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ABSTRACT

The dyadic scaling in the discrete wavelet transform can
lead to a loss of precision, in comparison to the compu-
tationally unrealistic continuous wavelet transform. To
overcome this obstacle, we propose a novel method to lo-
cally scale wavelets between dyadic scales in an efficient
way. We compute complex wavelet coefficients for a tight
frame with a dyadic scale progression. Our isotropic com-
plex wavelets are designed such that the deviation from the
nominal scale is encoded in the phase of the coefficients.
Moreover, the magnitude of the coefficients is used for
feature detection. Numerical experiments are presented
to justify our method, and we present results for feature
extraction from real data.

Index Terms— scalable filters, complex isotropic wavelets,

local scale estimation, tight wavelet frames

1. INTRODUCTION

Wavelets are one of the most efficient and widely used pro-
cessing tools for feature extraction in image analysis. They
provide a unifying framework for decomposing images in a
multi-scale hierarchy, and thus have many successful appli-
cations, such as contour detection, image filtering, orienta-
tion and texture analysis, synthesis and so forth (e.g., [1,2]).

One of the main advantages of wavelet methods is that
they provide a high level abstraction from the data, thus one
can capture or isolate information related to a particular as-
pect (e.g., frequency or spatial location). However, in classi-
cal wavelet schemes, the between-scale details are diffused
among the wavelet coefficients and the precise size of a par-
ticular object cannot be determined easily.

The continuous wavelet transform theoretically pro-
vides a solution, but its implementation, storage and com-
putational cost is prohibitive for image processing.

In this paper, we propose the construction of locally
scalable filters based on tight wavelet frames in order to
overcome their restrictive dyadic scale hierarchy and ob-
tain between-scale information. We design discrete wavelet
frames that can be transformed to approximate a continu-
ous wavelet transform.

Theories addressing local geometrical transformations
have appeared in the literature since the early 1990’s. A
general approach to constructing scalable functions was
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first given by Simoncelli et al. [3]. Perona generalized this
to arbitrary compact transformations without requiring
the group properties [4]. Teo, in his doctoral dissertation
and a series of papers, unified the existing theories and
provided a solid mathematical framework for the study of
transformability based on the theory of Lie groups and Lie
algebras [5].

Our approach differs from Teo’s in several ways. He does
not discuss wavelets, but uses his definition of local trans-
formability to get mean-square approximations of a func-
tion. This approximation would then be exactly scalable
over a limited range of parameters. We, on the other hand,
are interested in discrete wavelet frames that approximate a
continuous wavelet transform within a limited range of pa-
rameters in the sense of applying a localizing window to the
transformation parameter.

In this paper, we design a novel scalable filter scheme
based on the combination of linear filters and tight wavelet
frames, described in Section 2.2, and a corresponding scale
estimation algorithm that is based on a wavelet-domain
phase.

2. GENERAL FRAMEWORK

In this paper we use x € R? and w € R? for the Cartesian, and
(reR, 8 € [-mmn) and (p € R, ¢ € [-m, 7)) for the polar co-
ordinates in spatial and Fourier domains, respectively. We
denote the Fourier transform of a function f by f.

2.1. Concept

The functions

nealogx

[log x] = [logx]" x%

forne{0,1,2,...} and a € C are eigenfunctions of the scaling
operator. Functions of the form

nealogzx

[logx] cos(blog, cx)

alog, x

llogx]"e sin(blog, cx)

with real a, b, ¢ are also covered by this result. In particu-
lar, we shall focus on the functions which are phase-factors
only:

ejwologz(ap) — englogz(a)ﬂ'wo log, (p)

— eng log, (@) ejwo log, (p) .



Here the two-dimensional function is radial, with p = |w|.
As we can see, this function can be dilated by applying
a simple scalar multiplication. The dependence on « is
cyclic: if the ratio a/a’ is of the form 2%*"/® then a and o
produce equivalent changes in local scale.

Wavelets cannot be of the form shown above, so they
are not eigenfunctions of the scaling operator. Thus it is
not possible to design perfectly scalable wavelets. There
is an intuitive interpretation: wavelets are localized in
time/space and in scale. But this kind of localization is
in contradiction with arbitrary dilations (arbitrary scaling)
by scalar multiplication.

However, it is possible to define wavelets that are locally
scalable by combing the scaling eigenfunctions with a tight
wavelet frame. The resulting wavelets are locally scalable
in two senses: around the points of the grid, and within a
range of scales (i.e. within a window in the Fourier domain).
The first comes from having a basis or representation with
shifts of the same function, the second is due to the use of a
window function. We define those wavelets as locally scal-
able wavelets, and we propose to use them to capture the
size of features in images.

2.2. Thelocally scalable wavelet frames

Due to the scaling property of the Fourier transform, scal-
ing in time/space is equivalent to inverse scaling in Fourier,
thus we can define our wavelet templates in the Fourier do-
main.

The basis functions of the wavelet frame are generated
by suitable dilations and translations of a single mother
wavelet &(x) with a radial Fourier transform & (w) = h(p). In
this work, we use Meyer’s isotropic mother wavelet 1 6),
defined by its Fourier transform:

: sin(3v(F 1)) §<p=3
h(p) = COS(%V(ZFP— )), Z<psm
0, otherwise

The template for our "locally scalable" tight wavelet
frame is given by
px) =F 1 {fz(p) cos (woplog, (xp))}
+jF 1 {h(p)sin (wolog, (xp))}
=7 {h(penlortol, M
The above template has two parameters: wo and « that can

be tuned. In our experiments we fix these parameters to
x =2%/m and wg = 471.

LFor the Meyer wavelet of order N, the auxiliary function v(z) is a poly-
nomial of degree 2N + 1, which is chosen such that: v(¢) =0, if t <0,
vit)=1,ift=1,and v(t) +v(1 —t) = 1, while v € CN([O,l]). E.g., the aux-
iliary function that achieves a frequency response with N = 3 continuous
derivatives is v(¢) = t4(35 — 841 +70% —20£3).
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Fig. 1. Reference images (left) and size measurements
(right). The graph shows the measured blob size (radius -
extracted from the phase of the wavelet coefficients, blue)
as a function of the actual blob size (radius). The red curve
represents the theoretical values in the continuous case. ¢
is a normalization constant.

Proposition 1. Let {{; i} be a radial wavelet tight frame of
L, (R?) generated from the mother wavelet ¢ = &y o by defin-

ing
Eialx) =271 (£ - k),

where ¢ fulfills the conditions of Proposition 4.1 in [7], with
the additional assumption that ¢ (w) = 0 for w in the neigh-
borhood of 0. Then,

w= g1 {ejwologz(Kp)é(w)}

defines a locally scalable tight wavelet frame by shifts and
dilations. The new frame functions are related to the original
wavelets by

1 iy
Vik=F ! {e""“l"gz(2 Kp)fi,k}.

We can interpret the local dilation of y by a factor « in
the frequency band defined by k(p) and centered at a given
point. In the Fourier domain,

]:l(p)ejwo log, (axp) _ ejwo log, a /:l(p)ejwo log, (xp)

= /0108 %4 (p). )

This shows that a local dilation of ¢ by a can be ob-
tained by multiplying v with e/*01082¢

2.3. Ilustration

The primary feature of our new complex wavelets is that the
scale is encoded in the phase of the wavelet coefficients. To
illustrate the idea we generate a series of test images where
we place a blob at the center of the images. We increase the
radius of the blob from 8 pixels to 11 pixels with step size
0.2. Figure 1 presents the reference images (left) and the
correspondence between the measured blob size (extracted
from the phase of the wavelet coefficients) and the actual
blob size.



2.4. Description of the scale estimation algorithm

We shall now describe an application of these novel wavelets
for the detection and estimation of roundish objects, such
as cell nuclei, in images. Our blob detection and scale esti-
mation algorithm has the following main steps.

(1) (Wavelet analysis)

We decompose the image with our locally scalable complex
wavelets presented before.

(2) (Blob detection)

The detections of locations are made by looking for the lo-
cal maxima of the amplitude of the wavelet coefficients.

(3) (Radius computation)

In view of (2), the local scale of a function f at each location
and for each wavelet bandwidth can be deduced from the
phase of its analysis coefficients corresponding to locally
scalable wavelets at any given point. Specifically, it is given
by 200/ where oy is the phase of the wavelet coefficient
at the location and scale of interest.

3. EXPERIMENTAL RESULTS

To evaluate the performance of the algorithm, we tested it
on a variety of synthetic images in the presence of noise,
and finally on actual microscope images. The aim of this
section is to reveal the following properties of the method:
translation invariance, robustness against noise, correct
scale identification. We compare our methods with two
popular blob detection tools: Difference of Gaussians
(DoG), and the Hough transform for circles. In case of
the DoG method we apply local maxima detection over a
wide range of Gaussian smoothing. Our interest is to (i.)
evaluate our method, and show that it provides a precise
detection of image structures even in presence of noise;
and (ii.) compare the different methods with each other.

We generate a series of test images (of size 512 x 512)
with 100 randomly placed blobs of various randomly gen-
erated radii between 6 and 12 pixels. We do allow overlap
between the blobs. In [8], Sage et al. showed experimentally
that the spectral power density of fluorescent microscopic
images is isotropic and corresponds to a fractional Brow-
nian motion model. When generating our test images, we
represent the background signal (autofluorescence) such
way. We corrupt the images with isotropic Brownian mo-
tion, with a mean of zero and standard deviation of O to 1.
The goal is to determine the location and the size of the
blobs.

To fairly compare the different methods with each other,
we count the strongest 100 detections they provide. To
make a quantitative evaluation we compute the Jaccard in-
dex (size of the intersection divided by the size of the union
of the reference and detection sets), and in case of matched
detections, the position and radius root mean square errors
(RMSE in pixels).
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Fig. 2. Reference images (left) and detections (right). All
detections are correct. Noise level: 0 =0.1 and o = 0.5.
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Fig. 3. Jaccard index under isotropic Brownian motion, as a
function of the standard deviation of the noise (o).

An illustration of the results (crop of two of the test im-
ages) can be seen in Figure 2. The Jaccard index is presented
in Figure 3 and the RMS errors in Figure 4.

Based on Figure 3, we can say that DoG and Hough
methods perform poorly in noisy images. In particular,
when the noise level is higher than a certain threshold (0.1
for the DoG, and 0.4 for the Hough), there are almost no
good detections. However, with our method we can keep a
high performance within a wide range of noise strengths.
As mentioned before, we compute the RMS errors only in
case of good detections. It implies that there is no need to
make such computations for the DoG and Hough methods
after the Jaccard index drops significantly.

Based on Figure 4, we can say that (i.) our method has
better precision than the other methods, (ii.) the radius es-
timation performance of the algorithm is high under a wide
range of noise powers.
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Fig. 4. Position and radius approximation error in the sense
of RMSE under isotropic Brownian motion, as a function of
the standard deviation of the noise (o).

Fig. 5. Snapshot of moving cell nuclei (Courtesy of C.
Dibner, University of Geneva). The results are overlaid in
red in the lower half.

Figure 5 is a snapshot of moving cell nuclei. In this
case, the goal was to estimate the size of different nuclei
at given locations. Our method again yields good results,
which suggests that our algorithm has direct applicability
to bio-image analysis. The execution time of our method is
a fraction of a second in an image of size 512 x 512.

4. CONCLUSION

We proposed a novel kind of complex wavelet transform to
extract fine variations in scale that might be lost with clas-
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sical dyadic scale wavelet schemes. This framework can be
used to determine the accurate size of structures in biolog-
ical images. The construction of our wavelet frames makes
it possible to locally scale them in a continuous range of
scales by simple complex multiplication, and also to infer
the local scale of objects in the image from the phase of
complex wavelets coefficients. We presented practical eval-
uation of our approach in detecting the size of objects in
images, using synthetic and real-world examples. The de-
termination of the blob size is very effective and fast.
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