R2

! R denote the total field and its phase, respectively. Here, the quantity
of interest is the cross-term that contains the phase information. Phase-shifting
interferometry acquires M intensity measurements with incremented phase delays
which are spatially constant in the incident field (i.e., �(y1, y2) = �m, for m =
1, . . . ,M). Generally, � is determined from four intensity measurements using �m =

1 From another perspective, the Radon approximation applies here (Chapter 1).
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Fourier transform of I |u| (zoom) � (zoom)

Figure 2.1: Principle of off-axis DHM. Left: Fourier transform of the
acquired intensity image (log(1 + |Î|)). The circle indicates the filter that
allows extraction of the complex field. Middle and Right: Amplitude and
phase image, respectively.

{0,⇡/2, 3⇡/2,⇡} [61] and is given by

�(y1, y2) = arctan

✓
I3⇡/2(y1, y2)� I⇡/2(y1, y2)

I0(y1, y2)� I⇡(y1, y2)

◆
. (2.2)

Alternatively, off-axis interferometry circumvents the need for several intensity mea-
surements by adding a spatially-varying phase perturbation �(y1, y2) = ↵1y1 +
↵2y2 [62] instead. By doing so, the cross-term is modulated, which shifts the quan-
tity of interest in the Fourier domain. Then, a simple filtering allows the recovery
of the complex total field (i.e., in the Fourier domain, the filter is a disk shifted
according to �(y1, y2)). We display in Fig. 2.1 the different steps in off-axis DHM.

2.1.2 2D Fourier Ptychography (FP)
2D FP is another popular approach to recover phase images [63–67]. FP relies on
varying the illumination angles of the incident field and algorithmically reconstructs
a phase image from multiple intensity measurements. In 2D FP, reconstruction
methods assume that the sample is thin (i.e., 2D) and establish a direct mapping
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between the intensity measurements and the Fourier transform of the phase image.
For further details, we refer the reader to the excellent review [55].

2.2 Three-dimensional (3D) QPI

Advanced QPI modalities reveal 3D structural information using a series of 2D
measurements [68]. Similar to 2D FP, algorithmic reconstructions exploit the an-
gular diversity of the illuminations to get 3D RI maps (or equivalently scattering-
potentials maps). RI maps are an intrinsic property of the samples from which
other biologically relevant quantities can be derived [69]. We will see that there
exist many variants within this very rich family of tomographic imaging systems.
We draw a distinction between the class of 2D measurements used to reconstruct
the RI map: complex or intensity-only measurements. In the first category, the
imaging modality is usually referred to as ODT. The measurements are acquired
with an interferometric apparatus (e.g., DHM). In the second category, 3D FP [7] or
intensity diffraction tomography [8] rely on intensity-only measurements, which has
the advantage of simplifying the acquisition apparatus. LED array is a popular illu-
mination system, although other alternatives exist [70]. In this thesis, we abusively
refer to both categories as ODT from complex or intensity-only measurements.

2.2.1 Reconstruction from Complex Measurements
In the early works [10, 11], RI reconstruction is performed using a suitable vari-
ant of the filtered back-projection algorithm (FBP) [88]. This kind of approach is
computationally efficient, but the underlying model ignores the effect of diffraction.
Under the assumption that the scattered field is weak compared to the incident one,
improved methods rely on the first Born model [12, 71], the first Rytov model [13,
73], or other more advanced variants [89, 90] (Chapter 1). All are approxima-
tions of the LiSc equation. Such simplifications lead to computationally-efficient
back-propagation algorithms for reconstructing RI maps. Similar to FBP, these al-
gorithms draw a direct mapping between quantities derived from the measurements
and the 3D Fourier transform of the RI maps [12, 13, 36]. The main difference is
that the Born model works directly with the scattered field, whereas the Rytov
model uses the unwrapped phase of the measurements—an inverse problem which
we will detail in Chapter 7. Several studies have shown that the Rytov model yields
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more accurate reconstructions than the Born model [16, 73, 91]. Yet, the validity
of these linear models is mainly restricted to weakly scattering samples.

To overcome this limitation, nonlinear models that account for multiple scat-
tering have been proposed, such as BPM [14, 87], the contrast source-inversion
method [92, 93], hybrid methods [84, 94], the conjugate-gradient method [79, 80,
83], the IBA [15], or an improved version [51]. Finally, within a regularized varia-
tional approach, iterative forward models that solve the LiSc equation have been
recently used in [18, 52, 84]. Note that this is also closely related to the dis-
crete dipole approximation (DDA) and the methods of moments mainly used in
microwave imaging [33], although recent works applied DDA to a vectorial imag-
ing system [84]. The reader can refer to [68] for a review on ODT reconstruction
methods for bioimaging.

2.2.2 Reconstruction from Intensity-only Measurements

The more challenging problem of reconstructing 3D RI maps from intensity-only
measurements was recently addressed in the context of FP, although related meth-
ods were previously proposed in other domains [72, 74, 75, 78, 81, 82, 85, 86, 95, 96].
In 3D FP, the acquisition procedure is similar to 2D FP, but algorithmic reconstruc-
tions account for the three dimensionality of the sample instead [7, 77, 97]. The
conventional reconstruction scheme consists of alternating between recovering the
measurement phase and reconstructing the RI of the sample. The phase retrieval
is generally performed with the Gerchberg-Saxton (GS) projection operator [98],
while the RI reconstruction step is essentially the same as in ODT (intensity and
phase). Over the years, the forward models have evolved from “linear” [63, 97]2 to
nonlinear [7, 9, 38, 45, 51, 77]. For more details, we refer the reader to [99]. In
Table 2.1, we have compiled a (non-exhaustive) list of reconstruction methods for
both holographic (i.e.,intensity and phase) and intensity-only measurements; note
that we also refer to the relevant chapters of this thesis in the table.

2 To be accurate, the actual forward model includes a squared magnitude, which is nonlinear
per se. Here, “linear” solely refers to the underlying light-scattering model.
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2.3 Variational Approaches for Optical Diffraction

Tomography (ODT)

In the variational framework, we estimate the quantity of interest (e.g., scatter-
ing potential f 2 RN ) from the measurements {yq 2 RM

}q2[1...Q] by solving the
optimization problem

bf 2
(

arg min
f2B

QX

q=1

D(Hq(f),yq) + ⌧R(Lf)

)
. (2.3)

The operator Hq : RN
! RM for q = 1, . . . , Q models the acquisition of measure-

ments, which, in ODT, involves numerical models for wave propagation (Chapter 1).
The functional D : RM

⇥RM
! R�0 measures the fidelity of the model to the data.

The regularization term R : RS⇥S
0
! R�0 promotes solutions with suitable prop-

erties. For instance, R = k · k1 promotes the sparsity of the quantity Lf , where
L : RN

! RS⇥S
0
is a linear operator (e.g., the identity, gradient, or Hessian opera-

tor). The scalar ⌧ > 0 is a tradeoff parameter that balances the effect of these two
terms. The set B represents physical constraints on the scattering potential (e.g.,
nonnegativity constraint B = RN

�0).
From a Bayesian point of view, we can relate D to the log-likelihood of the

noise distribution. Because the number of measurements M is much smaller than
the number of unknowns N , the data-fidelity term D does not generally admit a
unique global minimizer. The regularization term R(L · ) and the set B should thus
be chosen in order to discriminate between candidate solutions using the knowledge
that one has on the observed sample.

2.3.1 Limited Angles of Illuminations: Missing-Cone Prob-
lem

In general, the illumination angles are limited to a cone due to the numerical aper-
ture of objective lenses (Fig. 2.2). This restriction has strong implications on the
quality of recovered RI maps, which is usually referred to as the missing-cone prob-
lem. This generates anisotropic artifacts, which effects are more prominent along
the axial direction (i.e., the axis of the cone). Put simply, the lateral resolution is
better than its axial resolution. To circumvent this issue, reconstruction methods
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Figure 2.2: Cone of illuminations. The arrows represent the direction of
propagation of the illuminations which are limited to a cone around the
optical axis.

usually rely on regularization to fill the missing axial information; this strategy
was shown to significantly improve the quality of the reconstruction [16, 73]. More
recently, deep-learning methods were designed for that specific problem [100–103].

It is noteworthy that there exist other imaging systems which circumvent such
issues by rotating the sample instead of (or in addition to) varying the illumination
angles [68, 104–106].

2.4 Summary

In this chapter, we presented the basics of QPI and its numerous 2D and 3D vari-
ants. To recover 3D RI maps of the sample, ODT—a subfield of QPI—usually
relies on solving an optimization problem. We described the mathematical formal-
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ism which underlies such variational approaches. We also characterized a common
issue met in 3D QPI: the missing-cone problem. Stemming from the design of
imaging systems, this problem generates artifacts which are more prominent along
the optical axis. This chapter allows us to emphasize the determining role of two
elements: the forward model H which simulates light scattering and the regular-
ization term R that imposes some prior knowledge on the reconstructed volume.
Higher accuracy of H usually improves the quality of reconstruction and the prior
knowledge alleviates the negative effects of the missing-cone problem and other
mismatches.

In the next chapters, we will present our contributions on new algorithmic re-
construction methods for ODT. We start in the following chapter with an accurate
nonlinear physical model based on the LiSc equation, and our tricks to alleviate
the inherent computational burden.
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Chapter 3

Accurate Discretization of the

Lippmann-Schwinger (LiSc)

Equation

3.1 Introduction

In this chapter, we propose an accurate and efficient model for wave propagation
that is based on the LiSc equation and accounts for multiple-scattering events (both
reflection and transmission).1

3.2 Contributions

Our contributions are twofold. First, we properly discretize the LiSc equation to
obtain a linear system; second, we devise efficient numerical to solve this linear
system. In particular, we efficiently handle the singularity of the Green’s function
with the help of a truncation trick and a memory-saving strategy described in
Sections 3.5 and 3.6, respectively. In Section 3.7, we compare the accuracy of

1 The content of this chapter is based on [18, 19].
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28 Accurate Discretization of the LiSc Equation

the proposed model with other models for wave propagation. In Section 3.8, we
compare different algorithms for solving the obtained linear system.

3.3 Continuous-Domain Formulation

Here, we briefly recall the 3D continuous-domain formulation for the sake of com-
pleteness (Chapter 1). Let ⌘ : ⌦ ! R denotes the continuously-defined RI of a
sample whose support is assumed to be included in the region of interest ⌦ ⇢ R3.
Without loss of generality and to simplify the presentation, let us consider that
⌦ = [�L/2, L/2]3 for L > 0. The interaction of the sample with a monochromatic
incident field uin : R3

! C of wavelength � produces a scattered field usc : R3
! C.

The resulting total field u = usc + uin is governed by the LiSc equation

u(x) = uin(x) +

Z

⌦
g(x� z)f(z)u(z) dz, (3.1)

where f(x) = k2
b

�
⌘(x)2/⌘2

b � 1
�

is the scattering potential. Here, kb = 2⇡⌘b/� is
the wavenumber in the surrounding medium and ⌘b the corresponding RI. Finally,
g : R3

! C is the free-space Green’s function which, under Sommerfeld’s radiation
condition, is given by [34]

g(x) =
exp (jkbkxk)

4⇡kxk
. (3.2)

3.4 Discrete Formulation

Let us discretize ⌦ into N = n3 voxels.2 Then, the computation of the total
field u

sc
2 CN in the volume is given by [18, 52, 107]

u = (I�Gdiag(f))�1
u

in (3.3)

where I 2 RN⇥N is the identity matrix, diag(f) 2 RN⇥N is a diagonal matrix
formed out of the entries of f , and f 2 RN , u

in
2 CN , and u 2 CN are sampled

version of f , uin, and u within ⌦, respectively. The matrix G 2 CN⇥N is the discrete
counterpart of the continuous convolution with the Green’s function in (3.1).

2 The generalization to the case where there is a different number of points in each dimension
is straightforward.
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One will have noticed that (3.3) requires the resolution of a linear system. This
can be efficiently performed using a conjugate-gradient method [18] (CG) or a
biconjugate-gradient stabilized method [108] (BiCG) as we shall see. Needless to
say, the matrices G and P are never explicitly built. Instead, we exploit the fact that
the application of the corresponding linear operators can be efficiently performed
using the fast Fourier transform (FFT). Is is worthy to mention that we assume
that the incident field is perfectly known within ⌦ in this chapter.

3.5 Green’s Function Discretization Inside the Sup-

port

Because of the singularity of the Green’s function (3.2) as well as of its Fourier
transform (i.e., ĝ(!) = 1/(k2

b � k!k
2) with ! 2 R3), G in (3.3) cannot be defined

through a naive discretization of g. In this section, we describe how G has to be
defined in order to minimize the approximation error with respect to the continuous
model (3.1).

First, let us recall that we aim at computing the total field u only inside ⌦ and
that the support of f is itself assumed to be included in ⌦. Hence, (3.1) can be
equivalently written as, 8x 2 ⌦,

u(x) = uin(x) +

Z

⌦
gt(x� z)f(z)u(z) dz, (3.4)

where gt is a truncated version of the Green’s function. More precisely, gt is defined
by

gt(x) = rect

✓
kxk

2
p

3L

◆
g(x), (3.5)

where rect(x) = {1, |x|  1/2; 0, otherwise}. With this definition, one easily gets
the equivalence between (3.1) and (3.4), as illustrated in Fig. 3.1.

To the best of our knowledge, this observation has to be attributed to Vainikko
[109] but has then been revitalized by Vico et al. [110]. It is essential to a proper
discretization of the LiSc equation (3.1). Specifically, we have that

bgt(!) =
1

k!k2 � k2
b

✓
1� ej

p
3Lkb(cos(

p
3Lk!k) + jkb

p
3L sinc(

p
3Lk!k))

◆
(3.6)



30 Accurate Discretization of the LiSc Equation

f

⌦

L

p
DL

supp(gt( · � x0))

Figure 3.1: Illustration in dimension two (i.e., D = 2) of the equivalence
between (3.1) and (3.4). gt( · � x0) denotes gt shifted by x0 = (L/2, L/2).

for k!k 6= kb, which can be extended by continuity as

bgt(!) = j

 p
3L

2kb
�

ej
p

3Lkb

2k2
b

sin(
p

3Lkb)

!
(3.7)

when k!k = kb. The practical outcome is that (3.4) can now be discretized in the
Fourier domain since bgt is a smooth function.

We now show how gt ⇤ v, for v 2 L2(R3), can be numerically evaluated using
FFTs and we provide error bounds on the approximation. The proof is provided in
Appendix A.3.2.

Theorem 3.5.1. Let v 2 L2

�
[�L

2 ,
L

2 ]3
�

and v 2 CN
be the sampled version of

v using n > kbL/⇡ sampling points in each dimension (N = n3
). Let vp be

the p-times zero-padded version of v. Define h = L/n and � = 2⇡/(Lp). Then,

considering a trapezoidal quadrature rule for (3.4), we get that 8k 2 [[�n

2 + 1; n

2 ]]3

(Gv)[k] =
�
F

�1( bgt �cvp)
�
[k], (3.8)
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where bgt = (bgt(�q))
q2[[�np

2
+1;np

2
]]3 and cvp = Fvp.

Moreover, if v has (q� 1) continuous derivatives for q � 3 and a qth derivative

of bounded variations, we have the error bound

|(gt ⇤ v)(hk)� (Gv)[k]| 
Ctr

nq
+

Cal

nq�2
+

Ctp

p2
, (3.9)

where Cal
, Ctr

, and Ctp
are positive constants that are associated to the errors

due to the aliasing in v, the truncation of the Fourier integral, and the trapezoidal

quadrature rule used to approximate this integral, respectively.

Remark 3.5.1. Equation (3.8) is hiding a cropping operation. Indeed, the result

of F
�1( bgt�cvp) is defined on the grid [[�np

2 +1; np

2 ]]3 but we only retain the elements

that belong to [[�n

2 + 1; n

2 ]]3.

Remark 3.5.2. The assumption that n > kbL/⇡ , kb < ⇡/h ensures that the

“peaks” of |ĝt(!)| for k!k = kb are included in the frequency domain associated to

the DFT (i.e., [�⇡/h,⇡/h]3). This is a natural and minimal requirement to reduce

the approximation error.

From Theorem 3.5.1, one sees that the number of sampling points n controls
both the aliasing error and the error due to the truncation of the Fourier integral. It
is noteworthy that these bounds decrease with the smoothness of v (i.e., q). On the
other hand, the padding factor p controls the error that results from the trapezoidal
quadrature rule.

Remark 3.5.3. A simple argument suggests that the padding factor should be at

least p = 4 to properly capture the oscillations of bgt. Indeed, in the spatial domain,

the diameter of the support of gt is 2
p

3L ⇡ 3.4L. Hence, in order to satisfy the

Shannon-Nyquist criterion, the considered spatial domain should be at least of size

4L, which corresponds to a padding factor p = 4.

To assess the accuracy of the implementation of G provided by Theorem 3.5.1,
we consider the convolution of the Green’s function with a 3D Gaussian source
v(x) = exp(�kxk2/(2�2))/(�3(2⇡)

3

2 ). For this particular setting, an analytical
expression of g ⇤ v is known [110]. In Fig. 3.2, we report the relative error

✏rel =
kvexact �Gvk

kvexactk
, (3.10)
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Figure 3.2: Relative error (3.10) as a function of the number of discretiza-
tion points n per side of ⌦. The truncated Green’s function approach is
compared to a naive discretization of the Green’s function in the spatial
domain. The standard deviation of the Gaussian source is set to � = 0.4,
the size of the domain L = 1, and the wavenumber kb = 1.5. For the
truncated Green’s function approach, we set p = 4.

where vexact = ((g ⇤ v)[hk])
k2[[�n

2
+1;n

2
]]3 contains the samples of the analytical so-

lution. We compare the proposed discretization (Theorem 3.5.1) with a naive dis-
cretization of g in the spatial domain (by “cropping” the singularity). Clearly, the
truncated Green’s function approach is by far superior to a naive discretization of
g in the spatial domain.

3.6 Memory Savings

According to Theorem 3.5.1, an accurate computation of the field inside ⌦ requires
one to zero-pad the volume v. From Remark 3.5.3, we should set at least p = 4.
This can lead to severe computational and memory issues for the reconstruction
of large 3D volumes. Fortunately, as mentioned in [110], this computation can be
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Analytical solution Born BPM LSm

Figure 3.3: Simulated scattering of a monochromatic wave (� = 532nm)
by a bead embedded in water (⌘b = 1.3388). The bead has a diameter of
3� and a RI of 1.4388. The reported total fields are obtained through the
analytical solution, the Born model, and the proposed model for p = 4 and
h = �/16 (i.e., n = 144).

reformulated as a discrete convolution with a modified kernel that only involves the
twofold padding p = 2. We summarize this result in Proposition 3.6.1 and provide
a detailed proof in Appendix A.3.3. Moreover, we provide an expression of the
modified kernel that reveals how one can build it directly on the grid [[�n+ 1;n]]3.

Proposition 3.6.1. Let p 2 2N \ {0}. Then, 8k 2 [[�n

2 + 1; n

2 ]]3, we have that

�
F

�1( bgt �cvp)
�
[k] =

�
F

�1(cgp

t �cv2)
�
[k], (3.11)

where v2 is a twofold zero-padded version of v, and g
p

t is the modified kernel

g
p

t [k] =
8

p3

X

s2[[0; p
2

�1]]3

F
�1( bgt[

p

2 · � s])[k] e
�2j⇡
np k

T
s, (3.12)

3.7 Comparison of Models Accuracy

To conclude these comparisons, we compare the accuracy of the LiSc-based model
(LSm) with the popular Born approximation and BPM. To that end, we consider
the interaction of a plane wave with a bead since an analytical expression of the
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total field is known for this setting [111]. The total fields computed by the three
approaches are displayed in Fig. 3.3. In addition, we provide the theoretical total
field. One can appreciate the gain in accuracy that the proposed method brings
over the standard approximations used in ODT.

n = 1.88

n = 1.33

�5�

0

5�

Bead Setting

0 1 a.u.

Mie Solution

�5� 0 5�

�5�

0

5�

CG

�5� 0 5�

NAGD

Figure 3.4: Forward-model solution for a bead with radius 3� and a
contrast of 1 using CG (bottom-left) and NAGD (bottom-right), as well
as the Mie solution (top-right). The setting used for this experiment is
presented in the top-left panel. The colormap is the same for each figure.
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2� 3� 4�
101

102

103

rbead (� unit)

k "
0

Contrast 0.3

0.2 0.4 0.6 0.8 1

Contrast

rbead = 3�

CG
NAGD

Figure 3.5: Evolution of the number of iterations k"0
needed to let the

relative error (3.13) fall below "0 = 10�2 as function of bead radius (left)
and bead contrast (right).

3.8 Solvers for LiSc-based Model

There exist many quadratic optimization algorithms to solve (3.3) [112]. Liu et

al [52, 107] used the Nesterov accelerated gradient descent (NAGD), which al-
lowed them to auto-differentiate through the steps of the solver (as we shall see
in Chapter 4). In a non-optical regime, several works suggested that Krylov-based
methods [112] were suitable alternatives [84, 113, 114], such as the CG [115]. We
now provide numerical evidence that GC is more efficient than NAGD for solv-
ing (3.3). To this end, we consider a 2D circular object (bead) of radius rbead and
RI nbead immersed into water (nb = 1.333), as presented in Fig. 3.4 (top-left). In
such a situation, an analytic expression of the total field is provided by the Mie
theory [111, 116]. Hence, at each iteration k, we compute the relative error "k of
the current estimate u

k to the Mie solution uMie as

"k =
ku

k
� uMiek

2

kuMiek
2

. (3.13)
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In our experiment, the bead is impinged by a plane wave of wavelength � = 406 nm.
The region of interest is square with a side length of 16� (see top-left panel of
Fig. 3.4). It is sampled using 1,024 points along each side. We used a fine grid in
order to limit the impact of numerical errors related to discretization. The wave
source corresponds to the bottom border of this region. Then, as in [52, 107],
we refer to the RI nbead by its contrast with respect to the background medium,
defined as max(|f |)/(k2

0n
2
b). We show in Fig. 3.5 the evolution of k"0

, which is the
number of iterations needed to let the relative error (3.13) fall below "0 = 10�2.
One can observe that CG is much more efficient than NAGD, in particular for large
contrasts. Our comparison in terms of a number of iterations is fair because the
computational cost of one iteration is the same for both algorithms. Note that the
descent step of NAGD was adapted during the iterations following the same rule
as in [52, 107].

Finally, the solution obtained with the two algorithms for rbead = 3� and a
contrast of 1 are shown in Fig. 3.4. The analytic Mie solution is also provided for
comparison. From these figures, one can appreciate the high accuracy obtained by
solving (3.3), as first demonstrated in [52, 107].

3.9 Green’s Function Discretization Outside

the Support

As we will see in the next chapters, we are also interested in evaluating the total
field outside of ⌦ at M points, which involves another discretization of the Green’s
function G̃ 2 CM⇥N . In that case, we do not need to evaluate the Green’s function
at its singularity. In 2D settings, G̃ 2 CM⇥N is sometimes accessible explicitly [18,
52, 117]. By contrast, the scale of 3D settings prevents this approach. Fortunately,
we are interested in particular 3D settings in which the M points lie on a regular
grid embedded in a plane �. By exploiting such planarity, we can significantly
reduce the memory and the computational burden of the evaluation of G̃v.

Let x� > 0 be the axial position of the plane of interest � (i.e., 8x 2 �,
x3 = x�). Then, letting v = f ·u and expressing the integral in (3.1) using a
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numerical quadrature along the third dimension, we get, 8x = (x1, x2, x�) 2 �,

(g ⇤ v)(x) =

n
2X

k=�n
2
+1

h

Z

[�L
2

,
L
2
]2
g(x� zk)v(zk) dzk1

dzk2
, (3.14)

where zk = (zk1
, zk2

, kh).
From (3.14), g ⇤ v is computed as a sum of 2D aperiodic convolutions. Consid-

ering that the sampling step at the plane � is identical to that of the volume ⌦,
the 2D convolutions in (3.14) is evaluated in the same way as described in Theo-
rem 3.5.1. This strategy reduces the computational complexity of the application
of G̃ to O(nM log(M)). Note that, if the sampling step at the plane is q times that
of the volume (i.e., h0 = qh, q 2 N), one can simply downsample the result of the
above procedure by q.

3.10 Summary

In this chapter, we presented a model to simulate wave propagation that accounts
for multiple-scattering events. We properly discretized the LiSc equation and as-
sessed the accuracy and numerical efficiency of the obtained model. Our compar-
isons show that the proposed model (LSm) achieves high accuracy while mitigating
the computational burden.

Now that we are equipped with our accurate and efficient physical model, we
will tackle the challenging case of inverse-scattering problems in the next chapter.
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Chapter 4

ODT from Complex

Measurements

4.1 Introduction

In this chapter, we present a reconstruction framework for ODT from complex
measurements using our LiSc based model (LSm, see Chapter 3).1 We recall that,
in ODT, the acquisition setup sequentially illuminates the sample from different
angles. For each illumination, the outgoing complex total field (i.e., the scattered
field) is recorded by a DHM [60, 118]. Then, from this set of measurements, one
reconstructs a 3D RI map by solving an inverse-scattering problem. To understand
better the contributions of this chapter, we first present the challenges one typically
faces in 3D ODT.

4.2 Challenges in 3D ODT

So far, the use of the more sophisticated LiSc based models and DDA2 has been
mostly limited to microwave imaging [79, 119, 120] (see also the numerous references

1 The content of this chapter is based on [18–20].
2 The DDA is a model that accounts for polarization—the vectorial nature of light.
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listed in [121]). Although led by the same underlying physics, ODT differs from
microwave imaging on several aspects that further increases the difficulty of the
reconstruction problem.

• The direction of propagation of the incident wave is restricted to a small cone
around the optical axis (Fig. 4.1), resulting in the well-known missing-cone
problem [16] (Chapter 2).

• In typical ODT applications such as biology, the size of the sample is signif-
icantly larger (e.g., 100⇥) than the wavelength of the incident wave. This
requires a fine discretization that entails very large memory requirements.

• The large size of the detector leads to numerical challenges for the computa-
tion of the far-field.

• The benefit of a theoretical expression of the incident wave field, as used in
microwave imaging [121], is made unlikely in ODT due to unknown distortions
that are inherent to the system.

These challenges have hindered the adoption of sophisticated models in ODT, with
notable exceptions [84, 122] that focused on the reflective mode and considered
relatively simple non-biological samples.

4.3 Contributions

This chapter builds upon the prior works [18, 52, 117] that are dedicated to the res-
olution of the 2D inverse scattering problem using an LiSc-based model. We extend
these works to the 3D ODT problem. Our main contribution is the development of
an accurate and efficient implementation of the forward model in 3D. This is cru-
cial to obtain good reconstructions while keeping the computational burden of the
method reasonable for large-scale volumes. More precisely, we provide a description
on how to implement a LiSc-based model for inverse scattering by tackling these
challenging difficulties. These contributions complete the ones of Chapter 3—a
detailed description of the discretization of the Green’s function (inside and out-
side ⌦).
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• Estimation of the incident field (Section 4.4.3). We build the volume of the
incident field by numerical propagation of a real acquisition of it at the de-
tector plane. In particular, we propose a strategy that results in significantly
reduced numerical errors.

• Efficient computation of the gradient (Section 4.5.3). We rely on a gradient-
based optimization scheme to reconstruct the RI map, which requires the
Jacobian matrix of our nonlinear physical model. We derive an explicit ex-
pression of the Jacobian matrix and this allows us to reduce the memory and
computational burdens.

Finally, to deal with the missing-cone problem, we deploy a regularized vari-
ational reconstruction approach (Section 4.5). In Section 4.6, we present recon-
structions of biological samples for both simulated and real data, and compare
them to those from baselines methods. Further, in Section 4.7, we propose a novel
regularization scheme designed to mitigate the missing-cone problem.

4.4 Accurate and Efficient Implementation of the

Forward Model

For the sake of completeness, we briefly recall the LiSc equation in the continuous
domain. Let ⌘ : ⌦! R denotes the continuously-defined RI of a sample whose sup-
port is assumed to be included in the region of interest ⌦ ⇢ R3. Let us consider that
⌦ = [�L/2, L/2]3 for L > 0. The interaction of the sample with a monochromatic
incident field uin : R3

! C of wavelength � produces a scattered field usc : R3
! C.

The resulting total field u = usc + uin is governed by the LiSc equation

u(x) = uin(x) +

Z

⌦
g(x� z)f(z)u(z) dz, (4.1)

where f(x) = k2
b

�
⌘(x)2/⌘2

b � 1
�

is the scattering potential. Here, kb = 2⇡⌘b/� is
the wavenumber in the surrounding medium and ⌘b the corresponding RI. Finally,
g : R3

! C is the free-space Green’s function which, under Sommerfeld’s radiation
condition, is given by [34]

g(x) =
exp (jkbkxk)

4⇡kxk
. (4.2)
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�

⌦

L

L̃
⌘(x)
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q

Figure 4.1: Principle of ODT. The arrows represent the wave vectors
{k

in
q

}
Q

q=1 2 R3 of the Q incident plane waves {uin
q

}
Q

q=1 which are limited to
a cone around the optical axis.

Equation (4.1) completely characterizes the image formation model in ODT. Using
an interferometric setup, the total field u is recorded at the measurement plane
� = [�L̃/2, L̃/2]2, L̃ � L, of the camera. This measurement plane lies outside ⌦ at
a distance denoted by x� > 0. Finally, we denote by M = m2 the number of pixels
of the detector.

4.4.1 Discrete Formulation

To numerically solve the ODT inverse problem, (4.1) has to be properly discretized.
To do so, we first discretize ⌦ into N = n3 voxels.3 Then, the computation of the

3 The generalization to the case where there is a different number of points in each dimension
is straightforward.
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scattered field y
sc
2 CM at the camera plane � follows a two-step process [18, 52],

u = (I�Gdiag(f))�1
u

in (4.3)

y
sc = PG̃diag(f)u, (4.4)

where I 2 RN⇥N is the identity matrix, diag(f) 2 RN⇥N is a diagonal matrix
formed out of the entries of f , and f 2 RN , u

in
2 CN , and u 2 CN are sampled ver-

sion of f , uin, and u within ⌦, respectively. The matrix G 2 CN⇥N is the discrete
counterpart of the continuous convolution with the Green’s function in (4.1) (Sec-
tion 3.5). Similarly, G̃ 2 CM⇥N is a matrix that, given u and f inside ⌦, gives
the scattered field at the measurement plane � (Section 3.9). Finally, P 2 CM⇥M

models the effect of the pupil function of the microscope and can also encode the
contribution of a free-space propagation to account for an optical refocus of the
measurements.

As discussed in Chapter 3, (4.3) requires the resolution of a linear system, which
we perform efficiently using BiCG [108]. Yet, (4.3) carries the main computational
complexity of the forward process (4.3)-(4.4). To obtain the scattered field at the
camera plane �, a naive approach would be to compute the total field u in (4.3) on
a large region that includes �. Here, the introduction of G̃ allows one to restrict the
computation of u to the smaller region ⌦ as soon as it fully contains the support
of the sample [18, 52]. This significantly reduces the computational burden of the
forward process.

The first step (4.3) actually corresponds to compute the (discrete) total field
in ⌦, which was thoroughly described in Chapter 3. Notably, we dealt with the
singularity of the Green’s function g via a simple yet elegant truncation trick.
The second step (4.4) involves the discretization of the Green’s function for the
measurements G̃ and requires us to model the pupil function. The discretization
of the Green’s function for the measurements is addressed in Section 3.9. Here,
the plane of interest is simply the camera plane with M voxels. In addition, the
acquisition setup for real data provides only 2D measurements of the incident field
at the focal plane. However, LSm needs a 3D incident field. We will now describe
efficient and accurate methods to tackle those problems.
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4.4.2 Free-Space Propagation and Pupil Function

The last matrix to describe in (4.4) is P. It models the lowpass filtering behavior of
the microscope and can also be used to perform a free-space propagation of the field.
For instance, this is required for the acquisition setup described in Section 4.6.2.
Hence, P corresponds to the discrete convolution operator associated to the contin-
uously defined kernel p 2 L2(R2) that depends on the point-spread function (PSF)
of the system as well as the considered propagation kernel. Although the output
of G̃ (scattered field on �) is not compactly supported, it enjoys fast decay, which
allows us to apply P via a FFT with suitable padding.

4.4.3 Computation of the 3D Incident Field

yin = a( · )ej( · )
T k̃in
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Figure 4.2: Propagation of the incident field. Top: Scheme of the numer-
ical experiment (left) and phase (arg( · )) of the expected propagated field
(right). Bottom: Error map |uin

true � uin
prop| of the angular spectrum (AS)

method [31] without and with tilt transfer (left and right respectively).
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The evaluation of the forward model (4.3) and (4.4) at a given point f 2 RN

requires the knowledge of the 3D incident field u
in
2 CN . In real data, we only

acquire a 2D measurement of each incident field. Here, we propose to build this
volume through the free-space propagation of the 2D measurement y

in
2 CM of

this field at the detector plane �. This is possible as the area of � is assumed to be
larger than that of a face of the volume ⌦ since L  L̃.

Let us denote by yin : � ! C the continuous version of y
in to simplify the

presentation. Then, we get from the angular spectrum method [31] that, 8x =
(x1, x2, x3) 2 ⌦,

uin(x) = (px3
⇤ yin)(x1, x2). (4.5)

There, px3
is the propagation kernel that is defined in the Fourier domain by

p̂z(!) = exp

✓
�j(x� � z)

q
kb � (!2

1 + !2
2)

◆
, (4.6)

where x� denotes the position of the measurement plane �.
Because both the propagation kernel and the measured incident field are not

compactly supported, a naive computation of the aperiodic convolution in (4.5)
would introduce significant errors within the estimated volume uin. The difficulty
lies in the way of properly extending the measured field yin outside � to ensure that
the result of the convolution inside ⌦ is valid. For instance, a zero padding or a sim-
ple periodization are not satisfactory as they would introduce large discontinuities
in the amplitude and/or the phase of yin.

Instead, let us inject in (4.5) the expression of yin(x) = a(x) exp(jxT
k̃

in), where
a : �! C is the complex amplitude of the field and k̃

in = (kin
1 , kin

2 ) corresponds to
the restriction of the wave vector k

in
2 R3 to its first two components, leading to

uin(x) =
⇣
px3
⇤ a( · )ej( · )T k̃

in
⌘

(x̃)

=
1

(2⇡)2

Z

R2

cpx3
(!)â(! � k̃

in)ej!T
x̃d!

=
ejx̃T

k̃
in

(2⇡)2

Z

R2

cpx3
(! + k̃

in)â(!)ej!T
x̃d!

= ejx̃T
k̃

in
⇣
a ⇤ px3

( · )e�j( · )T k̃
in
⌘

(x̃), (4.7)
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with x̃ = (x1, x2) and ! = (!1,!2) 2 R2. Hence, (4.5) can be equivalently ex-
pressed as a 2D aperiodic convolution of the complex amplitude a with the kernel
px3

( · )e�j( · )T k̃
in

, followed by a modulation in the space domain. This approach
is called tilt transfer because the shift of yin in the Fourier domain is transferred
to the propagation kernel [123, 124]. The advantage of this formulation is that,
by contrast to yin, the complex amplitude a is not far from a constant signal, up
to some noise and optical aberrations. Hence,we compute (4.7) using a periodic
convolution with minor discretization artifacts.

The advantage of this approach is illustrated in Fig. 4.2 where we propagate
a slice of an ideal tilted plane wave yin using the angular spectrum method with
and without tilt transfer. The difference between the expected incident field uin

true

and the propagated field uin
prop is depicted in the bottom panel. Clearly, the tilt

transfer allows one to significantly reduce the discretization errors and attenuate
the aliasing artifacts.

4.5 Reconstruction Framework

4.5.1 Problem Formulation
Following the formulation in Section 2.3, we adopt a standard variational approach
to recover the scattering potential f from the Q scattered fields {y

sc
q

}
Q

q=1 that are
recorded when the sample is impinged with the incident fields {u

in
q

}
Q

q=1. Specifically,
the reconstructed f

⇤ is specified as

f
⇤
2

⇢
arg min

f2RN

✓ QX

q=1

1

2kysc
q
k2
kHq(f)� y

sc
q
k
2 + ⌧R(Lf) + i�0(f)

◆�
. (4.8)

In (4.8), Hq : RN
! CM denotes the forward model described by (4.3) and (4.4) for

the qth incident wave u
in
q

. Let us recall that R : RS⇥S
0
! R�0 is a regularization

functional, L : RN
! RS⇥S

0
is a linear operator, and ⌧ > 0 balances between data

fidelity and regularization. The term i�0(f) = {0, f 2 (R�0)N ; +1, otherwise} is a
nonnegativity constraint that is suitable for our applications. For other applications
that involve inverse scattering, this term is modified to constrain the scattering po-
tential to a given range of values. Such priors have been shown to significantly
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Algorithm 1 Accelerated FBS [127, 128] for solving (4.8)
Require: f

0
2 RN , (�t > 0)t2N\{0}

1: v
1 = f

0

2: ↵1 = 1
3: t = 1
4: while (not converged) do
5: Select a subset Q ⇢ [1 . . . Q]

6: d
t =

X

q2Q

1

kysc
q
k2

Re
⇣
J

⇤
Hq

(f t)
�
Hq(f

t)� y
sc
q

�⌘

7: f
t = prox

�t⌧R(L · )+i�0
(vt
� �td

t)

8: ↵t+1  
1 +

p
1 + 4↵2

t

2

9: v
t+1 = f

t +

✓
↵t � 1

↵t+1

◆
(f t
� f

t�1)

10: t t + 1
11: end while
12: return f

t

improve the quality of the reconstruction [16, 73]. Finally, we consider as regular-
izer R(L · ) either the total-variation seminorm (TV) [125] or the Hessian-Schatten
seminorm (HS) [126]. It is noteworthy to mention that we proposed other alterna-
tives well suited for ODT. In Section 4.7, we describe an adaptive regularization
based on convolutional dictionary learning.

4.5.2 Optimization
Following [18, 52, 117], we deploy an accelerated forward-backward splitting (FBS)
algorithm [127, 128] to solve the optimization problem (4.8). The iterates are
summarized in Algorithm 1, with some further details below.

• We implemented a stochastic-gradient version of the algorithm by selecting
a subset of of the measurements {y

sc
q

}
Q

q=1 at each iteration (Line 5). This
allows us to reduce the computational burden of the method.

• Line 6 corresponds to the evaluation of the gradient of 1
2kysc

q k2

P
q2Q kHq( · )�
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y
sc
q
k
2. We provide its expression in the Section 4.5.3. We will discuss different

strategies about its computation as well.

• For both the TV and HS regularizers, no known closed-form expression ex-
ists for the proximity operator of �k⌧R(L · ) + i�0 (Line 7). However, there
exist efficient algorithms to evaluate them. Specifically, we use the fast
gradient-projection method for TV [129] and its extension to the HS reg-
ularizer [126] (A.2.2).

• We set the sequence of step sizes to �k = �0/
p
k for �0 > 0. This is standard

and ensures the convergence of incremental proximal-gradient methods [130].

The whole reconstruction pipeline is implemented within the framework of the
GlobalBioIm library [131] and is available online (Appendix A.1).

4.5.3 Efficient Computation of the Gradient
Proposed Methodology

Let us first denote Eq(f) = D(Hq(f),ysc
q

) and the data-fidelity term in (4.8) as

Etot(f) =
X

q2Q
Eq(f)

=
X

q2Q

1

2kysc
q
k2
kHq(f)� y

sc
q
k
2. (4.9)

The gradient of Etot is given by

rEtot(f) =
X

q2Q
rEq(f), (4.10)

with
rEq(f) =

1

kysc
q
k2

Re
⇣
J

H

hq
(f)G̃H(G̃ diag(f)uq(f)� y

sc
q

)
⌘
, (4.11)

where Jhq (f) denotes the Jacobian matrix of

hq : f 7! diag(f)uq(f). (4.12)
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The computation of J
H

hq
(f), required in (4.10), is challenging. The existence of

a closed-form solution is made unlikely by the fact that the forward model in (4.3)
itself requires one to invert an operator. We distinguish two distinct strategies.

1. SEAGLE [52]: Build an error-backpropagation rule from the NAGD algorithm
used to compute the forward model (4.3).

2. Ours: Derive an explicit expression of Jhq (f), as given below (Proposition 4.5.1).

The error-backpropagation strategy used in SEAGLE to compute J
H

hq
(f) im-

plies that one must store all the forward iterates. This consumes memory re-
sources and compromises the deployment of the method for large 3D data. Instead,
Proposition 4.5.1 reveals that its computation requires one to invert the operator
(I � diag(f)GH). This operator has the same form (and size) that the operator
we invert within the forward computation in (4.3) and both can be computed in a
similar way, using an iterative algorithm. Moreover, it allows us to decouple the
forward and gradient computation in Algorithm 1, which has the two following
advantages:

• choice of any iterative algorithm for computing (4.3), and computing J
H

hq
(f).

• reduction of the memory consumption (no needs for storing forward iterates).

Proposition 4.5.1. The Jacobian matrix of the function hq in (4.12) is given by

Jhq (f) =
�
I + diag(f)(I�Gdiag(f))�1

G
�
diag(uq(f)). (4.13)

Proof. We use the Gâteaux derivative in the direction v 2 RN given by

dhq(f ;v) = lim
"!0

diag(f + "v)uq(f + "v)� diag(f)uq(f)

"

= diag(uq(f))v + lim
"!0

diag(f)
uq(f + "v)� uq(f)

"
. (4.14)

Then, from (4.3), we get that

u
in
q

=(I�Gdiag(f + "v))uq(f + "v)

=(I�Gdiag(f))uq(f + "v)� "Gdiag(v)uq(f + "v) (4.15)
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and
(I�Gdiag(f))uq(f) = u

in
q
. (4.16)

Combining (4.15) and (4.16), we obtain that

(I�Gdiag(f))(uq(f + "v)� uq(f)) = "Gdiag(v)uq(f + "v). (4.17)

Finally, we get that

dhq(f ;v) =
�
I + diag(f)(I�Gdiag(f))�1

G
�
diag(uq(f))v (4.18)

and, thus, that

Jhq (f) =
�
I + diag(f)(I�Gdiag(f))�1

G
�
diag(uq(f)), (4.19)

which completes the proof.

Numerical Validation

This section is devoted to simulated numerical experiments that illustrate the two
main advantages of the proposed method over SEAGLE, which consist in a re-
duced computational cost and a reduced memory consumption. Both algorithms
share the implementation of the overall FISTA algorithm as well as inner proce-
dures such as the computation of the proximity operator of the regularization term
(Appendix A.2). The only difference between the two methods resides in the com-
putation of the forward model in (4.3) and J

H

hq
(f). For SEAGLE, this is performed

using the NAGD algorithm (Section 3.7) and an error-backpropagation strategy.
For our method, (4.3) and J

H

hq
(f) are computed using the CG algorithm, in accor-

dance with Proposition 4.5.1. Note that no parallelization is used. Reconstructions
are performed with MATLAB 9.1 (The MathWorks Inc., Natick, MA, 2000) on a
PowerEdge T430 Dell computer (Intel Xeon E5-2620 v3).

Memory Requirement Here, we elaborate on the memory consumption of the
proposed method in comparison with SEAGLE. First, let us state that gradient
based methods, such as NAGD or CG, have similar memory requirements. It cor-
responds roughly to three times the size of the optimization variable which is the
part that is common to both algorithms. The additional memory requirement that
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is specific to SEAGLE relies only on the storage of the NAGD iterates during the for-
ward computation. Suppose that KNAGD 2 N iterations are necessary to compute
the forward model with (4.3) and that the region ⌦ is sampled over N 2 N pixels
(voxels, in 3D). Since the total field uq(f) computed by NAGD is complex-valued,
each pixel is represented with 16 bytes (double precision for accurate computa-
tions). Hence, the difference of memory consumption between SEAGLE and our
method is

�Mem = N ⇥KNAGD ⇥ 16 [bytes], (4.20)

which corresponds to the storage of the KNAGD intermediate iterates of NAGD.
Here, we assumed that rEtot was computed by sequentially adding the partial
gradients rEq associated to the Q incident fields. Hence, once the partial gradient
associated to one incident angle is computed by successively applying the forward
model (NAGD) and the error-backpropagation procedure, the memory used to store
the intermediate iterates can be recycled to compute the partial gradient associated
to the next incident angle.

To speedup the process, these computations can easily be parallelized by per-
forming the computation for each illumination on a separate thread. Here, the
memory requirement would be mutiplied by the number NThreads 2 N of threads,
so that

�Mem = N ⇥KNAGD ⇥NThreads ⇥ 16 [bytes]. (4.21)

Indeed, since the threads of a single computer share memory, computing NThreads

partial gradients in parallel requires NThreads times more memory.
For illustration, we give in Fig. 4.3 the evolution of �Mem as a function of N for

different values of KNAGD and NThreads. One can see with the vertical dashed lines
that, for 3D volumes, the memory used by SEAGLE quickly reaches several tens of
Megabytes, even for small volumes (e.g., 128⇥128⇥128), to hundreds of Gigabytes
for the larger volumes that are typical of microscopy (e.g., 512⇥ 512⇥ 256). This
shows the limitation of SEAGLE for 3D reconstruction in the presence of a shortage
of memory resources and reinforces the interest of the proposed alternative.

Reconstructions of RI—Simulated Data Here, we reconstruct RI maps on
simulated data to illustrate the advantages of the proposed method.
Simulation Settings: The Shepp-Logan phantom of Fig. 4.4 has the contrast
max(|f |)/ (k2

b) = 0.2. It is immersed into water (⌘b = 1.333). The wavelength
of the incident plane waves is � = 406 nm. We consider thirty-one incident angles,
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Figure 4.3: Predicted evolution of �Mem as function of the number N
of points for two values of KNAGD and NThreads. The vertical dashed lines
give examples of 2D and 3D volumes for a range of values of N . Finally,
the three crosses correspond to values of �Mem measured experimentally.

from �60� to +60�. The sources are placed at the bottom side of the sample, at
a distance of 16.5� from its center. Moreover, we consider two detectors placed on
both top and bottom sides of the object, also at a distance of 16.5� from its center.
Hence, the overall region is a square of length 33� per side. Data are simulated
using a fine discretization of this region, with a (1024 ⇥ 1024) grid that leads to
square pixels of surface (3.223 · 10�2�)2. We used a large number of CG iterations
to get an accurate simulation. Then, the measurements were extracted from the
first and last rows of each total field associated to the incident fields. This lead to
a total of (31⇥ 2⇥ 1024) measurements. Finally, we defined three ODT problems
by downsizing (using averaging) the (31 ⇥ 2 ⇥ 1024) measurements to grids with
size of (31⇥ 2⇥ 512), (31⇥ 2⇥ 384), and (31⇥ 2⇥ 256).

This setting corresponds to an ill-posed and highly scattering situation. More-
over, the detector length is only two times larger than the object, which results
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in a loss of information for large incident angles. This makes the resulting inverse
problem challenging.

1.333

1.39

1.457

1.407

1.437

�5� 0 5�

�5�

0

5�

Figure 4.4: Shepp-Logan phantom and RI of the gray levels. The con-
trast is 20%.

Algorithm Parameters: For each simulated OTD problem, we considered a square
region of interest ⌦ with sides half the sources–detector distance. That corresponds
to images of size (256⇥ 256) with pixels of area (6.445 · 10�2�)2, (192⇥ 192) with
pixels of area (8.839 · 10�2�)2, and (128⇥ 128) with pixels of area (1.289 · 10�1�)2.
The support of the phantom is fully contained in ⌦.

Then, to compute the gradient (stochastic-gradient strategy), we selected eight
angles over the thirty-one that were available and changed this selection at each
iteration.

The NAGD or CG forward algorithms are stopped either after hundred-twenty
iterations or when the relative error between two iterates is below 10�4. Finally,
two-hundred iterations of FISTA are performed with a descent step fixed empirically
to � = 5 · 10�3. We used the regularization parameter ⌧ = 3.3 · 10�2.
Metrics: We compared the two methods in terms of running time and mem-
ory consumption, as measured by the peak memory (maximum allocated memory)
reached by each algorithm during execution. The outcome is reported in Table 4.1.
Once again, due to the use of our inverse-problem library [131], the comparison of
the two methods is fair because their implementations differ only by the forward
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algorithm and by the computation of J
H

hq
(f). Moreover, CG and NAGD are imple-

mented in the same fashion since they inherit the same optimization class of our
inverse-problem library GlobalBioIm. Finally, we also provide the signal-to-noise
ratio (SNR) of the reconstructed RI and observe that the computational gain comes
at no cost in quality.

Table 4.1: Proposed method vs. SEAGLE [52, 107] in terms of running
time and memory consumption. The reconstructed RI maps are presented
in Fig. 4.5.

ROI ⌦ size (128⇥ 128) (192⇥ 192) (256⇥ 256)
Method Ours [52] Ours [52] Ours [52]

Time (min) 9 35 12 72 19 110
Memory (Mb) 138 169 224 295 337 460
SNR (dB) 43.96 43.76 45.44 45.48 46.96 46.99

Reconstructions of RI—2D Experimental Data We further evaluated our
method using the FoamDielExt target (TM polarisation) of the Institut Fresnel’s
public database [132]. The data were collected for the 2D inhomogeneous sample
depicted in the left panel of Fig. 4.6. The permittivity of the ground truth was
measured experimentally and is subject to uncertainties [132]. The object is fully
contained in a square region of length 15 cm per side, which we discretize using a
256⇥ 256 grid. Sensors were distributed circularly around the object, at a distance
of 1.67 m from its center, and with a step of 1�. Eight sources, uniformly dis-
tributed around the object, were sequentially activated. For each activated source,
the sensors closer than 60� from the source were excluded. Thus, 241 detectors
among the 360 available were used for each source. Frequencies from 2 to 10 GHz
with a step of 1 GHz are available in the database but we used only the 3 GHz
measurements (i.e., � = 10 cm).

The NAGD or CG forward algorithms are stopped either after two-hundred
iterations or when the relative error between two iterates is below 10�6. Hundred
iterations of FISTA are performed with a descent step � = 5 · 10�3. We used the
regularization parameter ⌧ = 1.6 · 10�2.
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Figure 4.5: Reconstructions obtained by the proposed method and by
SEAGLE for the (256 ⇥ 256) ODT problem with ⌧ = 3.3 · 10�2. The
colormap is identical to that of Fig. 4.4. For comparison, we provide the
TV-regularized Rytov reconstruction with ⌧ = 3 · 10�3.

Discussion Our proposed alternative to SEAGLE allows us to reduce both time
and memory. Moreover, we have measured the peak memory difference �Mem be-
tween the two methods and superimposed it on the predictions of Fig. 4.3 where
the adequacy between the theoretical curves and the measured points is remark-
able. Hence, although our experiments are restricted to 2D data, where the gap
between the two algorithms is moderate, the evolution of �Mem for 3D data can
be extrapolated from Fig. 4.3. This shows the relevance of our method when size
increases.

The SNR values given in Table 4.1 as well as the reconstructions presented in
Fig. 4.5 suggest that the two methods perform similarly in terms of quality. This
is not surprising since the overall algorithm is the same, the differences residing
merely in the computation of the forward model in (4.3) and the Jacobian Jhq (f).
Moreover, one can observe that the quality of reconstruction decreases when the
discretization grid becomes coarser. Indeed, the model is insufficiently accurate
when the discretization is too poor. For instance, in the case of the (128⇥128) grid,
one wavelength unit is discretized using eight pixels, which is clearly detrimental
to the accuracy of the forward model.
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Figure 4.6: Reconstructions (permittivity) obtained by the proposed
method and by SEAGLE for the FoamDielExt target of the Institut Fres-
nel’s database [132] with ⌧ = 1.6 · 10�2. The SNR values (computed from
the experimentally measured permittivity of the ground truth) are 25.13
dB (Ours) and 25.15 dB (SEAGLE) while the computing times are respec-
tively of 6 min and 93 min.

Reconstructions for the (256⇥ 256) problem are presented in Fig. 4.5 for com-
pleteness. Besides the difficulty of the considered scenario, the two methods are
able to retrieve most details of the object in comparison with the Rytov approxi-
mation. Artifacts are mainly due to the missing-cone problem and to the limited
length of the detector. This corroborates the findings of [52].

We further validate our method on real data. In Fig. 4.6, we see that both
methods provide good reconstructions that are essentially indistinguishable (also
SNR values provided in the caption of the figure). This corroborates the simulated
numerical experiments of Section 4.5.3. The main point here is that, for this setting,
the proposed method was 15 times faster than SEAGLE.

4.6 Results for 3D Data

In this section, we validate our computational pipeline on 3D simulated data (Sec-
tion 4.6.1). Then, we deploy the proposed approach on real data (Section 4.6.1).
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Table 4.2: Relative error of the RI RBCs reconstructions.
Method Rytov BPM LSm
k⌘̂�⌘gtk2

k⌘gtk2 1.8231⇥ 10�4 2.4585⇥ 10�5
9.0120⇥ 10

�6

For both cases, we provide comparison with existing algorithms.

4.6.1 Simulated Data
Simulation Setting

We simulated red blood cells (RBCs) with a maximal RI of 1.05 (Fig. 4.7 top
row) [37]. This sample is immersed in air (⌘b = 1) and is illuminated by tilted plane
waves with wavelength � = 600nm. To simulate the ODT measurements, we used
the DDA on a grid with a resolution of 50nm. To probe the sample, we generated
40 views within a cone of illumination whose half-angle is 45

�
. This corresponds

to severely restricted angles of view and makes the reconstruction problem very
challenging. Each view has 5122 measurements (resolution of 150nm). Finally, we
have simulated, independently for each view, an acquisition of the incident field on
�.

Comparisons

We compare our LSm reconstruction method with the direct back-propagation al-
gorithm that is based on the Rytov model. In addition, we do compare it to BPM.
For each iterative method (BPM and ours), we used TV regularization together
with a nonnegativity constraint. Finally, the regularization parameter ⌧ > 0 was
optimized through grid search in each scenario to maximize the performance with
respect to the ground truth. BPM took about 31 seconds per iteration (proximity
operator of TV included) for a reconstruction size of 512⇥512⇥150 (200 iterations).
The proposed method took about 112 seconds per iteration (proximity operator of
TV included) for a reconstruction size of 144⇥ 144⇥ 144 (300 iterations).

In Fig. 4.7, one observes that our method faithfully recovers RBCs at several
orientations. In comparison with the considered baselines, we observe that LSm
allows to recover more accurately the RBCs shape (and RI) as pointed out by the
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Figure 4.7: RI reconstructions of the simulated RBCs by Rytov, BPM,
and the proposed method (LSm).

white arrows. In Table 4.2, we present the relative error of the RBCs reconstruc-
tions. As expected, the more sophisticated LSm obtains the lowest relative error.
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Figure 4.8: RI reconstructions of the yeast cell with Rytov, BPM, and
the proposed method (LSm). The first column corresponds to the central
XZ slice of the sample. Then, from left to right: XY slices at depths
z1 = �1.092µm, z2 = �0.496µm, and z3 = 0µm.

4.6.2 Experimental Data

Acquisition Setup

We acquired real data using the experimental tomographic setup described in [28]
(Appendix A.4). The sample is a yeast cell immersed in water (⌘b = 1.338) and
is illuminated by tilted incident waves with wavelength � = 532nm. As in our
simulation setup, we acquired 61 views within a cone of illumination whose half-
angle is 35

�
. The measurements lie on a plane that is centered and perpendicular

to the optical axis. The complex fields with and without the sample were acquired
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for each view, thus providing the total and incident field, respectively. The pixel
size is 99nm.

The reconstructions are performed on a grid of the same resolution than that of
the measurements. We used the HS regularization as we found it more suitable for
this type of sample. Finally, we model P as the composition of a linear filtering by an
ideal pupil function (binary disk in Fourier domain with radius 2NA/�, NA = 1.45)
and a free-space propagation to the center of the sample. BPM took about 33
seconds per iteration (proximity operator of the HS included) for a reconstruction
size of 150⇥150⇥100 (200 iterations). The proposed method took about 38 seconds
per iteration (proximity operator of the HS included) for a reconstruction size of
96⇥ 96⇥ 96 (200 iterations).

Reconstruction Results

The reconstructed volumes obtained with the Rytov method, the BPM, and the
proposed approach are presented in Fig. 4.8. Once again, nonlinear models clearly
outperform the (linear) Rytov reconstruction. Moreover, the reconstruction of the
RI obtained by LSm does not suffer from the artefacts indicated in BPM slices z2, z3

with thick white arrows. Also, the areas with higher RI are better resolved (z1, z2,
thin red arrows) when LSm is deployed. Finally, one can appreciate in Fig. 4.9 that
the inner areas with higher RI (green) are more resolved for LSm than for BPM.

4.7 Adaptive Regularization with Dictionary Learn-

ing

As we could see in the previous sections, the missing-cone problem yields artifacts
which are more prominent along the optical axis (Chapter 2), which can be circum-
vented by regularization [14, 16, 73]. However, these regularization approaches do
not take into account the anisotropic resolution of ODT.

In this section, we propose to go one step further and leverage such anisotropy
to improve the quality of the reconstructions. Our motivation is to learn highly re-
solved features from lateral planes and use them to enhance the quality in the axial
direction. Hence, inspired by the strategy proposed by Soulez [133] for the decon-
volution of fluorescent microscopic images, we deploy a dictionary-based regularizer
that is learnt from the lateral planes of an initial reconstructed volume.
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Rytov BPM LSm

Figure 4.9: Iso-surface color renderings of the RI reconstructions of the
yeast. The isovalues are 1.35, 1.38, and 1.46 for the blue, red, and green
color channels, respectively.

Three-step reconstruction

In the spirit of [133], we designed a three-step reconstruction scheme.

1. TV-regularized reconstruction.

2. Dictionary learning (DL) from lateral planes.

3. Final reconstruction using the learnt dictionary.

TV-Regularized Reconstruction The first step consists in solving the non-
negative TV-regularized problem

f
TV
2

(
arg min

f2RN
�0

 
QX

q=1

kHq(f)� y
sc
q
k
2
2 + ⌧TVkfkTV

!)
, (4.22)

where Hq : CN
7! CM denotes the two-step forward model described by (4.3)

and (4.4) for the qth incident wave u
in
q

, k · kTV = kr · k2,1 is TV (Section 2.3), and
⌧TV > 0 is the regularization parameter which balances between the data-fidelity
term and the TV term. As done previously, we deploy FBS, implemented using the
GlobalBioIm library [131] (Appendix A.1), to obtain f

TV.
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DL from Lateral Planes Given the nonnegative TV solution f
TV, our goal is

to learn a dictionary D 2 RNp⇥K formed out of K atoms of size Np < N such that
f
TV can be represented as

f
TV =

PXYX

p=1

(RXY
p

)T
D↵p, (4.23)

where R
XY
p

: RN
! RNp is an operator that extracts a 2D patch of size Np

centered on the pth element of the input vector (its adjoint inserts the patch at
the pth position), PXY denotes the number of patches, and {↵p 2 RK

}
PXY

p=1 are
sparse vectors. The superscript XY in R

XY denotes the fact that the operation
only extracts 2D patches from lateral planes.

We formulate the DL problem as

{bD, c↵p} 2

(
arg min

D2RNp⇥K

↵p2RK

 �����

PXYX

p=1

(RXY
p

)T
D↵p � f

TV

�����

2

2

+ ⌧DL

PXYX

p=1

k↵pk1

!)
,

(4.24)

where ⌧DL > 0 controls the sparsity level.
Our formulation is fundamentally different from the pioneering approaches [134,

135] where the solution was such that each extracted patch had a sparse represen-
tation in D. Our representation f =

P
PXY

p=1 (RXY
p

)T
D↵p is related to convolutional

dictionary learning (CDL) [136–138], as shown by Papyan et al. [139, 140]. As
opposed to traditional DL, CDL accounts for global information in the image such
as shift invariance. Hence, (4.25) not only enjoys the global sparse representation
of CDL but also benefits from the local (patch-based) processing of DL [139, 140].

By introducing the auxiliary variable sp = D↵p in (4.24), we can deploy the
alternating-direction method of multipliers (ADMM) to minimize the augmented-
Lagrangian functional

L(bD, c↵p, bsp, cwp) =

�����

PXYX

p=1

(RXY
p

)T
sp � f

TV

�����

2

2

+
PXYX

p=1

⇢

2

����sp �D↵p +
wp

⇢

����
2

2

+⌧DLk↵pk1,

(4.25)
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Algorithm 2 Proposed algorithm to solve (4.26)

Require: y 2 CMQ, f
0
2 CN , bD 2 RNp⇥K , � > 0,⌧sc > 0

1: Define F =
P

Q

q=1 kHq(RT
· )� y

sc
q
k
2
2 + Rpos(RT

· )

2: s
0 = 1

n2 Rf
0

3: t = 1
4: while (not converged) do
5: z

t = s
t
� �rF(st)

6: s
t+1
p

= C
⌧sc,bD(zt

p
), 8p 2 {1, . . . , P}

7: t t + 1
8: end while
9: return f

? = R
T
s
t�1

where {wp 2 RNp}
PXY

p=1 are the dual variables and ⇢ > 0 is the Lagrangian multiplier.
Using the CDL terminology [140], the auxiliary variable sp is referred to as the pth
slice. The ADMM is implemented using the SPAM toolbox.4 [141]

Final Reconstruction Using the Learnt Dictionary Equipped with the dic-
tionary bD 2 RNp⇥K learnt from lateral planes in Section 4.7, we now consider the
optimization problem

8
><

>:

f
? = R

T
s
⇤,

s
⇤
2

(
arg min

s2RNpP

 
QX

q=1

kHq(R
T
s)� y

sc
q
k
2
2 + Rpos(R

T
s) + RbD(s)

!)
,

(4.26)
where s = [sT

1 · · · s
T

P
]T 2 RNpP is the concatenation of all the slices, P = PXY +

PXZ + PYZ is the total number of slices, and R = [RT

XY R
T

XZ R
T

YZ]T 2 RNpP⇥N

with RXZ (RYZ) the counterpart of RXY for the XZ (YZ, respectively) sections of
the volume. We use the differentiable functional Rpos : RN

! R

Rpos(f) =
NX

n=1

�pos

µ
log (exp(�µfn) + 1) (4.27)

4 http://spams-devel.gforge.inria.fr/
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to favor nonnegative solutions. Here, �pos > 0 is a weighting factor and µ > 0
shapes the tolerance to negative values. Finally, the functional RbD : RNpP

! R
in (4.26) is a regularization term designed to enforce the slices sp to have a sparse
representation in bD. Denoting F =

P
Q

q=1 kHq(RT
· )�y

sc
q
k
2
2 +Rpos(RT

· ), we can
deploy the FBS algorithm whose iterates are given by

s
t+1 = prox

�R bD

�
s
t
� �rF(st)

�
, (4.28)

where � > 0 is a descent parameter and prox
�R bD

denotes the proximity operator
of the functional RbD. Here, we follow the plug-and-play prior philosophy [142–144]
and replace prox

�R bD
in (4.28) by the “denoising” operator

C
⌧sc,bD : RNp �!RNp

s 7�! bD↵?, (4.29)

where ⌧sc > 0, and

↵?
2

⇢
arg min

↵2RK

✓
1

2
ks� bD↵k22 + ⌧sck↵k1

◆�
. (4.30)

Numerous solvers exist to solve (4.30) [135, 145]. Again, we use the GlobalBioIm
library together with the SPAMS toolbox for this step. Finally, we summarize the
complete reconstruction scheme of this section in Algorithm 2.

Results

We validate our method on the yeast cell shown in Fig. 4.8 and used the same setting
described in Section 4.6.2. In particular, the size of the reconstructed volume is
(96⇥ 96⇥ 96) with a sampling step of 99.3nm (9.53µm in each dimension).

TV-Regularized Reconstruction We first reconstructed the sample using the
method described in [18] by minimizing (4.22). The initial guess was the solu-
tion provided by the Rytov model [13]. We used diverse regularization parame-
ters ⌧TV for TV (Fig. 4.10). When the regularization is weak, artifacts due to
model mismatch are hindering the quality of reconstruction. On the contrary, over-
regularization results in cartoon-like solutions.
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XZ

XY

⌧TV

Figure 4.10: TV-regularized solutions obtained with regularization pa-
rameters ⌧TV = {0.15, 0.3, 0.5}/963 (from left to right, respectively).

Learning the Dictionary We learned the dictionary by minimizing (4.25). We
used patches of size (8⇥ 8) (Np = 64) and K = 64 atoms. We set ⌧DL = 1/

p
8 and

⇢ = 0.5 max(fTV)Np
2. The learnt atoms of the dictionary bD are shown in Fig. 4.11.

Figure 4.11: Dictionary bD learnt from lateral planes of the TV regularized
solution (fTV, dotted rectangle in Fig. 4.10).

Final Reconstruction We solved the optimization problem (4.26) and encour-
aged the nonnegativity of the solution with �pos = 1/963 and µ = 5 in (4.27).
The initial guess was f

TV. The denoising operator (4.29)–(4.30) was used with
regularization parameter ⌧sc = 10�4.

We observe that the Rytov-based solution suffers from the missing-cone prob-
lem whereas the regularized solutions (i.e., TV and the proposed one) mitigate
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Figure 4.12: Yeast reconstructions. Views of the reconstructed sample
at the XZ plane and three different XY positions. The Rytov-based so-
lution (Rytov), the TV-regularized solution (TV LSm), and the proposed
regularized solution (Proposed DL LSm) are displayed in the top, middle,
and bottom rows, respectively. The TV-regularized solution was obtained
with ⌧TV = 0.3/963.

its effect. In addition, some features are enhanced with the proposed solution in
comparison to the TV solution (Fig. 4.12). Finally, the proposed method is able
to recover features in deeper axial position whereas the TV-regularized solution is
over-regularized (Fig. 4.12, right column).
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Discussion

We designed an adaptive regularization that allowed us to improve the quality of
ODT reconstructions in the axial direction using features learned in lateral planes.
The proposed regularization relies on a dictionary that is learnt from the lateral
planes of an initial TV reconstruction. This dictionary is then used in a final
step to enhance the quality of the reconstruction in all XY, XZ, and YZ sections.
We applied this strategy to the reconstruction of real ODT measurements. Our
results show the superior performance of the proposed pipeline over conventional
regularization.

4.8 Summary

3D ODT reconstruction is a challenging inverse problem. Its success depends on
the accuracy of the implementation of the physical model. In this chapter, we used
our model LSm (Chapter 3) to reconstruct 3D RI maps. To that end, we tackled
important difficulties that are related to the computational and memory burden, as
well as the calibration of the incident field. Finally, we showed on both simulated
and real data that the use of the proposed model improves the quality/faithfulness
of the reconstructions. In addition, we designed a new regularization scheme based
on dictionary learning that improves the axial resolution by exploiting the superior
lateral resolution in ODT. In a similar context, we also developed a deep-learning
projector for ODT [100].

Until now, we have worked with complex-valued measurements; a setting that
requires an interferometric apparatus. ODT from intensity-only measurements is a
popular alternative to simplify the acquisition setup and reduce its cost. However,
this comes at the price of a harder inverse-scattering problem. In the next chapter,
using our LSm model, we will present a reconstruction framework adapted to the
challenging setting of intensity-only measurements.
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Chapter 5

ODT from Intensity-only

Measurements

5.1 Introduction

In this chapter, we use our LiSc-based model (LSm, see Chapter 3) for ODT from
intensity-only measurements.1 This setting allows us to get rid of the interfero-
metric system required to record holographic data (Chapter 4). The price to pay,
however, is that the reconstruction problem becomes more challenging. In practice,
this task usually addressed by alternating between phase retrieval and RI estima-
tion [7, 45, 63, 77].

5.2 Contributions

Our contribution is the design of a versatile reconstruction framework which per-
mits the use of any physical model (Chapter 1) and leverages recent advances in
proximal algorithms. In Section 5.3, we present the versatile framework and com-
parisons between 2D reconstructions from intensity and complex measurements. In
Section 5.5, we extend our comparisons to the 3D setting.

1 The content of this chapter is based on [22, 23].

69
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5.3 Unified Regularized Reconstruction Framework

5.3.1 Problem Formulation
Let us define the operator H

tot : RN
! CN that, given the scattering potential f 2

RN , gives the total field on the detector region � (Fig. 5.1). Note that in Chapter 4
H referred to our LiSc based model (LSm) which computes the scattered field on
the detector region.2 In addition, H

tot can be any model of wave scattering. Two
specific models will be used in the experiments of Section 5.4: BPM (Chapter 1)
and LSm (Chapter 3). The intensity-only measurements {yq 2 RM

}q2[1...Q] are
related to the model by

yq = |H
tot
q

(f)|2 + ⇠q, 8q 2 [1 . . . Q], (5.1)

where the notation H
tot
q

( · ) refers to total field obtained with the incident field u
in
q

,
⇠q 2 RM , 8q 2 [1 . . . Q], represent noise and | · |

2 is a component-wise squared
magnitude. Similar to Chapter 4, we adopt a variational approach to estimate the
scattering potential f 2 RN from the measurements {yq 2 RM

}q2[1...Q] by solving
the optimization problem

bf 2
(

arg min
f2B

QX

q=1

D(|Htot
q

(f)|2,yq) + ⌧R(Lf)

)
. (5.2)

Let us recall that the functional D : RM
⇥ RM

! R�0 measures the fidelity of the
model to the data and that, from a Bayesian point of view, we can relate D to the
log-likelihood of the noise distribution.

5.3.2 Optimization with the Alternating Direction Method
of Multipliers (ADMM)

In this section, we leverage recent advances in phase retrieval, nonlinear physical
models, and modern regularization. We propose a unified framework that can cope
with forward models at various levels of sophistication (e.g., Born [12], BPM [146],
LiSc-based models [18, 107]) and with various sparse regularizers (e.g., TV [125],

2 The computation of the total field is then trivial, since we just have to add the incident field
on the detector region to the scattered field.
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HS [126]). This is possible because of the modularity of the proposed approach,
which comes from an adequate splitting of the initial problem into simpler subprob-
lems. Moreover, our method can be easily adapted to different types of noise by the
way of specific data-fidelity terms for which an explicit expression of the proximity
operator is available. Finally, we validate the proposed method on several simulated
and real datasets using both BPM and LSm together with a TV regularizer.
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Figure 5.1: ODT setup (intensity-only). A sample with the RI ⌘ 2 RN is
immersed in a background medium of index ⌘b and impinged by an incident
plane wave with a given orientation (wave vector kb). The interaction of
the incident field with the object produces a scattered field. The squared
magnitude of the total field, which corresponds to the sum of the incident
and scattered fields, is recorded by the detector.

Splitting Strategy

Inspired by the success of ADMM [147], we propose to split the optimization task
in a way that decouples the complex-field-based reconstruction from the phase
retrieval. To that end, we introduce the auxiliary variables vq 2 CM , q 2 [1 . . . Q],
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and reformulate the problem in (5.2) as

(bf ,cv1, . . . , cvQ) 2

(
arg min

(f ,v1,...,vQ)2X

QX

q=1

D(|vq|
2,yq) + ⌧R(Lf)

)
, (5.3)

where

X =
�
(f ,v1, . . . ,vQ) 2 B ⇥ CM⇥Q s.t. vq = H

tot
q

(f) 8q 2 [1 . . . Q]
 
. (5.4)

The augmented-Lagrangian form of this problem is

L(f ,v1, . . . ,vQ,w1, . . . ,wQ) =
QX

q=1

D(|vq|
2,yq)+

⇢

2
kH

tot
q

(f)�vq+wq/⇢k
2
2+⌧R(Lf),

(5.5)
where wq are the Lagrangian multipliers and ⇢ is a positive scalar. Then, (5.5)
is minimized using ADMM, which results in the procedure given in Algorithm 3.
The problem is now reduced to three simpler subproblems: a phase retrieval that
requires the computation of the proximity operator of D(| · |2,yq), an RI recon-
struction problem from complex measurements (Chapter 4), and the Lagrangian
update of wq.

Proximity Operator for Phase-Retrieval

At Step 5 of Algorithm 3, we must compute the proximity operator of 1
⇢
D(| · |2,yq),

like in
prox 1

⇢D(| · |2,yq)(x) = arg min
v2CM

1

2
kv � xk

2
2 +

1

⇢
D(|v|

2,yq). (5.6)

Here, we benefit from the closed-form expressions that have been recently derived
for Gaussian likelihood in [21]. In the present work, we consider the weighted
quadratic data-fidelity term

D(|v|
2,yq) =

1

2

��|v|
2
� yq

��2

Wq
, (5.7)

where Wq = diag(wq

1, . . . , w
q

M
) is a diagonal matrix and k · kWq a weighted `2-norm

such that kvk2
Wq

= v
T
Wqv. This scheme can be tuned to two scenarios.
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Algorithm 3 ADMM for solving (5.5)
Require: {yq}q2[1...Q], f 2 RN

�0, ⇢ > 0, ⌧ > 0

1: f
(0) = f

2: w
(0)
q = 0CM , 8q 2 [1 . . . Q]

3: t = 0
4: while (not converged) do
5: v

t+1
q

= prox 1

⇢D(| · |2,yq)(H
tot
q

(f t) +
w

t
q

⇢
), 8q 2 [1 . . . Q] . Phase retrieval

6: f
t+1 = arg min

f2B

⇢

2

QX

q=1

kH
tot
q

(f)� v
t+1
q

+ w
t

q
/⇢k22 + ⌧R(Lf) . RI

reconstruction
7: w

t+1
q

= w
t

q
+ ⇢(Htot

q
(f t+1)� v

t+1
q

) 8q 2 [1 . . . Q] . Update Lagrangian
8: t t + 1
9: end while

10: return f
t

1. Log-likelihood for Gaussian measurement noise: We set wq

m
= 1/�2, where

�2 is the variance of the noise.

2. Log-likelihood for Poisson measurement noise: We set wq

m
= max(yq,m, b)�1,

where the minimal value b > 0 accounts for background emission and the
dark current of the detector.

Following [21], the proximity operator of D(| · |2,yq) given by (5.7) is computed
component-wise according to

8x 2 CM ,
h
prox 1

⇢D(| · |2,yq)(x)
i

m

= %mej arg(xm), (5.8)

where %m is the positive root of the cubic polynomial in %

qG(%) =
4wq

m

⇢
%3 + %

✓
1�

4wq

m

⇢
yq,m

◆
� |xm| (5.9)

which can be efficiently found with Cardano’s method. Note that a closed-form
expression has also been derived for an exact model of Poisson noise [21].
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Reconstruction from Complex Fields

The minimization over f (Step 6 of Algorithm 3) can be achieved by deploying an
accelerated FBS algorithm [127, 128, 148] (see Chapter 4 for details).

5.4 Results for 2D Data

We first assess the suitability of our framework to reconstruct simulated samples
using two physical models: BPM (Chapter 1) and LSm (Chapter 3). Then, we
validate our approach on experimental data. Finally, we evaluate the performance
of the method for limited measurements.

We compare the solutions of our framework to those obtained with the light
field refocusing (LFR) method [149] which were also used as initial guesses for Al-
gorithm 3. For the regularizer R(L · ), we use the TV seminorm, known to attenuate
the missing-cone problem. Moreover, we enforce a nonnegativity constraint on the
scattering potential by setting B = RN

�0. Because the RI reconstruction step can
be computationally intensive, we adopted acceleration strategies. Similar to Chap-
ter 4, the gradient required in FBS was computed for a subset of the angles [1 . . . Q].
This subset was changed at each iteration while keeping a constant angle difference
between them. We implemented the algorithms using an inverse-problem library
developed in our group [131] (Appendix A.1).

5.4.1 Simulated Data

Simulation setup

We consider the three samples presented in Fig. 5.2 (top row). They are immersed
in water (⌘b = 1.33) as well as the source and the sensors. They were impinged
by thirty-one incident waves with angles ranging from �45� to 45�. These waves
were propagated from the bottom to the top of the (33� ⇥ 33�) domain with � =
406 nm. Simulations were performed on a fine grid (1024⇥ 1024) with a pixel area
of (0.03�)2 using the LSm forward model. The 1024 sensors are evenly placed on
a straight line of length 33� above the sample at 16.5� from the center. Finally,
these measurements were reduced to M = 512 using averaging.
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Reconstruction parameters

The regularization parameter ⌧ was selected in order to minimize the relative er-
ror k⇠̂ � ⇠truek2/k⇠truek2.

The outer loop in Algorithm 3 (inner FBS at step 6 in Algorithm 3, respectively)
was stopped when the relative change between two iterates is below 10�8 or after 20
(50, respectively) iterations. The step size in the FBS algorithm was set to 5 · 10�4

and 5 · 10�3 for BPM and LSm, respectively. The penalty parameter was set to
⇢ = 10�3. Finally, the reconstructions were performed on a (512⇥ 512) grid. The
regularization parameter ⌧ was tuned by hand for each sample.

Observations

As shown in Fig. 5.2, the proposed framework is able to reconstruct the samples
despite the lack of phase information. Both forward models obviously perform
better than LFR which only relies on geometrical optics. We observe that the LSm
forward model yields better reconstructions than the BPM forward model. Our
framework with LSm is able to retrieve most details of the object. The shape as
well as the RI of the samples are well estimated. These observations are quantified
by the relative error presented in Table 5.1.

Table 5.1: Reconstruction performance. The relative error ✏ = k⇠̂�⇠truek2

k⇠truek2

is shown. The proposed method with BPM was 3 to 6 times faster than
with LSm.

✏ Three fibers Cell Shepp-Logan

LFR 1.4 · 10�2 1.36 · 10�2 2.06 · 10�2

BPM 4.74 · 10�3 6.05 · 10�3 1.28 · 10�2

LSm 1.33 ·10
�3

4.04 ·10
�3

1.02 ·10
�2
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Figure 5.2: RI map for three fibers, a simulated cell, and the Shepp-
Logan in the first, second, and third column, respectively. The ground truth
and the reconstructions from the LFR, BPM, and LSm proposed methods
are shown in Row 1 to 4, respectively. The samples are immersed in wa-
ter (⌘b = 1.33). Thirty-one views were acquired with a tilted plane-wave
illumination. The angles ranged from �45� to 45�. The sample is illumi-
nated from below. The 1024 sensors are evenly placed on a straight line of
length 33� above the sample at 16.5� from the center. The measurements
were reduced to 512 using averaging.
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5.4.2 Experimental Data
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Figure 5.3: Acquisition setup for the Institut Fresnel’s dataset. The sen-
sors (dots in the inner circle) correspond to the illumination angle of 0� (i.e.,
E1). The measurements are restricted either by reducing the number of
sensors (sensors sets S241, . . . , S91) or the number of acquired views (emit-
ters E1, . . . , E8).

We validate our framework using the publicly available experimental datasets
of the Institut Fresnel [132]. We used the same setting than in Chapter 4 (i.e.,
TM polarization at 3 GHz (� = 10 cm), eight sources (E1�8), 241 sensors (S241)
per source) We reconstructed the three targets FoamDielExt, FoamDielInt, and
FoamTwinDiel using the TM polarization at 3 GHz (i.e., � = 10 cm). Each 2D in-
homogeneous sample is depicted in Fig. 5.4 (top row). The indicated permittivities
were experimentally measured and are subject to uncertainties [132].

For the reconstruction, we consider a (15⇥ 15 cm2) area discretized over (256⇥
256) pixels. This yields a pixel area of about (0.0586 cm)2. We reconstruct these
samples with the LSm forward model and compare the results with the RI recon-
struction from holographic measurements [18].
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The chosen regularization parameters ⌧ were tuned by hand for both algorithms.
The penalty parameter ⇢ was set to 5. We initialized both algorithms with the
background value.

The results presented in Fig. 5.4 suggest that the two methods perform simi-
larly in terms of quality. The shape and the permittivity of the samples are both
remarkably well recovered despite the high contrasts. Furthermore, the bottom
graphs in Fig. 5.4 show that the retrieved phase corroborates the measurement
data for each sample. The similar performances observed for these samples suggest
the intensity-only measurements still contain some phase information due to the
diffraction.

Reducing the number of measurements

In this section, we assess the effect of a reduction in the number of measure-
ments (Fig. 5.3). To that end, we combined two methods. On one hand, we
incrementally ignored illumination angles. On the other hand, we reduced the
number of sensors, starting from no restriction (i.e., S241) to the smallest set of
sensors S91 (Fig. 5.3). This strategy allowed us to explore the missing-cone prob-
lem. By progressively limiting the available measurements, we converged to a setup
similar to that of tomographic phase microscopy [68]. The reconstruction obtained
for the easiest scenario (i.e., 8 views and S241) was considered as a reference. Then,
the regularization parameter ⌧ was tuned in order to minimize the relative error
with respect to this reference.

As shown in Fig. 5.5, the quality of the reconstructions is remarkable, even in
extreme cases. This is due to the use of modern regularization.

5.4.3 Discussion

We have proposed a variational formulation of the reconstruction of RI from intensity-
only measurements. It allows us to take advantage of efficient algorithms to solve
subproblems. Our framework is able to handle several forward models and any
regularization. Notably, we showed that LSm combined with TV regularization
reconstructs highly scattering samples from intensity-only measurements, even in
ill-posed configurations. Furthermore, our results suggest our method can recon-
struct RI samples in even more difficult cases where few measurements are available.
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Figure 5.4: Permittivity reconstruction of the Institut Fresnel’s
datasets by LSm. From left to right: FoamDielExt, FoamDielInt, and
FoamTwinDiel. From top to bottom: ground truth, reconstructions from
complex (using [18]) and intensity-only (proposed method) measurements,
respectively, and magnitude and phase of the predicted (solid curve) vs

true (dashed curve) measurements (0� illumination angle). The two curves
often overlap. For the solutions from complex measurements, the reg-
ularization parameters were set at 1.6 · 10�2, 3 · 10�3, and 9 · 10�3 for
FoamDielExt, FoamDielInt, and FoamTwinDiel, respectively. For the so-
lutions from intensity-only measurements, the regularization parameters
were set at 7 · 10�2, 9 · 10�3, and 4 · 10�2 for FoamDielExt, FoamDielInt,
and FoamTwinDiel, respectively.
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Figure 5.5: Permittivity reconstructions of the Institut Fresnel’s dataset
with a limited number of measurements. From left to right: Q = 3, 5, 7,
and 8 views were used to reconstruct the sample FoamDielExt. From top
to bottom: The sensors were included in the sets S241, S181, S151, S121,
and S91, respectively. The reconstruction error with respect to the best
solution (i.e., E8, S241) is shown at the top left of each image.
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5.5 Reconstruction Framework Revisited

5.5.1 Optimization for 3D Data
Despite its appealing features, our unifying framework does not scale well with
3D optical setting. In particular, the update of the Lagrangian in Algorithm 3
involves the computation of all the forward models, a time-consuming step when
many views are used. We could not adopt strategies similar to the previous chapter
which have alleviated the computational burden. For instance, the counterpart
of a stochastic FBS algorithm for ADMM did not show satisfying results in our
preliminary experiments.

Similar to the previous chapter, we then deploy a stochastic FBS algorithm to
minimize (5.2); here, it is closely related to the Wirtinger flow techniques used in
FP [65, 67, 150, 151].

Computation of the Gradient for Intensity-only ODT

Similar to Section 4.5.3, let us first denote E
int
q

(f) = D(|Htot
q

(f)|2,yq) and the
data-fidelity term in (5.2) as

E
int
tot(f) =

X

q2Q
E

int
q

(f) (5.10)

For D(|Htot
q

(f)|2,yq) = 1
2kyqk2

P
q2Q k|H

tot
q

(f)|2 � yqk
2, the gradient of (5.10) is

given by
rE

int
tot(f) =

X

q2Q
rEq(f), (5.11)

with

rE
int
q

(f) =
2

kyqk
2
Re

⇣
J

H

Htot
q

(f)diag(Htot
q

(f))(|Htot
q

(f)|2 � yq)
⌘
, (5.12)

where JHtot
q

(f) denotes the Jacobian matrix of the physical model. For instance,
the Jacobian matrix of BPM is provided in [14]. The forward model for LSm for
the total field is simply

yq = Hq(f) + u
in
�,q

, (5.13)
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where Hq(f) is defined in (4.3)-(4.4) and u
in
�,q
2 CM is the incident field on the

measurements plane. Then, the Jacobian matrix is given by

J
H

Htot
q

(f) = J
H

hq
(f)G̃H , (5.14)

with J
H

hq
(f) defined in Proposition 4.5.1.

Computation of the 3D Incident Field

Let us recall that our forward model LSm requires the knowledge of the 3D incident
field u

in
2 CN , but we only acquire 2D intensity measurements for each view in

real data. We then assume that the phase of the incident fields is an ideal tilted
plane wave and proceed as described in Section 4.4.3 to obtain the 3D incident field.
In case where the angles are approximately known, a simple yet efficient tool can
estimate them from the intensity-only measurements [70].

5.6 Results for 3D Data

To recover a good 3D RI map with nonlinear models, we have observed that the
initial guess plays a key role in the quality of the RI map obtained by our method.
From complex measurements, Rytov model often provides a good initial solution.
From intensity-only measurements, the LFR method [149] fulfilled this role for our
2D experiments but failed to provide a satisfying initial guess in our 3D experiments.
As an alternative, Ayoub et al recover more accurately sample features via the Wolf
transform from intensity-only measurements [152]. To obtain an initial guess of RI
map, we post-process the non-quantitative solution obtained by their method (Wolf
transform). In all our experiments, we compare with the solutions obtained from
complex measurements (Chapter 4).
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Figure 5.6: RI reconstructions of the simulated RBCs by the Wolf trans-
form (Initial), LSm (complex), and LSm (intensity).
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Table 5.2: Relative error of the RI RBCs reconstructions.
Method Wolf transform LSm (complex) LSm (intensity)
k⌘̂�⌘gtk2

k⌘gtk2 3.004⇥ 10�4
9.0120⇥ 10

�6 1.954⇥ 10�5

5.6.1 Simulated Data
We used the same simulation setting than in Section 4.6.1. We regularize our
solution with TV.

We display in Fig. 5.6 the reconstructed 3D RI maps and their obtained SNRs
are reported in Table 5.2. As expected, the reconstruction method from complex
measurements obtains the best quality (Table 5.2). However, the 3D RI map recov-
ered from intensity-only measurements remains fairly impressive (Fig. 5.6, fourth
row), given the quality of the initial guess (Fig. 5.6, second row).

5.6.2 Experimental Data
We used the same real data than in Section 4.6.2, which allows us to compare be-
tween reconstructions from complex and intensity-only measurements. We took the
intensity of the holographic measurements to simulate intensity-only measurements.
Here, we used HS as regularizer.

We display in Fig. 5.7 the RI maps obtained with LSm from complex and
intensity-only measurements (second and third row, respectively).

5.6.3 Discussion
As expected, the loss of phase information can impact the quality of reconstruction.
Despite the decrease in quality, the RI maps reconstructed from intensity-only
measurements still recover features similar to the ones of the RI maps obtained
from complex measurements. Here, our illumination angles are restricted to a cone,
which leads to a strong missing-cone problem. Such challenging settings seem to
strongly benefit from the phase information in the measurements. For instance, we
ignored other optical aberrations in the phase of the incident field for the 3D real
data, since we assumed an ideal plane wave. This probably explains the observed
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Figure 5.7: RI reconstructions of the yeast cell with the Wolf trans-
form (Initial), LSm (complex), and LSm (intensity) from top to bottom,
respectively. The first column corresponds to the central XZ slice of the
sample. Then, from left to right: XY slices at depths z1 = �1.092µm,
z2 = �0.496µm, and z3 = 0µm.

difference in quality between the RI maps reconstructed from complex-valued and
intensity-only measurements.

Furthermore, we have observed that the initial guess plays an essential role in
the quality of reconstruction for the real data, which emphasizes the importance of
the Wolf transform and Rytov method for the success of nonlinear models.



86 Optimization with ADMM

5.7 Summary

In this chapter, we applied our novel LSm model to the challenging inverse-scattering
problems involving intensity-only measurements. To solve the inverse problem in
2D, we proposed a variational framework which splits the original optimization
problem into simpler subproblems. Thanks to this modular approach, our frame-
work can handle any forward model and any regularization. We have illustrated the
advantages of the proposed framework by reconstructing highly-scattering samples
from intensity-only measurements. Here, the quality of the reconstructed 2D RI
maps is similar to that of the RI maps obtained from complex measurements.

To solve the 3D inverse-scattering problem, we adopted a computationally-
efficient proximal gradient-based optimization technique. Given the lack of phase
information, the 3D RI maps obtained from intensity-only measurements are of
quite remarkable quality. However, the quality of reconstruction decreases in com-
parison to the 3D RI maps obtained from complex measurements. This slightly
contrasts with our observations for the 2D experiments. Although the experimen-
tal conditions remain different (beyond the obvious additional dimension), this calls
for further investigation in future works. In particular, we shall study the effects of
the initial guess, the missing-cone problem, and the optical aberrations.

In the next chapter, we will apply our reconstruction framework for intensity-
only measurements to fluorescence-based SMLM.



Chapter 6

Single-Molecule Localization

Microscopy (SMLM) Meets

ODT

6.1 Introduction

In this chapter, we capitalize on our previous contributions to propose a novel
extension of SMLM.1 SMLM delivers nanoscale resolution by sequentially activating
a subset of fluorescent molecules and by extracting their super-resolved positions
from the microscope images. The emission patterns of individual molecules can be
distorted by the RI map of the sample, which reduces the accuracy of the molecule
localization if not accounted for. By building upon the previous Chapters 3-5, we
show that one can exploit these sample-induced aberrations to recover the RI map.
To that end, we propose an optimization framework in which we reconstruct the
RI map and optimize the positions of the molecules in a joint fashion. The benefits
of our method are twofold. On one side, we effectively recover the RI map of
the sample. On the other side, we further improve the molecule localization—the
primary purpose of SMLM.

1 The content of this chapter is based on [24, 25].

87



88 SMLM Meets ODT

6.2 Context

SMLM is a method of choice for the observation of biological phenomena at nanoscale
resolution [153–155]. SMLM is a prime example of computational microscopy where
suitable acquisitions and algorithmic reconstruction are combined in order to en-
hance the capabilities of traditional systems. Although SMLM acquisitions are
2D, innovative point-spread functions (PSF), whose shapes vary with depth, have
been designed to encode the axial position of molecules. These include the popular
astigmatism [156] or double-helix [157] PSFs. Therefore, in addition to efficient
localization algorithms, well-calibrated models of these PSFs are essential to reach
the promised nanoscale resolution [27].

The standard practice is to estimate these PSFs from acquisitions of sub-resolved
objects (e.g., fluorescent microspheres) [158, 159]. However, this strategy ignores
sample-induced distortions. Indeed, the heterogeneity of biological specimens—
through variations in their RI—induces scattering of the emitted light. This dis-
torts the recorded emission patterns and compromises the accurate localization of
molecules. To mitigate this effect, Xu et al. [160] proposed an algorithm to jointly
localize fluorescent molecules and estimate an in situ PSF model that has the ability
to capture sample-induced aberrations and, hence, improve localization accuracy.

If we could estimate both the RI and the position of molecules from the SMLM
acquisition stack alone, then we would have a unique combination of structural (RI)
and functional (fluorescence) information about the sample [4]. To our knowledge,
such a reconstruction of both RI and fluorescence density from the same fluorescent
dataset (i.e., without phase measurements) has been investigated only recently by
Xue and Waller [161]. They consider two-layers samples where the bottom layer
contains fluorescence-labeled objects and the top layer contains non-labelled ob-
jects. In this context, they demonstrated that the 3D RI map of the non-labelled
objects can be reconstructed from defocused fluorescence images that are collected
by sequentially stimulating small regions of the fluorescence-labeled layer of the
sample. Moreover, they showed that the reconstructed RI map can be exploited
to obtain the scattered PSF and improve the fluorescence signal through decon-
volution. This setting differs in two ways from the exploitation of the individual
emission of fluorophores in SMLM that we propose here. First, RI and fluorescence
objects are mixed (i.e., no two-layers samples). Second, fluorescence measurements
are recorded at two distinct focal planes (i.e., biplane SMLM modality).

In SMLM, the recovery of the RI has been addressed in [162]. This work exploits
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the fact that SMLM data can be seen as measurements of an ODT system with
point-source illuminations inside the sample. In [162], the authors assumed that
the phase of the measurements was accessible, an assumption which is not met in
practice. Moreover, their proposed approach relies on a linear model whose validity
is limited to weakly scattering samples [12].

6.3 Contributions

In this chapter, we introduce a RI-reconstruction approach from (intensity) SMLM
measurements. We consider a realistic image-formation model (described in Sec-
tion 6.4) that integrates background fluorescence as well as the shot noise inherent
to fluorescence microscopy. Importantly, we consider that the positions of the
molecules are known only approximately, and then take advantage of our model-
based scheme to refine them.

To cope with this challenging scenario, we propose a joint-optimization frame-
work (Section 6.5). Our method simultaneously reconstructs the RI and refines
the positions and amplitudes of the molecules. The benefits of our framework are
twofold. On one side, we accurately estimate structural information (RI) from
SMLM acquisitions. On the other side, we significantly improve the localization
of the molecules—the primary objective of SMLM. We validate our framework on
simulated data in Section 6.6.

6.4 Image-Formation Model

6.4.1 SMLM: Perspective from ODT

The space-varying RI of the sample under consideration is represented by the func-
tion ⌘ : ⌦! R with ⌦ ✓ R3. The sample is populated with L fluorophores located
at spatial position {xl 2 ⌦}

L

l=1. Without loss of generality, we consider an SMLM
acquisition stack where a single fluorophore is activated on each frame. Indeed,
because fluorophores are incoherent sources, the image produced upon activation
of multiple emitters is simply the sum of the individual contribution of each emit-
ter [31].

When activated, the lth fluorophore at position xl 2 ⌦ emits a spherical wave
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Figure 6.1: Biplane SMLM. A fluorophore emits fluorescent light which
scatters through the sample. Then, an optical system records the intensity
of the total field at two different focal planes.

with intensity al > 0, which leads to

uin(x;xl, al) = al

exp (jkbkx� xlk2)

4⇡kx� xlk2
, (6.1)

where j is the imaginary unit and kb = 2⇡⌘b

�
is the wavenumber determined by the

emission wavelength � and the RI ⌘b > 1 of the surrounding medium. The spherical
wave acts as an “incident” field that illuminates from within the sample. As such,
it scatters through the sample and produces a field ul : R3

! C that satisfies the
LiSc equation—which we recall here with the explicit dependence on xl, al—

ul(x) = uin(x;xl, al) +

Z

⌦
g(x� z)f(z)ul(z) dz, (6.2)

where f(x) = k2
b

⇣
⌘(x)2

⌘
2

b

� 1
⌘

is the scattering potential and g : R3
! C is the

Green’s function that corresponds to the centered spherical wave uin(x;0, 1) [163].
The intensity of the field ul at the camera plane � is then recorded by an optical
system to form the lth SMLM frame yl 2 RM . Formally, we have, 8l 2 {1, . . . , L},
that

yl = Pois
�
|Pul

��
�
|
2 + bl

�
, (6.3)
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Algorithm 4 Joint-Optimization Framework
Require: f

0
2 RN

�0, [x0
1 · · ·x

0
L
] 2 ⌦L, a

0
2 RL

>0

1: t = 0
2: while (Not converged) do
3: Select a subset L ⇢ {1, . . . , L}

. Update amplitudes and positions
4: for l 2 L do
5: (at+1

l
,xt+1

l
) = Refine (Jl(f t, · , · ); at

l
,xt

l
)

6: end for
. Update the scattering potential:

7: f
t+1 = accel.FBS

�P
l2L Jl( · ,xt+1

l
, at+1

l
); f t

�

8: t t + 1
9: end while

10: return f
t,Xt,at

where Pois denotes Poisson’s distribution (shot noise), ul

��
�

denotes the restriction
of ul to �, and bl 2 RM is a background signal that can originate from autofluo-
rescence or spurious out-of-focus fluorophore emissions. Finally, P : C2

! RM is
a linear operator that models both the effect of the optical system (i.e., pointwise
multiplication with the pupil function in the Fourier domain) and the sampling on
the M camera pixels.

6.4.2 Discrete Forward Model
Let us rasterize ⌦ into N voxels of length h. Similar to our previous chapters, we
define the discrete forward model by

H
SMLM : RN

�0 ⇥ ⌦⇥ R>0 ! RM

(f ,xl, al) 7! B
��P
⇥
A(f), IM

⇤
sin(xl, al)

��2 (6.4)

with

A(f) = G̃ diag(f) (IN �Gdiag(f))�1 , (6.5)

sin(xl, al) = [(uin,⌦
l

)T , (uin,�
l

)T ]T . (6.6)
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Here, f 2 RN is a sampled version of f within ⌦. The vectors u
in,⌦
l
2 CN and

u
in,�
l

2 CM are the sampled versions of uin( · ;xl, al) within ⌦ and �, respec-
tively. We denote by {x

⌦
n
}

N

n=1 and {x
�
m

}
M

m=1 the sampling points within ⌦ and
�. Similar to previous chapters, the matrix G 2 CN⇥N encodes the convolution
with the Green’s function in (6.2). Similarly, G̃ 2 CM⇥N is a matrix that, given
the total field within ⌦, gives the scattered field at the measurement plane �.
Next, P 2 CM⇥M is the discrete version of P and | · |

2 denotes the pointwise-
squared magnitude. A full description of G, G̃, and P is provided in Chapter 4.
Finally, the matrix B 2 RM⇥M encodes a convolution with a Gaussian filter of
length �b = 0.7h. It accounts for the mismatch between our physical model derived
from the scalar diffraction theory and the vectorial nature of light [164, 165].

In this work, we adopt a biplane configuration [166] that involves two pupil
functions with separate focal planes. To keep the notation simple, we shall use a
single matrix P to represent the effect of the two pupil functions (i.e., two focal
planes). Given the discrete forward model (6.4), the image formation model (6.3)
writes as, 8l 2 {1, . . . , L},

yl = Pois(HSMLM(f ,xl, al) + bl). (6.7)

Remark 6.4.1. Although we consider a biplane modality in our experiments, the

proposed joint optimization framework (Section 6.5) can be deployed with any num-

ber of focal planes. In this proof-of-concept work, we considered two focal planes

because i) it corresponds to a standard SMLM modality ii) it helps to compensate

for the lack of phase measurements.

6.5 Joint Recovery of the Molecule Localization and

Refractive Indices (RI)

6.5.1 Joint-Optimization Framework
Our goal is to jointly recover the distribution of the RI and the localization of
fluorescent molecules. To that end, we propose to solve the minimization problem

(f⇤,X⇤,a⇤) 2 arg min
f2RN

�0
,

X2⌦L
,a2RL

>0

LX

l=1

Jl(f ,xl, al) + ⌧R(Lf), (6.8)
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where, for all f 2 RN

�0, x 2 ⌦, and a > 0,

Jl(f ,x, a) = DKL

�
H

SMLM(f ,x, a) + bl;yl

�
. (6.9)

The matrix X = [x1 · · ·xL] 2 ⌦L and the vector a = (a1, . . . , aL) 2 RL

>0 are the
concatenation of positions and amplitudes of the fluorophores, respectively. In this
work, we use a TV regularization [125], although alternatives such as HS [126]
or learnt regularizers [100, 167–169] can be easily plugged into our framework.
The data-fidelity term DKL is the Kullback-Leibler divergence [170] defined as,
8(z,y) 2 RM

�0 ⇥ RM

�0,

DKL (z;y) = z
T
1M � y � log(z + �), (6.10)

where � > 0 is a stabilizing parameter. Note that the Kullback-Leibler divergence
corresponds to the Poisson negative log-likelihood up to some constant term.

To optimize (6.8), we alternate between an update of the RI and an update
of the amplitudes and positions of the fluorophores (Algorithm 4), inspired by the
self-calibrating reconstruction techniques developed for other modalities [1, 171].
Updates are performed on a subset of molecules (Line 3) in a stochastic fashion.
In Algorithm 4, accel.FBS

�P
l2L Jl( · ,xt+1

l
, at+1

l
); f t

�
refers to the minimization

of
P

l2L Jl( · ,xt+1
l

, at+1
l

) with the accelerated FBS initialized with f
t. We use the

same notation for the refinement step at Line 5. Details on the algorithms deployed
for each sub-problem are provided in Sections 6.5.2 and 6.5.3. We implemented the
method within the GlobalBioIm library [131].

6.5.2 Update of Molecule Amplitudes and Positions
For the refinement procedure in Line 5 of Algorithm 4, we again adopt an alternating
scheme between an update of the amplitude and the position, as summarized in
Algorithm 5. In the Sections 6.5.2 and 6.5.2, we describe the Newton and gradient
update steps used to refine the amplitude and position, respectively.

Amplitudes

Let f 2 RN

�0 and X 2 ⌦L be fixed. First of all, one can see from (6.4) that, for
al > 0,

H
SMLM(f ,xl, al) = a2

l
H

SMLM(f ,xl, 1), (6.11)
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Algorithm 5 Refinement procedure for the lth molecule
Require: x

0
l
2 ⌦, a0

l
> 0, Tmol 2 N

1: t = 0
2: while (Not converged or t < Tmol) do
3: at+1

l
= NewtonUpdate (Jl(f ,xt

l
, · ); at

l
)

4: x
t+1
l

= GradientUpdate
�
Jl(f , · , at+1

l
);xt

l

�

5: t t + 1
6: end while
7: return x

t

l
, at

l

which is very helpful to reduce the computational cost of our joint-optimization
procedure. Indeed, denoting dl = H

SMLM(f ,xl, 1), we have that

Jl(f ,xl, al) = DKL(a2
l
dl + bl;yl) (6.12)

= (a2
l
dl + bl)

T
1M

� yl � log(a2
l
dl + bl + �). (6.13)

The function Jl is twice differentiable with respect to a. Its first derivative is given
by

@aJl(f ,xl, al) = 2al

MX

m=1

vlm

✓
1�

ylm

a2
l
vlm + blm + �

◆
. (6.14)

Its second derivative reads as

@2
a
Jl(f ,xl, al) = 2

MX

m=1

vlm

✓
1�

ylm

a2
l
vlm + blm + �

◆

+
MX

m=1

(2alvlm)2ylm

(a2
l
vlm + blm + �)2

. (6.15)

As such, we can perform a Newton update on al as

at+1
l

= at

l
� s

@aJl(f ,xl, at

l
)

@2
a
Jl(f ,xl, at

l
)
, (6.16)

where s is the length of a step computed via line-search so as to satisfy Wolfe’s
conditions [172].
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Positions

Let f 2 RN

�0 and a 2 RL

>0 be fixed. We want to perform a gradient update on
the position xl of the lth molecule. However, one can see that the spherical wave
in (6.1) is not differentiable whenever x = xl. Consequently, we prefer to consider
the smoothed version of the spherical wave

uin
smth(x;xl, al) = al

exp (jkbkx� xlk2,✏)

4⇡kx� xlk2,✏

, (6.17)

where k · k2,✏ =
p
k · k22 + ✏ with 0 < ✏ ⌧ 1. Then, the gradient of Jl with respect

to x, evaluated at xl, is given by

rxJl(f ,xl, al) = 2JH

sin,l

⇥
A(f), IM

⇤H
P

H
P
⇥
A(f), IM

⇤
sin,l

�B
TrzDKL

�
H

SMLM(f ,xl, al) + bl

�
, (6.18)

where sin,l = sin(xl, al) 2 CN+M . The gradient of DKL in (6.10) with respect to
the first variable z is given by

rzDKL(z;y) = 1M � yl ↵ (z + �) . (6.19)

Finally, it remains to provide the expression of the Hermitian transpose of the
Jacobian matrix of sin( · , al), evaluated at xl, which we denote J

H

sin,l
2 C3⇥(N+M).

Its qth column is given by

[JH

sin,l
]q = [sin,l]

⇤
q

✓
jkb +

1

krq � xlk2,✏

◆
(rq � xl)

krq � xlk2,✏

. (6.20)

Let us emphasize that rq = x
⌦
q

(⌦ sampling points) for q  N and rq = x
�
q�N

(�
sampling points) for N < q  N + M . Equipped with this closed-form gradient,
we can deploy a projected-gradient update on xl as

x
t+1
l

= P⌦

�
x

t

l
� srxJl(f ,x

t

l
, al)

�
, (6.21)

where s is a step-size computed via a backtracking line-search [173]. The projec-
tor P⌦ : R3

! ⌦ constrains the fluorophore positions to remain in ⌦.
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Algorithm 6 accel. FBS
Require: f

0
2 RN

�0, TRI 2 N, � > 0,↵ 2 [0, 1]

1: t = 0, w
0 = f

0, v0 = 1
2: while (Not converged or t < TRI) do
3: g =

P
l2L rJl( · ,xl, al)(wt)

4: f
t+1 = prox

�⌧R(L · )

⇣
w

t
� �g

⌘

5: vt+1 =
1+
p

1+4(vt)2

2

6: w
t+1 = f

t + ↵ v
t�1

vt+1 (f t
� f

t+1)
7: t t + 1
8: end while
9: return f

t

6.5.3 Update of the RI
When the positions X 2 ⌦L and amplitudes a 2 RL

>0 are fixed, the RI update
consists in solving

f
⇤
2 arg min

f2RN
�0

LX

l=1

Jl(f ,xl, al) + ⌧R(Lf). (6.22)

It corresponds to an inverse-scattering problem from intensity measurements [7,
22]. To solve (6.22), we deploy a relaxed variant [117] of the accelerated FBS
algorithm [127, 128] (Algorithm 6). It requires the computation of two quantities.

1. The gradient of Jl( · ,xl, al) which involves the Jacobian of A(f) in (6.4) whose
expression is provided in [18].

2. The proximal operator of R(L · ) which, for TV, can be efficiently evaluated
by using the fast gradient-projection algorithm [129].

6.5.4 Initialization Strategies
Initialization of the RI

In ODT from intensity-only measurements, the LFR method is a standard tool to
obtain an initial guess of the RI distribution [7, 64]. However, this initialization



Joint Recovery of the Molecule Localization and RI 97

requires coherent light sources with known geometry, which prevents its use on
SMLM data. We therefore adopt an alternative approach that comprises two steps.
We first replicate the widefield image (sum of the SMLM stack) along the axial
direction and then blur the obtained volume with a Gaussian filter. The rationale
behind this choice is that we can only expect to recover the RI where fluorophore
emissions have propagated, that is, at the vicinity of fluorescent molecules. We
then define f

0 as a scaled version of this filtered volume so that its values belong
to an admissible range of RI (Fig. 6.3).

Single-Molecule Localization

Any SMLM localization software can be used to compute the initial positions
{x

0
l
}

L

l=1. However, we found that existing software packages for a biplane modality
were not performing well on our simulated dataset. We believe that this is due to
the high thickness of the sample together with the small number of acquisitions.

Therefore, we adopted a simple yet efficient method. We localize the position of
the lth fluorophore based on cross-correlations between the measurements yl and
a set {kp}

P

p=1 of PSF models in 2 RM . We define them as the the output of the
forward model with no scatterer, like in

kp = H
SMLM(0N ,xpsf

p
, 1), (6.23)

where the positions x
psf
p

= (0, 0, p�z) for p = {�P, . . . , P} vary along the axial
direction. We then initialize

x
0
l

= (m̂h, n̂h, p̂�z) (6.24)

where
(m̂, n̂, p̂) = arg max

m,n,p

[yl ⇤ k
_
p
]m,n, (6.25)

Once localized, we initialize the amplitude as

a0
l

=
⇣
kMx

0

l
(yl � b̂l)k1/kkp̂k1

⌘ 1

2

, (6.26)

where Mx
0

l
2 RR⇥M crops a region-of-interest centered at x

0
l

and b̂l denotes the
estimated background (Section 6.5.4).
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Background Estimation

To estimate {bl}
L

l=1, we apply a simple algorithm suitable for a background that
slowly varies in space and time. In SMLM, this is a common assumption [174]. Our
procedure proceeds in two steps.

1. For each measurement yl, we mask an area around the estimated position xl

and inpaint it using the function regionfill of Matlab2 to obtain ȳl.

2. We apply a spatio-temporal (3D) median filter along the stack of masked
and inpainted measurements Ȳ = [ȳ1 · · · ȳL] to take advantage of the spatio-
temporal smoothness of the background.

6.6 Results on Simulated Data

6.6.1 Simulation Setting
We created an RI map immersed in water (⌘b = 1.339), fully included in the region
⌦ of size (7.2⇥ 7.2⇥ 3.2)µm3 (Fig. 6.2). This sample presents small features with
RI values that are lower or higher than their surroundings. Then, we populated this
sample with fluorophores randomly placed on a structure that is composed of an
outer membrane as well as inner compartments. The smallest distance between two
fluorophores is 20nm. We simulated L = 1000 SMLM acquisitions with a biplane
modality, each corresponding to the activation of a single fluorophore. The two
focal planes were set at ±300nm. The amplitude al of each fluorophore emission
was drawn from a Poisson distribution with mean A = 1000 and the wavelength of
the emitted light is set at � = 647nm. In addition, we simulated a pupil function
for each focal plane with NA = 1.45 and 25 Zernike coefficients. Their values were
drawn from the uniform distribution U(�0.5, 0.5), except that the three first coef-
ficients were set to 0 and that the fourth coefficient was drawn from U(�0.1, 0.1)
to better match the PSFs observed in real SMLM acquisitions. The background
signals bl for l 2 {1, 100, 200, . . . , 1000} were simulated by convolving a Gaussian
kernel with a random image generated from a uniform distribution. We then scaled

2 Matlab’s command regionfill performs a smooth interpolation inward from the pixel
values that are on the outer boundary of the mask.
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Figure 6.2: Simulation setup. The RI map, immersed in water (nb =
1.339), is depicted on the left orthoviews. The sample is populated with
fluorescent molecules that belong to the labeled region. They sequentially
emit a spherical wave which is then propagated through the sample us-
ing LSm (Chapter 3). Two focal planes (with pupil functions) are acquired.
The widefield images are generated by summing all SMLM frames. The
fluorescence images were satured for visualization purpose. We display the
labeled region with partial transparency so as to make the inner compart-
ments visible. Scale bars: 500nm.
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the obtained images so that their pixel values belong to the range [350, 450]. Back-
grounds for intermediate frames were then obtained through interpolation. We set
a large width for the Gaussian kernel so as to obtain a slowly varying background
in both space and time. Finally, to control the noise, we scaled the noiseless mea-
surements with a factor r 2 (0, 1] before applying the Poisson noise so that (6.4)
writes as, 8l 2 {1, . . . , L},

yl = Pois(r(HSMLM(f ,xl, al) + bl)). (6.27)

By doing so, r can be interpreted as the product between the excitation photon flux
and the integration time. A small r yields a higher level of noise, which increases
the difficulty of the localization of molecules and the RI reconstruction.

We compare our joint-optimization framework with two baselines. They con-
sist on the sole RI reconstruction with i) perfectly characterized molecules (i.e.,
true amplitudes and positions) or ii) the initial estimation of the amplitudes and
positions obtained as described in Section 6.5.4. By doing so, we somehow ob-
tain the worst-case and best-case scenarios. For each case, we obtained the best
reconstruction by performing a grid search on the regularization parameter ⌧ .

For our joint-optimization framework, we set the parameters Tmol = 4, TRI = 1,
and ↵ = 0.85. In our implementation, w

0 and v0 in Line 1 of Algorithm 6 are
initialized from the previous call. We ran our optimization on a PowerEdge c4140
equipped with Intel Xeon Gold 6240 CPUs (2.60GHz) and a GPU NVIDIA Tesla
V100 SXM3 (32 GB). An iteration of Algorithm 4 took 20 seconds on average. We
used up to 2000 iterations, which corresponds to about 10 hours of computation.

6.6.2 Metrics and Visualization

To assess the quality of the reconstructed RI map, we compute the relative error
as well as the structural similarity index measure (SSIM) [175] with respect to
the ground truth. To assess the accuracy of the localization of the molecules, we
compute the root-mean-square error (RMSE) with respect to the true positions.
Note that we do not report detection metrics such as true/false detections as they
are not really relevant in our setting where we consider only frames containing one
molecule. Finally, given a list of molecule positions, we generate a 3D image through
the Gaussian rendering technique [27]. To that end, we represent the fluorophore
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Figure 6.3: Reconstructions of the RI Map. From left to right: Ground
truth, initial guess, reconstruction with positions and amplitudes fixed to
their initial values (Section 6.5.4), reconstruction with the proposed joint-
optimization framework, and reconstruction with positions and amplitudes
fixed to their true values (gold-standard). The SSIM and relative errors
are displayed in the first row at the left and right corners, respectively, of
each corresponding reconstruction. Scale bar: 500nm.
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z z z

Figure 6.4: Observable region of the sample. Illustration of the region of
the sample that is “illuminated” by a fluorophore far from (left) and close
to (middle) the detection system. The right scheme illustrates the fact that
SMLM data carry more information about RI regions that are close to the
detection system (positive z).

positions as a sum of shifted Dirac

s(x) =
LX

l=1

�(x� xl). (6.28)

Gaussian rendering then consists in convolving s with an isotropic Gaussian kernel
and sample the result on a grid. Here, we set the standard deviation of the Gaussian
kernel to 10nm and the grid step to h/10 = 10nm.

6.6.3 Results
We first fix the noise level to r = 1 in (6.27).

Reconstructed RI

We display the RI maps in Fig. 6.3 and report there the relative errors and SSIM.
When the positions and amplitudes of the molecules are perfectly known, we re-
cover most of the details of the ground truth. On the contrary, the reconstruction
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Figure 6.5: Rendering of localized molecules (Y-projection). Region-
of-interest of the projection along Y of the rendered fluorescent vol-
ume. From top to bottom: Initial positions, positions refined with the
joint-optimization framework, ground truth. Field-of-view (XZ): (3600 ⇥
600)nm2. The images were satured for visualization purpose. Scale bar:
200nm.

obtained with the initial positions and amplitudes is unsuccessful. This highlights
the importance of refining molecule positions and amplitudes jointly with RI re-
construction. We effectively see that our joint-optimization framework is able to
recover an RI map that is visually similar to the best-case scenario. The metrics
confirm the visual assessment. Yet, one can observe some high frequency artifacts
(ringing) on the reconstruction obtained with the joint optimization framework
(plane z = �0.2µm). They are due to few badly refined molecule positions (out-
liers in Figure 6.8) that lead to a mismatch in the model. Finally, it should be
noted that we could expect that the quality of the reconstruction varies with the
axial position z. The reason is that an SMLM frame (from the activation of one
molecule) carries information about the part of sample that lies between the ac-
tivated molecule and the optical system (Figure 6.4). As such, there are more
SMLM frames that carry information about z-planes with positive z than frames
that carry information about z-planes with negative z. Moreover, waves produced
by fluorophores with negative z-positions propagate through a larger layer of the
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Table 6.1: RMSE for the estimated positions and amplitudes. First row:
Initial positions and amplitudes from our standard single-molecule local-
ization. Second row: Positions and amplitudes from our joint-optimization
framework. Third and fourth rows: Positions and amplitudes refined with
the RI map fixed to the initial guess f

0 and the ground truth (GT), respec-
tively. Amp.: Amplitude. Lat.: Lateral. Ax.: Axial.

3D [nm] Lat. [nm] Ax. [nm] Amp.

Initial 163 69 148 109
Joint 74 15 72 76

with f
0 142 38 136 194

with fGT 72 18 70 76

sample, inducing more scattering. These facts make that i) fluorophores with neg-
ative z-positions are harder to localize, and ii) z-planes of RI with negative z are
harder to reconstruct.

Molecule Localization

It is noteworthy to recall that the primary objective of SMLM is to localize the
fluorescent molecules with nanometric precision. It follows that another benefit of
our joint-optimization framework is an improvement of this localization. Indeed,
our model accounts for sample-induced distortions that usually compromises the
accurate localization of molecules [160].

We report in Table 6.1 the RMSE of the initial and refined positions, as well
as the RMSE of the initial and refined amplitudes. In addition, we provide the
RMSE of the refined positions and amplitudes when the RI map is fixed to the
initial guess f

0 or the ground truth (best-case scenario).
There is a gain of 89nm in the 3D RMSE for our joint-optimization frame-

work. One sees that the lateral and axial RMSE are improved by 54nm and 76nm,
respectively. Not only does our joint-optimization framework successfully recover
the RI map, but it also improves significantly the localization of the molecules.
The proposed joint-optimization framework performs better than the refinement of
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the positions and amplitudes with the RI map fixed to f
0. Moreover, it performs

similarly to the refinement with the RI map fixed to the ground truth. Those ob-
servations confirm that the joint-optimization framework is necessary to improve
the localization and can even reach similar performance to the best-case scenario.

In Figure 6.5, we display a Y-projection of the fluorescent volume rendered from
the molecule positions, where one can visually appreciate the gain in accuracy. The
estimation of the amplitudes is improved as well. This can help to better estimate
the uncertainty of localization [176, 177].

Influence of the Distribution of Fluorophores

From the phenomenon illustrated in Figure 6.4, one can expect that the quality
of the reconstructed RI map is closely related to the spatial distribution of the
fluorescent probes. In this section, we investigate this question by comparing the
reconstructions obtained with the four fluorophore distributions illustrated in Fig-
ure 6.6 (Panel A). These include the rather homogeneous distribution depicted in
Figure 6.2 and a more concentrated distribution, both with two different numbers
of molecules (i.e., numbers of frames).

Table 6.2: RMSE of the estimated positions and amplitudes for the four
distributions of fluorophores depicted in Figure 6.6 (Panel A). Amp.: Am-
plitude. Lat.: Lateral. Ax.: Axial. Dist.: Distribution.

#Fluo 3D [nm] Lat. [nm] Ax. [nm] Amp.

D
is

t.
1 1000 74 15 72 76

100 80 13 79 76

D
is

t.
2 1000 85 3 85 77

100 82 3 82 55

As expected, the reconstructed RI map is significantly degraded when the dis-
tribution of fluorophores is more concentrated (Figure 6.6B, right column). Indeed,
the emitted light has mainly propagated through a restricted area of the sample,
limiting the information on the RI map carried by the measurements. On the con-
trary, the quality of the reconstructed RI map seems less sensitive to the number of
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Figure 6.6: Reconstructions of the RI map with different fluorophore
distributions. A: The four considered fluorophore distributions. B; Recon-
structed RI maps. The SSIM and relative errors are displayed in the XZ
view at the left and right corners of each reconstruction, respectively. The
SNR is displayed at the bottom-left corner for each noise level. Scale bar:
500nm.

fluorophores. Although some details are lost, the RI maps reconstructed with 100
frames remain qualitatively similar to their counterparts reconstructed from 1000
frames (Figure 6.6B).

Finally, we display in Table 6.2 the RMSE obtained after the joint optimiza-
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Figure 6.7: Reconstructions of the RI map with different noise levels.
From left to right: Ground truth, reconstruction with the proposed joint op-
timization framework for r = 0.1, 0.5, and 1. The SSIM and relative errors
are displayed in the first row at the left and right corners of each reconstruc-
tion, respectively. The last row contains two examples of SMLM acquisition
(ROI) for two different molecules at axial positions z = 440nm (top) and
z = 0nm (bottom). The SNR is displayed at the bottom-left corner for
each noise level. Scale bar: 500nm.
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tion. Interestingly, the refinement of the positions and amplitudes of the molecules
remains stable when reducing the number of frames. For the concentrated distribu-
tion, the axial RMSE is slightly degraded and, on the contrary, the lateral RMSE
is drastically reduced, which might be due to the concentration of the distribution.
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Figure 6.8: Box plots of the localization (left) and amplitude (right)
error for different noise levels. Three noise levels are displayed with r =
0.1, 0.5, and 1. For each case, the left box plot (hatched) corresponds to
the initial positions/amplitudes and the right box plot (solid) corresponds
to the refined positions/amplitudes. Note that the estimated amplitudes
were scaled by r�1 to compare with the same ground truth. For the box
plots of the localization error after refinement (solid), we set the upper
whiskers to 50nm so as to consider any larger error as outliers. This is in
line with the expected 3D localization error in SMLM [27]. This bound is
not relevant for the initial errors (hatched) as they are too large. For the
hatched box plots, we thus set the default upper whiskers to Q3 + 1.5IQR,
where IQR = (Q3�Q1) is the interquartile range and Q1, Q3 are the 25th
and 75th percentile, respectively. Finally, the lower whiskers are always set
to the smallest error among all molecules. Outliers are indicated by ⇥.
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Robustness to Noise

Next, we are interested in the robustness of our framework to the measurement
noise. To that end we vary the parameter r in (6.27) from 0.1 to 1. Some examples
of obtained measurements are shown in Figure 6.7 (last row), where one can observe
that the noise is stronger when r is smaller.

The RI reconstructions for each noise level are displayed in Figure 6.7. Although
the quality of reconstruction degrades when the noise increases, the shape and the
most prominent features are recognizable even for r = 0.1. This suggests that our
method is quite robust to noise.

The box plots of the localization errors are displayed in Figure 6.8. For each
noise level, we show the box plot for the initial and refined positions to illustrate
the improvement. We again observe a certain robustness to noise, even for the case
r = 0.1 where the amplitudes were badly initialized.

It is noteworthy to mention the presence of outliers in the displayed box plots
even for r = 1. For some molecules, we observed that the joint-optimization could
not refine the positions and amplitudes well. In few cases, the estimates did even
worsen. Fortunately, the number of such failures is limited (e.g., 60 over 1000
molecules for r = 0.1).

6.7 Summary

In this chapter, we presented a joint-optimization framework to estimate both the
RI map and the position of fluorescent molecules from an SMLM acquisition stack.
Our method takes advantage of the sample-induced aberrations to unveil the map of
the RI of the sample. Such structural information ideally complements fluorescence
imaging [4]. In addition to this unique feature, our framework is able to improve
the accuracy of molecule localization. Our work shows that additional information
about the sample can be recovered from SMLM data. This is a first step towards
an exciting and novel extension of SMLM.

In the next chapter, we come back to ODT from complex measurements de-
scribed in Chapter 4), and are interested in a processing step of the measurements—
phase unwrapping. We will present a deep-learning based method to unwrap chal-
lenging phase images, with many prospects for 2D and 3D QPI.
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Chapter 7

Phase Unwrapping with Deep

Image Prior (PUDIP)

7.1 Introduction

In Chapter 4, we presented a reconstruction framework for ODT with complex
measurements. The phase of these complex images was acquired by DHM. In
practice, the measured phase suffers from wrapping (i.e., modulo 2⇡ of the original
phase), which introduces non-representative discontinuities in its distribution. Once
recovered from the measurements, the unwrapped version provides quantitative
information on the sample [178] or is used for tomographic reconstruction (Rytov
model) [13]. This process, known as phase unwrapping, is an important step for
phase imaging. However, its application to biological specimens such as organoids
is challenging; in particular, the advent of thick and complex samples calls for
advanced methods. Classical methods, largely optimized for the analysis of 2D
samples, exhibit important unwrapping artifacts and thus remain unreliable for
these complex samples (Fig. 7.1). In this chapter, we propose a phase unwrapping
method based on untrained convolutional neural networks (CNN) to solve this
challenging task.1

1 The content of this chapter is based on [26].

111
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7.2 Context

7.2.1 Classical Methods

In the past decades, numerous 2D phase-unwrapping algorithms have been pro-
posed. These approaches generally fall into four categories: path following [179,
180], minimum Lp-norm [181–183], Bayesian/regularization [184, 185], and para-
metric modeling [186].

Most of the path-following algorithms perform a line integration along some path
established by techniques such as the branch-cut algorithm [179]. Generally, the
path-following methods encounter issues of consistency as the resulting unwrapped
phase depends on the path.

By contrast, the minimum-norm methods are global. They estimate the un-
wrapped phase by minimizing an Lp-norm. When p = 2 (least-squares meth-
ods) [187], there exist approximate solutions which can be obtained by fast Fourier
transforms or discrete cosine transforms [182]. However, the L2-norm tends to
smooth image edges, especially at the discontinuities [181]. The drawback asso-
ciated to p = 2 can be overcome by setting 0  p  1, which usually increases
the computational cost. Bioucas-Dias and Valadao [188] introduced a specific
energy-minimization framework for phase unwrapping that is solved via graph-cut
optimization (PUMA). Recent works have extended this method for other imag-
ing modalities [189, 190]. In the same spirit, Condat et al. recover the wrap-
count with a convex relaxation of the original integer-optimization problem [191].
In [192], the authors describe a weighted energy function combined with an HS
regularization [126]. They optimize the minimization problem with an iterative
algorithm (IRTV) based on ADMM [147].

Bayesian approaches take into account a data-acquisition model and statis-
tical prior knowledge on the phase. Such approaches are usually computation-
ally prohibitive, but an efficient algorithm was proposed in [185] using a series
of dynamic-programming procedures connected by the iterated conditional-modes
algorithm [193].

The parametric-modeling algorithms constrain the unwrapped phase to a para-
metric surface, usually a low-order polynomial [186], which makes the unwrapping
method computationally efficient. These approaches yield excellent performance
only if the parametric model accurately represents the true phase.

Importantly, an assumption considered by most phase-unwrapping approaches
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Figure 7.1: Example of phase image of organoids. First column: mea-
sured (wrapped) phase image. Second to fifth columns: baseline methods
(LS, IRTV, and PUMA) and the proposed method (PUDIP). First row: re-
constructed phase. Second row: zoomed inset. The size of the unwrapped
phase image is (200⇥ 350). For the sake of clarity, we removed te non-flat
(smooth) background of each unwrapped phase.

is that the absolute value of the unwrapped phase difference between neighboring
pixels is less than ⇡, the so-called Itoh condition [194].

It is worthy to note that there exist alternative methods for quantitative phase-
imaging methods that rely on multiple wavelengths or broadband sources [195–
198]. An imaging system with multiple wavelength sources typically acquires several
images so that the wrapping events occur at different locations, thus facilitating the
unwrapping task. While our work mainly focuses on a single-wavelength source,
our proposed framework can be adapted to the multi-wavelength setting. For more
information, we refer the reader to recent reviews on QPI [2, 4].

7.2.2 Deep-Learning-Based Approaches
Recently, deep-learning methods, in particular, CNN, have achieved unprecedented
performance in a variety of applications. They have surpassed conventional methods
in diverse fields such as image reconstruction [199, 200], superresolution [201], x-
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ray computed tomography [202], and others [203–205]. Overall, deep learning in
computational imaging is an emerging and promising field of research [206, 207].

To address the 2D phase-unwrapping problem, several works based on deep
learning have been proposed. In [208], the authors used a supervised feedforward
multilayer perceptron to detect the phase discontinuities in optical Doppler tomog-
raphy images. More recently, a residual neural network using supervised learn-
ing [209] was adopted in [210] to approximate the mapping between the wrapped
and the unwrapped phase in the presence of steep gradients. In [211], a CNN-based
framework, termed PhaseNet, has been designed. It predicts the wrap-count (in-
teger multiple of 2⇡) at each pixel, similar to the task of semantic segmentation.
Furthermore, a clustering-based postprocessing enforces smoothness by incorporat-
ing complementary information. Similar ideas were also proposed in [212, 213].
In [214], the authors improved upon [211] by integrating a network to denoise the
noisy wrapped phase. In [215], a generative adversarial network was introduced to
effectively suppress the influence of noise. In addition, a framework [216] composed
of a residual neural network and of the objective function in [192] was proposed to
unwrap quantitative phase images of biological cells.

The aforementioned works rely on supervised learning to learn the mapping
between the input-output data pairs. This paradigm needs a large representative
training dataset composed of the measured phase and the corresponding ground
truth, which may not be available in many practical applications. In addition, the
solutions obtained by direct feedforward networks might be inconsistent with the
measurements due to the lack of a feedback mechanism [100, 168, 217]. Never-
theless, these works suggest that CNNs are an appealing solution to the peculiar
challenges of phase unwrapping.

7.3 Contributions

In this work, we introduce a framework based on untrained CNNs for 2D phase
unwrapping. Our approach uses the concept of deep image prior recently introduced
by Ulyanov et al. [218]. We incorporate an explicit feedback mechanism and do not
require prior training of the neural network. Taking advantage of these features,
we propose a robust and versatile method for phase unwrapping with deep image
prior (PUDIP).

The original formulation of phase unwrapping is a non-convex integer-optimization
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and the wrapped phase � [23]. This is because Eq. (7) relies
on continuous optimization to solve the discrete-optimization
problem Eq. (1). Therefore, we adopt the single postprocessing
step [54]

�̃ = �̂ + W(� � �̂), (9)

where �̃ is the final solution, congruent with the measure-
ment �.

3. PHASE UNWRAPPING WITH DEEP IMAGE PRIOR

Deep image prior (DIP) is a scheme recently introduced in [52].
Rather than learning the mapping between input and output
with a large training dataset, DIP handles the inverse problem
by assuming that the unknown image can be represented well
by the output of an untrained generative network. Recent works
have shown the effectiveness of DIP for computational imag-
ing [55–58]. In the spirit of this approach, we propose a frame-
work where we restore the unwrapped phase based on this
implicit prior.

The unwrapped phase is generated by the CNN given by

� = f�(z), (10)

where f denotes the neural network and � stands for the network
parameters to be learned. The fixed randomly-initialized vector
z 2 RC⇥N acts as input to the generative network, while C is
the number of input channels.

Plugging Eq. (10) in Eq. (7) leads to the optimization problem

�̂ = arg min
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� W(��)]n,⇤k. (11)

In our optimization approach, we aim at minimizing this loss
function by taking advantage of the family of stochastic gradient-
descent methods. The schematic diagram of PUDIP is shown in
Fig. 2.

Finally, we achieve congruence with the single step

�̃ = f�̂(z) + W
�
� � f�̂(z)

�
. (12)

A. Architecture

We design a CNN based on the U-Net-like encoder-decoder ar-
chitecture [52, 59]. The setup includes skip connections with
convolution and concatenation. This enables the network to
reconstruct the feature maps with both local details and global
texture. We set a constant number of channels (i.e., 128) in all
the convolutional layers, except for those included in the skip
connection whose channel number is 4. We chose the paramet-
ric rectified linear unit [60] as the nonlinear activation function.
Furthermore, the downsampling operation is implemented by
convolutional modules with strides of 2, so that the size of the
feature map is halved in the contracting path. The upsampling
operation doubles the size through bilinear interpolation. The
scaling-expanding structure makes the effective receptive field
increase at deeper layers [59]. We added one last layer to im-
plement the offset subtraction in such a way that the bias of
background is removed (see Supplementary Note S1 of Supple-
ment 1).

Table 1. Baseline methods. CNN1 denotes the supervised-
learning method, while CNN2 denotes our method with un-
trained network.

Method Reference Regularization Optimization

GA [11] � branch-cut
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In our experiments, we adopt the following strategy: The
input variable z is a random vector filled with the uniform
noise U (0, 0.1). To avoid undetermined gradients with re-
spect to � in Eq. (11), we offset the norm there by the small
constant � = 10�18. In practice, the adaptive weights wn are
updated every Nw iterations to enforce sparsity in the loss
function Eq. (11) [23]. We optimize Eq. (11) by using the
adaptive moment-estimation algorithm (Adam, �1 = 0.9 and
�2 = 0.999) [61]. The optimization is performed on a desktop
workstation (Nvidia Titan X GPU, Ubuntu operating system)
and implemented on PyTorch [62]. All the parameters used in
the experiments are detailed in the Supplementary Notes S2
and S6 of Supplement 1. In our experiments, the random initial-
ization of the input variable did significantly impact neither the
performance, nor the time of computation.

4. EXPERIMENTS

Thick and complex samples present complicated wrapping
events and potentially contain a few sharp edges at which the
Itoh condition may not hold in the true phase. These combined
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input variable z is a random vector filled with the uniform
noise U (0, 0.1). To avoid undetermined gradients with re-
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updated every Nw iterations to enforce sparsity in the loss
function Eq. (11) [23]. We optimize Eq. (11) by using the
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�2 = 0.999) [61]. The optimization is performed on a desktop
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and implemented on PyTorch [62]. All the parameters used in
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and S6 of Supplement 1. In our experiments, the random initial-
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performance, nor the time of computation.
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events and potentially contain a few sharp edges at which the
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by assuming that the unknown image can be represented well
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Figure 7.2: Schematic diagram of the proposed PUDIP, for 2D phase
unwrapping. The architecture of the generative network is fully described
in A.5.1.

problem, which is different from the usual restoration problems to which deep image
priors (DIP) have been applied [218, 219]. In this work, we show that DIP is also
suitable for phase unwrapping, a difficult ill-posed inverse problem. To the best of
our knowledge, this is the first time that DIP is combined with an adaptive loss,
which makes our method a sequence of DIPs instead. Not only does this approach
improve the reconstructions, but also avoids the destabilization (i.e., significant loss
increase and blurred image) that was reported in [218].

In Section 7.4, we introduce the physical model and formulate the computational
problem in a variational framework. In Section 7.5, we describe the proposed
scheme based on untrained deep neural networks. In Section 7.7, we compare the
proposed method against other state-of-the-art (e.g., IRTV, PUMA) approaches on
experimental data of organoids. In Section 7.6, we quantitatively assess PUDIP on
several simulated datasets with diverse configurations. We extensively compare our
framework with other methods such as the recent deep-learning-based PhaseNet
method. Our results show that PUDIP improves upon other approaches by taking
advantage of the model-based and deep-learning worlds. Our work shows that QPI
can be applied to large and complex 3D samples with higher reliability.
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7.4 Problem Formulation

In this section, we formulate the problem of phase unwrapping in a variational
framework. Let the region of interest ⌦ ⇢ R2 be discretized into N pixels. To
represent the phase of our specimen, we consider the observation model

� =  + 2⇡k, (7.1)

where � = (�n) 2 RN and  = ( n) 2 [�⇡,⇡)N denote the vectorized unwrapped
and wrapped phase images, respectively; k 2 ZN represents the integer multiple of
2⇡ referred to as “wrap-count” to be added to the wrapped phase to recover the
unwrapped phase. The wrapping process is represented by a function W applied
on the nth component of (7.1) as

 n = W(�n) = ((�n + ⇡) mod(2⇡))� ⇡ 2 [�⇡,⇡). (7.2)

The discrete gradient operator r : RN
7! RN⇥2 is given by

r� =
⇥
rx� ry�

⇤
, (7.3)

where rx : RN
7! RN and ry : RN

7! RN denote the horizontal and vertical
finite-difference operations, respectively. The phases � and  are related by the
equality

W([r�]) = W([r ]), (7.4)

where W is applied component-wise. For 2D phase-unwrapping problems, the phase
� satisfies the Itoh continuity condition [194] if

k[r�]n,⇤k
2
2  ⇡

2, n 2 [1 . . . N ], (7.5)

where [r�]n,⇤ , ([rx�]n, [ry�]n) represents the nth component 2D vector of
the discrete gradient (i.e., the nth row of the matrix r�). If (7.5) is satisfied,
then (7.4) simplifies as

[r�]n,⇤ = W([r ]n,⇤), n 2 [1 . . . N ]. (7.6)

Under the hypothesis that a great majority of pixels in � satisfy the constraint
condition in (7.5), we can reconstruct the unwrapped phase by minimizing the
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Algorithm 7 PUDIP
1: w0

n
= 1 for n = 1, . . . , N

2: k = 0
3: while (not converged) do

4: ✓k+1 = arg min
✓

NX

n=1

wk

n
k[r

�
f✓k(z)

�
�W(r )]n,⇤k2

5: Update wk+1
n

using (7.8)
6: k  k + 1
7: end while
8: return f✓k(z) + W( � f✓k(z))

weighted energy function [192]

�̂ = arg min
�2RN

NX

n=1

wn(�)k[r��W(r )]n,⇤k2, (7.7)

where wn(�) 2 R�0 is the adaptive nonnegative weight for the nth component of
the cost to relax the restriction. It is defined as

wn(�) =

8
<

:

1
k[✏]n,⇤k2

, ✏min  k[✏]n,⇤k2  ✏max
1

✏max

, k[✏]n,⇤k2 � ✏max
1

✏min

, k[✏]n,⇤k2  ✏min,
(7.8)

where ✏ = (r��W(r )), and where ✏min and ✏max are the user-defined minimum
and maximum boundary weights, respectively. Note that (7.7) can be seen as a
shifted isotropic TV and other variants could be of interest for future works [220].
In addition, the solutions can be improved by imposing prior knowledge (i.e., a
regularization term) such as HS [126] in an attempt to compensate for the ill-posed
nature of the problem.

It is worthy to note that the solution obtained by iteratively minimizing the
objective function (7.7) offers no guarantee regarding the consistency between the
rewrapped phase W(�̂) and the wrapped phase  [192]. This is because (7.7)
relies on continuous optimization to solve the discrete-optimization problem (7.1).
Therefore, we adopt the single postprocessing step [221]

�̃ = �̂+ W( � �̂), (7.9)
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where �̃ is the final solution, congruent with the measurement  .

7.5 Phase Unwrapping with Deep Image Prior

Deep image prior (DIP) is a scheme recently introduced in [218]. Rather than
learning the mapping between input and output with a large training dataset, DIP
handles the inverse problem by assuming that the unknown image can be repre-
sented well by the output of an untrained generative network. Recent works have
shown the effectiveness of DIP for computational imaging [17, 219, 222, 223]. In the
spirit of this approach, we propose a framework where we restore the unwrapped
phase based on this implicit prior.

The unwrapped phase is generated by the CNN given by

� = f✓(z), (7.10)

where f denotes the neural network and ✓ stands for the network parameters to
be learned. The fixed randomly-initialized vector z 2 RC⇥N acts as input to the
generative network, while C is the number of input channels.

Plugging (7.10) in (7.7) leads to the optimization problem

✓̂ = arg min
✓

NX

n=1

wn

�
f✓(z)

�
k[r

�
f✓(z)

�
�W(r )]n,⇤k2. (7.11)

In our optimization approach, we aim at minimizing this loss function by taking
advantage of the family of stochastic gradient-descent methods. The schematic
diagram of PUDIP is shown in Fig. 7.2.

Finally, we achieve congruence with the single step

�̃ = f✓̂(z) + W
�
 � f✓̂(z)

�
. (7.12)

The process is described in Algorithm 7, where one can see that PUDIP consists in
a sequence of minimization problems.

7.5.1 Architecture
We design a CNN based on the U-Net-like encoder-decoder architecture [218, 224].
The setup includes skip connections with convolution and concatenation. This en-
ables the network to reconstruct the feature maps with both local details and global
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texture. We set a constant number of channels (i.e., 128) in all the convolutional
layers, except for those included in the skip connection whose channel number is
4. We chose the parametric rectified linear unit [225] as the nonlinear activation
function. Furthermore, the downsampling operation is implemented by convolu-
tional modules with strides of 2, so that the size of the feature map is halved in
the contracting path. The upsampling operation doubles the size through bilinear
interpolation. The scaling-expanding structure makes the effective receptive field
increase at deeper layers [224]. As last stage, we have set one layer that subtracts
a scalar value from the image. This scalar takes care of the bias intrinsic to phase
unwrapping, which can recover phase only up to a constant. For simulated data, we
subtracted the minimum value of the entire image to enforce nonnegativity. For real
data, we subtracted the mean value of a top-left area whose dimension is (30⇥ 30)
and corresponds to a background region (see A.5.1 for detailed architecture).

7.5.2 Optimization Strategy

In our experiments, we adopt the following strategy: The input variable z is a ran-
dom vector filled with the uniform noise U(0, 0.1). To avoid undetermined gradients
with respect to ✓ in (7.11), we offset the norm there by the small constant � = 10�18.
In practice, the adaptive weights wn are updated every Nw iterations to enforce
sparsity in the loss function (7.11) [192]. We optimize (7.11) by using the adaptive
moment-estimation algorithm (Adam, �1 = 0.9 and �2 = 0.999) [226]. The op-
timization is performed on a desktop workstation (Nvidia Titan X GPU, Ubuntu
operating system) and implemented on PyTorch [227]. In our experiments, the
random initialization of the input variable did significantly impact neither the per-
formance, nor the time of computation.

7.5.3 Parameter Setting

We set the maximum number of iterations as 2000 (A.5.2). The hyperparameters of
the network were initialized to default values by PyTorch. We used a learning rate of
0.01. The weights wn were updated every Nw = 100 iterations with [✏min, ✏max] =
[0.1, 8]. During a typical optimization, the weights wn will be large in the area
around sharp edges [192]. The parameter ✏min prevents that the weights from
becoming too large in the early iterations of the global optimization, which would
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force the corresponding pixels to be irreversibly set to zero. Similarly, ✏max ensures
that the weights do not become too small.

To optimize over the synthetic samples, we updated the weights wn with [✏min, ✏max].
We tried [✏min, ✏max] = [0.1, 10], [0.05, 20], [0.02, 50], and [0.01, 100], choosing the
best performance. The weights were updated every Nw = 200 for the first sample,
100 otherwise. As we randomly initialized the parameters of the network ✓, we
repeated each experiment five times and report the average performance.

7.6 Results On Simulated Data

In this section, we quantitatively assess the quality of our proposed method. To
that end, we simulated the acquisition of phase images of organoid-like samples.
In addition, we generated diverse artificial data which are similar to those found
in [188] and [213] (see the details in A.5.4).

7.6.1 Baseline Methods
We compare the proposed method with other state-of-the-art conventional or CNN-
based methods such as Goldstein’s algorithm (GA) [179], unweighted least-squares
algorithm (LS) [182], IRTV [192],2 PUMA [188],3 and PhaseNet [211] (Table 7.1).
Goldstein’s algorithm is a path-following method that adopts the branch-cut strat-
egy based on the phase residues and needs the knowledge of a phase-reference point.
By contrast, the LS, IRTV, and PUMA approaches aim at minimizing an objec-
tive function and belong to the minimum-norm category. Note that the original
LS method, which relies on a continuous optimization, may result in an inconsis-
tent solution, while GA, IRTV, and PUMA always return consistent solutions. To
enforce measurement consistency for LS, we adopted the strategy defined by (7.9).
We also compare PUDIP to the recently proposed PhaseNet [211]. We adopted the
strategy of [213] to generate a training dataset in two steps. First, the elements
of a square matrix whose size varies between (3⇥ 3) and (11⇥ 11) were randomly
generated following a uniform distribution U(0, 1) for half of the samples and a
Gaussian distribution N (0, 1) followed by the subtraction of the minimum of the

2 The source code for IRTV is available from https://cigroup.wustl.edu/publications/
open-source/

3 The source code for PUMA is available from http://www.lx.it.pt/~bioucas/code.htm

https://cigroup.wustl.edu/publications/open-source/
https://cigroup.wustl.edu/publications/open-source/
http://www.lx.it.pt/~bioucas/code.htm
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Table 7.1: Baseline methods. CNN1 denotes the supervised-learning
method, while CNN2 denotes our method with untrained network.

Method Reference Regularization Optimization

GA [179] � branch-cut

LS [182] � least-squares

-b
as

ed

IRTV [192] HS [126] ADMM [147]

m
od

el

PUMA [188] � graph cut

PhaseNet [211] � CNN1

ba
se

d

PUDIP � CNN2

C
N

N
-

matrix for the other half. Then, we multiplied the matrix by a scalar randomly
generated following a uniform distribution U(3⇡, 12⇡) and upsampled the matrix
to a (256 ⇥ 256) image using bicubic interpolation [228]. The obtained data had
a maximum value ranging from 2⇡ to 40⇡. In addition, we only kept the central
disk of the generated phase images and filled the background with 0. The training
dataset is composed of 9,600 samples; the size of each image is (256 ⇥ 256). The
wrap-count in the training data varies between 0 and 20, which makes it a 21-class
problem (see the details in A.5.3). We set the other hyperparameters as in [211]
and trained PhaseNet with this generated dataset for all the experiments.

All model-based methods were run on a desktop computer (Intel XeonE5-1650
CPU, 3.5 GHz, 32 GB of RAM) and implemented in MATLAB R2019a. For their
implementation, we initialized the unwrapped phase with 0 2 RN . All parame-
ters were set and optimized according to the guidelines provided by the authors.
Specifically, the regularization parameter for the HS regularization in IRTV was set
between 10�3 and 10�1. In PUMA, we set the non-convex quantized potential of
exponent p = 0.5, the quadratic region threshold as 0.5, and the high-order cliques
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[1, 0], [0, 1], [1, 1], and [�1, 1].
PUDIP takes about 100 seconds on GPU to unwrap a (256⇥ 256) image with

1000 iterations. In comparison, PUMA and IRTV take about 2 and 380 seconds on
CPU, respectively.

7.6.2 Quantitative Evaluation
We quantitatively evaluate the quality of the reconstructed phase �̃ with respect to
the ground truth �. Our first metric is the regressed signal-to-noise ratio (RSNR)
defined as

RSNR(�̃,�) = max
b2R+

 
20 log10

 
k�k2

k(�̃+ b)��k2

!!
, (7.13)

where k · k2 denotes the L2 norm and where b adjusts for a potential global offset.
This adjustment is used in the interest of fairness, because phase unwrapping can
only recover the phase up to a constant. When the RSNR is more than 100 dB, the
recovered phase image differs from the ground truth because of numerical impre-
cision and not because of wrong unwrapping. We therefore set the corresponding
value to infinity. In addition, we compute the SSIM [175].

GA LS IRTV PUMA PhaseNet PUDIP Ground-truth

0

15

0

42

2.70 2.86 3.15 3.87 22.14 44.72

31.6312.4610.524.370.9414.53

Figure 7.3: Unwrapped phases of two simulated samples. From left to
right, the results are obtained by GA, LS, IRTV, PUMA, PhaseNet, and
our approach (PUDIP). The ground truth images are presented in the last
column. The corresponding RSNR [dB] is showed at the left bottom of
each subfigure.
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Table 7.2: RSNR [dB] and SSIM of the reconstructed-phase images versus
the angle of cropping. The RSNR and SSIM of our method (PUDIP) are
the average of five experiments.

Angle GA LS IRTV PUMA PhaseNet PUDIP

R
SN

R

0�
1 1 1 1 24.79 1

45� 6.80 5.15 8.61 10.20 14.10 15.99
90� 2.70 2.86 3.15 3.87 22.14 37.75
135� -0.56 1.32 2.46 2.06 22.01 43.52
180� -5.15 -0.13 0.84 1 19.33 1

225� -6.70 -0.43 -0.24 2.21 19.96 41.44
270� -8.00 -1.85 -1.66 2.01 21.23 1

SS
IM

0� 1.0000 1.0000 1.0000 1.0000 0.9799 1.0000
45� 0.8975 0.8346 0.9429 0.9595 0.9680 0.9866
90� 0.9074 0.7180 0.7337 0.7418 0.9772 0.9995
135� 0.8360 0.5716 0.6510 0.5576 0.9769 1.0000
180� 0.4863 0.4772 0.4893 1.0000 0.9771 1.0000
225� 0.4269 0.3411 0.3225 0.1183 0.9858 1.0000
270� 0.3655 0.2395 0.2246 0.0838 0.9907 1.0000

7.6.3 Simulated Phase Images of Organoid-Like Sample

In order to obtain a physically-realistic ground truth, we simulated the wave prop-
agation through the sample with BPM [43] (Chapter 1). From the 3D simulation,
we directly obtain the wrapped phase (A.5.4). Under the straight-ray approxi-
mation [35], we expect that the unwrapped phase is proportional to the integral
of the RI differences. We therefore refer to the straight-ray approximation �sr

as the ground truth. As shown in Fig. 7.4, the phase unwrapped by PUDIP is
consistent with �sr. The solutions of the other methods have wrongly unwrapped
areas. The entanglement of several elements complicates the wrapping events in
those areas (Fig. 7.4 top right panel). The fact that some parts are defocused adds
to the challenge since ripples are present around the border. The slightly defo-
cused parts are wrongly estimated by baseline methods, which impacts the whole
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Table 7.3: RSNR [dB] and SSIM of the reconstructed-phase images versus
the maximal value. The RSNR and SSIM of our method (PUDIP) are the
average of five experiments.

Max value GA LS IRTV PUMA PhaseNet PUDIP

R
SN

R

6 5.69 13.12 1 1 -5.71 1

12 1.02 -0.39 11.31 1 1.25 1

18 1.45 1.20 3.22 1 5.62 1

24 3.85 0.21 4.99 5.69 8.95 78.54
30 5.20 1.04 7.38 7.62 8.35 28.53
36 4.62 0.48 8.71 9.18 10.13 25.70
42 14.53 0.94 4.37 10.52 12.46 27.74

SS
IM

6 0.9299 0.9834 1.0000 1.0000 0.7105 1.0000
12 0.9258 0.5989 0.3616 1.0000 0.7788 1.0000
18 0.9311 0.5539 0.6481 1.0000 0.8067 1.0000
24 0.9453 0.5312 0.6411 0.5873 0.8298 0.9990
30 0.9551 0.5160 0.6435 0.5866 0.8168 0.9977
36 0.9532 0.5044 0.6416 0.5796 0.8224 0.9957
42 0.9782 0.4951 0.6364 0.5784 0.8597 0.9959

unwrapping result. It is worthy to note that real data also have ripples around
the border, which might partially explain the difficulty to unwrap phase images of
organoids (Section 7.7). We provide more examples in A.5.5.

7.6.4 Phase Unwrapping of Artificial Images
We generated three kinds of samples similar to previous works [188, 213]. The first
and second categories consist of ellipses. In the first type of sample, we cropped
the ellipses with angles ranging from 0� to 270� with an increment of 45�. In
the second type of sample, we scaled the phase image (i.e., an ellipse cropped
with a fixed angle) so that its maximum was in the range of 6 to 42 with an
increment of 6. The last kind of sample is the same as the one we used to train
PhaseNet (Section 7.6.1). We use these images to test our method on samples
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XY XZ GA LS IRTV Wr. Ph.

YZ PUMA PhaseNet PUDIP �sr

�⇡ ⇡

1.33 1.39rad 0 19rad

Figure 7.4: Organoid-like reconstructions. The images were saturated for
visualization purpose. The size of the unwrapped phase image is (159 ⇥
159). The first two columns are orthographic slices of the 3D distribution
of RI. All slices include the center of the volume. From the third to fifth
column, the text gives the method used to unwrap. The wrapped phase
resulting from 3D simulation and the ground truth �sr are displayed in the
last column (from top to bottom). Wr. Ph.: Wrapped Phase.

usually seen in other modalities [188].
When the unwrapping task is relatively simple, all the baseline methods, as well

as our method, perform well (see the first row in Tables 7.2 and 7.3). When the
phase images are more complex (e.g., when a few pixels violate the Itoh condition),
all the conventional methods lead to blocky errors. As expected, PhaseNet wrongly
estimates the unwrapped phases when they differ from the training set. On the
contrary, our framework based on untrained CNNs faithfully unwraps the phase
for nearly all configurations (Tables 7.2 and 7.3). In Fig. 7.3, one can observe
some typical unwrapping behavior of the different methods, as well as the obtained
RSNR.

For the last type of samples, deep learning techniques perform better than the
conventional techniques (Table 7.4). Since the training and testing sets match,
PhaseNet is quantitatively more accurate than PUDIP. As reported in [218], super-
vised schemes tend to outperform unsupervised approaches when the training and
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testing sets are consistent. It is noteworthy that PUDIP commits errors only at the
border of the disk and that the large discrepancy in the RSNR between PhaseNet
and PUDIP mainly comes from the fact that any error is likely to be a multiple of
2⇡. The SSIM metric is less sensitive to isolated erroneous cases and the discrep-
ancy is much smaller. However, for some samples, PhaseNet wrongly estimates the
phase over large areas inside the object (third column of Fig. 7.5). Our method is
more stable in its ability to unwrap the phase due to its feedback mechanism.

Let us observe that the results of PUDIP are still imperfect, in the sense that
a few pixels of the output deviate from the ground truth. However, these are
inconspicuous. Based on our experiments, it appears that the results of PUDIP are
generally superior to those of the other methods when the conditions are difficult,
and otherwise equivalent, which should make PUDIP of interest for practitioners.
Note that when the task of phase unwrapping is extremely difficult, there are few
failure cases. However, the failed results obtained by our approach are not worse
than other methods. We provide all the results in A.5.5.

7.6.5 Phase Unwrapping in Presence of Structured Noise

In DHM, the noise is mainly characterized by speckle noise [229] that corrupts the
image before the wrapping operation. To assess the robustness of our method, we
perturbed the (unwrapped) first kind of sample (cropping angle 135�) with speckle
noise [230]. We added three levels of noise {11.8, 15.7, 22.8} dB (Fig. 7.6) and
computed the metrics with respect to the perturbed images.

The performances of the baseline methods are affected by the structured noise
and fail to correctly unwrap the images (Table 7.5). Note that their poor perfor-
mance mainly comes from the blocky errors mentioned in the previous experiments
of Section 7.6.4. The noise exacerbates the difficulty to recover the edges of the
cropped ellipses. In the presence of noise, the performance of PhaseNet collapses,
which is expected as this supervised method was trained on a noiseless dataset.
PUDIP is stable, in that it correctly unwraps the phase, at the possible exception
of few pixels at the border. It is worthy to mention that the robustness to noise
is different from denoising, since we do not target at reducing the noise during the
unwrapping process. This happens to other methods as well. When unwrapping is
successful, one can then denoise the recovered phase image with any state-of-the-art
denoising algorithms.
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Table 7.4: RSNR [dB] and SSIM of the reconstructed-phase images versus
the size of the random matrix. The metrics are averaged over four samples
for each size. For each sample, we repeated five times the reconstructions
of our method. The reported RSNR and SSIM of PUDIP are then the
average of twenty experiments for each size.

Matrix size GA LS IRTV PUMA PhaseNet PUDIP

R
SN

R

(3⇥ 3) 4.18 3.84 3.60 3.72 36.30 21.94
(5⇥ 5) 5.57 5.55 4.87 5.39 31.89 21.51
(7⇥ 7) 5.32 6.28 5.72 5.41 21.97 19.98
(9⇥ 9) 5.53 6.19 5.47 5.99 39.71 20.80

(11⇥ 11) 5.71 6.88 6.82 6.88 23.63 18.65

SS
IM

(3⇥ 3) 0.7361 0.7222 0.7253 0.7065 0.9920 0.9699
(5⇥ 5) 0.6828 0.6506 0.6592 0.6478 0.9567 0.9588
(7⇥ 7) 0.6636 0.6495 0.6348 0.6403 0.9576 0.9530
(9⇥ 9) 0.6511 0.7020 0.6579 0.6872 0.9637 0.9294

(11⇥ 11) 0.6532 0.6481 0.6574 0.6557 0.9234 0.9344

Table 7.5: RSNR [dB] and SSIM of the reconstructed-phase images versus
the noise level. The RSNR and SSIM of our method (PUDIP) are the
average of five experiments.

Noise level (dB) GA LS IRTV PUMA PhaseNet PUDIP

R
SN

R 22.80 -3.58 1.67 2.32 2.34 3.24 20.51
15.70 -3.21 2.01 2.84 2.72 0.95 20.94
11.82 2.81 2.36 3.13 3.13 2.45 20.80

SS
IM

22.80 0.0072 0.1488 0.1619 0.1638 -0.2946 0.9895
15.70 0.0081 0.1260 0.1493 0.1502 -0.1402 0.9913
11.82 0.0023 0.1022 0.1195 0.1318 0.2046 0.9905



128 Phase Unwrapping with Deep Image Prior

(3 3)

W
ra

pp
ed

 P
ha

se

(5 5) (7 7) (9 9) (11 11)

-3.14

3.14

G
A

0

17

LS
IR

TV
PU

M
A

Ph
as

eN
et

PU
D

IP
G

ro
un

d-
tr

ut
h

3.88 4.89 4.20 5.57 5.36

6.614.063.76

8.50

5.75

3.54 3.96 4.59 5.35 5.52

4.55 2.90

6.89

5.493.55

29.9833.2732.17 19.0825.44

23.53 24.40 22.43 32.56 20.58

(3 3)

W
ra

pp
ed

 P
ha

se

(5 5) (7 7) (9 9) (11 11)

-3.14

3.14

G
A

0

17

LS
IR

TV
PU

M
A

Ph
as

eN
et

PU
D

IP
G

ro
un

d-
tr

ut
h

3.88 4.89 4.20 5.57 5.36

6.614.063.76

8.50

5.75

3.54 3.96 4.59 5.35 5.52

4.55 2.90

6.89

5.493.55

29.9833.2732.17 19.0825.44

23.53 24.40 22.43 32.56 20.58

(3 3)

W
ra

pp
ed

 P
ha

se

(5 5) (7 7) (9 9) (11 11)

-3.14

3.14

G
A

0

17

LS
IR

TV
PU

M
A

Ph
as

eN
et

PU
D

IP
G

ro
un

d-
tr

ut
h

3.88 4.89 4.20 5.57 5.36

6.614.063.76

8.50

5.75

3.54 3.96 4.59 5.35 5.52

4.55 2.90

6.89

5.493.55

29.9833.2732.17 19.0825.44

23.53 24.40 22.43 32.56 20.58

Figure 7.5: Unwrapped-phase images of simulated samples with diverse
random distributions. From top to bottom: wrapped phase, results ob-
tained by PhaseNet and our approach (PUDIP). The ground truth images
are presented in the last row. The numbers give the corresponding RSNR
[dB].

7.7 Results on Experimental Data

Thick and complex samples present complicated wrapping events and potentially
contain a few sharp edges at which the Itoh condition may not hold in the true
phase. These combined factors increase the difficulty to unwrap their phase. To
illustrate these challenges, we acquired images of organoids with DHM and un-
wrapped their phase using the proposed method as well as other baseline methods.
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Figure 7.6: Reconstructed unwrapped-phase images of simulated samples
with diverse speckle noise. From left to right: wrapped phase, results
obtained by GA, LS, IRTV, PUMA, PhaseNet, and our approach (PUDIP).
The noisy ground truth images are presented in the last column.
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The quality of unwrapped images will impact the subsequent steps of image analy-
sis. Hence, we additionally illustrate how segmentation—a typical image processing
for QPI [231]—can be altered by the outcome of phase unwrapping.

7.7.1 Experimental Setup
Mouse organoids of the small intestine were released from Matrigel R� (Corning)
and dissociated into single cells. After centrifugation, the cells were re-suspended
at the appropriate density in ENR-CV medium supplemented with Thiazovivin
(ReproCell) and seeded to deposit about 100 cells per microwell onto imaging bot-
tom Gri3D hydrogel microwell array plates (SUN bioscience) of 300 micrometer in
diameter. The cells were then let to sediment for 30 minutes as such and 150µL of
self-renewal medium supplemented with 2% Matrigel. The stem cells were expanded
in self-renewal for 3 days, and the organoids were differentiated for another 3 days
in differentiation medium (ENR) [232]. Once the stem cells underwent morphogen-
esis and formed fully matured organoids, the organoids were imaged using a DHM
(T1000-Fluo, LynceeTec). The holograms, phases, and amplitudes were acquired
for downstream reconstruction with a pixel of physical length of 6.45µm (NA = 0.3,
magnification 10⇥, and wavelength 684.6nm). The time interval between each
frame was 1 minute for the time-lapse measurements.

7.7.2 Post-Processing of the Unwrapped Phase
The microwells in which the organoids are loaded induce a non-flat (smooth) back-
ground. For the sake of clarity, we removed the background of each unwrapped
phase. We estimated the background by fitting a polynomial of degree 3 in back-
ground areas. To detect the background, we applied a (3 ⇥ 3) standard-deviation
filter on the unwrapped image. We defined the background as any pixel below a
certain threshold T� 2 [0.5, 1].

7.7.3 Phase Unwrapping of Organoids
The results of various methods are shown in Fig. 7.7. The LS method yields inac-
curate results over large areas, such as non-flat background or disrupted structures.
In comparison, the three other approaches perform better. However, some areas
pointed out by the rectangle exhibit sudden breaks in the phase unwrapped by
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Wrapped Phase LS IRTV PUMA PUDIPWrapped Phase LS IRTV PUMA PUDIPWrapped Phase LS IRTV PUMA PUDIPWrapped Phase LS IRTV PUMA PUDIPWrapped Phase LS IRTV PUMA PUDIPWrapped Phase LS IRTV PUMA PUDIP

�⇡ ⇡rad �20 20rad

�⇡ ⇡rad �8 26rad

�⇡ ⇡rad �14 23rad

Figure 7.7: Reconstructed phase images of organoids. First column: mea-
sured (wrapped) phase image. Second to fifth columns: algorithms using
LS, IRTV, PUMA, and the proposed method (PUDIP). First row: recon-
structed phase. Second row: zoomed inset. The size of the unwrapped
phase image is (350⇥ 450), (260⇥ 250), and (360⇥ 350), respectively. For
the sake of clarity, we removed the non-flat (smooth) background of each
unwrapped phase.
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Figure 7.8: Time-lapse reconstructions. The images were saturated for
visualization purpose. The size of the unwrapped phase image is (280 ⇥
390). For the sake of clarity, we removed the non-flat (smooth) background
of each unwrapped phase.

IRTV and PUMA. The phase is expected to be relatively smooth since the epithe-
lium of the organoids consists in a continuous layer of cells, forming then the border
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Figure 7.9: Segmentation of time-lapse reconstructions. We thresholded
at 20% of the maximum value of the image.

of the sample [233]. By contrast, PUDIP better recovers it for all samples.
PhaseNet failed to reconstruct the unwrapped phase in all cases (A.5.6), most

probably because the training set is not adequate for our experimental data. Like-
wise, GA was unable to recover the samples. The solutions found by PhaseNet and
GA exhibit several areas with values higher than their surrounding, which does not
accurately represent the characteristic features found in intestinal organoids, such
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as the epithelium and the lumen.
In the first row of Fig. 7.7, the unwrapped phase might deviate from the phase

image predicted by the straight-ray approximation [35] in the center part where it is
non-smooth. The approximation is accurate if the wavelength is much smaller than
the features of the sample (e.g., local inhomogeneity of the RI). The mismatches
are then likely to occur in the areas where the features are, which suggests that
local inhomogeneities are present in the inner part.

In addition, we computed the relative error between the rewrapped phase W(�̃)
and the wrapped phase  defined as

�✏(W(�̃), ) =
k �W(�̃)k2
k k2

. (7.14)

The relative errors of all methods are lower than 10�13, which indicates that the
results are congruent with the measurements up to rounding errors.

7.7.4 Phase Unwrapping of Time-Lapse Measurements
Further, we acquired time-lapse measurements of organoids to validate the benefits
of our approach in sequential imaging. In the last frames, the size of the organoids
increases and the intra-organoid composition becomes visibly more heterogeneous.
It is noteworthy that the intestinal organoids are absorbing water as they grow
over time [234], which explains that the phase value gets closer to the background
value. Because of more complex wrapping events, the unwrapping task becomes
even more challenging. By using PUDIP, we show here that the borders as well as
the flatness of the background are well preserved (Fig. 7.8). On the contrary, the
unwrapped phase of the other methods either result in a background with unlikely
2⇡ jumps or borders with sudden breaks.

7.7.5 Segmentation of Time-Lapse Measurements
Image segmentation is a step that one would usually perform on the unwrapped
phase [231]. Our aim now is to illustrate how unwrapping can affect the segmen-
tation results. To that end, we simply thresholded the images obtained from the
different methods with a threshold set at 20% of the maximal value.

In Fig. 7.9, we observe that the segmentation is especially impacted at the
borders where sudden breaks occur in the unwrapped phase. In all frames, the
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segmentation of PUDIP solutions preserves the integrity of the boundaries better
than the other methods.

7.8 Summary

In this chapter, we proposed a general iterative framework PUDIP that takes ad-
vantage of model-based approaches and deep priors for 2D phase unwrapping. The
iterative inversion algorithm is based on a forward model that ensures consistency
with the measurements and a prior knowledge implicitely induced by an untrained
CNN, which overcomes the limitation of conventional supervised-learning strategies
which need large-scale or tailored training datasets. We have validated our approach
on simulated data with diverse challenging settings in which the unwrapped phase
has many discontinuities. Our numerical experiments have shown that the pro-
posed method outperforms state-of-the-art conventional or network-based methods
in many configurations. In addition, we have also applied our framework to sin-
gle and time-lapse measurements of organoids, which are particularly large and
complex samples. PUDIP can help in all instances of optical imaging that acquire
wrapped phase data, 2D QPI as well as ODT. We believe that PUDIP should be
of interest to practitioners. The substantial improvement in the quality of recon-
struction by PUDIP effectively allows the application of QPI to thick and complex
3D samples, and also allows subsequent image processing tasks to be carried out
with higher reliability.



136 Phase Unwrapping with Deep Image Prior



Chapter 8

Metrics for ODT and SMLM

8.1 Introduction

In this chapter, we study metrics that assess the quality of reconstructions in com-
putational microscopy.1 As such, our contributions in this chapter complement well
the previous chapters. Beyond the classical SNR, there are a plethora of metrics
that each account for different characteristics of an algorithm’s performance. We
consider two cases: metrics with or without requirement of ground truth. The
latter category is applicable to any sample, which is an appealing feature since the
ground truth is usually not available for biological samples.

8.2 Contributions

In Section 8.3, our contribution is a metric with no ground-truth requirement for
ODT reconstructions using structured illumination.

Next, we are interested in SMLM; in particular, we leverage the unique features
of SMLM (i.e., list of estimated positions, image rendering) to investigate metrics
from new perspectives. In [27], we quantitatively assess 2D and 3D SMLM software
packages with a large panel of quality metrics on realistic simulated datasets. Build-
ing upon this broad benchmarking, we propose a novel optimal-transport-based

1 The content of this chapter is based on [28–30].
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metric for SMLM which captures both detection and localization performance and
relies on solid mathematical foundations (Section 8.4). Finally, in Section 8.5, we
derive a closed-form expression of the FRC for the particular case of SMLM, which
allows us to investigate the classical way of computing FRC (i.e., SMLM image
rendering and DFT).

8.3 Assessment Tool for ODT using Structured Il-

lumination

A fundamental challenge in ODT is the difficulty of comparing different reconstruc-
tion methods on real data. Excluding samples for which we have a priori knowledge
(i.e., 3D printed samples), we generally lack information about the ground truth
of 3D samples in ODT. This can have particularly serious issues in biomedical ap-
plications since accurate characterization is necessary for diagnosis and cure. For
example, in cellular imaging, this uncertainty leads to miscalculated intracellular
protein concentrations [69], which are derived from RI values. One way to quantify
this uncertainty is through the use of phantom objects such as beads or micro-
spheres. However, this way cannot be generalized to biological samples since their
ground truth is not available. In this section, we describe a metric that allows us
to quantitatively compare between reconstruction algorithms with no ground-truth
requirement.

8.3.1 Context
As shown in the previous chapters, an optical field that propagates through an
inhomogeneous medium will be distorted. If there is negligible absorption, such
distortions can be undone if the transmitted field is holographically recorded and
the phase-conjugate reconstruction of the hologram is made to propagate backwards
through the sample [235–238]. This is conveniently done in the optical domain by
illuminating the recorded hologram with a plane wave counter-propagating to the
plane wave used to record the hologram. When the incident beam that illuminates
the object is spatially modulated by a 2D pattern (an image), the field arriving at
the hologram plane is a distorted version of the 2D illumination pattern. Through
phase conjugation, this distortion is removed and the field arriving back at the input
plane is ideally an exact replica of the original image. Deviations from this ideal
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condition can occur due to limited spatial bandwidth, absorption or other losses
in the optical path. Any imperfection in the holographic recording and play-back
of the hologram (including speckle) also contributes to deviations of the phase-
conjugate reconstruction from the original image projected through the sample. In
a carefully designed optical system in which the coherent noise is minimal,2 we
can generally obtain excellent phase-conjugate reconstructions since the medium
where the beam propagates through is well defined. The phase-conjugate image
is also strongly affected by any changes in the 3D object over time between the
recording of the hologram and the play-back. If the noise effect is negligible, any
distortions in the phase-conjugate image can be attributed to changes in the object
itself. This effect has been used for many applications including imaging through
diffusing media [235], turbidity suppression in biological samples [236, 237] and
imaging through turbid media [238].

8.3.2 Proposed Metric
We exploit this effect to assess the accuracy of the reconstructed 3D RI map.
Fig. 8.1 shows the overall idea behind the proposed assessment technique. First, a
classical ODT acquisition procedure is performed (Chapter 4 and Appendix A.4).
From this collection of measurements, we can reconstruct 3D RI maps using well-
known algorithms (e.g., Radon [88, 239], Born [12], and Rytov [13, 111, 240, 241]).
To comparatively assess the accuracy of the reconstructed 3D RI map, we perform
a numerical phase conjugation using a four-step procedure:

1. Using the same setup and sample, we experimentally illuminate a known
pattern onto the sample with structured illumination, which is performed by
recording a pattern on the spatial light modulator (SLM). The pattern gets
distorted as it propagates through the 3D sample along the optical path. We
holographically record the resulting field.

2. We take the complex-conjugate of the experimentally-measured field.

3. We numerically back-propagate this field through the reconstructed 3D RI
map. We use our accurate forward model LSm described in Chapter 3. After
this step, we obtain a digital reconstruction of the pattern.

2 Coherent noise are usually due to dust particles or multiple reflections from optical elements
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Figure 8.1: Overall scheme of the proposed metric for ODT.

4. We compute an image-based metric (e.g., mean-square error (MSE)) between
the original and reconstructed patterns. The differences are imputed to inac-
curacies of the 3D reconstruction.

This procedure provides a quantitative metric that permits comparisons between
reconstruction methods. Next, we provide a case study by applying our metric
to three commonly used reconstruction algorithms: Radon [88, 239], Born [12],
and Rytov [13, 111, 240, 241]. Comparisons between Born and Rytov have been
performed in literature in different optical regimes [242, 243]; however, such studies
cannot be directly translated to arbitrary samples such as biological ones. Note
that the proposed method can act as a reconstruction assessment tool for other
reconstruction method as well [73, 235–238, 242–248].
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Figure 8.2: Unwrapped phase images of (a) HCT-116 cell and (b) Panc-
1 cell for normal incidence. Phase unwrapping was done using PUMA
algorithm [188]. Color bars are in Radians.

8.3.3 Materials and Reconstruction Methods

The experimental setup is described in the Appendix A.4.

Samples

We used two samples of HCT-116 human colon cancer cells and Panc-1 human
pancreas cancer cells which were cultured in McCoy 5A growth medium (Gibco)
supplemented with 10% fetal bovine serum (Gibco). #1 coverslips were treated with
a 5 µg/mL solution of fibronectin (Sigma) in phosphate-buffered saline (PBS) and
let to dry at room temperature. Cells at passage 18 were removed from culture flasks
using trypsin, seeded directly onto the fibronectin-treated coverslips, and incubated
24 h in a 37�C/5% CO2 atmosphere until cells adhered and spread on the coverslips.
Each sample was fixed for 10 min at room temperature in 4% paraformaldehyde in
PBS, rinsed twice with PBS, and sealed with a second coverslip.
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Tomographic Reconstruction Methods

We display in Fig. 8.2 two examples of unwrapped phase images. We unwrap the
phase images of the recorded holograms using a classical algorithm [188] (i.e., for the
Radon and Rytov methods). The accumulated phase of the studied samples (i.e.,
HCT-116 cells and Panc-1 cells), whose thickness is around 8 µm, exceeds 2⇡ at
some regions, depending on the proteins distributions as shown in Fig. 8.2. As
previously said, we compare three reconstruction methods: Radon [88], Born [12],
and Rytov [13] methods. Both Radon and Born methods fail to reconstruct the 3D
RI map due to considerable diffraction, and high phase accumulation, respectively.
We display in Fig. 4 the XY and XZ slices of the 3D reconstructions of the two
samples. Notice that the Born and Rytov approximations produce significantly
different 3D RI maps.

Cancer cells usually have a RI of cytoplasm that range between 1.36-1.39 due
to excess of RNA and protein [10, 249–252]. As observed in Fig. 8.3a, this index
range is probably under-estimated by the Born method (i.e., around 1.32), because
the high phase delay violates the model assumptions. On the contrary, the Rytov
approximation shows better agreement with the expected biological values (around
1.365). Similarly, high-RI valued islets which are composed of fats, sugars and
highly-concentrated proteins are visible in the Rytov reconstructions but not in the
Born reconstructions. In Fig. 8.3b, we clearly see that Born underestimates the RI
value of the nucleus since the surrounding media (i.e., water) should have a much
lower RI [10, 249–252].

8.3.4 Assessment Results

To compute the proposed metric, we modulated the phase of the incident beam with
an image of Einstein or the 1951 USAF resolution test chart via the SLM (Fig. 8.4).
We adopted structured illuminations instead of plane waves since structured illu-
minations can be thought of as many plane waves propagating at the same time;
hence, such illuminations probe a larger portion of the 3D spectrum of the object.
In addition, assessment using structured illumination ensures fairness as these pat-
terns were not used in the tomographic reconstruction. To obtain an unaltered
pattern (i.e., original), we measured the incident field by repeating the holographic
measurement without the sample (i.e., clear PBS liquid between two coverslips).
Following the procedure described in Section 8.3.2, we computed our metric for the
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Figure 8.3: 3D reconstruction based on Radon, Born, and Rytov tech-
niques for (a) HCT-116 cell and (b) Panc-1 cell.

3 recovered 3D RI maps by using the MSE for the step 4 (Table 8.1).
We display in Fig. 8.5 the retrieved Einstein and 1951 USAF resolution test

chart for the case of Radon, Born, and Rytov approximations and the original
pattern. For both samples, the MSEs for the Born method are the largest (3 times
larger than the MSEs for the Rytov method). This significant difference comes
from the fact that both Radon and Rytov rely on the unwrapped phase, while the
Born method is not. However, the Radon method ignores diffraction, which limits
its performance. The Rytov method has the best performance as it take advantages
of phase unwrapping and accounts for diffraction (but not multiple scattering).

8.3.5 Discussion
In this section, we have proposed a new metric without ground truth for ODT.
Here, SLM was used for both angular scanning (classical ODT) and structured
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Figure 8.4: Wrapped phase images of Einstein/USAF chart after propa-
gating through the HCT-116/Panc-1 cell.

illumination (proposed metric). The latter has allowed us to assess the perfor-
mance of different reconstruction schemes. Sharing the experimental setup for
angular and structured illumination has alleviated the burden of alignment and/or
mechanical instabilities. Our metric relies on a four-steps procedure. Using the
phase-conjugated measured field as an numerical incident field, we numerically
back-propagate it through a reconstructed 3D RI map. If perfectly reconstructed,
the distortions that the real incident field has undergone would be undone. Oth-
erwise, we ascribe any deviation to inaccuracies in the reconstructions. We have
illustrated the advantages of our metric on two real biological samples and three dif-
ferent reconstruction algorithms. Our results have shown that the Rytov method is
more accurate than the Born and Radon methods, which is consistent with previous
observations [242, 243].
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Table 8.1: MSE percentage for Radon, Born and Rytov based reconstruc-
tion techniques for Einstein and 1951 USAF resolution test chart.

Radon Born Rytov
Einstein 8.83% 34.73% 6.39%
1951 USAF 16.19% 24.58% 7.97%

Figure 8.5: Retrieved projected fields using Radon, Born, and Rytov for
(a) Einstein through HCT-116 cell, and (b) USAF chart through Panc-1
cell.
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8.4 Optimal-Transport-Based Metric For SMLM

8.4.1 Context
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Fig. 1: a) Flat Metric (low: good). b) Efficiency (low: bad). These metrics take into account a continuum in both localization and detection
errors in SMLM. Locations (100) were uniformly drawn to create ground-truth points and modified to create artificial sets of detections with
100% precision, recall ranging from 0% to 100%, and localization errors uniformly sampled in a circle of a given radius. c) High degree of
correlation between efficiency and Flat Metric on four datasets from the SMLM 2016 Challenge.

as Dirac masses, which suggests the representation of SMLM data
as sums of Dirac masses.

The total-variation norm is not a good candidate metric for
SMLM because, for all x �= y, ��x � �y�M = 2. Instead, we build
our metric from the flat norm on M(X ) given in Definition 1.

Definition 1 (Flat norm [14]). The flat norm of a given µ � M(X )
is defined as

�µ� , sup

���

X
fdµ :f � C(X ), �f�� � �, Lip(f) � 1

��
,

(3)

where Lip(f) is the Lipschitz constant of f . This definition induces
a norm on M(X ).

Using the flat norm to measure the difference between two
Radon measures leads to Flat Metric.

Definition 2 (Flat Metric). Flat Metric is defined for any two µ, ⌫ �
M(X ) as

F�(µ, ⌫) , �µ � ⌫� . (4)

Flat Metric is linked to unbalanced optimal transport [13, 19].
This makes Flat Metric interpretable, which is key for its application
to SMLM.

Proposition 1 (Interpretation of Flat Metric - [19], Prop. 2.26). For
all µ, ⌫ � M(X ),

F�(µ, ⌫) = min
��M+(X�X )

� �

X�X
d(x,y)d�(x,y) (5)

+ �
���µ � prx#�

���
M

+ �
���⌫ � pry#

�
���

M

�
,

where � � M+(X � X ) is a nonnegative Radon measure over
[0, 1]D � [0, 1]D that specifies the transport plan between the
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Fig. 2: a) Example of two discrete measures in X = [0, 1]2,
µ = a1�x1

and ⌫ = b1�y1
, where a1 and b1 are represented by

the opacity of the • marks. b) Dependence of the metric F�(µ, ⌫) on
�x1 � y1�2 from a) for fixed values a1 > b1, growing linearly with
�x1 � y1�2 and saturating at �x1 � y1�2 = 2�.

marginals prx#� =
�

X d�( · ,y) and pry#
� =

�
X d�(x, · ) of

� (which can be made arbitrary close to µ and ⌫, respectively, by
setting � � +�).

The first term in the minimization problem (5) penalizes the cost
of transporting prx#� to pry#

� (or vice versa). This is, in fact, the
same cost function as in the 1-Wasserstein distance, one of the classi-
cal optimal-transport problems. Optimal-transport metrics quantify
how different two measures are by assessing the cost of transforming
(in other words, transporting) one measure onto the other. Unlike in
standard optimal transport, the marginals prx#� to pry#

� need not
be equal to the measures of interest µ and ⌫. Instead, the constraints
are relaxed using the second and third discrepancy terms in (5) which
involve the total-variation norm. This relaxation allows for the cre-
ation and destruction of mass before transport and, therefore, for an
optimal transport between measures with different total mass. This
key feature is essential for SMLM, as it accounts for the errors both
of localization (by the cost of transport) and of detection (by the cost
of creation or destruction of mass). Their balance is controlled by
the physically interpretable parameter � > 0 [nm], as illustrated in
Figure 2. When the two Dirac masses are at the same position, the
cost is proportional to the difference of weights. Then, it grows lin-
early with �x1 � y1�2 as the Dirac mass b1�y1

is transported to the
position x1. This keeps happening until �x1 � y1�2 � 2�, where

Figure 8.6: a) Flat Metric (low: good). b) Efficiency (low: bad). These
metrics take into account a continuum in both localization and detection
errors in SMLM. Locations (100) were uniformly drawn to create ground-
truth points and modified to create artificial sets of detections with 100%
precision, recall ranging from 0% to 100%, and localization errors uniformly
sampled in a circle of a given radius. c) High degree of correlation between
efficiency and Flat Metric on four datasets from the SMLM 2016 Challenge.

In SMLM, it is crucial to have at one’s disposal an objective evaluation of
the recovery performance of available reconstruction algorithms. Similar to the
assessment performed in the previous section, the present section studies this topic,
under the hypothesis that a ground-truth reference for every captured frame is
available. Metrics that do not require ground-truth information also exist [253–
256], even some using optimal transport concepts [257]. However, these are outside
of the scope of this section, and our proposal is completely new. Similarly, simpler
optimal-transport-based metrics were used before in other point-source localization
problems [258, 259].

The localization of point sources is traditionally assessed using either detection
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metrics, such as precision, recall, and the Jaccard index; or localization metrics,
such as the RMSE or the root-mean-square minimum distance (RMSMD) [260]. In
the SMLM 2016 Challenge [27], a large panel of metrics was computed for perfor-
mance assessment. The participating localization algorithms typically focused on
one of two main key metrics: the Jaccard index (J) or the RMSE. To encompass
both, Sage et al. proposed the efficiency, a metric born from the analysis of the
empirical results in [27] and designed to evaluate the SMLM 2016 Challenge. It is
computed as

e�ciency = 100�
q

(100� J)2 + ↵2
e↵RMSE2. (8.1)

The parameter ↵e↵ was introduced to regulate the tradeoff between localization and
detection. It was set to ↵e↵ = 1 nm�1 for the 2D (lateral) efficiency after analysis
of the results for the best algorithms. With this empirical choice, an improvement
of 1nm in RMSE is equivalent to a 1% improvement in J.

In this section, we propose to use Flat Metric, also known in the literature as
the flat norm or the Kantor-Rubinstein norm [261–264] , to assess the recovery
performance of algorithms for SMLM. This metric has already been used to assess
the recovery performance of point source signals [265]. It can be related to optimal
transport which is a well-studied field both on a theoretical [266, 267] and numer-
ical [262] standpoint. By using a valid metric on the space of Radon measures,
in which detections and ground-truth data lie, we expose the natural connection
between the localization-detection performance tradeoff and the radius of tolerance
used to judge a detected location as correct or incorrect. Furthermore, like other
metrics introduced recently for SMLM [260], Flat Metric does not require arbitrary
pairing decisions between detected and ground-truth locations. Nonetheless, in
opposition to RMSMD, Flat Metric still resolves pairings implicitly, thus yielding
interpretable and explainable assessments.

The part is structured as follows: First, we introduce Flat Metric mathemati-
cally, expose its link with unbalanced optimal transport and explain how to com-
pute it numerically. Then, we illustrate its behavior on a simple example. Finally,
we compare it to the efficiency (8.1) on both synthetic data and the SMLM 2016
challenge data.
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8.4.2 Flat Metric for SMLM
Mathematical Definition

Without loss of generality, we assume that the ground-truth and detected locations
are in X = [0, 1]D, for D 2 {2, 3}. We use the Euclidean distance d(x,y) =
kx� yk2 to measure the distances between two points. We denote by M(X ) the
space of Radon measures defined on X . Mathematically, M(X ) is the continuous
dual of the space C(X ) of continuous functions on X endowed with the uniform
norm k · k1. The canonical norm on M(X ) is thus

8µ 2M(X ), kµkM , sup
f2C(X ),kfk11

Z

X
fdµ, (8.2)

and is known as the total-variation norm or M norm. The Banach space M(X )
contains point-source signals, referred to as the Dirac masses �x , �( · �x) for x 2
X . This makes it particularly well-suited for SMLM because individual fluorescent
emitters can be seen as Dirac masses, which suggests the representation of SMLM
data as sums of Dirac masses.

The total-variation norm is not a good candidate metric for SMLM because, for
all x 6= y, k�x � �ykM = 2. Instead, we build our metric from the flat norm on
M(X ) given in Definition 8.4.1.

Definition 8.4.1 (Flat norm [263]). The flat norm of a given µ 2M(X ) is defined

as

kµk , sup

✓⇢Z

X
fdµ :f 2 C(X ), kfk1  �,Lip(f)  1

�◆
, (8.3)

where Lip(f) is the Lipschitz constant of f . This definition induces a norm on

M(X ).

Using the flat norm to measure the difference between two Radon measures
leads to Flat Metric.

Definition 8.4.2 (Flat Metric). Flat Metric is defined for any two µ, ⌫ 2M(X )
as

F�(µ, ⌫) , kµ� ⌫k . (8.4)
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a)

•x12�

•y1

kx1 � y1k2

F�(µ, ⌫)b)

0 2�

(a1 � b1)�

(a1 + b1)�

Figure 8.7: a) Example of two discrete measures in X = [0, 1]2, µ = a1�x1

and ⌫ = b1�y1
, where a1 and b1 are represented by the opacity of the •

marks. b) Dependence of the metric F�(µ, ⌫) on kx1 � y1k2 from a) for
fixed values a1 > b1, growing linearly with kx1 � y1k2 and saturating at
kx1 � y1k2 = 2�.

Flat Metric is linked to unbalanced optimal transport [262, 268]. This makes
Flat Metric interpretable, which is key for its application to SMLM.

Proposition 8.4.1 (Interpretation of Flat Metric - [268], Prop. 2.26). For all

µ, ⌫ 2M(X ),

F�(µ, ⌫) = min
⇡2M+(X⇥X )

(Z

X⇥X
d(x,y)d⇡(x,y) (8.5)

+ �
���µ� prx#⇡

���
M

+ �
���⌫ � pry#

⇡
���

M

)
,

where ⇡ 2 M+(X ⇥ X ) is a nonnegative Radon measure over [0, 1]D ⇥ [0, 1]D

that specifies the transport plan between the marginals prx#⇡ =
R

X d⇡( · ,y) and

pry#
⇡ =

R
X d⇡(x, · ) of ⇡ (which can be made arbitrary close to µ and ⌫, respec-

tively, by setting �! +1).

The first term in the minimization problem (8.5) penalizes the cost of trans-
porting prx#⇡ to pry#

⇡ (or vice versa). This is, in fact, the same cost function
as in the 1-Wasserstein distance, one of the classical optimal-transport problems.
Optimal-transport metrics quantify how different two measures are by assessing
the cost of transforming (in other words, transporting) one measure onto the other.
Unlike in standard optimal transport, the marginals prx#⇡ to pry#

⇡ need not be
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equal to the measures of interest µ and ⌫. Instead, the constraints are relaxed using
the second and third discrepancy terms in (8.5) which involve the total-variation
norm. This relaxation allows for the creation and destruction of mass before trans-
port and, therefore, for an optimal transport between measures with different total
mass. This key feature is essential for SMLM, as it accounts for the errors both
of localization (by the cost of transport) and of detection (by the cost of creation
or destruction of mass). Their balance is controlled by the physically interpretable
parameter � > 0 [nm], as illustrated in Fig. 8.7. When the two Dirac masses are
at the same position, the cost is proportional to the difference of weights. Then,
it grows linearly with kx1 � y1k2 as the Dirac mass b1�y1

is transported to the
position x1. This keeps happening until kx1 � y1k2 � 2�, where the masses are no
longer moved and the cost results from the pure creation and destruction of mass.

It is also important to note that Flat Metric is homogeneous to nanometers
so that it can be physically associated to a specific scale (in nanometers for the
SMLM problem). Hence, when the number of locations is estimated correctly, Flat
Metric represents the mean error in terms of localization, similar to the RMSE (see
Fig. 8.6). When � ! +1 and µ and ⌫ have the same mass, we recover the 1-
Wasserstein distance (k · kW1

). Finally, when �! 0, we recover the total-variation
norm. Consequently, Flat Metric is an interpolating distance between k · kW1

and
k · kM.

How to Compute Flat Metric

The ground-truth data can be represented as the discrete Radon measure

µ =
NX

n=1

an�xn 2M(X ) with an > 0,xn 2 X , (8.6)

which contains the locations of the fluorescent emitters in a frame. The recon-
structed locations given by any software can also be represented as the discrete
Radon measure

⌫ =
MX

m=1

bm�ym 2M(X ) with bm > 0,ym 2 X . (8.7)

In this discrete setting, we simplify the computation of Flat Metric F�(µ, ⌫) in (8.4)
as detailed in Proposition 8.4.2.
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Proposition 8.4.2. When µ and ⌫ are discrete Radon measures, one can com-

pute (8.4) as

F�(µ, ⌫) = � min
f2RN+M s.t. Lf2B⇥C

hf , �ci , (8.8)

where L : RN+M
! RN⇥M

⇥ RN+M
is defined by

Lf =
⇣�

fn � fN+m

�
1nN,1mM

,f
⌘
, (8.9)

where c = (a,�b) 2 RN+M
, and B and C are hyper-rectangles such that B = {G 2

RN⇥M ; |Gn,m|  d(xn,ym)} and C = {f 2 RN+M : 8k 2 {1, 2, . . . , N+M}, |fk| 

�}.

In fact, (8.8) holds because the dual problem of that minimization is exactly

the unbalanced optimal transport problem (8.5) for discrete measures, and strong

duality holds.

Therefore, to compute F�(µ, ⌫), one simply needs to solve the minimization
problem given in (8.8), which is a finite-dimensional linear program. This problem
is then solved using any standard linear programming toolbox.

Note that if one considers only the first part of the operator L in (8.9) then (8.8)
is exactly the dual problem of the 1-Wasserstein optimal transport problem, see [262,
ch. 6]. The second part accounts for the relaxation allowing creation and destruc-
tion of mass, as explained above.

8.4.3 Results on Simulated Data
In this section, we first propose an example to illustrate the behavior of Flat Metric.
Then, we detail how we generated Fig. 8.6, which confirms that Flat Metric has a
behavior similar to that of the efficiency [27] and that it provides a continuum be-
tween detection and localization errors. Finally, we report Flat Metric as obtained
by 31 participants of the SMLM 2016 Challenge on the 2D dataset and compare it
with their efficiency and RMSMDs. Note that, in all our experiments, the weights
of the ground truth are uniform and the obtained scale is applied for the recon-
struction, with an = bm = 1/N . We use the normalizing scaling of the ground truth
for the reconstruction as it provides a coherent way to compare different software
which do not detect the same number of point sources.
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Interpretation of Flat Metric

We show in Fig. 8.8 an example of a ground-truth dataset ( ), and its reconstructed
dataset ( ), and how Flat Metric accounts for the difference between these two mea-
sures. Ground-truth locations were chosen randomly in the rectangle [0, 1]⇥ [0, 0.5]
with weights an = bm = 1/N with N = 15. Here, � = 0.1, which constrains the
maximal transport distance between two isolated point sources to 0.2 (see Fig. 8.7).
Our interpretation of Flat Metric comes from its link with unbalanced optimal
transport (see Proposition 8.4.1). As a metric, it is symmetric. Therefore, we arbi-
trarily choose to interpret it as the cost of transporting the estimation towards the
ground truth (GT). As a result, we have the following behaviors.

• Transport : A Dirac mass �y/N of the reconstruction is moved towards one in
the ground-truth data �x/N . The cost of this transport is d(x,y)/N .

• Destruction of mass: A Dirac mass �y/N of the reconstruction is destroyed
because there is no corresponding ground-truth location nearby. The cost of
this destruction of mass is � k�y/NkM = �/N .

• Creation of mass: A Dirac mass �y/N is created at a position y to match
a ground-truth location when there is no corresponding Dirac mass in the
reconstruction. This cost is �/N .

Note that we have only these three alternatives because of our choice of weights.
To have more complex phenomena such as simultaneous transport, creation, and
destruction of mass, discrete measures with Dirac masses of different weights should
be used. This could certainly be of interest to the evaluation of other point-source
localization problems.

Synthetic Experiments on Flat Metric and Efficiency

We show in Fig. 8.6 how Flat Metric, just as efficiency, interpolates between detec-
tion and localization metrics. To its benefit, Flat Metric has strong foundations in
the theory briefly presented in Section 8.4.2, by contrast with the efficiency measure
which is based on empirical results. Consistently, Flat Metric is also well-defined
for 0% recall, thus being a more robust tool for any use-case.

In order to exhibit this link in conditions relevant to SMLM, we chose to fo-
cus on recall as a detection metric. Indeed, recall is typically the most relevant
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x

y

Figure 8.8: Illustration of how Flat Metric (here equal to 0.125) is com-
puted. When an estimated location ( ) is linked by a line to a ground-truth
location ( ), the cost (d(x,y)/N) comes from moving the former to the lat-
ter. The presence of a cross (⇥) means that the point has been destroyed,
at the cost of �/N . A ground-truth location with a plus sign (+) means a
mass has been created at this position to match it, also at the cost of �/N .

factor to characterize detection in SMLM, as most leading algorithms achieve very
high precision [27]. We modeled this situation by randomly sampling 100 ground-
truth locations uniformly in a square of (6.4 ⇥ 6.4) µm, and simply removing the
corresponding percentage of locations to initialize the set of recovered locations.

For the joint evaluation of detection and localization effects, we modeled lo-
calization errors in detected locations as independent and identically distributed
uniform vectors in disks of radius up to 250 nm.

The results in Fig. 8.6 were generated by averaging 50 randomized trials for each
combination of radius and recall, using � = 125 nm. Finally, the expectations of
Flat Metric and efficiency are shown on the planes with 100% recall and vanishing
perturbation radius, respectively. They are related to the expectations of J and
RMSE in those cases, where c = 2/3

p
2.
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Figure 8.9: Low degree of correlation between efficiency and the RMSMD
on four datasets from the SMLM 2016 Challenge.

Application to the 2016 Challenge

We compare efficiency, a thoroughly validated empirical metric for SMLM, to both
Flat Metric and RMSMD, on four 2D datasets from the SMLM 2016 Challenge.3
As shown in Figs. 8.6 and 8.9, Flat Metric is strongly correlated with efficiency,
while RMSMD is not. Indeed, one only observes few outliers on the efficiency vs.
Flat Metric comparison, mainly for reconstruction methods that work rather poorly
on the datasets MT3 and MT4.

8.4.4 Discussion
We proposed Flat Metric to quantitate SMLM reconstruction errors when ground-
truth data are available. Here, we have presented and exemplified the strong links
between Flat Metric and unbalanced optimal transport problems, which underpin
this robust metric. We also provided exhaustive evidence that Flat Metric is con-

3 http://bigwww.epfl.ch/smlm/challenge2016/index.html?p=results
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ceptually similar to efficiency, a very well established empirical metric designed in
the organization of the SMLM 2016 Challenge. Consequently, we provided a robust
and practical metric for SMLM evaluation. We have also exemplified and explained
how Flat Metric works internally, providing intuition on how this optimal assess-
ment is obtained. Further, we have emphasized the interpretability of Flat Metric,
which can be read as an equivalent localization accuracy.
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8.5 Closed-Form Expression of the Fourier-Ring Cor-

relation (FRC) for SMLM

8.5.1 Context

In SMLM, once the localization task is performed, it is customary to render an
image from this set of estimated positions. The rendering process usually involves
a kernel that determines the contribution of each position to the reconstructed
image [269, 270]. Since the emergence of SMLM, the determination of image reso-
lution has become a primordial matter as the reconstructed image is a combination
of optics and numerics.

The FRC [271] or, equivalently, the spectral SNR [272] is a standard tool for
resolution assessment in electron microscopy. It has been recently extended to
SMLM [253, 254] and quickly adopted by the community as a standard indicator
of resolution. The FRC is computed from discretized rendered images. It therefore
depends on experimental parameters such as the pixel size or the choice of density
estimator.

Here, we take into consideration the specificity of SMLM to derive a closed-form
expression of the FRC. It is noteworthy to mention that, in the current development
of localization microscopy, doing post-analysis directly on the coordinates itself and
bypassing the image binning step is popular [273, 274]. We first proceed by intro-
ducing the mathematical definition of the FRC (Section 8.5.2) and its conventional
(discrete) computation, for which we derive an error bound (Section 8.5.3). We then
derive the closed-form expression in the continuous domain and we address specific
points of implementation (Section 8.5.4). Finally, we assess the difference between
a FRC computed in a conventional way (discretized) and the proposed closed-form
expression with a dataset from the SMLM challenge [275] (Section 8.5.5).

8.5.2 Notations and Definitions

Definition 8.5.1 (SMLM image rendering). Given the set P = {pn 2 R2
}

N

n=1 that

contains the positions of N 2 N molecules, we define the image fP 2 L2(R2) by

fP(x) =
NX

n=1

(�n ⇤ �( · � pn))(x), x 2 R2, (8.10)
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where the elements of {�n 2 L2(R2)}N

n=1 are called the rendering kernels.

Assumption 8.5.2. The rendering kernels are compactly supported radial func-

tions (i.e., there exist compactly supported 1D functions �n 2 L2(R�0) such that

�n(x) = �n(kxk)). Hence, their Fourier transform is also radial, so that we write

�̂n(!) = �̂n(k!k).

From Definition 8.5.1, each molecule can be rendered using a different kernel.
For instance, one can use truncated Gaussian kernels whose variances are related to
the number of detected photons [176, 276–280]. From Assumption 8.5.2 and Defi-
nition 8.5.1, we readily deduce that the rendered image fP is compactly supported.
Using the translation property of the Fourier transform, we also get that

f̂P(!) =
NX

n=1

�̂n(!)e�ipT
n!. (8.11)

Definition 8.5.3 (FRC [253, 254]). Let f 2 L2(R2) and g 2 L2(R2). Then, the

FRC between the images f and g is defined 8⇢ > 0 as

FRC{f,g}(⇢) =
hf̂, ĝiC⇢q

hf̂, f̂iC⇢hĝ, ĝiC⇢

, (8.12)

where C⇢ := {! 2 R2 : k!k2 = ⇢} is a circle of radius ⇢ > 0 and

hf̂, ĝiC⇢
:=

I

C⇢

f̂?(!)ĝ(!) d!. (8.13)

8.5.3 Conventional FRC Computation in SMLM

To compute the FRC, the standard practice is to sample the continuously ren-
dered images fP 2 L2(R2) and fQ 2 L2(R2) as

fP 2 RK such that [fP ]k = fP(xk) (8.14)

fQ 2 RK such that [fQ]k = fQ(xk), (8.15)
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where {xk 2 R2
}

K

k=1 is a set of sampling points on a uniform Cartesian grid. We
denote by s > 0 the spatial sampling step. The size of the grid is chosen such that
the (compact) support of fP (fQ, respectively) is fully contained within the discrete
image fP (fQ, respectively). Then, the FRC is computed from the DFT of fP and
fQ (which are denoted f̂P and f̂Q), using numerical integration and interpolation.
Henceforth, we shall refer to this approach as discrete FRC. From the Poisson
summation formula, we have that

[̂fP ]k =
X

m2Z2

f̂P(!k + 2⇡s�1
m), (8.16)

where !k is the pulsation that corresponds to [̂fP ]k. As a result, the sampling
procedure yields the error

���[̂fP ]k � f̂P(!k)
��� 

X

m2Z2\{0}

���f̂P(!k + 2⇡s�1
m)

���



X

m2Z2\{0}

NX

n=1

����̂n(!k + 2⇡s�1
m)

��� . (8.17)

Because the kernels �n are compactly supported (Assumption 8.5.2), their Fourier
transforms �̂n are not. Hence, the accuracy of the discrete FRC is related to the
sampling step s as well as the decay of |�̂n|. They have to be tuned so as to minimize
the aliasing (i.e., minimize the bound in (8.17)). In particular, the sampling step
must be sufficiently small and |�̂n| must decrease fast enough. This will be further
discussed along with the numerical experiments (Section 8.5.5).

8.5.4 Closed-Form Expression of The FRC in Continuous
Domain

Main Result

We present our main result in Proposition 8.5.1 where we derive a closed-form
expression of the FRC in the continuous domain. Henceforth, we shall refer to our
approach as closed-form FRC.
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Proposition 8.5.1. Let fP 2 L2(R2) and fQ 2 L2(R2) be the rendered images of

P = {pn 2 R2
}

N

n=1 and Q = {qm 2 R2
}

M

m=1, respectively. Then, the FRC is given

by (8.12) with

hf̂P , f̂QiC⇢ =
NX

n=1

MX

m=1

(�̂n�̂
?

m
)(⇢)J0(kpn � qmk2⇢), (8.18)

where J0 is the zero-order Bessel function of the first kind. The kernels �̂n follow

the conditions in Assumption 8.5.2.

Proof. Injecting (8.11) into hf̂P , f̂QiC⇢ , we obtain that

hf̂P , f̂QiC⇢=

I

C⇢

N,MX

n,m=1

(�̂n�̂?

m
)(!)e�i(pn�qm)T! d!. (8.19)

By definition, we have that 8! 2 C⇢, k!k2 = ⇢. Combining that fact with Assump-
tion 8.5.2 and the linearity of the integral comes to

hf̂P , f̂QiC⇢ =
N,MX

n,m=1

(�̂n�̂
?

m
)(⇢)

I

C⇢

e�irTnm! d!, (8.20)

where rnm = (pn�qm). By converting to polar coordinates, i.e., rnm = rnm(cos(✓nm),
sin(✓nm)) and ! = ! (cos(✓), sin(✓)), we have that

r
T

nm
! = rnm!(cos(✓nm) cos(✓) + sin(✓nm) sin(✓))

= rnm! cos(✓ � ✓nm). (8.21)

The integral in (8.20) becomes
I

C⇢

e�irTnm! d! =

Z
⇡

�⇡

e�irnm⇢ cos(✓�✓nm) d✓

=

Z
⇡

�⇡

e�irnm⇢ sin(✓) d✓

=2⇡J0(rnm⇢). (8.22)

The second equality comes from the fact that cos(✓�✓nm) = sin(✓�✓nm +⇡/2) and
that sin is a 2⇡-periodic function. By inserting (8.22) into (8.20), we obtain (8.18).
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This continuous-domain expression allows for computing the FRC over circles,
while in the discrete case it must be computed over annuli (circles with a certain
“width”). A direct consequence of Proposition 8.5.1 is that, when the same rendering
kernel � is used for all the molecules, the FRC does not depend anymore on �.

Corollary 8.5.2. Let � 2 L2(R2) be a rendering kernel that fulfills Assump-

tion 8.5.2 and let �n = �m = � for all n 2 [1 . . . N ], m 2 [1 . . .M ]. Then,

the FRC does not depend on �.

Proof. Because � fulfills Assumption 8.5.2, we have that �̂ = �̂(k · k) for a given
�̂ 2 L2(R�0). Hence, (8.18) becomes

hf̂P , f̂QiC⇢ = |�̂(⇢)|2
N,MX

n,m=1

J0(kpn � qmk2⇢). (8.23)

The term |�̂(⇢)|2 is ultimately cancelled by the denominator in (8.12), which com-
pletes the proof.

Practical Implementation

To compute the closed-form FRC, we must compute three instances of an expression
of the same type as (8.18). Each instance requires the calculation of the Euclidean
distance between each point of one set of positions with each point of another set
of positions (or itself). This yields a computational cost of O

�
N2 + MN + M2

�

for one value of ⇢. For illustration, we report running times with and without GPU
in Table 8.2.

8.5.5 Results on Simulated Data
Continuous vs. Discrete FRC

Here, we compare the conventional FRC computation (Section 8.5.3) to the pro-
posed closed-form expression (Section 8.5.4).

We consider the MT1.N1.LD dataset of the 3D SMLM challenge4 and we denote
by P

⇤ the set containing the positions of the ground-truth molecules. The second
4 SMLM software benchmarking, http://bigwww.epfl.ch/smlm/challenge2016/, accessed Oc-

tobre 16, 2018.
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Table 8.2: Running time to compute the closed-form FRC. The two sets
have M = 3647 and N = 5514 positions respectively. Three hundred sam-
ples of the closed-form FRC were computed. As a reference, the running
times for the discrete FRC (three hundred points, image size 3200⇥ 3200)
was 0.3 s on CPU.

CPU 283 s
GPU 6.6 s

set, P, contains the positions of the molecules which were localized by one of the
participants [159] for the MT1.N1.LD dataset. We use a unique rendering kernel
for all the molecules and define it as the truncated Gaussian

��(x) = ��(kxk) (8.24)

where, for � > 0,

��(x) =

(
1

�
p

2⇡
e� x2

2�2 |x| < 5�

0, otherwise.
(8.25)

We computed some discrete FRC with different sampling steps (s = 2, 4, 6, 8 nm)
and different widths of the kernel (� = {0.42, 0.85, 1.27, 2.12, 4.25, 8.49} nm). These
values were computed from arbitrary chosen full width at half maximum (FWHM =
2
p

2 log 2� = {1, 2, 3, 5, 10, 20}). In Fig. 8.10, we show some of these curves for the
sake of visibility. We observe that the conventional FRC curve reaches the closed-
form FRC for some values of the sampling step of the discrete rendered image, as
well as the parameters of the rendering kernels.

Quantitative Discrepancy of the Discrete FRC

In Fig. 8.11, we compute the relative discrepancy between the discrete FRC and
the closed-form FRC defined as

Relative discrepancy =
kFRCdisc.

{fP ,fP⇤} � FRCc.f.
{fP ,fP⇤}k2

kFRCc.f.
{fP ,fP⇤}k2

. (8.26)
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Figure 8.10: Comparison of the closed-form FRC curve with discrete FRC
curves obtained using different sampling steps s and rendering kernels ��.
The discrete FRC curves reach the closed-form FRC curve when the width
of the kernel and the sampling step are appropriately set (e.g., s = 2nm
and � = 8.49nm).

We observe that a smaller sampling step yields a better approximation, as ex-
pected. In addition, for each sampling step, there exists a range of widths of kernel
for which the discrepancy is minimized. Finally, we can relate these observations
to the error bound derived in Section 8.5.3. Indeed, when the step size is small
enough, small values of � are sufficient to minimize the error to the closed-form
FRC. However, if one chooses a larger step size, the parameter � has to be larger
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Figure 8.11: Relative discrepancy between the discrete and the closed-
form FRC for different values of kernel width �. For any sampling step,
there exists a range of parameters for the discrete FRC which minimizes
the discrepancy.

as well in order to reduce the aliasing effect and minimize the error.

8.5.6 Discussion

In this section, we obtained a closed-form expression to compute the FRC in the
continuous domain for SMLM. Our method allows us to compute a parameter-free
FRC. We showed that the conventional FRC computation reaches the closed-form
FRC when the sampling parameters are set appropriately. Moreover, our approach
could allow for an accurate computation of the local FRC [255].
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8.6 Summary

In this chapter, we presented our contributions on metrics for computational mi-
croscopy. We proposed a metric with no ground-truth requirement for ODT. By
illuminating the sample with a known pattern, we leveraged phase conjugation
to assess the quality of 3D reconstructed RI maps. Actually, we performed digi-
tal phase conjugation by back-propagating the complex-conjugated measured field
through the sample via our forward model LSm (Chapter 3). By doing so, the
illumination pattern should be recovered unless the reconstructed RI maps are in-
accurate. The proposed metric confirmed the superior performance of the Rytov
model over the Born and Radon models for biological samples.

Further, we investigated metrics for SMLM by taking advantage of its partic-
ular outcome, i.e., a list of estimated positions. Our first contribution was an
optimal-transport-based metric (Flat Metric) which assesses the performance of
both detection (Jaccard Index) and localization (RMSE). The main outcome is a
robust and practical metric for SMLM evaluation with an intuition on how we can
achieve an optimal assessment, which stems from solid mathematical grounds. Our
second contribution was the derivation of a closed-form expression of the FRC for
SMLM. Since this metric was originally built for pixel-based images, users have to
render an SMLM image with arbitrary choices of hyper-parameters. By obtaining
a tailored closed-form expression, our work provides instructions on optimal choices
of such hyper-parameters.



Chapter 9

Conclusion

In this thesis, we have focused on developing novel computational methods for im-
proving the quality of reconstructions in QPI. To achieve this objective, we have de-
veloped highly accurate models of the acquisition process and efficient algorithmic
reconstruction methods. We have also proposed novel learning-based regulariza-
tion schemes. In what follows, we summarize our contributions and discuss future
prospects of QPI.

Summary of Results

Accurate Discretization of the LiSc Equation We derived an accurate and
efficient model of light scattering that accounts for multiple-scattering events (both
reflection and transmission). We properly discretized the LiSc equation and ob-
tained a linear system, which we solved with the help of a Krylov-based method.
In particular, we handled the singularity of the Green’s function using a truncation
trick and a memory-saving strategy. In our experiments, our model LSm achieved
high accuracy and outperformed existing models.

ODT from Complex Measurements Using our novel forward model, we for-
mulated an inverse-scattering problem within a modern variational framework and
solved it to recover the 3D RI map of the sample when the measurements are
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complex-valued. Our algorithmic reconstruction involves a nontrivial proximal
gradient-based iterative scheme that requires the Jacobian matrix of the nonlinear
operator. We were able to derive an explicit expression for the Jacobian matrix,
which helped in alleviating the memory and computational burdens. To deploy
our framework on real acquisitions, we built the volume of the incident field by
numerical propagation of a real acquisition of it at the detector plane. In par-
ticular, we proposed a strategy that resulted in significantly reduced numerical
errors. Further, we developed a novel adaptive regularization scheme to tackle
the missing-cone problem. Our dictionary-learning-based approach learns 2D fea-
tures of the lateral planes from the specimen and promotes such features on all the
planes. By accounting for multiple scattering and adding suitable prior knowledge,
we significantly improved the quality of reconstruction over the state of the art.

ODT from Intensity-only Measurements We proposed a versatile recon-
struction framework to tackle the corresponding inverse-scattering problem with
any physical model. We split the optimization task in a way that decouples the
complex-field-based reconstruction from the phase retrieval. This allows us to take
advantage of our previous contributions and of proximity operators for phase re-
trieval [21]. In our experiments, we reconstruct RI maps from intensity-only mea-
surements with quality similar to the ones recovered from complex measurements.
This shows that, in some settings, intensity information is sufficient for recovering
RI maps.

SMLM Meets ODT In SMLM, the emission patterns of each fluorescent label
can be distorted by the sample, which reduces the localization accuracy if not
accounted for. We then exploited these sample-induced aberrations to recover the
RI map. We proposed an optimization framework in which we reconstruct the
RI map using LSm and optimize the label positions in a joint fashion. In our
numerical experiments, we effectively recovered the RI map of the sample and
further improved the localization—the primary objective of SMLM.

PUDIP We addressed the unwrapping of 2D phase images from their wrapped
counterparts. To tackle challenging cases such as phase images of organoids, we
proposed an untrained deep-learning-based method, which incorporates an explicit
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feedback mechanism. Our comparisons showed that our phase unwrapping with
deep image prior significantly outperformed the state of the art.

Metrics for ODT and SMLM In this chapter, our first contribution was a
metric with no ground-truth requirement for ODT reconstructions. We illustrated
its adequacy for biological samples. Then, we leveraged the unique features of
SMLM (i.e., list of estimated positions, image rendering) to investigate metrics
from new perspectives. Building upon a broad benchmarking of localization soft-
ware packages [27], we proposed a novel optimal-transport-based metric for SMLM
which captures both detection and localization performance and relies on solid
mathematical foundations. Finally, we derived a closed-form expression of the FRC
for the particular case of SMLM, which allowed us to investigate the classical way
of computing FRC (i.e., SMLM image rendering and DFT).

Future Prospects

QPI is a powerful tool for studying label-free biological samples. Precise knowledge
of the acquisition parameters is decisive for the success of the reconstruction. For
instance, miscalibration of the illumination angles generates structured artifacts in
the reconstruction [70]. In Chapter 5, the 3D RI map of the Yeast cell reconstructed
from intensity-only measurements is likely to suffer from optical aberrations which
were not accounted for in this setting.

Self-calibration algorithms [70] constitute an interesting solution to such is-
sues. Alternatively, deep learning methods can be trained to remove optical aber-
rations [281].

In this thesis, we developed our methods under the theory of scalar diffraction.
Future directions of research could consider the polarization (i.e., vectorial nature)
of light and the dielectric tensor (the equivalent RI in Maxwell’s equations), which
would result in a four-dimension reconstruction problem [33, 282, 283]. We ex-
pect the research field to adopt highly-accurate models while mitigating the high
computational burden.

Alternatively, the RI maps depend on the wavelength of the incident wave. Our
techniques for ODT could be easily applied to hyperspectral ODT [284], which
varies the wavelengths to acquire valuable information about the sample.
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Further, supervised deep learning can be used to accelerate the computation of
the physical model [53, 285] or the resolution of inverse-scattering problem [286].

In spite of being a fluorescence microscopy technique, our extension of SMLM
described in Chapter 6 involves tools from QPI. Similar approaches open new av-
enues for developing novel multi-modal imaging [287]. The benefits are numerous
and range from a precise calibration of the acquisition process to the recovery of
new and complementary information about the sample.
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Appendices

A.1 Short Remark on the GlobalBioIm Library

In this thesis, many of our contributions relied on efficient methods which were
implemented in MATLAB R� using the open-source library GlobalBioIm developed
in our group [131]. This library exploits the strong commonalities between imaging
modalities to enable the implementation of many forward models from elementary
modules. Thanks to this modular philosophy, we could rapidly reuse operators
between chapters. Simultaneously, this library has guided the implementation of
new methods as to remain compatible with the modular approach of GlobalBioIm.

A.2 Proximity Operators

In this section, we describe how we can compute the proximity operator of the
regularization term R (see (4.8)). Proximity operators act as a generalization of the
notion of a projection operator on a convex set [148]. The proximity operator [288]
of a functional ⌧R, with ⌧ > 0, is defined as

prox
⌧R(v) = arg min

f2RN
kf � vk

2
2 + ⌧R(f). (A.1)

Here, we are interested in
R(f) = kLfk+ iB(f), (A.2)
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where k · k : RS⇥S
0
! R�0 is a (mixed) norm or seminorm, L : RN

! RS⇥S
0

is a
linear operator (e.g., discrete gradient, Hessian), and the functional iB = {0, f 2
B; 1, otherwise} constrains the solution to lie in the convex set B such as B = RN

�0.
We then leverage this structure to solve (A.1) efficiently. In this thesis, we deploy
two different strategies.

A.2.1 Proximity Operators via ADMM

In Chapter 4 (Section 4.5.3), we used the ADMM algorithm [289] to solve (A.1).
More specifically, we tackled 2D ODT regularized with the anisotropic TV and the
set constraint on the convex set B

R(f) = krfk2,1 + iB(f) (A.3)

where r : RN
7! RN⇥D encodes the discrete gradient operator for the dimen-

sion D 2 {2, 3}. Below, we explicitly describe a solver for the proximity operator
of (A.3) via ADMM, but the procedure is generic for (A.2). Let us start by refor-
mulating (A.1) as

prox
⌧R(v) = arg min

f2RN

✓
1

2
kf � vk

2
2 + ⌧kq1k2,1 + iB(q2)

◆
,

s.t. q1 = rf ,

q2 = f , (A.4)

which admits the augmented-Lagrangian form

L(f ,q1,q2,w1,w2) =
1

2
kf � vk

2
2 +

⇢1

2

����rf � q1 +
w1

⇢1

����
2

2

+
⇢2

2

����f � q2 +
w2

⇢2

����
2

2

+ ⌧kq1k2,1 + iB(q2), (A.5)

where ⇢1 and ⇢2 are positive scalars, and where w1 2 RN⇥D and w2 2 RN are the
Lagrangian multipliers. Then, one can minimize (A.5) using ADMM. The iterates
are summarized in Algorithm 8.
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Algorithm 8 ADMM for solving (A.1).
Require: f

0
2 RN , ⌧ > 0, ⇢1 > 0, ⇢2 > 0

1: A =
�
(1 + ⇢2)I + ⇢1rTr

�

2: q
0
1 = rf

0, q
0
2 = f

0

3: w1 = q1, w2 = q2

4: t = 1
5: while (not converged) do
6: q

t+1
1 = prox ⌧

⇢1
k · k2,1

⇣
rf

t + w
t
1

⇢1

⌘

7: q
t+1
2 = prox

B

⇣
f
t + w

t
2

⇢2

⌘

8: f
t+1 = A

�1
⇣
v + ⇢1rT

⇣
q

t+1
1 �

w
t
1

⇢1

⌘
+ ⇢2q

t+1
2 �w

t

2

⌘
. Fourier division

9: w
t+1
1 = w

t

1 + ⇢1(rf
t+1
� q

t+1
1 )

10: w
t+1
2 = w

t

2 + ⇢2(f t+1
� q

t+1
2 )

11: t = t + 1
12: end while
13: return f

t

Steps 6 and 7 compute

8q 2 RN , [prox
B

(q)] = proj(q), (A.6)

8q 2 RN⇥D,
h
prox

�k · k2,1
(q)

i

n,d

= qn,d

✓
1�

�

kqn, · k2

◆

+

, (A.7)

of prox
B

and prox
�k · k2,1

where

proj(q) := arg min
x2B

kx� qk2 (A.8)

is the orthogonal projection onto the convex set B. For instance, if B = RN

�0, the
projection becomes the elementwise operation

[proj(q)]n = max(qn, 0). (A.9)
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A.2.2 Proximity Operators via the Fast Gradient-Projection
(FGP) Method

Although efficient in 2D settings, we observed that proximity operators via ADMM
do not scale well to 3D settings. We then deployed the fast gradient-projection (FGP)
method to solve the dual formulation of the proximity operator of (A.2) [126, 129].
This dual approach is possible if one can formulate the dual of kLfk. For instance,
TV or HS fulfill this condition. The dual problem of (A.1) with (A.2) is defined as

g
⇤ = arg min

g2P
�

1

2
kv � ⌧LT

g � proj
B

(v � ⌧LT
g)k2

F

+ kv � ⌧LT
gk

2
F
, (A.10)

where the set P depends on the regularization term. For the anistropic TV, we
have P = {g 2 RN⇥D : k[gn]k1  1, 8n 2 [1, . . . , N ]}, and, for HS, we refer the
reader to [126]. The iterates of FGP are summarized in Algorithm 9. In Step 4, the
operator projP is the orthogonal projection onto P. For the 3D anisotropic TV,
the operator is given by

[projP(g)]n =

0

B@

gn,0

max(|gn,0|,1)
gn,1

max(|gn,1|,1)
gn,2

max(|gn,2|,1)

1

CA , (A.11)

for n = 1, . . . , N . Once (A.10) is solved, the primal solution is then given by

f
⇤ = proj

B
(v � ⌧LT

g
⇤). (A.12)

Note that, in this thesis, FGP is embedded in one iteration of FBS. By using few
iterations of FGP, we obtained an approximate solution of (A.10) at each iteration
of FBS, but this was sufficient to converge in our experiments.

A.3 Proofs for Chapter 3

A.3.1 Preliminary Lemmas
Lemma A.3.1 (Smoothness of a function and decay of its Fourier transform in
R3). Let v 2 L2(R3) have (q � 1) continuous derivatives in L2(R3) for some q � 1
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Algorithm 9 FGP for solving (A.10).
Require: f

0
2 RN , ⌧ > 0, g

0
2

1: d
0 = g

0, ↵0 = 1, � = 1/kLk2

2: t = 0
3: while (not converged) do
4: g

t+1 = projP
�
d

t + �L
�
proj

B

�
v � ⌧LT

d
t
���

5: ↵t+1 =
1+
p

1+4(↵t)2

2

6: d
t+1 = g

t + ↵
t�1

↵t+1 (gt+1
� g

t)
7: t = t + 1
8: end while
9: return g

t

and a qth derivative of bounded variations. Then,

|v̂(!)| 
C1

k!kq+1
8! s.t. k!k � C2, (A.13)

where C1 and C2 are positive constants.

Proof. It is an extension of the well known result in one-dimension, see for in-
stance [290, Theorems 6.1 and 6.2].

Lemma A.3.2 (DFT aliasing for compactly supported functions in R3). Let v 2
L2([�L/2, L/2]3) be compactly supported, have (q � 1) continuous derivatives in

L2(R3) for some q � 3, and a qth derivative of bounded variations. Let v 2 RN

(N = n3
) be a sampled version of v with sampling step h = L/n. Finally, denote

by � = 2⇡/(hn) the frequency sampling step of v̂, the DFT of v. Then, for all

q 2 [[�n

2 + 1; n

2 ]]3 ��v̂(�q)� h3bv[q]
��  Chq+1 (A.14)

for a positive constant C > 0.

Proof. From Poisson’s summation formula and the compact support of v, we have
that X

k2[[�n
2

+1;n
2
]]3

v[k]e�jhkT! =
1

h3

X

m2Z3

v̂(! + 2⇡m/h). (A.15)
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Setting ! = �q = 2⇡q/(hn) in (A.15), one recognizes that the left-hand side is the
DFT of v. Hence, we obtain that

v̂(�q) = h3bv[q]�
X

m2Z3

m 6=0

v̂ (�q + 2⇡m/h) . (A.16)

Then, from Lemma A.3.1, we obtain that there exists C > 0 such that

��v̂(�q)� h3bv[q]
�� 

X

m2Z3

m 6=0

C

k�q + 2⇡m/hkq+1


Chq+1

(2⇡)q+1

X

m2Z3

m 6=0

1

kq/n + mkq+1
(A.17)

Let us now study the convergence of the series in (A.17). Using the fact that
k · k2  k · k1 

p
Nk · k2, we obtain that

X

m2Z3

m 6=0

1

kq/n + mk
q+1
2



X

m2Z3

m 6=0

p
N

kq/n + mk
q+1
1

. (A.18)

Then, for q 2 [[�n

2 + 1; n

2 ]]3 and m 2 N we introduce the set

Sm

q
=
�
m 2 Z3 : m  kq/n + mk1 < m + 1

 
. (A.19)

Using the fact that q 2 [[�n

2 + 1; n

2 ]]3 ) q/n 2 (�1/2, 1/2]3, we have that

kmk1 � 3/2  kq/n + mk1  kmk1 + 3/2, (A.20)

which implies that

|Sm

q
| 

m+2X

m0=m�2

|Sm
0

0
|

 5|Sm+2
0

| = 5
�
4(m + 2)2 + 2

�
, (A.21)
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where | · | stands for the cardinality of the set. Using the inequality (A.21), we can
bound the right-hand side of (A.18) as

X

m2Z3

m 6=0

p
N

kq/n + mk
q+1
1



+1X

m=1

p
N |Sm

q
|

mq+1



+1X

m=1

5
p
N
�
4(m + 2)2 + 2

�

mq+1
, (A.22)

which is a convergent series when q � 3. This completes the proof.

A.3.2 Proof of Theorem 3.5.1
From the Fourier-convolution theorem, we have that

(gt ⇤ v)(x) =

Z

⌦
gt(x� z)v(z) dz

=
1

(2⇡)3

Z

R3

bgt(!)v̂(!)ej!T
x d!. (A.23)

Let n 2 2N \ {0} and h = L/n be the spatial sampling step of the volume ⌦
in each dimension. It follows that the frequency domain that is associated to the
DFT is b⌦ = [�⇡/h,⇡/h]3. Then, the padding factor p 2 N>0 enlarges the spatial
domain to [�pL/2, pL/2]3, resulting in the frequency sampling step � = 2⇡/(hnp) =
2⇡/(Lp), so that b⌦ is sampled using np equally spaced points in each dimension.

We are now equipped to discretize the integral in (A.23). To that end, we use
a trapezoidal quadrature rule on b⌦ and write that

(gt ⇤ v)(x) ⇡
�3

(2⇡)3

X

q2[[�np
2

;np
2

]]3

wq bgt (�q) v̂ (�q) ej�qT
x. (A.24)

There, the weights wq are equal to 1, 1/2, 1/4, and 1/8 when q belongs to the
interior, the interior of the faces, the interior of the edges, and the corners of the
cube [[�np

2 ; np

2 ]]3, respectively.
The approximation we made in (A.24) generates two error terms.
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1. The error "tp that is due to the trapezoidal quadrature rule used to ap-
proximate the integral over the domain b⌦. This error is well documented
in the literature [291]. For integrand that are twice differentiable, such as
! 7! bgt(!)v̂(!)ej!T

x, we have that

|"tp|  C�2 = C

✓
2⇡

Lp

◆2

(A.25)

for a positive constant C > 0.

2. The error "tr that is due to the truncation of the integral in (A.23) to the
domain b⌦, bounded as

|"tr| =
1

(2⇡)3

�����

Z

R3\b⌦
bgt(!)v̂(!)ej!T

x d!

�����


1

(2⇡)3

Z

R3\b⌦

��� bgt(!)v̂(!)ej!T
x

��� d!


C

(2⇡)3

Z

R3\b⌦

2

(k!k � kb)k!kq+2
d!, (A.26)

for a constant C > 0.

The last inequality in (A.26) has been established in two steps. First, the
assumption that kb < ⇡/h implies that 8! 2 R3

\ b⌦, k!k > kb. Then, one gets
from (3.6) that, 8! 2 R3

\ b⌦,

|bgt(!)| 
2

(k!k � kb)k!k
. (A.27)

Second, Lemma A.3.1, along with the fact that v has (q� 1) continuous derivatives
with a qth derivative of bounded variations, implies that its Fourier transform
decays as

|v̂(!)| 
C

k!kq+1
(A.28)

for a constant C > 0. Combining these two bounds with |ej!T
x
| = 1 finally leads

to (A.26).
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A further refinement of the bound (A.26) is needed to recover the statement
of Theorem 3.5.1. Denoting by B

2
⇡/h

= {! 2 R3 : k!k  ⇡/h} the `2-ball of
radius ⇡/h, one sees that the integral in (A.26) is upper-bounded by the integration
of the same integrand over the larger domain R3

\ B
2
⇡/h

. This bound is easier to
evaluate using spherical coordinates, as in

|"tr| 
2C

(2⇡)3

Z

R3\B2

⇡/h

1

(k!k � kb)k!kq+2
d!

=
2C

(2⇡)3

Z 2⇡

0

Z
⇡

0

Z +1

⇡/h

r2 sin(✓)

(r � kb)rq+2
dr d✓ d�

=
C

⇡2

Z +1

⇡/h

1

(r � kb)rq
dr. (A.29)

To evaluate (A.29), we use the partial fraction decomposition

1

(r � kb)rq
=

1

kq

b(r � kb)
�

q�1X

m=0

1

kq�m

b rm+1
. (A.30)

Hence, we have that

|"tr| 
C

⇡2

✓
1

kq

b

log(r � kb)
���
+1

r=⇡
h

�
1

kq

b

log(r)
���
+1

r=⇡
h

�

q�1X

m=1

1

kq�m

b

✓
�

1

mrm

◆ �����

+1

r=⇡
h

◆

=
�C

kq

b⇡
2

 
log

✓
1�

kbh

⇡

◆
+

q�1X

m=1

1

m

✓
kbh

⇡

◆m
!

(A.31)

=
C

kq

b⇡
2

+1X

m=q

1

m

✓
kbh

⇡

◆m

(A.32)

=
C

kq

b⇡
2

✓
kbh

⇡

◆q +1X

m=0

✓
kbh

⇡

◆m 1

m + q
. (A.33)
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To obtain (A.32) from (A.31), we used the fact that kbh/⇡ < 1 together with
log(1 � x) = (�

P+1
m=1 x

m/m) for |x| < 1. Finally, we get the bound Ctr/nq from
the convergence of the series in (A.33) and h = L/n.

Let us focus on aliasing. As opposed to bgt for which we have access to an explicit
expression in (3.6)–(3.7), the samples v̂(�q) in (A.24) have to be approximated by
the DFT coefficients of a p-times zero-padded version of the sampled signal v 2 CN ,
denoted vp 2 CNp

3

, and defined by, 8k 2 [[�np

2 + 1; np

2 ]]3,

vp[k] =

⇢
v[k] = v(hk), k 2 [[�n

2 + 1; n

2 ]]3

0, otherwise. (A.34)

We then replace v̂(�q) in (A.24) by h3cvp[q] and obtain that

(gt ⇤ v)(x) ⇡
1

(np)3

X

q2[[�np
2

;np
2

]]3

wq bgt (�q)cvp[q]ej�qT
x. (A.35)

This approximation introduces an error term "al that is due to aliasing. More
precisely, we have that

|"al| 
�3

(2⇡)3

X

q2[[�np
2

;np
2

]]3

wq |bgt (�q)|
��v̂(�q)� h3cvp[q]

��


�3

(2⇡)3

X

q2[[�np
2

;np
2

]]3

wq |bgt (�q)|Chq+1 (A.36)


�3Chq+1

(2⇡)3
(np)3kbgtk1

= Ckbgtk1hq�2 =
Ckbgtk1Lq�2

nq�2
, (A.37)

where (A.36) comes from Lemma A.3.2.
To complete the proof, it remains to recognize an inverse DFT within (A.35).

Let {qi}
8
i=1 denotes the eight corners of the cube [[�np

2 ; np

2 ]]3. Then, because bgt is
radially symmetric (see (3.6) and (3.7)), and by periodicity of cvp, we have that

bgt (�qi)cvp[qi] = bgt (�q1)cvp[q1], 8i 2 {2, . . . , 8}. (A.38)
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Hence we can factorize the corresponding terms in (A.35) as
X

q2{qi}8

i=1

1

8
bgt (�qi)cvp[qi] = bgt (�q1)cvp[q1]. (A.39)

Finally, using the same arguments for points within the faces and edges of the cube
[[�np

2 ; np

2 ]]3, and sampling (A.35) at points hk, k 2 [[�n

2 + 1; n

2 ]]3, we obtain that

(Gv)[k] =
1

(np)3

X

q2[[�np
2

+1;np
2

]]3

bgt[q]cvp[q]e
2j⇡
np q

T
k, (A.40)

where bgt = (bgt(�q))
q2[[�np

2
+1;np

2
]]3 . We recognize an inverse DFT, which completes

the proof.

A.3.3 Proof of Proposition 3.6.1
First, let us introduce the notation ⌦n = [[�n

2 + 1; n

2 ]]3. Then, we have that, for all
k 2 ⌦n,

�
F

�1( bgt �cvp)
�
[k]

=
1

(np)3

X

q2⌦np

bgt[q]cvp[q] e
2j⇡
np q

T
k

=
1

(np)3

X

q2⌦np

bgt[q]
X

q̃2⌦np

vp[q̃] e
�2j⇡
np q̃

T
q e

2j⇡
np q

T
k

=
1

(np)3
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where we have used the fact that supp(vp) = supp(v) ✓ ⌦n ✓ ⌦2n. Hence,
we have shown that

�
F

�1( bgt � cvp)
���

⌦n
can be obtained as the valid part of the
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discrete convolution between v2, defined as v padded with p = 2, and a modified
truncated Green function given by, 8k 2 ⌦2n,

g
p

t [k] =
8

p3

X

s2[[0;
p

2 �1]]3

F
�1( bgt[

p

2 · � s])[k] e
�2j⇡
np k

T s, (A.42)

which completes the proof.

A.4 Experimental Setup

Figure A.1: Experimental tomographic setup. (M: Mirror, L: Lens, OBJ:
Objective lens, BS: Beam splitter). Pinhole-based spatial filter cleans out
the beam spatially. The higher-orders cleaning filter removes the unneeded
higher orders, which prevents interference at the image plane on the sample
and image deterioration.

The optical system shown in Fig. A.1 used a diode pumped solid state (DPSS)
532nm laser. The laser beam was first spatially filtered using a pinhole. A beam-
splitter separated the input beam into a signal and a reference beam in an off-
axis geometry. The signal beam was directed to the sample at different angles of
incidence using a reflective liquid crystal on silicon (LCOS) SLM (Holoeye PLUTO
VIS, pixel size: 8 µm, resolution: 1080⇥ 1920 pixels) that modulates the phase of
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the incident beam. Different illumination angles were obtained by displaying blazed
gratings on the SLM. In the experiments presented here, a blazed grating with a
period of 25 pixels (200 µm) was rotated a full 360� with a resolution of 1 degree
for a total of 361 projections, including normal incidence to be able to measure
the shift of the k-vectors with respect to it. Two 4f systems between the SLM
and the sample permitted filtering of higher orders reflected from the SLM (due
to the pixilation of the device) as well as 240x angular magnification of the SLM
projections onto the sample. Using a 100X oil immersion objective lens (OBJ1)
with NA 1.4 (Olympus), the incident angle on the sample corresponding to the
200 µm grating was about 37�. A third 4f system after the sample includes a
100X oil immersion objective lens (OBJ2) with NA 1.45 (Olympus). The sample
and reference beams were collected on a second beam-splitter and projected onto a
scientific complementary metal-oxide-semiconductor (sCMOS) camera (Andor Neo
5.5 sCMOS, pixel size: 6.5 µm, resolution: 2150⇥ 2650 pixels).

A.5 Supplementary Materials for Chapter 7

A.5.1 Architecture of the Generative Network

We choose a U-Net-like architecture based on the work of deep image prior [218]
(Figure. A.2). It consists of repeated applications of four blocks of operations.

1. A (3⇥3) 2D convolutional layer with stride (2⇥2) for downsampling followed
by a batch normalization (BN) [292] layer and a parametric rectified linear
unit (PReLU) [225] layer.

2. A (3⇥ 3) 2D convolutional layer with stride (1⇥ 1) followed by a BN and a
PReLU layer.

3. A (2⇥ 2) bilinear interpolation layer for upsampling followed by a BN layer.

4. A skip connection which contains a (1 ⇥ 1) 2D convolutional layer that con-
catenates the left-side encoder path to the right-side decoder path.
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Figure A.2: Architecture of the network. Each box corresponds to a
multichannel feature map. The number of channels is shown at the top of
the cube. The height of the output is as same as that of the input. The
size of the single-channel feature map is halved after the downsampling and
doubled after the upsampling. The skip connections combine convolution
and concatenation, which differs from a traditional U-Net [224].
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Figure A.3: Loss function (left) and SNR (right) with respect to iterations.

A.5.2 Stability of PUDIP
Deep image prior (DIP) is known to be unstable when a large number of iterations
is used [218]. Our method can be seen as a sequence of DIPs with an adaptive loss.
We then assessed whether our method suffers from such a destabilization. As shown
in Fig. A.3, for the simulated data with 180� cropped angle, PUDIP shows a stable
and converging cost and SNR with respect to the iterations. This allows us to set
an arbitrary maximum number of iterations without risking any destabilization.

A.5.3 Training Dataset of PhaseNet
Samples of training data for PhaseNet [211] are shown in Figure. A.4.

A.5.4 Simulation Setup
Simulation of Phase Images of Organoid-like Sample

We simulated the acquisition of phase images of organoid-like samples. We first
created 3D volumes made of overlapping ellipsoids of uniform RI n1, to which we
added an external layer of RI n2. Then, we simulated the propagation of a plane
wave through the sample by using BPM [43]. We propagated the wave with a
square voxel of length 0.2µm in a square window of length 102.4µm. We refocused
the complex total field at the center of the volume (i.e., free-space propagation). We
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Figure A.4: Uniformly and Gaussian-distributed random square matrices
(first row) and the corresponding unwrapped-phase images (second row),
wrapped-phase images (third row), and the wrap-count images (last row).
For training, the wrapped-phase images are the inputs and the wrap-count
images are the ground-truths. From left to right, the size of the random
matrix is (3⇥3), (5⇥5), (7⇥7), (9⇥9), and (11⇥11). The unwrapped-phase
images vary in the range 0 to 40⇡. The image size is (256⇥ 256).
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then downsampled the field to match the pixel size of the camera (i.e., 0.645µm).
Finally, we extracted the (wrapped) phase from the ratio between the total field
and the incident field. The straight-ray approximation �sr the expected phase [35]
as

�sr =
2⇡

�

Z 1

�1
(⌘(x1, x2, x3)� ⌘b)dx3, (A.43)

where ⌘(x1, x2, x3) : R3
! R is the distribution of RI of the 3D volume, and nm > 0

is the RI of the medium (i.e., water).

Ellipses with Varying Cropping Angles

As shown in Figure. A.7, we first simulated one phase surface with the shape of an
ellipse of radii 80 pixels and 110 pixels along the vertical and horizontal dimensions,
respectively. The ellipse was filled with a Gaussian function whose maximum is 15
and standard deviation is randomly generated � ⇠ U(0.30, 0.65). The area outside
the ellipse was set to 0. We select the horizontal left-to-right direction as the x-axis
and set the coordinate axes to be left-handed. The ellipse was cropped with angles
ranging from 0� to 270� with an increment of 45�. Similar to [188, 192], these
croppings introduce a variety of discontinuities and shapes.

Ellipses with Varying Maximum Phase Values

For this numerical experiment (Figure. A.8), we generated elliptical phase surfaces
with radii 102 pixels and 120 pixels along the vertical and horizontal dimensions,
respectively. The cropped part was kept constant, with an angle set at 135�. We
scaled the phase so that its maximum was in the range of 6 to 42 with an increment
of 6. For this case, the high values induce several wrapping events. By controlling
their number, we could tune the difficulty of the unwrapping task.

A.5.5 Phase Unwrapping of Simulated Data

Supplementary Reconstructions of Organoid-like Samples

We simulated supplementary organoid-like samples and unwrapped their corre-
sponding wrapped phase. As shown in Figure. A.5 and A.6, similar behaviors are
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XY XZ GA LS IRTVWrapped Phase

YZ PUMA PhaseNet PUDIP �sr

�⇡ ⇡

1.33 1.42rad 0 8 15 23rad

Figure A.5: Organoid-like reconstructions. The images were saturated
for visualization purpose. The size of the unwrapped phase image is (159⇥
159). The first two columns are orthographic slices of the 3D distribution
of RI. All slices include the center of the volume. From the third to fifth
column, the text gives the method used to unwrap. The wrapped phase
and the straight-ray approximation �sr are displayed in the last column
(from top to bottom).

observed. The slightly defocused parts are wrongly estimated by baseline meth-
ods, which impacts the whole unwrapping result. The phase unwrapped by PUDIP
matches the straight-ray approximation �sr.

Unwrapping of Ellipses with Varying Cropping Angles

The reconstructions obtained by different methods for the ellipses with varying
cropping angles are shown in Figure. A.7. In this experiment, the cropping angle
was gradually increased. All methods except PhaseNet are able to recover the
correct unwrapped phase in the absence of cropping. When the phase image is
cropped, all conventional methods lead to blocky errors, especially at large angles.
For the 180� case only, PUMA [188] and the proposed method accurately unwrap
the phase.

In general, CNN-based approaches perform better than the model-based meth-
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XY XZ GA LS IRTVWrapped Phase

YZ PUMA PhaseNet PUDIP �sr

�⇡ ⇡

1.33 1.42rad 0 6 13 19rad

Figure A.6: Organoid-like reconstructions. The images were saturated
for visualization purpose. The size of the unwrapped phase image is (159⇥
159). The first two columns are orthographic slices of the 3D distribution
of RI. All slices include the center of the volume. From the third to fifth
column, the text gives the method used to unwrap. The wrapped phase
and the straight-ray approximation �sr are displayed in the last column
(from top to bottom).

ods. Both PhaseNet and PUDIP are able to reconstruct more accurate shapes
and values, especially over the cropped region. For PhaseNet, we observe that the
clustering-based postprocessing strongly improves the final results but still intro-
duces undesirable values along the contours of clusters. By contrast, our method
recovers well the samples in all cases, including the few over which PhaseNet fails.

Unwrapping of Ellipses with Varying Maximum Phase Values

We obtained similar results with the second experiment in which we increased the
maximum value instead (Figure. A.8). When the height is low (first and second
columns), IRTV [192] and PUMA perform well. When the height is higher, all the
other baseline methods wrongly estimate large portions of the images.

PhaseNet always fails to recover the phase, which points out the sensitivity of
this supervised-learning method to the mismatch between the training and testing
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Figure A.7: Reconstructed unwrapped-phase images of simulated samples
with diverse cropping angles. From top to bottom: wrapped phase, results
obtained by GA, LS, IRTV, PUMA, PhaseNet, and our approach (PUDIP).
The ground-truth images are presented in the last row.
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set. On the contrary, our learning framework always unwraps the phase with few
errors and without prior training.

Unwrapping of the Training Dataset of PhaseNet

As the samples are randomly generated, we simulated the samples from the training
dataset of PhaseNet four times. In general, model-based methods fail to restore
the correct background in most cases, as well as the inner structures for several
samples (see second to fifth rows of Figures. A.9-A.12). By contrast, both PhaseNet
and PUDIP yield better phase reconstructions for different configurations (see sixth
to seventh rows of Figures. A.9-A.12).

A.5.6 Experimental Data

A.5.7 Reconstructions by Goldstein’s Algorithm and
PhaseNet

In Figure. A.13, GA [179] and PhaseNet failed to reconstruct the unwrapped phase
for all real data. GA solutions exhibit several rectangular areas that cover both the
background and the organoids. Their phase differs from their surrounding, which is
inconsistent with the expected features of the sample. PhaseNet solutions similarly
show jumps along vertical stripes and are likely to be artifacts of unwrapping. For
PhaseNet, this behavior is expected since the network was trained on (mismatched)
simulated data.

Supplementary Time-Lapse Measurements and Segmentations and Re-
constructions by PhaseNet

We acquired other time-lapse measurements (Figures. A.14-A.16). We observe that
the unwrapped phases exhibit similar artifacts at the borders of the organoids. The
subsequent segmentation is also impacted, especially at the border, as pointed out
by arrows. We provide the reconstructions by PhaseNet in Figure. A.17.
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Figure A.8: Reconstructed unwrapped-phase images of simulated samples
with diverse maximal values. From top to bottom: wrapped phase, results
obtained by GA, LS, IRTV, PUMA, PhaseNet, and our approach (PUDIP).
The ground-truth images are presented in the last row.
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Figure A.9: Unwrapped-phase images of simulated samples with diverse
random distributions (1st batch). From top to bottom: wrapped phase,
results obtained by GA, LS, IRTV, PUMA, PhaseNet, and our approach
(PUDIP). The ground-truth images are presented in the last row. The
numbers give the corresponding RSNR [dB].
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Figure A.10: Unwrapped-phase images of simulated samples with diverse
random distributions (2nd batch). From top to bottom: wrapped phase,
results obtained by GA, LS, IRTV, PUMA, PhaseNet, and our approach
(PUDIP). The ground-truth images are presented in the last row. The
numbers give the corresponding RSNR [dB].
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Figure A.11: Unwrapped-phase images of simulated samples with diverse
random distributions (3rd batch). From top to bottom: wrapped phase,
results obtained by GA, LS, IRTV, PUMA, PhaseNet, and our approach
(PUDIP). The ground-truth images are presented in the last row. The
numbers give the corresponding RSNR [dB].
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Figure A.12: Unwrapped-phase images of simulated samples with diverse
random distributions (4th batch). From top to bottom: wrapped phase,
results obtained by GA, LS, IRTV, PUMA, PhaseNet, and our approach
(PUDIP). The ground-truth images are presented in the last row. The
numbers give the corresponding RSNR [dB].
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Figure A.13: Reconstructions of experimental data obtained by GA and
PhaseNet.
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Figure A.14: Time-lapse reconstructions for supplementary real data of
size (380 ⇥ 270) and their corresponding segmentation. Left: the images
were saturated for visualization purpose. Right: segmentation of time-
lapse reconstructions. We thresholded at 20% of the maximum value of
the image.
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Figure A.15: Time-lapse reconstructions for supplementary real data of
size (320 ⇥ 380) and their corresponding segmentation. Left: the images
were saturated for visualization purpose. Right: segmentation of time-
lapse reconstructions. We thresholded at 20% of the maximum value of
the image.
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Figure A.16: Time-lapse reconstructions for supplementary real data of
size (300 ⇥ 320) and their corresponding segmentation. Left: the images
were saturated for visualization purpose. Right: segmentation of time-
lapse reconstructions. We thresholded at 20% of the maximum value of
the image.
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Figure A.17: Time-lapse reconstructions by PhaseNet for all real data
and corresponding segmentation. For each panel of time-lapse measure-
ments, Left: the images were saturated for visualization purpose. Right:
segmentation of time-lapse reconstructions. We thresholded at 20% of the
maximum value of the image. T.-L.: Time-Lapse; Fr.: Frame.
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