
790 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 10, 2024
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Mehrsa Pourya , Graduate Student Member, IEEE, Aleix Boquet-Pujadas , and Michael Unser , Fellow, IEEE

Abstract—The formulation of inverse problems in the
continuum eliminates discretization errors and allows for the
exact incorporation of priors. In this paper, we formulate a
continuous-domain inverse problem over a search space of
continuous and piecewise-linear functions parameterized by box
splines. We present a numerical framework to solve those inverse
problems with total variation (TV) or its Hessian-based extension
(HTV) as regularizers. We show that the box-spline basis allows for
exact and efficient convolution-based expressions for both TV and
HTV. Our optimization strategy relies on a multiresolution scheme
whereby we progressively refine the solution until its cost stabilizes.
We test our framework on linear inverse problems and demonstrate
its ability to effectively reach a stage beyond which the refinement
of the search space no longer decreases the optimization cost.

Index Terms—Continuous and piecewise linear, discretization,
total variation, Hessian total variation, multiresolution.

I. INTRODUCTION

THE recovery of an unknown signal from a set of noisy
measurements—an inverse problem—plays a central role

in the field of imaging [1], [2]. The classic solution of inverse
problems involves an arbitrary discretization step whereby one
expresses the unknown signal in some basis. The pixel basis is
popular for its simplicity. Using such a basis, one formulates the
inverse problem as

arg minc∈RN (E(Hc,y) + λR(c)) , (1)

where the discrete measurements are y = (ym)Mm=1 ∈ C
M and

c = (cn)
N
n=1 ∈ R

N are the pixel values. In this formulation,
H ∈ C

M×N denotes the discretized forward operator (the sys-
tem matrix), which models the acquisition process. The loss
functional E : CM × C

M → R
+ quantifies data fidelity. The

regularizer R : RN → R
+ incorporates prior knowledge about

the unknown signal to ensure the well-posedness of the prob-
lem. The hyperparameter λ ∈ R

+ balances the data fidelity and

Manuscript received 16 October 2023; revised 2 April 2024; accepted 11 May
2024. Date of publication 17 May 2024; date of current version 30 May 2024.
This work was supported in part by the European Research Council (ERC Project
FunLearn) under Grant 101020573, in part by the Swiss National Science Foun-
dation under Grant 200020_219356, and in part by Sinergia under Grant CRSII5
198569. The associate editor coordinating the review of this manuscript and
approving it for publication was Prof. Alin M Achim. (Corresponding author:
Mehrsa Pourya.)

The authors are with the Biomedical Imaging Group, École polytech-
nique fédérale de Lausanne, 1015 Lausanne, Switzerland (e-mail: mehrsa.
pourya@epfl.ch; aleix.boquetipujadas@epfl.ch; michael.unser@epfl.ch).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TCI.2024.3402376, provided by the authors.

Digital Object Identifier 10.1109/TCI.2024.3402376

regularization terms. There is extensive literature devoted to the
solution of (1), especially with sparsity-promoting regularizers
supported by the theory of compressed sensing [3], [4], [5], [6],
[7], [8], [9].

A. Continuous-Domain Inverse Problems

Although the discrete formulation (1) is widespread, a for-
mulation of the inverse problem in the continuum offers several
advantages. The continuous formulation eliminates discretiza-
tion errors and allows for the direct employment of regularizers
in the continuum. Moreover, it matches the underlying signal
better and allows for its evaluation at any resolution. These
reasons have motivated many studies for the understanding of
continuous-domain inverse problems [10], [11], [12], [13], [14],
[15], [16], [17], [18].

To pose an inverse problem in the continuum, one denotes the
unknown signal as the d-dimensional function f : Rd → R and
formulates the problem as

arg minf∈X (E(ν(f),y) + λR(f)) , (2)

where X represents an adequate search space of functions and
ν : X → C

M denotes the forward operator. Concretely, ν(f) =
(νm(f))Mm=1 with νm : X → C representing the effect of the
mth detector of the imaging system. The regularizer R : X →
R

+ acts in the continuum on the function f ∈ X .
To make Problem (2) tractable, one needs to identify a suitable

search spaceX . A natural choice forX comes from the finiteness
of the regularization term. This induces a native space BR,
which is intuitively the largest function space where R(f) is
well-defined [19], [20]. In the best-case scenario, the solutions
of (2) for X = BR are characterized using a representer theo-
rem [21], [22], [23]. This allows one to represent the solution
with a finite number of parameters, turning the problem into a
computationally feasible one. Representer theorems depend on
the regularizer and often identify solutions through the extreme
points of the regularization ball [24]. However, one cannot
always rely on representer theorems for discretization as the
solutions they provide sometimes take intractable forms. This
urges the need for alternative strategies to tackle those cases.

In this paper, we focus on regularizers such as total variation
(TV) and Hessian total variation (HTV), as expressed in the
continuum [25], [26]. The pixel-based implementation of these
continuously defined regularizers provides strong tools for the
solution of inverse problems through compressed-sensing meth-
ods [27], [28], [29].
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The continuous-domain inverse problems over BTV and
BHTV have been studied theoretically. In essence, TV
regularization promotes piecewise-constant solutions [22],
[30], [31]. Likewise, HTV regularization promotes continuous
and piecewise-linear (CPWL) solutions [32], [33]. Algorithms
in the one-dimensional case (d = 1) exist [34], [35], [36].
They rely on B-spline-based parameterizations of the signals on
uniform grids [37]. In this paper, we generalize such frameworks
to multiple dimensions.

B. Contributions

We develop a framework to solve the continuous-domain
problem (2) with TV and HTV regularizations in multiple di-
mensions. We restrict the search space X to the set of CPWL
functions defined on uniform grids, and construct our framework
through three main contributions.

(i) Development of a CPWL search space in arbitrary dimen-
sion: To generate a CPWL search space, we use first-order box
splines on a Cartesian grid. Contrarily to their (more widespread)
tensor-product (of linear B-splines) cousins [38], box splines
guarantee a CPWL mapping, regardless of the dimensionality
and without any compromise in approximation quality [39],
[40], [41], [42], [43], [44], [45]. In Section III, we present our
CPWL basis and derive its properties.

(ii) Exact computations of continuous-domain TV and HTV:
We show that the use of first-order box splines allows for the ex-
act computation of TV and HTV through efficient convolutions
(see Theorems 2 and 3). Our continuous-domain computations
eliminate the need for singular-value decomposition (SVD) in
HTV, which is the computational bottleneck of the pixel-based
approaches. This efficiency carries on to proximal-based opti-
mization.

(iii) Multiresolution scheme for optimization: We follow a
multiresolution scheme to find a proper grid size for the proposed
CPWL model. This scheme progressively adjusts the grid size
until the cost of optimization stabilizes. It relies on multiscale
extensions of our CPWL search space with dyadic grid sizes. We
prove that the resulting multiscale search spaces are refinable
(see Proposition 1). We present the details of the discretization
at each scale and the numerical solvers in Sections IV and V,
respectively.

We validate our framework in Section VI, where we present
numerical results for the reconstruction of continuous-domain
signals from Fourier measurements. We observe that the opti-
mization cost stabilizes with the proper decay of the stepsize
of the grid, which indicates that further refinement of the search
space is not productive. Moreover, our proposed multiresolution
strategy accelerates the optimization of the problem on fine
grids. We also discuss the reconstruction quality and computa-
tional complexity of our CPWL-based discretizations of TV and
HTV, as compared to their fully discrete counterparts. Notably,
we observe that our approach accelerates the computations for
HTV regularization.

C. Related Works

A classic approach to the solution of problems with a
functional model of the underlying signal is finite-element

discretization [46], [47]. The authors of [48] deployed a finite-
element discretization on a uniform triangulation to solve a
TV-regularized inverse problem. The CPWL parameterization
of [48] is similar to that of our box-spline-based approach, which
partitions the domain into the simplices of the Kuhn-Freudenthal
triangulation. However, the method in [48] is specific to denois-
ing problems with a continuum of measurements. In contrast, we
consider a more realistic imaging setup wherein a finite set of
measurements is obtained through a forward operator ν. Our
spline-based formulation offers several advantages. It allows
for closed-form expressions of various forward operators, in
combination with TV and HTV regularization. Further, it results
in an exact and convolutional upsampling scheme to refine the
grid in any dimension.

Works like [49], [50] view TV regularization from the per-
spective of partial differential equations. They find explicit forms
of the solution for denoising problems with a continuum of
measurements.

Gridless (or off-the-grid) algorithms provide another alterna-
tive to the continuous-domain solution of TV regularization [51].
Indeed, the solution of the off-the-grid algorithms is modeled
as a sum of indicator functions over simple sets. Although such
approaches are mathematically elegant and work well for images
with simple structures, they do not seem to generalize well
to natural images [52]. They also rely on heavy optimization
techniques. By contrast, multiresolution schemes reduce the
artifacts caused by the approximation grid and benefit from the
efficient solvers developed for discrete optimization.

II. MATHEMATICAL PRELIMINARIES

A. Continuous and Piecewise-Linear Functions

A function f : Rd → R is continuous and piecewise-linear
(CPWL) if

1) it forms a continuous map;
2) its domain R

d can be partitioned into a set {Pk} of non-
overlapping polytopes such that Rd =

⋃
Pk and

f(x) =
∑
k

(a�
kx+ bk)1Pk

(x) (3)

for some ak ∈ R
d and bk ∈ R. The indicator function

1Pk
: Rd → {0, 1} maps to 1 when evaluated inside the

polytope Pk, and to 0 elsewhere.
By inspection of (3), the gradient of a CPWL function f is

∇f =
∑
k

ak1Pk
(x). (4)

Note that the continuity of f at the boundaries of the polytopes
imposes some non-trivial constraints on {ak} and {bk} in (3)
and (4). Therefore, arbitrary choices of such parameters are not
allowed.

B. Box Splines

A box spline BΞp
: Rd → R of nonnegative integer or-

der p in the space R
d is defined through vectors ξr ∈ R

d,
r ∈ [1, . . . , d+ p]. They are gathered into a matrix Ξp =
[ξ1 · · · ξd+p] ∈ R

d×(d+p) [53]. The vectors in the set
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{ξr}dr=1 are linearly independent, meaning that Ξ0 is full-rank.
The piecewise-constant box spline BΞ0

is defined as

BΞ0
(x) =

{
1

|detΞ0|
, x =

∑d
r=1 trξr for tr ∈ [0, 1]

0, otherwise.
(5)

For p ≥ 1, the following recursion holds:

BΞp
(x) =

∫ 1

0

BΞp−1
(x− tξd+p)dt. (6)

As we shall see, this implies that the first-order box spline BΞ1

is a CPWL function, irrespective of the dimension d.

C. Freudenthal-Kuhn Triangulation

A simplex is the convex hull of d+ 1 affinely independent
points in R

d. A triangulation of Rd is its partition into simplices
with disjoint interiors.

The Freudenthal-Kuhn triangulation partitions R
d into the

T -cubes {[Tk1, T (k1 + 1)]× · · · × [Tkd, T (kd + 1)]}k∈Zd ,
where k = (kr)

d
r=1 and T > 0 is the grid size. Each T−cube

is further subdivided into simplices Sπq,k,T that are uniquely
determined by the set {v0, . . . ,vd} of their vertices, where

v0 = Tk, (7)

vr = vr−1 + Teπq(r), r ∈ 1, . . . , d. (8)

Here, πq is the qth member of Π—the set of all permutations
of {1, . . . , d}—and πq(r) denotes the rth element of this per-
mutation [54]. The elements of {e1, . . . , ed} are the canonical
bases of Rd. An example of the Freudenthal-Kuhn triangulation
for d = 2 is illustrated in Fig. 1(a).

D. Total Variation

The isotropic total variation (TV) of a differentiable function
f : Rd → R is defined as

TV(f) =

∫
Rd

‖∇f(x)‖2 dx, (9)

where ∇f(x) denotes the gradient of f . The TV regularization
promotes piecewise-constant solutions whose gradient magni-
tude ‖∇f‖2 is zero almost everywhere. A more general defi-
nition of TV that accommodates non-differentiable functions is
provided in Appendix A.

E. Hessian Total Variation

The Hessian total variation (HTV) is a generalization of
TV that involves second-order differentials. For a twice-
differentiable function, we write

HTV(f) =

∫
Rd

‖Hf (x)‖S1
dx

=

∫
Rd

d∑
r=1

σr(Hf (x))dx, (10)

whereHf (x) is the Hessian matrix off at locationx and‖·‖S1
is

the matrix Schatten-one norm. The latter is given by the �1 norm

Fig. 1. (a) An example of the Freudenthal-Kuhn triangulation in the two-
dimensional space: π1 = (1, 2), π2 = (2, 1), and the identified simplices il-
lustrate the support of a first-order box spline on the Cartesian grid. (b) The
basis function ϕ(·− k) is a shifted box spline on the Cartesian grid that is
positioned at point k ∈ R2. Such functions are affine over each simplex of the
Freudenthal-Kuhn triangulation.

of the singular values of a matrix denoted by σr(·). Definition
(10) does not encompass CPWL functions; however, one can
generalize it to accommodate such functions as

HTV(f) = ‖Hf‖S1,M , (11)

where Hf is the Hessian of f in the generalized sense of
distribution. Here, ‖·‖S1,M denotes the Schatten-total-variation
mixed norm. Intuitively, HTV is the total-variation norm (M
norm) of the mapping x → ‖Hf (x)‖S1

while the M norm is a
generalization of the L1 norm (see [26] for more details). The
null space of the HTV seminorm consists of affine mappings,
and CPWL functions are dense in the ball of the HTV seminorm,
including its extremal points [32]. The HTV regularization
favors CPWL functions with few affine pieces.

III. CONTINUOUS-DOMAIN MODEL AND CALCULATIONS

In this section, we first define our multiscale CPWL search
spaces and investigate their properties in Section III-A. We then
compute their TV and HTV in Section III-B.
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A. Multiscale CPWL Search Spaces

We first derive some properties of box splines defined on the
Cartesian grid. They are useful for the definition and analysis
of our proposed search space. In particular, we build mul-
tiscale CPWL search spaces {X(s)|s ∈ Z} that are refinable
(Proposition 1) to support our proposed multiresolution scheme.
Our refinement is dyadic, with the grid size of X(s) being
(s) = 2−s.

1) Cartesian Box Splines: We set Ξ0 = I, where I is the
identity matrix. From (5), we have that

BΞ0
(x) =

d∏
r=1

box(xr), (12)

where x = (xr)
d
r=1 and the function box : R → R is defined as

box(x) =

{
1, 0 ≤ x ≤ 1

0, otherwise.
(13)

To define the piecewise-linear Cartesian box splineBΞ1
: Rd →

R, we choose ξd+1 =
∑d

r=1 er = 1. By (6), we have that

BΞ1
(x) =

∫ 1

0

BΞ0
(x− tξd+1)dt =

∫ 1

0

d∏
r=1

box(xr − t)dt

=

∫ +∞

−∞
box(t)

d∏
r=1

box(xr − t)dt. (14)

We then define our basis generator ϕ as

ϕ(x) = BΞ1
(x+ 1), (15)

where the shift by 1 centers the basis function around the origin.
An example of the basis generator shifted to position k is shown
in Fig. 1(b).

Theorem 1 (Basis-Function Properties): The piecewise-
linear box spline ϕ : Rd → R defined by (15) has the following
properties.

i) Explicit closed-form formula

ϕ(x)=(1+min(x1, · · · , xd, 0)−max(x1, · · · , xd, 0))+ ,
(16)

where x = (xr)
d
r=1, and (x)+ := max(x, 0).

ii) Interpolatory on the Cartesian grid

∀k ∈ Z
d : ϕ(k) =

{
1, k = 0

0, otherwise.
(17)

iii) Explicit Fourier transform

ϕ̂(ω) =
ej1

�ω − 1

j1�ω

d∏
r=1

1− e−jωr

jωr

= sinc

(
1�ω
2π

) d∏
r=1

sinc
(ωr

2π

)
(18)

where ω = (ωr) ∈ R
d and sinc(x) = sinπx

πx .

Fig. 2. Refinability of the box-spline basis function in the dimension d = 2.

iv) Refinability

ϕ
( ·
2

)
=

1

2

∑
k∈{0,1}d

(ϕ(·+ k) + ϕ(·− k)). (19)

Note that (16) expresses ϕ as the composition of two elemen-
tary CPWL functions. Since the CPWL property is preserved
through composition [55], this automatically implies that ϕ
is CPWL as well. In Fig. 2, we illustrate (19) for the two-
dimensional case (d = 2). Specifically, ϕ( ·

2 ), which is a basis
generator for a grid of size T = 2, can be constructed exactly
by a linear combination of seven shifted versions of ϕ(·), which
is a basis generator on a grid of size T = 1. The weights are all
0.5 except for k = 0 in (19), where ϕ(·) gets a double weight.

Proof of Theorem 1:
i) The geometric interpretation of (14) and (15) implies that

ϕ(x) = Leb

(
d⋂

r=1

suppt{box(xr − t+ 1)}
⋂

suppt{box(t)}
)
, (20)

where suppt returns the support of the input function with
respect to the variable t, and Leb denotes the Lebesgue
measure. From (13),

ϕ(x) = Leb

(
d⋂

r=1

[xr, xr + 1]
⋂

[0, 1]

)
. (21)

Through Lemma 1 of Appendix1 A, we have that

ϕ(x) =

{
Leb(Cd), LenCd

≥ 0

Leb(∅), LenCd
< 0,

(22)

whereCd = [max(x1, · · · , xd, 0),min(x1, · · · , xd, 0) +
1], and LenCd

= (1 +min(x1, · · · , xd, 0)−max(x1,
· · · , xd, 0)). Therefore

ϕ(x) =

{
LenCd

, LenCd
≥ 0

0, LenCd
< 0

(23)

1The appendix is provided in supplementary materials.
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implies that

ϕ(x) = [LenCd
]+ (24)

and completes the proof.
ii) One can verify this property through (16) and the

fact that (max(k1, · · · , kd, 0)−min(k1, · · · , kd, 0)) ≥
1 when k = (kr)

d
r=1 ∈ Z

d \ {0}.
iii) This result has been proven elsewhere.2

iv) Let us assume thatϕ( ·
2 ) can be expressed through a linear

combination of the shifted versions of ϕ(·) as

ϕ
( ·
2

)
=
∑
k∈Zd

u[k]ϕ(·− k). (25)

To find u such that (25) holds, we take the Fourier trans-
form on both sides, which yields that

U(ejω) =
2dϕ̂(2ω)

ϕ̂(ω)
, (26)

where U(ejω) =
∑

k∈Zd u[k]e−jω�k (discrete-time
Fourier transform of u). By (18) and after some
simplifications, we have that

U(ejω) =
1

2
(ej1

�ω + 1)

d∏
r=1

(1 + e−jωr ). (27)

We define V (ejω) =
∏d

r=1(1 + e−jωr ) and invoke sepa-
rability to compute its inverse discrete-time Fourier trans-
form v as

v[k′] =
d∏

r=1

(δ[k′r] + δ[k′r + 1]) =
∑

k∈{0,1}d
δ[k′ + k].

(28)
From the properties of the Fourier transform, we have that

u[·] = 1

2
(v + v[·− 1])

=
1

2

∑
k∈{0,1}d

(δ[·+ k] + δ[·+ k − 1])

=
1

2

∑
k∈{0,1}d

(δ[·+ k] + δ[·− k]), (29)

where δ[·] represents the Kronecker delta. Equations (29)
and (25) lead to (19), which completes the proof. �

2) Definition of the Search Space: Equipped with the box
spline ϕ : Rd → R, we now define the CPWL function search
space

XT =

{ ∑
k∈Zd

c[k]ϕ
( ·
T

− k
)
, c ∈ �2(Z

d)

}
, (30)

where �2(Zd) denotes the space of discrete signals with finite
energy. Each function f : Rd → R ∈ XT can be written as

f(·) =
∑
k∈Zd

c[k]ϕ
( ·
T

− k
)
, (31)

2https://doi.org/10.1016/j.acha.2023.101581

where {c[k]}k∈Zd is the set of its so-called expansion
coefficients.

The use of the box splines induces the following properties.
i) The affine mapping f : Rd → R of form f(x) = a�x+
b can be produced by

∑
k∈Zd( 1

T a
�k + b)ϕ( ·

T − k) for
some a ∈ R

d, b ∈ R.
ii) The space XT has the capacity to approximate any twice-

differentiable function [56], [57].
iii) The set {ϕ( ·

T − k)}k∈Zd forms a Riesz basis, which
guarantees a unique and stable link between any function
f ∈ XT and its expansion coefficients c [58].

iv) The linear regions of the function f ∈ XT are exactly the
set of the simplices of the Freudenthal-Kuhn triangulation
with the grid size T . The sampled value of f at a vertex
Tk, k ∈ Z

d, of the triangulation is f(Tk) = c[k]. On
each simplex, f can be identified by the only hyperplane
that interpolates the function values at the vertices of that
simplex [58].

3) Multiscale Search Spaces: We define a series of mul-
tiscale search spaces {X(s) = X2−s |s ∈ Z}. At scale s, X(s)

satisfies (30) withT = 2−s. Therefore, any fs : Rd → R ∈ X(s)

is given by

fs(·) =
∑
k∈Zd

cs[k]ϕ (2s·− k) (32)

where {cs[k]}k∈Zd is the set of expansion coefficients of fs at
scale s.

Proposition 1 (Refinable Search Space): If f ∈ X(s) with
expansion coefficients cs, then f is exactly representable in
X(s+1) with expansion coefficients

cs+1[·] =
∑
k∈Zd

cs[k]u[·− 2k], (33)

where u is defined in (29).
Proof: If f ∈ X(s), from (32), (25), and (29) we have that

f(·) =
∑
k∈Zd

cs[k]
∑
k′∈Zd

u[k′]ϕ(2s+1·− 2k − k′)

=
∑
k∈Zd

∑
k′∈Zd

cs[k]u[k
′ − 2k]ϕ(2s+1·− k′). (34)

This implies that

cs+1[k
′] =

∑
k∈Zd

cs[k]u[k
′ − 2k] (35)

and completes the proof. �
As a result of Theorem 1, we obtain the embedding · · · ⊂

X(s−1) ⊂ X(s) ⊂ X(s+1) ⊂ · · · . This means that any function
at a coarse scale s1 ≤ s is exactly representable at any finer
scale s.

B. Exact and Efficient Computation of the Regularization

Here, we show that the TV and HTV seminorms of f ∈ XT

can be expressed exactly through efficient convolutions. Without
loss of generality, our results are applicable to fs ∈ X(s).
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Fig. 3. Discrete filters {gπq,r |q, r ∈ {1, 2}} and the internal variable τ , as
used for the calculation of gradient and TV in d = 2. The filters are zero
everywhere except at the diamond and square points that correspond to the
values of +1 and (−1), respectively. At each plot, the black boundaries identify
the simplex over which the rth component of the gradient is computable through
the depicted finite difference.

1) Total Variation: We first calculate the gradient of f ∈ XT

in Lemma 1; we then compute its TV seminorm in Theorem 2.
Lemma 1 (Gradient Calculation): The gradient of the func-

tion f ∈ XT on the interior of simplices of its domain is

∇f(·) = 1

T

∑
k∈Zd

d!∑
q=1

d∑
r=1

(
c ∗ gπq,r

)
[k]1πq,k,T (·)er, (36)

where ∗ denotes the discrete convolution operator, and 1πq,k,T :

R
d → {0, 1} is the indicator function corresponding to the sim-

plex Sπq,k,T of the Kuhn-Freudental triangulation. Moreover,
we have that

gπq,r[·] = δ[·+
τ−1∑
n=1

eπq(n) + er]− δ[·+
τ−1∑
n=1

eπq(n)], (37)

where the variable τ satisfies

eπq(τ) = er. (38)

This result tells us that each component of the gradient of
f ∈ XT is a piecewise-constant function. Over the simplices
whose orientation follows πq , one can obtain the value of the
rth component of the gradient by convolving the expansion
coefficients c and the finite-difference filter gπq,r. To further
clarify, we illustrate the filters gπq,r in the two-dimensional case
in Fig. 3. Each filter gπq,r has only two nonzero values (+1 and
(−1)) regardless of the dimensionality. The number of filters
corresponding to each simplex orientation is d and the number
of orientations is d!.

Proof of Lemma 1: We combine Property iv of the search
space and (4) to write

∇f(·) =
∑
k∈Zd

d!∑
q=1

aπq,k,T 1πq,k,T (·). (39)

To findaπq,k,T , we use the hyperplane equation over the simplex
Sπq,k,T . The result is

TPaπq,k,T =⎡
⎢⎢⎣

c[k + eπq(1)]− c[k]
...

c[k +
∑d

n=1 eπq(n)]− c[k +
∑d−1

n=1 eπq(n)]

⎤
⎥⎥⎦ , (40)

where

P =

⎡
⎢⎢⎣
e�πq(1)

...

e�πq(d)

⎤
⎥⎥⎦ . (41)

Since P is a permutation matrix, we have that P�P = I. There-
fore P−1 = P�, and

aπq,k,T =

1

T
P�

⎡
⎢⎢⎣

c[k + eπq(1)]− c[k]
...

c[k +
∑d

n=1 eπq(n)]− c[k +
∑d−1

n=1 eπq(n)]

⎤
⎥⎥⎦ . (42)

Consequently,

aπq,k,T [r] =
1

T

(
c[k +

τ−1∑
n=1

eπq(n) + er]

−c[k +

τ−1∑
n=1

eπq(n)]

)
, (43)

where τ satisfies (38) and r ∈ {1, . . . , d}. Equation (43) allows
us to rewrite the gradient as

∇f(·) = 1

T

∑
k∈Zd

d!∑
q=1

d∑
r=1

(
c[k +

τ−1∑
n=1

eπq(n) + er]

− c[k +

τ−1∑
n=1

eπq(n)]

)
er1πq,k,T (·). (44)

After consideration of (37) and the convolution property, the
proof of Proposition 1 is complete. �

Theorem 2 (Isotropic Total Variation): The isotropic total
variation of the function f ∈ XT is

TV(f) =
T d−1

d!

∑
k∈Zd

d!∑
q=1

( d∑
r=1

((c ∗ gπq,r)[k])
2

) 1
2

, (45)

where the filter gπq,r satisfies (37).
Theorem 2 hints that, in order to calculate the exact

continuous-domain TV of f ∈ XT the following steps are
needed: (i) for every simplex orientation πq , convolve the ex-
pansion coefficients c and the finite-difference filters gπq,r for
r ∈ {1, · · · , d} to obtain d values at point k; (ii) compute the �2
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norm of that d values at each point; (iii) repeat the procedure
for all the d! orientations and add the results at each point;
(iv) sum the obtained values over the whole domain and scale
the resulting scalar value by Td−1

d! . The procedure resembles the
conventional TV calculation except for the aggregation across
the simplex orientations. For the conventional pixel-based TV,
only one arbitrary orientation is considered.

Proof of Theorem 2: We first calculate the �2 norm of the
gradient as

‖∇f‖2 (·) =

1

T

∑
k∈Zd

d!∑
q=1

( d∑
r=1

((c ∗ gπq,r)[k])
2

) 1
2

1πq,k,T (·).

(46)

Then, we obtain that

TV(f) =
1

T

∑
k∈Zd

d!∑
q=1

( d∑
r=1

((c ∗ gπq,r)[k])
2

) 1
2

∫
Rd

1πq,k,T (x)dx

=
T d−1

d!

∑
k∈Zd

d!∑
q=1

( d∑
r=1

((c ∗ gπq,r)[k])
2

) 1
2

, (47)

which completes the proof. Note that the gradient of f on the
junction of the domain simplices is not defined. However, the
set of such junctions is of measure zero and does not affect
the obtained result.

2) Hessian Total Variation: We first calculate the Hessian of
f ∈ XT in Lemma 2; we then compute its HTV in Theorem 3.

Lemma 2 (Explicit Hessian): Let the functionψp,q : Rd → R

be defined as

ψp,q(x) =
∏

r∈{1,...,d}\{p,q}
box(xr − xp), (48)

and let the functions μ1,p and μ2,p,q be defined as

μ1,p(x) = δ(xp)ψp,p(x)

μ2,p,q(x) = δ(xp − xq)box(xp)ψp,q(x), (49)

wherex = (xr)
d
r=1. Further, we define the matrixMp,q ∈ R

d×d

such that it is zero everywhere except for its [p, q]-th component,
which is equal to one. We define matrix Cp,q as

Cp,q = Mp,q +Mq,p −Mp,p −Mq,q. (50)

Then, the generalized Hessian of f ∈ XT is

Hf (·) = 1

T 2

( ∑
k∈Zd

d∑
p=1

(c ∗ κ1,p)[k]μ1,p

( ·
T

− k
)
Mp,p

+
∑
k∈Zd

d∑
p=1

p∑
q=1

(c ∗ κ2,p,q)[k]μ2,p,q

( ·
T

− k
)
Cp,q

)
,

(51)

Fig. 4. Discrete filters that are used for the calculation of the generalized
Hessian and HTV ind = 2. The filters are zero everywhere except at the diamond
and square points that correspond to the values of +1 and (−1), respectively.
From left to right and at each plot, the black line depicts the facet over which
the difference of gradients contributes to the HTV and is also the support of
μ1,1(·− e1), μ1,2(·− e2), and μ2,1,1 respectively.

where

κ1,p[·] = δ[·]− δ[·− ep]− δ[·+ 1] + δ[·+ 1− ep],

κ2,p,q[·] = δ[·]− δ[·− ep]− δ[·− eq] + δ[·− ep − eq].
(52)

In Lemma 2, we see that the Hessian of the CPWL function
f ∈ XT is zero everywhere except for the boundaries (facets)
of the simplices of the Kuhn-Freudental triangulation. These
boundaries are fully identified by the supports of the Dirac fences
μ1,p(

·
T − k) and μ2,p,q(

·
T − k) for k ∈ Z

d (see Fig. 4). The
Hessian at these boundaries is equal to the matricesMp,p orCp,q

multiplied by a scalar value. To obtain the proper scalar value,
one needs to convolve the expansion coefficients c and the filters
κ1,p or κ2,p,q . We show these filters in the two-dimensional case
in Fig. 4.

Proof of Lemma 2: By linearity and the chain rule for differ-
entiation, we obtain that

Hf (·) = 1

T 2

∑
k∈Zd

c[k]Hf{ϕ}
( ·
T

− k
)
(x). (53)

We compute Hf{ϕ} (the Hessian of the basis function) in
Appendix C. It follows

Hf (·) = 1

T 2

∑
k∈Zd

d∑
p=1

c[k]

(
μ1,p

( ·
T

− k + 1
)

+ μ1,p

( ·
T

− k − ep

)
− μ1,p

( ·
T

− k − ep + 1
)

− μ1,p

( ·
T

− k
))

Mp,p

− 1

T 2

∑
k∈Zd

d∑
p=1

q<p∑
q=1

(
μ2,p,q

( ·
T

− k + 1− eq

)

+ μ2,p,q

( ·
T

− k + 1− ep

)
− μ2,p,q

( ·
T

− k + 1
)

− μ2,p,q

( ·
T

− k + 1− ep − eq

))
Cp,q. (54)
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By a change of variable, by the definition of the filters in (52),
and by the property of convolution, (54) leads to (51), thereby
completing the proof.

Theorem 3 (Hessian Total Variation): The Hessian total vari-
ation of the function f ∈ XT is

HTV(f) = T d−2

(∑
k∈Zd

d∑
p=1

|(c ∗ κ1,p)[k]|

+2
∑
k∈Zd

d∑
p=1

p∑
q=1

|(c ∗ κ2,p,q)[k]|
)
. (55)

This shows that one can compute the continuous-domain HTV
of f ∈ XT by aggregating the results of the convolution of cwith
κ1,p and κ2,p,q . Remarkably, this eliminates the need for the
SVD that is otherwise required for the traditional computation
of the Schatten norm. Each filter only has four nonzero values
in any dimension. The number of the filters (convolutions) in
dimension d is

(
d+1
2

)
.

Proof of Theorem 3: From (11), and noting that the individual
arguments of the summations in (51) are disjoint Dirac fences,
we obtain that

HTV(f) = (56)

1

T 2

(∑
k∈Zd

d∑
p=1

∥∥∥(c ∗ κ1,p)[k]μ1,p

( ·
T

− k
)
Mp,p

∥∥∥
S1,M

+
∑
k∈Zd

d∑
p=1

p∑
q=1

∥∥∥(c ∗ κ2,p,q)[k]μ2,p,q

( ·
T

− k
)
Cp,q

∥∥∥
S1,M

)
.

(57)

We then invoke formula for the ‖ · ‖S1,M a Dirac fence (see [26],
Theorem 3.5-2), and obtain

HTV(f) =
1

T 2

∑
k∈Zd

d∑
p=1

T |(c ∗ κ1,p)[k]|Leb(D) ‖Mp,p‖S1

+
1

T 2

∑
k∈Zd

d∑
p=1

p∑
q=1

T |(c ∗ κ2,p,q)[k]|Leb(E) ‖Cp,q‖S1
,

(58)

where

D = {x ∈ R
d−1 : box

(x
T

)
= 1}

E = {(x1,x) ∈ R
d−1 : box

(x1
T

)
box

(
x− x11

T

)
= 1},

(59)

and Leb returns the Lebesgue measure (volume) of the input
domain. The only nonzero eigenvalues of Mp,p and Cp,q are the
elements of {1} and {1,−1}, respectively. Therefore, we have
that ‖Mp,p‖S1

= 1 and ‖Cp,q‖S1
= 2. In addition, Leb(D) =

T d−1 and Leb(E) = T d−1. Hence, we obtain that

HTV(f) = T d−2

(∑
k∈Zd

d∑
p=1

|(c ∗ κ1,p)[k]|

+2
∑
k∈Zd

d∑
p=1

p∑
q=1

|(c ∗ κ2,p,q)[k]|
)
, (60)

which completes the proof. �

IV. DISCRETIZATION

In this section, we discretize the continuous-domain problem
using our multiscale CPWL search spaces. The representation of
the signal f at scale s is denoted by fs ∈ X(s) and satisfies (32).
Our model allows us to uniquely characterize the function fs :
R

d → R with the discrete expansion coefficients {cs[k]}k∈Zd .
Lemma 3: Let Ω = [0, b1]× · · · × [0, bd] ⊂ R

d and define
Ns = �2s(maxr br)�+ 1 and

Ks = {0, . . . , Ns − 1} × . . .× {0, · · · , Ns − 1}. (61)

Then,

Ω ⊆ Hull({2−sk|k ∈ Ks}), (62)

where Hull returns the convex hull of a set of input points.
We assume that the signal f to be recovered satisfies the zero

boundary conditions

f(x) = 0 for x /∈ Ω or x ∈ ∂Ω, (63)

where Ω = [0, b1]× · · · × [0, bd] ⊂ R
d and ∂Ω denotes the

boundary of Ω. With this assumption and from Lemma 3, fs
is (exactly) equal to

fs(·) =
∑
k∈Ks

cs[k]ϕ (2s·− k) , (64)

where Ks satisfies (61) and |Ks| = Nd
s . Since Ks is a finite

set, one can define a bijective mapping idxs : Ks → N, with
preimage idx−1

s : N → Ks, to rewrite (31) as

fs(·) =
Nd

s∑
n=1

cs,nϕs,n, (65)

where cs,n = cs(idx−1
s [n]) and ϕs,n = ϕ(2s·− idx−1

s [n]). In

this way, one obtains that cs = Vec(cs) = (cs,n)
Nd

s
n=1 ∈ R

Nd
s .

This is the vectorized representation of signal at resolution s,
which we refer to as the parameters of our model. As a result
of Theorem 1, the relation between the parameters at successive
scales is

cs+1 = Uscs, (66)

where Us ∈ R
Nd

s+1×Nd
s corresponds to the transpose of a

Toeplitz-like matrix associated with the convolution (with a
stride of two) of cs with the mirrored version of u defined in
(29). More details are provided in Appendix D. Lemma 3, also
verifies that Ns+1 = (2Ns − 1).
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A. Exact Discretization of the Forward Operator

Here, we describe how to discretize the forward operator using
the parameters cs. For a linear forward operator ν and at scale
s, we have that

vm(fs) = 〈νm, fs〉 =
〈
νm,

Nd
s∑

n=1

cs,nϕs,n

〉

=

Nd
s∑

n=1

cs,n〈νm, ϕs,n〉 = h�
s,mcs, (67)

wherem ∈ {1, . . . ,M}, and hs,m = (〈νm, ϕs,n〉)N
d
s

n=1. By con-
structing Hs ∈ R

M×Nd
s as

Hs =

⎡
⎢⎢⎣
h�
s,1

...

h�
s,M

⎤
⎥⎥⎦ , (68)

we have that

v(fs) = Hscs. (69)

The matrixHs is the exact discretization of the forward operator
at scale s and depends on the response of the box splines to the
system. As a consequence of Theorem 1, we have that

Hs = Hs+1Us. (70)

Therefore, we only need to compute the discretization of the
forward operator at some fine scale sfine and use (70) to propagate
it to coarser scales. The computation of Hs can be further
simplified depending on the properties of the forward operator.

1) Example: If the forward operator corresponds to a sam-
pling in the Fourier domain, we can write that

〈νm, ϕs,n〉 = 〈e−jω�
m·, ϕs,n〉 = ϕ̂s,n(ωm)

= 2−sdϕ̂0,n(2
−sωm) (71)

= 2−sdϕ̂(2−sωm)e−j2−sω�
midx−1

s [n]. (72)

The term ϕ̂(2−sωm) can be computed in accordance with (18). If

one then defines ws,m = (e−j2−sω�
midx−1

s [n])
Nd

s
n=1, it follows that

hs,m = 2−sdϕ̂(2−swm)ws,m (73)

and, therefore, that

Hs = diag(ϕ̂s)Ws, (74)

where diag : RM → R
M×M builds a diagonal matrix with

the elements of the diagonal being the input vector ϕ̂s =
(2−sdϕ̂(2−sωm))Mm=1 ∈ R

M , and

Ws =

⎡
⎢⎢⎣
w�

s,1

...

w�
s,M

⎤
⎥⎥⎦ ∈M × C

Nd
s . (75)

By choosingwm on a proper grid, one can use the d-dimensional
discrete Fourier transform (DFT) followed by some vectoriza-
tion to evaluate Wscs.

B. Exact Discretization of TV and HTV

Here, we present the formulas for TV and HTV of fs ∈ X(s)

in terms of the parameters cs.
1) Total Variation: Through Theorem 2 and considering the

vectorization of the expansion coefficients cs = Vec(cs), we
obtain that

TV(fs) =
2−s(d−1)

d!
‖Ls,TV ⊗ cs‖2,1 , (76)

where Ls,TV ∈ R
d!Nd

s ×dNd
s is defined as

Ls,TV =

⎡
⎢⎢⎣
Ls,π1,1 · · · Ls,π1,d

...
. . .

...

Ls,πd!,1 · · · Ls,πd!,d

⎤
⎥⎥⎦ . (77)

Here Ls,πq,r ∈ R
Nd

s ×Nd
s is a Toeplitz-like matrix associated to

the vectorization of the convolution of the expansioncoefficients
cs with the kernel gπq,r defined in (37). We present the definition
of the linear operator (L⊗ ·) and its adjoint in Appendix E. The
‖·‖2,1 is defined as the application of the �2 norm to the rows
of the input matrix and then that of the �1 norm to the resulting
vector.

Our result for the TV in (76) resembles the conventional pixel-
based discretization, except that the present finite-difference
filters are tailored to our model, which makes our computations
exact.

2) Hessian Total Variation: Through Theorem 3, we have
that

HTV(fs) = 2−s(d−2) ‖Ls,HTVcs‖1 . (78)

The matrix Ls,HTV ∈ R
d(d+1)

2 Nd
s ×Nd

s is defined as

Ls,HTV =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ls,1

...

Ls,d

2Ls,2,1

...

2Ls,d,d−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (79)

whereLs,p ∈ R
Nd

s ×Nd
s is a Toeplitz-like matrix that corresponds

to the vectorization of the convolution of cs with the filterκ1,p for
p ∈ {1, . . . , d}, and Ls,p,q ∈ R

Nd
s ×Nd

s is a Toeplitz-like matrix
that corresponds to the vectorization of the convolution of cs
with the filter κ2,p,q of (52) for p, q ∈ {1, . . . , d}, q < p.

The use of the Hessian total-variation regularization, defined
with different Schatten-p norms, was pioneered by Lefkimmiatis
et al. [28]. In their implementation, they estimate the Hessian
using second-order finite differences and rely on a Riemann-
sum approximation of the integral for the computation of the
seminorm. For p = 2, the Schatten-2 norm coincides with the
Frobenius norm and allows for a straightforward computation
of the seminorm and its proximal operator. However, for p = 1,
their computations rely on the SVD [29]. The present contri-
bution is a refined scheme where the computation of HTV with
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Algorithm 1: Multiresolution Solver.
1: Initialize : s = s0 ∈ Z, ε1 > 0;
2: Initialize : cs0 = 0 ∈ R

Nd
s ,ds0 = 0 ∈ R

Nd
s ;

3: Define : Losss(c) = 1
2‖y −Hs{c}‖22 + λRs(c);

4: ĉs0 = Solvers(cs0 ,ds0);
5: for s ∈ Z and s > s0 do
6: ĉs = Solvers(cs,ds);
7: cs+1 = Usĉs;
8: ds+1 = Usĉs;
9: if (Losss−1(ĉs−1)− Losss(ĉs)) ≤ ε1 then

10: return s, f̂s =
∑

k∈Ks
ĉs[k]ϕ(2

s·− k)
11: end if
12: end for

Algorithm 2: Solvers(c0,d0).

1: Initialize : t0 = 1, α1 = 1/ctHs
, γ = α1λ, ε2, δ > 0;

2: for k = 0 → Niter1 do
3: wk = dk + α1Re(Hs,adj{y −Hs{dk}});
4: ε3,k = min(δ, 1

(k+1)3 );
5: ck+1 = Proxγ,Rs

(wk, ε3,k);

6: tk+1 =
1+

√
4t2k+1

2 ;
7: dk+1 = ck+1 +

tk−1
tk+1

(ck+1 − ck);
8: ek = |Losss(ck)− Losss(ck+1)|;
9: if ek < ε2Losss(ck) then

10: break
11: end if
12: end for
13: return ck+1

Schatten-1 norm is not only exact but also does not require SVD,
which speeds up the computations.

V. OPTIMIZATION

By choosing the mean-squared error as our loss functional
and by using our developed search spaces {X(s)}, we obtain a
solution

f̂s ∈ arg minfs∈X(s)
J(fs) (80)

At scale s ∈ Z, where J(fs) = (‖ν(fs)− y‖22 + λR(fs)).
Because of the embedding of the search spaces, we necessarily
have that J(f̂s+1) ≤ J(f̂s). Our aim is then to find the scale
sfine for which J(f̂sfine) ≈ J(f̂sfine+1

). In other words, sfine is a
scale beyond which the refinement of the search space no longer
improves the optimization cost.

We present our multiresolution scheme in Algorithm 1. At
each scale s, we discretize (80) exactly using (69), (76), and
(78) as

ĉs ∈ arg min
c∈Cs

Losss(c), (81)

with Losss(c) = ( 12‖y −Hs{c}‖22 + λRs(c)). There, Cs ⊆
R

Nd
s , while Hs : R

Nd
s → C

M is a linear operator such that

Algorithm 3: Computation of Proxγ,Rs
(z, ε3).

1: Initialize : u0 = 0 ∈ R
NLs ,v0 = 0 ∈ R

NLs , t0 = 1;
2: Initialize : α2 = 1/(ctRs

γ);
3: Define : Prs(c) = 1

2‖z − c‖22 + λRs(c);
4: Define : Dus(c) =

1
2 (‖c− projCs(c)‖22 − ‖c‖22 + ‖z‖22);

5: for k = 0 → Niter2 do
6: ck = z − γLs,adj{vk};
7: cprojk = projCs{ck};
8: uk+1 = PRs

(vk + α2Ls{cprojk}});
9: tk+1 =

1+
√

4t2k+1

2 ;
10: vk+1 = uk+1 +

tk−1
tk+1

(uk+1 − uk);
11: Gapk = Prs(cprojk)− Dus(ck);
12: if Gapk < ε3 then
13: break
14: end if
15: end for
16: return projCs{z − γLs,adj{uk+1}}

TABLE I
LINEAR OPERATORS AND NORMS ASSOCIATED WITH REGULARIZERS

Hs{c} = Hsc with adjoint Hs,adj{v} = H�
s v. Moreover, Cs

encodes additional conditions on the range of the function
fs ∈ X(s). In the absence of such additional constraints, we have

that Cs = R
Nd

s . For our model, due to the interpolatory property
of the basis, the non-negativity of the function fs implies the
non-negativity of its coefficients cs. Under that constraint, we

have that Cs = R
Nd

s
≥0 . For the TV and HTV regularizers, Rs(c)

is of the form

Rs(c) = ‖Ls{c}‖ , (82)

where ‖·‖ : RNLs → R
+ denotes an appropriate discrete

(mixed) norm, and Ls : R
Ns → R

NLs is a linear operator. We
present more details in Table I.

Once we have solved (81), we obtain the exact solution to (80)
by invoking the fact that f̂s =

∑
k∈Ks

ĉs[k]ϕ(2
s·− k). We have

that J(f̂s) = Losss(ĉs) = Losss+1(Usĉs). The latter equality
guarantees the continuity of the loss with respect to a change
of scale. Further, by optimization at scale (s+ 1), we have that
J(f̂s+1) = Losss+1(ĉs+1) ≤ Losss+1(Usĉs) = J(f̂s). There-
fore, the sequence of final losses at each scale is non-increasing.

We now develop iterative schemes to solve (81). We present
our results in Algorithms 2 and 3. The derivation of the steps
of these algorithms involves a dual formulation of the problem
similar to [59] and [60]. Since Algorithm 2 requires the evalu-
ation of a proximal operator without a closed form, we use an
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inexact-proximal method to accelerate the computations [61],
[62], [63].

The last ingredients of our proposed algorithms are the func-
tions Clip : RK → R

K and Normalize : RK×N → R
K×N ,

for k ∈ {1, . . . ,K} as

[Clip(a)]k =
ak

max(|ak| , 1) , (83)

with a = (ak)
K
k=1, and

[Normalize(A)]k =
1

max(‖[A]k‖2 , 1)
[A]k, (84)

where [A]k denotes the kth row of the matrix A ∈ R
K×N .

Moreover, the constants ctH and ctR are equal to the square
of the spectral norm of the operators H and L, respectively.
The function Re returns the complex input’s real part, and ‖·‖F
denotes the Frobenius norm.

Note that the Chambolle-Pock algorithm [64] could offer an
alternative to Algorithm 2 forC = R

Nd
s . One might also consider

methods based on primal-dual splitting [65], [66], [67] in the
presence of constraints, with the caveat that they would involve
additional hyperparameters.

A. Convergence to the Solution Over BR

In the one-dimensional case, which is equivalent to our frame-
work for (d = 1), the authors in [37] show that the B-spline-
based model can approximate the solution of the problem over
BTV and BHTV.

For d ∈ {2, 3}, the proposed CPWL functions can approxi-
mate any integrable function and its TV [48], [68], [69]. This
approximation result serves as a strong indication that our
proposed framework could approximate the solution of (2)
over BTV. Moreover, CPWL functions can approximate any
locally integrable function and its HTV [32]. The construction of
those CPWL functions depends on adaptive meshes. While our
framework allows for the exact solution of (2) over a search
space of CPWL functions on uniform grids, a proof of the
convergence over BTV and BHTV as the grid size goes to zero
would require further rigorous analyses and remains an open
theoretical question.

VI. EXPERIMENTS

In this section, we present our numerical experiments. Our
code is available on the GitHub repository.3 The reported times
for CPU and GPU correspond to the execution of the code on
an Intel(R) Xeon(R) Gold 6240 @ 2.60 GHz and on a Tesla
V100-SXM2-32 GB, respectively.

A. Multiresolution Reconstruction

Here, we validate our multiresolution scheme to solve inverse
problems in two setups: 1) a perfect reconstruction scenario
with no regularization; and 2) a compressed-sensing counter-
part with continuous-domain sparsity constraints. We solve all

3https://github.com/mehrsapo/BoxDis/

the problems under non-negativity constraints (Cs = R
Nd

s
≥0 ). To

compute the peak-signal-to-noise ratio (PSNR) and to illustrate
the continuous-domain signals, we consider samples on a fine
(4096× 4096) grid.

1) Perfect Reconstruction (PR): To test our approach, we
intentionally express our continuous-domain ground truth using
the box spline ϕ so that it is exactly representable in X(s) for
s ≥ 0. It reads

fGT,PR =

512∑
k1=0

512∑
k2=0

cGT[k]ϕ(·− k), (85)

where fGT satisfies zero boundary conditions outside of the
domain [0, 512]× [0, 512]. Consequently, the expansion coef-
ficients cGT are zero on the boundaries. We choose a medical
image from [70] as the basis for our ground truth.

We formulate an inverse problem in a regular imaging sce-
nario where the perfect reconstruction of the ground truth is
possible. To do so, we take advantage of (74) to calculate the
Fourier transform of fGT at the frequencies

ω ∈
{
−π, . . . −π

256
, 0,

π

256
, . . . ,

255π

256

}

×
{
−π, . . . −π

256
, 0,

π

256
, . . . ,

255π

256

}
. (86)

To reconstruct the signal from the measurements, we use
Algorithm 1 with s0 = (−3), and no regularization (λ = 0). Our
conclusion from this experiment is that we can reconstruct the
ground truth with high precision (PSNR > 100) as soon as we
reach scale s = 0 with J(f̂0) = 0.

2) Compressed Sensing (CS): In this part, we focus on a
compressed-sensing setup where the problem is ill-posed due
to the small number of measurements. Our aims are twofold: to
compare the effect of the TV versus HTV regularizations; and
to compare our approach to the standard pixel-based approach
to inverse problems, where an exact computation of TV is also
possible (See in Appendix F how we embed pixel-based TV
within a multiresolution scheme).

Here, we use a ground truth built upon a two-dimensional
cubic-spline basis that is not representable by either the CPWL
or the pixel bases. Specifically, we use

fGT,CS =

512∑
k1=0

512∑
k2=0

cGT[k]ψ(·− k) (87)

with ψ(x) = β3(x1)β
3(x2), where β3 is a one-dimensional

cubic spline [38].
To generate the measurements, we sample the continuous-

domain Fourier transform of fGT,CS at frequencies

ω ∈
{
−π
2
, . . .− π

256
, 0,

π

256
, . . . ,

127π

256

}

×
{
−π
2
, . . .− π

256
, 0,

π

256
, . . . ,

127π

256

}
, (88)

which forms a grid of size (256× 256). We then apply a radial
mask and keep only 30 percent of the frequencies in (88) [71].
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Fig. 5. Ground-truth image [70] and measurements for the CS setup.

Eventually, we retain only 7.5 percent of the frequencies of the
perfect reconstruction scenario in (86). We illustrate the ground-
truth signal and the measurements in Fig. 5.

To solve the reconstruction problems, we use Algorithm 1
with s0 = (−3), ε1 = 10−4, Niter1 = 2000, Niter2 = 500,
ε2 = 10−6 and δ = 10−3. The regularization hyperparameter is
λ = 10−6 in all cases. For our experiments, Algorithm 1
stops at scale s = 2; therefore, it involves six scales
s ∈ {−3,−2,−1, 0, 1, 2}. The corresponding grid sizes
are T ∈ {8, 4, 2, 1, 0.5, 0.25} and the number of grid points at
each scale is (Ns1 ×Ns2) ∈ {(65× 65), (129× 129), (257×
257), (513× 513), (1025× 1025), (2049× 2049)}.

In Fig. 6, we show the continuous-domain solutions (f̂2)
of our three different approaches: (i) pixel-based TV; (ii)
CPWL-based TV; and (iii) CPWL-based HTV. The PSNR
values for the solutions are 35.03, 37.89, and 39.50, respectively.
The TV-regularization-based solutions are formed of piecewise-
constant pieces, which matches the results of the TV representer
theorems [31]. Although the locations of the piecewise-constant
regions are similar, the boundaries are rectangular for the
pixel-based approach and less angular for the CPWL-based
approach. By contrast, the HTV solution is locally piecewise-
affine and. Hence, it can better reproduce the ground-truth
structure.

In Fig. 7, we study the same solutions at different scales. At
coarser scales, the loss is dominated by the data-fidelity term so
that the regularization effect becomes more evident only at finer
scales. We report the optimization loss in Fig. 8 for different
approaches. We observe that the optimization loss is continuous
and decreases with the change of scale as supported by theory.
We also observe that the optimization cost stabilizes one a certain
point of refinement has been reached.

To compare the computational efficiency of the various meth-
ods, we present the number of iterations of Algorithm 2 and
the corresponding computational times to reach the stopping
criteria at each scale in Tables II and III, respectively. Note
that the relation between the two is not necessarily linear due
to the inexact proximal scheme. We also report the number of
iterations and time for the direct solution of the problem on the
finest grid (s = 2) with zero initialization. The total time of our
multiresolution scheme with the CPWL basis is less than the
direct solution on the finest grid with zero initialization for both
TV and HTV regularization. This computational acceleration is

TABLE II
NUMBER OF ITERATIONS OF ALGORITHM 2 WITH ε2 = 10−6

TABLE III
GPU TIME (SECONDS) OF ALGORITHM 2 WITH ε2 = 10−6

due to the better initialization of the problem by the solution at
the previous scale.

B. CPWL-Based Discrete Regularization

Our CPWL-based TV and HTV computations are essential for
us to develop a multiresolution solver for inverse problems with
a continuous-domain perspective. At a fixed scale, the resulting
expressions (76) and (78) can be interpreted as discretization
schemes for TV and HTV. One could therefore use these expres-
sions as alternative definitions for the TV and HTV of discrete
signals. In this section, we compare these discretizations to some
of their classic counterparts.

1) Total Variation: For a discrete image c ∈ R
N1×N2 , our

CPWL-based computations for TV lead to

TVCPWL(c) =

1

2

N1−1∑
m=0

N2−1∑
n=0

(
(
(c[m,n]− c[m+ 1, n])2 + (c[m,n]− c[m,n+ 1])2

) 1
2

+
((

c[m,n]− c[m− 1, n]2 + (c[m,n]− c[m,n− 1])2
) 1

2

)
,

(89)

with some proper zero padding. Expression (89) resembles
the standard definition of discrete isotropic TV [46]. In effect,
TVCPWL is the result of averaging the standard discrete isotropic
TV with backward and forward finite differences. This averaging
results in TVCPWL being invariant to rotations of 180 degrees,
but increases the computational complexity of the optimization.
To study this effect, we perform a denoising experiment with a
ground-truth image of size (400× 400). The ground-truth image
involves two regions, a piecewise-constant disk and a smooth
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Fig. 6. Solutions of several multiresolution schemes after convergence at the finest scale.

Fig. 7. Solutions at each scale. The region corresponds to the first row of Fig. 6.

region corresponding to the top view of a cone (Fig. 9(a)).
The measurements are obtained by adding zero-mean Gaussian
white noise with a standard variation of 50/255. We compare
our approach to the discrete isotropic TV with forward finite
differences, and to the upwind TV—a discrete variant of TV
that is invariant to ±90 and 180 degrees rotations [72], [73].
To solve the optimization problem for all methods, we use a
variant of Algorithm 3 with a stopping criterion of 10−6 on the
relative error of the loss objective. We set the regularization
hyperparameter to λ = 0.5 for all the methods. We present
the PSNRs of the solutions (left half: disk, right half: cone),
the number of iterations to reach the stopping criterion, and
the computational times in Table IV.

TABLE IV
DISCRETE REGULARIZERS

The CPWL-based TV performs marginally better than the
standard isotropic TV with a forward finite difference. This is
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Fig. 8. Loss function for each method in terms of the total number of iterations
of Algorithm 2 at different scales.

Fig. 9. (a) Discrete ground-truth signal and its noisy version as the measure-
ments. (b) Solutions.

at the cost of CPU time. The upwind TV outperforms the other
methods in the disk region but is not helpful in the cone region,
for which HTV is much better suited.

2) Hessian Total Variation: We now repeat the denoising
experiment of Section VI.B.1, but with HTV regularization
(Fig. 9(b)). On the one hand, we observe that the HTV reg-
ularization reproduces the smooth structures much better than
the TV-based solution, which shows staircase effects. On the
other hand, the edge of the disk is blurred in the HTV solution
and TV regularization performs better on such sharp edges.

We also compare our approach to the finite-difference-based
approach for the Hessian-Schatten-1 regularization proposed
in [29]. We present the results in Table IV. Our CPWL-based
HTV regularization requires fewer iterations to reach the stop-
ping criterion, accelerating the computations compared to the

TABLE V
EVALUATION TIME FOR 200 ITERATIONS OF THE PROXIMAL OPERATOR OF HTV

REGULARIZATION

finite-difference-based approach. This is mainly because our ex-
act computations for HTV lead to a minimization problem with
�1-norm constraint, whereas that of [29] involves constraints
with the Schatten-1 norm.

The faster convergence regarding the number of iterations
comes with no compromise on the computational cost per itera-
tion. On top of the Hessian approximation in [29], their iterative
proximal operator requires a (d× d) SVD for each pixel and
iteration. Our CPWL-based proximal operator for HTV requires
the same number of convolutions but eliminates the need for
SVDs (Algorithm 3). This means that we avoid a cost of O(d3)
per coefficient (pixel). To demonstrate this effect, we provide the
execution times of 200 iterations of the evaluation of the HTV
proximal operator for d = 2, 3 in Table V. There, for d = 2 and
d = 3, we use an image and a volume with sizes of (583×
493) pixels and (583× 493× 40) voxels, respectively. For the
proximal operator of [28], we follow two different approaches to
calculate the SVD: the numerical PyTorch SVD function (SVD),
and a closed-form solution (SVD-C). We note that implementing
SVD-C for d = 3 was especially complicated.

Our method is faster than the finite-difference-based method
in low dimensions. We expect the improvement to be even bigger
in higher dimensions because there is no closed form for the SVD
for d > 4.

VII. CONCLUSION

In this paper, we have provided a novel framework for the
solution of the inverse problem (2) with continuous-domain
total variation (TV) and Hessian total variation (HTV) regu-
larization. We presented an exact discretization scheme based
on box splines that takes into account the analog nature of the
signals and the physical measurement set. Our formulation is
exact numerically and yields discrete convolutional formulas
for the continuously-defined TV and HTV. It also allows for
straightforward evaluation of various forward operators in imag-
ing. We also proposed a multiresolution scheme that speeds
up computations and selects the optimal resolution for image
reconstruction. In all our experiments, we reached a scale beyond
which making the grid finer yields no further decrease in the
optimization cost.
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