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ABSTRACT

We propose a novel method for the clustering of point-cloud
data that originate from single-molecule localization mi-
croscopy (SMLM). Our scheme has the ability to infer a
hierarchical structure from the data. It takes a particular rel-
evance when quantitatively analyzing the biological particles
of interest at different scales. It assumes a prior neither on
the shape of particles nor on the background noise. Our mul-
tiscale clustering pipeline is built upon graph theory. At each
scale, we first construct a weighted graph that represents the
SMLM data. Next, we find clusters using spectral clustering.
We then use the output of this clustering algorithm to build
the graph in the next scale; in this way, we ensure consistency
over different scales. We illustrate our method with examples
that highlight some of its important properties.

Index Terms— Single molecule localization microscopy,
spectral clustering, graph signal processing, multiscale meth-
ods, Delaunay triangulation.

1. INTRODUCTION

Single-molecule localization microscopy (SMLM) is a very
popular technique in super-resolution microscopy, with wide
applications in cell biology [1]. This modality provides im-
ages that have a resolution in the order of 10-20 nm and is
well suited to the study of structures at molecular scales in-
side a cell [2]. The data in SMLM are acquired by capturing
thousands of images (a.k.a. frames), each one consisting of
a small number of bright spots. After localizing each spot at
every frame using computational techniques such as Gaussian
fitting (see [3, 4] for detailed comparisons), one can render a
compound high-resolution image on a discrete grid. It is note-
worthy to mention that the raw output of the localization soft-
ware is not a pixelized image, but rather a point-cloud (i.e., a
list of spatial coordinates in nm). In addition, one often has
access to extra information, such as some measure of uncer-
tainty at each localized point, which is based on the number
of associated emitted photons [5].
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The analysis procedure often starts with a clustering of
the acquired SMLM point-cloud. This is currently an active
area of research [6], with density-based methods like DB-
Scan [7, 8], persistence-based methods [9], tessellation-based
methods [10, 11], and also Bayesian methods [12, 13, 14].
One common drawback of the existing methods is that they
rely on some priors either on the shape of the structures of
interest (e.g., particles of same size) and/or on the noise (e.g.,
uniform noise).

In this paper, we propose a novel graph-based method for
hierarchical clustering (GrapHiC). It is a prior-free method
that uses a multiscale grouping strategy. In our pipeline, we
first build a graph based on a Delaunay triangulation of the
data points. We then assign weights to the edges of the graph
by modeling each node as a collection of bivariate Gaussian
random variables. This allows us to incorporate information
on the uncertainty of each localized spot. To perform cluster-
ing over the graph, we use a method called spectral clustering
[15], which is well established in the field of graph signal pro-
cessing [16]. After finding the first-level clusters, we create
a new graph that summarizes the information of the previ-
ous step. By repeating this process, we infer a hierarchical
structure on the input point-cloud. This multiscale strategy
is motivated by the fact that SMLM data contain structural
information that spans a wide range of scales: from cellular
sub-compartments, to aggregates, all the way down to pro-
teins. Our numerical experiments demonstrate the robustness
and versatility of our scheme as well as its interesting hierar-
chical output.

1.1. Problem Formulation

The generic output of a 2D localization software is a point-
cloud P = {p1, . . . ,pM}, where pm = (xm, ym),m =
1, . . . ,M is the position of a localized point (in nm) and M
is the number of points. The localization software often pro-
vides additional information; in this paper, we are particu-
larly interested in the uncertainty σm and the number Nm of
recorded photons associated to each point. The underlying
hypothesis is that the Nm associated photons are i.i.d. real-
izations of a bivariate normal random variableN

(
pm, σ

2
mI
)
.

When the per-point photon count Nm is the sole output of

2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)
April 13-16, 2021, Nice, France

978-0-7381-2593-0/21/$31.00 ©2021 IEEE 1892



the localization software, we translate it into an uncertainty
through

σm ≈
δ√
Nm

, m = 1, . . . ,M, (1)

where δ is the size of the point-spread function of the micro-
scope (typically, 250 nm).

Given the triplets (pm, σm, Nm) for m = 1, . . . ,M as
input data, our goal is to find a collection of injective labeling
functions of the form

fs : Ks−1 → Ks ∪ {0}, s = 1, . . . , S. (2)

In (2), S denotes the number of scales and Ks is the set of
aggregated points at the sth scale with the convention that
K0 = P is the input point-cloud. The label zero is specifically
reserved for the data that are being discarded. We make it
correspond to noisy localized points in the first scale and to
comparatively small and isolated particles at higher scales.

2. METHOD

At each scale, our clustering method follows a three-step pro-
cess: We first construct a graph from the input data; then, we
preprocess the data by removing the isolated nodes; finally,
we cluster the cleaned data by analyzing the eigenvalues of
the corresponding Laplacian matrix (spectral clustering) [15].
By representing the clusters as aggregated points and repeat-
ing this procedure S times, we obtain a hierarchy of clusters.
To facilitate the understanding of our method, we provide a
running illustrative example in Figure 2.

2.1. Graph Construction

An undirected weighted graph G = (V,W) is a collection
of nodes V together with a square matrix W = [wm,n] ∈
R|V|×|V| that is called the adjacency matrix of G. In ef-
fect, wm,n specifies the weight of the edge between vertices
vm, vn ∈ V; it is set to zero if the nodes are disconnected.

2.1.1. Nodes

At the sth scale, the input data are a collection of aggregated
points, to each one we assign a bivariate normal distribution
together with the number of recorded photons. Hence, the
associated pairs of the form vm = (N (pm,Σm), Nm) ,m =
1, . . . , |Ks−1| are the nodes of the graph at this scale.

2.1.2. Edges

We perform a Delaunay triangulation on the position graph
with the mean vector pm assigned to the mth node. This
gives us a preliminary connectivity (unweighted) graph. We

then assign weights to the edges of the connectivity graph by
computing the Gaussian similarity function [15]

w(vm, vn) = exp

(
−d(vm, vn)

2σ2
s

)
∈ (0, 1), (3)

for any connected pairs (vm, vn). In (3), we set

d(vm, vn) = ‖pm − pn‖22 +Trace (Σm + Σn) , (4)

which is the expected value of the square Euclidean distance
between two independent bivariate random vectors with dis-
tributions N (pm,Σm) and N (pn,Σn). The parameter σs
controls the size of structures that we seek to find at the sth
scale; indeed, the assigned weight for the edges that have an
associated distance more than 3σs is approximately zero. Fig-
ure 2-(1a) provides an example of a weighted graph that we
built in our pipeline.

2.2. Detection of Isolated Nodes

The first step at each scale is to remove from the graph the
nodes that are isolated. To do so, we define the density ρm of
the node vm as

ρm =

∑|K|s−1

n=1 wm,n

]{n : wm,n 6= 0}
∈ [0, 1], (5)

where ]A denotes the number of elements of the set A. The
quantity ρm is the average weight of the connected edges and
measures how isolated a node is. The isolated nodes are then
detected and removed from the original graph by applying a
simple threshold to node densities, that is the node vm will
be removed if ρm is less than the threshold value. In Figure
2-(1b), we plot the density histogram and we highlight the
desired threshold. There, we also show the cleaned point-
clouds, where the isolated nodes are highlighted in red.

2.3. Spectral Clustering

Next, we apply the spectral-clustering method of [15] to the
graph. Let us denote by D = diag(d1, . . . , d|Ks−1|), the
degree matrix of the graph. It is a diagonal matrix whose
mth entry dm is equal to the sum of the edge weights that
are connected to vm. The Laplacian matrix is then defined
as L = (D −W) [16]. In spectral clustering, one analyzes
the eigenvalues and eigenvectors of this matrix. It has been
shown that the matrix L has exactly as many zero eigenvalues
as the number of connected components of the corresponding
graph. However, the existence of just a few weak links be-
tween the connected components gives rise to a set of nonzero
(but small) eigenvalues. Hence, we estimate the number K of
clusters by finding the first “significant” eigengap [15] (e.g.,
larger than 25% of the maximum peak) in the graph (see the
eigenvalue plot in Figure 2-(1c)), by examining the difference
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between consecutive eigenvalues of the Laplacian matrix. Us-
ing this estimate, we then apply the well-known K-means al-
gorithm to a collection of vectors of size K, where the mth
node is represented by the vector of mth entries of eigenvec-
tors that are corresponding to the K smallest eigenvalues.

2.4. Multiscale Clustering

So far, we have detailed our graph construction, preprocessing
step, and clustering method at the sth scale. We note that the
input data at this scale are the collection of pairs of the form
vm = (N (pm,Σm), Nm) for m = 1, . . . , |Ks−1|. In this
section, we describe how to translate the output of the sth
scale into a proper input at scale (s+ 1).

Consider a generic cluster C = {vm1
, . . . , vmQ

} at the
sth scale. We first estimate the mean vector, covariance ma-
trix, and the photon count associated to C using the relations

pC =

∑Q
q=1Nmq

pmq∑Q
q=1Nmq

, NC =

Q∑
q=1

Nmq
.

ΣC =

∑Q
q=1Nmq

(pmq
− pC)

T (pmq
− pC)∑Q

q=1Nmq

,

These estimates then allow us to represent C with the pair
(N (pC ,ΣC), NC). Doing so for clusters at the sth scale, we
obtain the adequate pairs to be used in the next scale. As for
the first scale, we simply assign the pair

(
N (pm, σ

2
mI), Nm

)
to the mth node of the graph for m = 1, . . . ,M .

We demonstrate the results of a two-scale hierarchical
clustering in Figure 2. The final display merges the outputs
of the two scales to better infer the underlying hierarchical
structure of the input data.

3. NUMERICAL RESULTS

In this section, we provide results of our experiments that are
performed over both synthetic and real datasets.

3.1. Synthetic Example

We perform an objective comparison of our method with ex-
isting techniques over a dataset with a known ground-truth.
The dataset consists of four round clusters with radius r = 23,
each one having a different density. Precisely, the kth cluster
is produced by uniformly sampling nk = 500 × (1 − q)k−1
points for k = 1, 2, 3, 4, where q is a varying parameter. For
a quantitative evaluation, we rely on the Fowlkes-Mallows in-
dex (FMI) [17] defined as

FMI =
TP√

(TP + FP)× (TP + FN)
.

The result is depicted in Figure 1, where we clearly outper-
form DB-Scan [8] and ToMATo [9] for all values of q.

(a) Four clusters with different density (q=0.5)

(b) FMI metric with 95% confidence interval

Fig. 1: Performance of GrapHiC, ToMATo, and DB-Scan on
the synthetic example. The results are aggregated over 50
runs.

3.2. Real Dataset

For the second example, we consider now a region of the
Paxilin dataset [14] and we apply our clustering pipeline for
two scales. The results are depicted in Figure 3. As can be
seen, our method successfully identified the elongated com-
partments that are present in this region.

4. CONCLUSION

The proposed GrapHiC method is a graph-based hierarchi-
cal scheme for the clustering of SMLM data. In a multiscale
strategy, we use spectral clustering on a graph that we build at
each scale. Following several experiments, we demonstrated
versatility and effectiveness of our method.
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(b) The input-output relation of GrapHic

(a) Steps of GrapHic over two scales.
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Fig. 2: An illustrative example. We consider six large clusters, each with a random radius between 20 and 24. Three of them
contain 10 and the other three contain 7 small particles. Besides, there are 12 dispersed particles as well (total number of
3 × 10 + 3 × 7 + 12 = 63 particles). Each particle has a random radius in [1.5, 3] and consists of 15 points. We also add 100
uniformly sampled points as the background noise.

(a) A region of interest of Paxilin data (b) First-level clusters (c) Final result

Fig. 3: Output of GrapHiC on the Paxilin dataset. In the interest of clarity, we have removed small clusters with fewer than 5
points.
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