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Template-Free Wavelet-Based Detection
of Local Symmetries

Zsuzsanna Püspöki, Student Member, IEEE, and Michael Unser, Fellow, IEEE

Abstract— Our goal is to detect and group different kinds of
local symmetries in images in a scale- and rotation-invariant way.
We propose an efficient wavelet-based method to determine the
order of local symmetry at each location. Our algorithm relies on
circular harmonic wavelets which are used to generate steerable
wavelet channels corresponding to different symmetry orders.
To give a measure of local symmetry, we use the F-test to
examine the distribution of the energy across different channels.
We provide experimental results on synthetic images, biological
micrographs, and electron-microscopy images to demonstrate the
performance of the algorithm.

Index Terms— Local symmetries, F-test, circular harmonic
wavelets, junction detection.

I. INTRODUCTION

THE ability to detect edges or ridges (that we consider
to be twofold symmetries) and local symmetry centers

(or symmetric junctions) can be very useful for the quantitative
analysis of microscopic images. For example, certain experi-
ments in stem-cell research rely on the accurate detection of
cell shape and extracellular structures (like tight junctions) that
exhibit polygonal shapes [1]. Also, in polycrystalline materials
such as the hexagonal graphene, it is fundamental to detect line
defects since they strongly affect the physical and chemical
properties of grain boundaries [2], [3]. The application area
of methods that permit this kind of analysis is continuously
growing [4]–[8] as image analysis is becoming more relevant
in data processing.

There exist several approaches dedicated to the detection
of junctions. We can separate these approaches into three
categories: methods based on detection, grouping, and analysis
of edges and gradients [9], [10]; those relying on feature
analysis with structure tensors and their derivatives [11], [12];
and approaches based on template matching [13], [14],
including some that use steerable filters [15]–[19]. Methods
belonging to the first two categories are often used for
identifying points of interest in computer-vision applications.
They typically distinguish junctions from edges and other
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varieties of keypoints, sometimes classifying junctions into
categories that are of interest to object recognition. For
instance, Kovesi [20] is detecting symmetries and anti-
symmetries based on local phase. However, he is mostly
focusing on bilateral symmetries and ignores rotational ones.
Xia et al. [5] are using a template-free method for the
detection and grouping of junctions. This algorithm relies on
the strength of directional derivatives.

Detectors based on templates are mostly designed for
specific types of junctions. The rotational alignment of the
template with the pattern of interest is usually dealt by
considering a series of rotated filters. There is a tradeoff
between accuracy and computational cost: to obtain accurate
results, a fine angular discretization is required but is
computationally very expensive.

A more favorable approach is the application of steerable
filters, where one may explore arbitrary rotations with only
a small computational overhead. Indeed, it is enough to
perform the filtering operations once only, the response for
any specific angle being retrieved by the linear combination
of few precomputed components. The basics of steerability
were formulated by Freeman and Adelson in the early
nineties [21] and developed further by Perona [22],
Simoncelli and Farid [16], and Unser and Chenouard [23].
To improve the orientation detection of the basic steerable
filters, one may impose an optimality criterion on the
properties of the detector. Jacob and Unser [17] imposes
Canny-like criteria of optimality [24], such as a reasonable
approximation of the ideal detector, maximum signal-to-noise
ratio, good spatial localization, and reduced oscillations.

In this paper, we propose an algorithm to detect local
symmetries, in a template-free fashion: there is need neither
to design a specific junction or ridge-shaped template nor to
align it with the pattern of interest. Instead, we apply a wavelet
transform and determine the desired symmetry orders based
on a statistical test on the wavelet coefficients. The algorithm
is based on the circular harmonic wavelets [23], [25], which
distribute the energy of the signal among a set of angular
harmonics. Based on this angular distribution, we propose a
measure of symmetry and a hypothesis test for local symmetry
at each pixel. Using the noted measure, we also formulate an
approximate maximum-likelihood classifier for the orders of
local symmetry.

The approach presented here differs from existing methods
in several ways. First of all, our framework has a mul-
tiresolution detection scheme. Second, since our method is
template-free, there is no need to make heavy computations
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for matching the template to image features of different
orientations. Finally, as a result of the statistical formulation,
we can provide a measure of symmetry at each location in
the image and for arbitrary symmetry orders in a fast and
robust way.

The paper is organized as follows: In Section 2, we present
the circular harmonic wavelets that define the analytical frame-
work used in this paper. To motivate this formulation, which
distinguishes between local radial symmetry and lack thereof,
we have a closer look at the statistics of images without
symmetric structures in Section 3. Once the formulation is
given for a single scale we extend it to multiscale. Then, we
examine the distribution of the wavelet coefficients and, based
on the results, we formulate a hypothesis test in Section 4
for the detection of local symmetries of any given order.
Next, in Section 5, we deal with the problem of classifying
local symmetries of different orders. Finally, in Section 6, we
present experimental results on synthetic images, biological
micrographs, and electron-microscopy images. The mathemat-
ical background that is essential to our formulation, the proofs
of theorems, and a brief description of the software can be
found in Appendices A-C.

II. CONCEPT

A. Notation

We denote the Cartesian and polar representations of the
same 2D function f by f (x) with x ∈ R

2 and fpol(r, θ) with
r ∈ R

+, θ ∈ [0, 2π) (similarly in the Fourier domain: f̂ (ω)
and f̂pol(ρ, φ)). We denote the adjoint of an operator L by L∗
and the complex conjugate of a function f by f .

B. Isotropic Wavelet Frames

The isotropic wavelet at scale i and location (grid point)
x0 = 2i k0, k0 ∈ Z

2, is written (in 2D) as

ψi,k0(x) = ψi (x − x0)= 1

2i
ψ

(
x − x0

2i

)
= 1

2i
ψ

( x
2i

− k0

)
.

(1)

With isotropic wavelets, we have that ψ̂(ω) = h(|ω|) for some
function h. Thus, in the Fourier domain,

̂ψi (· − x0)(ω) = 2i ψ̂(2iω)e−j〈x0,ω〉

= 2i ĥ(2iρ)e−jρ0ρ cos(φ−φ0), (2)

with x0 = ρ0ejφ0 and ω = ρ(cosφ, sin φ) in polar form.
The wavelets ψi,k0 form a tight wavelet frame if any

finite-energy function f can be decomposed as

f =
∑
i,k0

〈 f, ψi,k0〉ψi,k0 . (3)

While (3) is reminiscent of a decomposition in an orthonor-
mal basis, the key difference is that the basis functions are
redundant. The key property that ensures that the transform is
self-reversible (tight frame) is∑

i

|ĥ(2iρ)|2 = 1. (4)

In this work we use the Simoncelli’s isotropic wavelet [26]
defined by its mother wavelet

ĥ(ρ) =
⎧⎨
⎩

cos

(
π

2
log2

(
2ρ

π

))
,

π

4
< ρ ≤ π

0, otherwise.
(5)

We apply the multiorder complex Riesz transform on ψi,k0 to
obtain circular harmonic wavelets.

C. Circular Harmonic Wavelet Frames

We now briefly review the circular harmonic wavelets, since
they form the backbone of our algorithm, and refer to [23] for
more details. We rely on the complex Riesz transform that can
be defined in the Fourier domain as

R f (x) ↔ ejφ f̂pol(ρ, φ). (6)

The nth-order complex 2D Riesz transform Rn represents the
n-fold iterate of R,

Rn f (x) ↔ ejnφ f̂pol(ρ, φ), (7)

whose transfer function is given by

R̂n
pol(ρ, φ) = ejnφ. (8)

The Riesz transform is translation- and scale-invariant, since

∀x0 ∈ R
d , R { f (· − x0)} (x) = R { f (·)} (x − x0) (9)

∀a ∈ R
+ \ {0}, R

{
f
( ·

a

)}
(x) = R { f (·)}

( x
a

)
. (10)

The multiorder complex Riesz transform Rn inherits the
properties of the Riesz transform R (due to its iterative
nature), thus it is also translation- and scale-invariant. We refer
to [27] for further details on the properties of the higher-order
Riesz transform.

One generates circular harmonic wavelet frames by applying
the multiorder complex Riesz transform to a primal isotropic
function ψpol = F−1

2D {ĥ} whose shifts and dilations form a
wavelet frame.

Using the nth-order Riesz transform, we define the new
function ψ(n) = Rnψ , whose translates and dilates are
given by

ψ
(n)
i (x − x0) = 2−iψ(n)

(
x − x0

2i

)

= 2−iRn{ψ}
(

x − x0

2i

)

= Rn
{

2−iψ

( · − x0

2i

)}
(x)

= Rn{ψi (·−x0)}(x), (11)

where we use the translation- and scale-invariance of Rn .
In Fourier, then, we have that

F
{
Rn{ψi (· − x0)}

}
(ρ, φ) = 2i ĥ(2iρ)ejnφ−jρ0ρ cos(φ−φ0).

(12)

One can show that the application of the Riesz transform
on ψi (· − x0) preserves the tight-frame property [28].
Thus, by choosing N distinct values for the integer n
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Fig. 1. Circular harmonic wavelets at scale 1. From left to right: nth-order
harmonic wavelet, for n = 3, n = 4, n = 5, respectively. From top to bottom:
Real part, imaginary part, absolute value, visualized in the Fourier and space
domain, respectively.

(distinct set of harmonics), we form a tight frame of steerable
wavelets that is similar to the circular harmonic wavelets of
Jacovitti and Neri [25], with the difference that the latter ones
are non-tight. We note that an nth-order harmonic wavelet
has a rotational symmetry of order n around its center,
corresponding to the nth-order rotational symmetry of ejnφ .
We illustrate in Figure 1 the circular harmonic wavelets.
As can be observed, in the Fourier domain, the support of the
wavelets does not depend on n. By contrast, this is no longer
so in the space domain. Specifically, the inverse 2D Fourier
transform of ψ(n) is given by

F−1
{

hejnφ
}
(r, θ) = jnejnθ

2π

∫ ∞

0
ρh(ρ)Jn(rρ)dρ (13)

shows that the support is determined by the nth order Bessel
function of the first kind (denoted by Jn). Hence, it grows
with n.

D. Local Wavelet Energies

Let S be a set of harmonics, let SM be the subset of S
consisting of harmonics that are integer multiples of M with
SM = {n ∈ S : n = Mk, k ∈ Z} ⊂ S, and let qn,i =
〈ψn

i (· − x0), f 〉 be the nth-channel coefficient at the scale
and location of interest. We propose to base our analysis on
the quantity

En,i = |qn,i |2∑
m∈S |qm,i |2 (14)

Fig. 2. Illustration of local symmetries in an image at 3 different locations:
(a), (b) and (c). The original image is on the left. Subfigure (a) is associated
to the normalized wavelet energy vector En,1 (14) at location (a) and scale 1.
Location (a) corresponds to a 3-fold symmetric junction, hence every third
component has a high amplitude. Subfigure (b) is associated to the vector
at location (b) and scale 1. Location (b) corresponds to a 2-fold junction
(ridge), hence every second component has a high amplitude. Subfigure (c)
is associated to the vector at location (c) and scale 1. Location (c) does not
correspond to any particular symmetry order, and we cannot observe any kind
of periodic repetition in the energy distribution.

for each n ∈ S at a given scale and location, which we refer
to as normalized wavelet energies. We present in Figure 2
the distribution of normalized-energy wavelet coefficients at
a particular scale (i = 1) at 3 different locations: three-fold
junction (a), ridge (b), non-symmetric point (c). We observe
that the “energy” of the wavelet is highly concentrated in
M-fold periodic harmonics in case of M-fold symmetry
(ridge or symmetric junction) at the location of interest, while
no such concentration can be seen in the absence of local
symmetries.

III. WAVELET-DOMAIN STATISTICS

To process the data quantitatively, we propose a hypothesis
test to identify energy concentrations in the wavelet domain.
We define the null hypothesis as the situation where the distri-
bution of qn,i is an i.i.d. (independent identically distributed)
Gaussian, which is a situation where there is no symmetry.
In the absence of M-fold symmetries, the average energy
for harmonics in SM must be the same or lower than the
average over its complement S\SM . We test this hypothesis
against the alternative hypothesis that the image has a local
M-fold symmetry (higher concentration of energy in M-fold
symmetric harmonics).

We shall now put this approach on a firm statistical basis by
deriving the statistical distribution of the wavelet coefficients
qn,i under the null hypothesis that the underlying image is the
realization of an isotropic random field. Specifically, we shall
demonstrate that the circular harmonic wavelet coefficients of
such images are uncorrelated on a scale-by-scale basis, which
constitutes one of the theoretical contributions of this paper.

We use elements of the theory of generalized stochastic
fields to model statistically isotropic images. The discussed
concepts are nonstandard because the underlying processes
(including fractional Brownian fields) are not stationary, hence
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not amenable to a classical treatment. An overview of the
definitions and mathematical preliminaries of stochastic fields
based on [29] can be found in Appendix A, while the proofs
of our results concerning statistically isotropic images can be
found in Appendix B.

We shall consider two types of fields: the stationary ones,
and the self-similar ones, which are also amenable to a wavelet
analysis.

A. Stationary Isotropic Fields

Definition 1 (Wide-Sense Stationary Field of Second Order,
w.s.s.): A continuous-space random field s is called wide-sense
stationary if

1) its mean E[s(x)] = μ is a constant and
2) its autocorrelation Rs(x1, x2) = E[s(x1)s(x2)] depends

only on u = x1 − x2, so that E[s(x − u)s(x)] = Rs(u).
In the following, we consider w.s.s. fields with zero mean.
Definition 2 (Power Spectrum): The power spectrum of a

stationary field is the Fourier transform of its autocorrelation
function

�s(ω) = F {Rs}(ω). (15)
We note that the definition of the power spectrum does only

make sense when the stochastic field is stationary with a well-
defined autocorrelation. The power spectrum of a statistical
field is always real and nonnegative.

Our first result is as follows.
Theorem 1: Let s be a realization of a second-order w.s.s.

field with isotropic power spectrum �s(ω) = �s(ρ). Then,
the wavelet coefficients qn,i = {〈s, ψ(n)i (· − x0)〉}n at a given
scale i and position x0 are uncorrelated with zero mean and
constant variance

1

(2π)2

∫ ∞

0
�s

( ρ
2i

)
|ĥ(ρ)|2ρdρ. (16)

Moreover, when s is Gaussian, the wavelet coefficients qi are
i.i.d. Gaussian within each scale.

B. Self-Similar Isotropic Fields

Definition 3 (Wide-Sense Self-Similarity [29]): A stochas-
tic process s with zero mean is wide-sense self-similar with
scaling order H if its autocorrelation function satisfies

a2H Rs

( r1

a
,

r2

a

)
= Rs(r1, r2). (17)

There are no nontrivial fields that are both wide-sense
stationary and wide-sense self-similar. Indeed, if s is wide-
sense stationary and self-similar, Rs(r, r) = Rs(0), and then
∀a, a2H Rs(0) = Rs(0). As a result, the variance Var(s(r)) =
Rs(r, r) either vanishes or is infinite.

However, it is possible to define statistically isotropic
self-similar fields with stationary increments. These become
stationary after the application of finite differences or analysis
functions with vanishing moments. These fields are obtained
as solutions of

(−	)γ2 s = w, (18)

where w is a continuous-domain white noise and (−	)γ2 is
the fractional-Laplacian operator associated with the isotropic

Fourier-domain multiplier ‖ω‖γ [29]. In case w is Gaussian,
the field we obtain is the 2D generalization of a fractional
Brownian motion.

Our formalism allows us to extend our theory to isotropic
self-similar fields.

Theorem 2: Let s be a realization of an isotropic self-
similar field of order γ and variance σ 2

0 . Then, the wavelet
coefficients qn,i = {〈s, ψ(n)i (· − x0)〉}n at a given scale i and
position x0 are uncorrelated with zero mean and constant
variance

σ 2
0

(2π)2
4iγ

∫ ∞

0

1

ρ2γ |ĥ(ρ)|2ρdρ. (19)

Moreover, when s is Gaussian, the wavelet coefficients qi are
i.i.d. Gaussian within each scale.

Theorem 1 and Theorem 2 establish the validity of our null
hypothesis for a broad class of isotropic processes. Proofs of
Theorems 1 and 2 can be found in Appendix B.

The fact that the circular harmonic wavelets are able to
decouple such a process is remarkable, because the pixels are
highly correlated in space. We also note that this property does
not hold for other conventional wavelets.

IV. F -TEST FOR M -FOLD SYMMETRIC JUNCTIONS

A. Single-Scale Detection

Corresponding to our null hypothesis, according to which
the distribution of the wavelet coefficients qn,i are i.i.d.
Gaussian, we define the quantity

F(q; M) =
1

|SM |
∑

n∈SM
|qn|2

1
|S|−|SM |

∑
n∈S\SM

|qn|2
(20)

at each point q which we refer to as the test statistic F
or F-score. Under the null hypothesis that the wavelet
coefficients qn are i.i.d. Gaussian, the F statistic consists
of the ratio of two independent χ2 distributions (sums of
squared i.i.d. Gaussians), with |SM | and (|S| − |SM |) degrees
of freedom, respectively. It means that F in (20) has an
F distribution. This allows us to use the F-test to detect
significant local M-fold symmetry centers.

The hypothesis test proceeds as follows:

1) The observed value Fobs of the statistic is computed
from the wavelet coefficients at the point of interest.

2) The probability that F exceeds Fobs is computed under
the null hypothesis (one-sided p-value). This is the
probability that, under the null hypothesis, we would
observe an F score at least as extreme as Fobs in the
direction of increasing symmetry.

3) The p-value is compared against the significance level α.
To reject the null hypothesis at significance level α,
we require that

pr.(F ≥ Fobs) < α, (21)

where pr. is the F probability distribution with |SM |
and (|S| − |SM |) degrees of freedom. Equivalently,
we may compute Fα , the value of the statistic such that

pr.(F ≥ Fα) = α. (22)
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Then, if Fobs > Fα , we conclude that (21) is true, and
reject the null hypothesis at level α.

Since the above is a standard right-tailed F test, the value
of Fα can be found in tables for different values of α and dif-
ferent degrees of freedom, or computed from the distribution.

B. Multiscale Detection

To obtain multiscale detection, we modify the hypotheses
in such a way that we can make detections in one or several
scales (i indicates the scale, I is the total number of scales
used for detection). In this case, the multiscale statistics are
defined as

Fi (q; M) =
1

|SM |
∑

n∈SM
|qn,i |2

1
|S|−|SM |

∑
n∈S\SM

|qn,i |2
(23)

at each point q. Under the null hypothesis that the wavelet
coefficients qn,i are i.i.d. Gaussian, all Fi have the same
distribution as F in Section IV. A.

Here, the p-value is defined as the probability (under the
null hypothesis) that we would observe a symmetry score at
least as extreme as the highest score Fi,obs observed at some
scale; in other words, p is computed as

p = Prob
⋃

l

{
Fl ≥ max

i
Fi,obs

}
, (24)

where l runs over all I scales used for detection. An upper
bound on p is given by∑

l

Prob
{

Fl ≥ max
i

Fi,obs
} = I × pr.(F ≥ max

i
Fi,obs), (25)

where F has the same distribution as all Fi . Thus, to reject
the null hypothesis at level α, it is sufficient that

pr.(F ≥ max
i

Fi,obs) <
α

I
, (26)

or, equivalently, that maxi Fi,obs > Fα/I .

V. CLASSIFICATION OF SYMMETRY ORDERS

The F-score defined earlier can also be used to classify
keypoints as one of several symmetry orders. Since the
F-score indicates the strength of a local M-fold symmetry, we
can compare the scores for different symmetry orders in order
to assign a symmetry class to a given point. Our approach
is inspired by a maximum a posteriori (MAP) formulation,
as discussed below.

Imagine that we had at our disposal the probability
pr.(M = j |q) of having a j -fold symmetry at the point of
interest, given the wavelet coefficients q. The MAP estimator
of the local order of symmetry at each point would then be

M̂ = arg max
j

p(M = j |q), (27)

where j spans a preselected set of possible orders of symmetry.
In reality, we do not have access to the probability
pr.(M = j |q) since we lack a realistic probabilistic model
for general images. However, a reasonable substitute can be
constructed.

As in (20), let us denote by F(q; M) the observed value
of the F-score for M-fold symmetries. For this quantity, we
shall also use the notation F (M)obs and denote the correponding
random variable by F (M). Recall that, by definition, a higher
value of F(q; M) indicates a higher concentration of energy in
M-fold symmetric wavelets. It is therefore natural to assume
that, for fixed M = j , the probability pr.(M = j |q) increases
monotonically with F(q; j); that is,

pr.(M = j |q) = g j (F(q; j)) , (28)

where g j is some monotonically increasing function.
We can thus construct different classification rules inspired

by the MAP approach, by choosing different families of
monotonically increasing functions g j . Different choices can
be validated and sorted by their empirical performance,
with preference given to simpler formulas. In particular,
we consider the following two important choices:

1) The identity function g j (u) ≡ u for all j . The corre-
sponding classifier is defined by

M̂ = arg max
j

F(q; j). (29)

The F-scores for all symmetry orders of interest are
computed and the local symmetry is assigned as the one
with the highest F score.

2) The monotonically increasing function g j (u) ≡
− log p j (F ( j ) ≥ u), where p j is the probability associ-
ated with the j -fold score F ( j ) under the null hypothesis
of the earlier sections. The motivation for this choice is
that, in this case, the value

g j (F(q; j)) = p j

(
F ( j ) > F ( j )

obs

)
= p j (30)

is the p-value associated with rejecting the null hypoth-
esis of the earlier sections in favor of j -fold symmetry.
Consequently, this choice leads to the classification rule

M̂ = arg max
j
(− log p j ) = arg min

j
p j , (31)

meaning that p-values for all relevant orders of symme-
try are computed, and the lowest p-value among them
is used to assign a symmetry order to the keypoint.

In practice, both choices lead to robust and highly effective
classifiers, as seen in the experimental results of Section VI.

VI. EXPERIMENTAL RESULTS

Our algorithm to detect symmetries has been programmed
as a plug-in for ImageJ [30]. Refer to Appendix C for further
details related to the plug-in.

In our implementation, we use Simoncelli’s isotropic mother
wavelets with dyadic scale progressions. We use a predefined
set of harmonics for the tests, which is large enough to provide
accurate results for the symmetry orders one might test with
the software (this case 0:1:24). We note that the number of
harmonics can be arbitrarily extended.

To implement the F-test and compute the α-values, we
take advantage of the Beta Class implementation in the
jsc.distributions.Beta library.1 To evaluate the performance of

1http://www.jsc.nildram.co.uk/api/jsc/distributions/Beta.html
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Fig. 3. From left to right and from top to bottom: test image corrupted with
isotropic Brownian motion (mean 0, standard deviation 10); corresponding
detections; image corrupted with isotropic Brownian motion (mean 0, standard
deviation 50); corresponding detections.

the algorithm we use a variety of test images, synthetic and
actual microscopic images (real micrographs). We note that, in
our formulation, ridges can be considered as 2-fold symmetries
or junctions.

A. Robustness Against Background Signal

It has been observed that the power spectrum of many
natural images is isotropic with an 1

‖ω‖s type of decay
that is consistent with a fractional Brownian motion
model [31], [32]. Experimentally, this model of background
signal fits fluorescence microscopy images well [33]. To make
the detection task more realistic, we have used this model to
generate a background signal that is added to the patterns of
interest to simulates the autofluorescence that is present in real
micrographs.

First, we generate a series of (1024 × 1024) test images
populated by 3-, 4-, and 6-fold junctions at fixed locations.
The ground-truth data contains 610 3-fold, 921 4-fold, and
304 6-fold symmetric junctions, respectively. We corrupt the
images with isotropic Brownian motion, with a mean of zero
and standard deviation of 0 to 100. An illustration of the test
images can be seen in Figure 3. To separate distinct effects,
in this experiment we use only the first wavelet scale to make
detections.

In the evaluation phase we use the Hungarian algorithm
to match the detections with the nodes of the original grid.
The detections are accepted if they are no further than 5 pixel
away from the original nodes. Otherwise, they are counted as
false-positive results.

To make a quantitative evaluation we compute the Jaccard
index, and the position root mean square error (RMSE).
The RMSE error is computed for the matched detections.
An illustration of the results (crop of one of the test images)

Fig. 4. Jaccard index under isotropic Brownian motion, as a function of its
standard deviation σ .

Fig. 5. Detection error in the sense of root-mean-square error (RMSE) under
isotropic Brownian motion, as a function of its standard deviation σ .

Fig. 6. Jaccard index under isotropic Brownian motion of zero mean and
standard deviation 10 for rotations γ from 0 to 360 degrees.

can be seen in Figure 3, the Jaccard index in Figure 4, and the
RMS errors in Figure 5. Based on the graphs, we claim that
our algorithm performs well under a wide range of background
noise.

B. Rotation Invariance

We generate another series of (1024 × 1024) test images.
Similarly to the previous case, we build a synthetic grid
and rotate it around its center with 1 degree steps from
0 to 360 degrees. We apply isotropic Brownian motion (of zero
mean and standard deviation 10, as illustrated on Figure 3) on
these images. The ground-truth data contains approximately
600 3-fold, 900 4-fold, and 300 6-fold symmetric junctions.
We note that the number of reference nodes varies as some of
the nodes will be rotated out of the bounds.

We compute the Jaccard index (Figure 6), and the RMS
error of the detections (Figure 7). Based on the graphs,
we confirm that our method is essentially rotation invariant
and performs well independently of the orientation of
the junctions. The small fluctuations in the values are due to
numerical errors.
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Fig. 7. Detection error in the sense of root-mean-square error (RMSE)
under isotropic Brownian motion of zero mean and standard deviation 10 for
rotations γ from 0 to 360 degrees.

Fig. 8. Test images of different line thicknesses, corrupted with isotropic
Brownian motion (mean 0, standard deviation 10). From left to right: test
image; profile plot along the corresponding bright line. From top to bottom:
line thickness l = 1.0, line thickness l = 10.0, respectively.

Fig. 9. Position error in the sense of root-mean-square error (RMSE) under
isotropic Brownian motion of zero mean and standard deviation 10 for line
thicknesses 1 to 15 with steps 0.1. Scale 1, 2, and 3 indicates the scale at
which the detections are made.

C. Scale Invariance

Similarly to the previous experiments, we generate a series
of (1024×1024) test images. We again build a synthetic
grid and change the profile of the ridges from thickness
level 1 to 15 with steps 0.1. An illustration of the test images
for different line thicknesses corrupted with Brownian motion
is shown in Figure 8. Here, the difficulty is twofold. First,
the background intensity is continuously changing in a wide
range. Second, the edges to detect do not always appear as
clear peaks, but they can form a plateau of varying width.
One can find in Figure 9 the average position error of the
detections under isotropic Brownian motion, as a function
of the thickness level. Thin lines are detected at the first
wavelet scale; as we increase the width of the lines we obtain

Fig. 10. Hexagonal embryonic stem cells in light microscopy [1]. Detection
of two-fold symmetries or ridges and three-fold junctions. Subfigures: original
image, detected ridges, detected three-fold junctions, combined image.

Fig. 11. Atomic-resolution ADF-STEM image of hexagonal graphene
crystals [2]. Detection of two-fold symmetries or ridges (dark grey) and
three-fold junctions (light grey). Subfigures: original image, combined
RGB image.

the detections at higher scales. The detection is accurate,
independently of the scale. The algorithm performs well for
different symmetry orders.

D. Micrographs

Figure 10 features hexagonal embryonic stem cells imaged
by fluorescence microscopy with 3-fold symmetric junctions.
As a result of the imaging technique, the test image contains
Poisson noise. We were interested in detecting the outlines of
the cells, containing ridges and junction points. Results shown
for their detection are indeed satisfying and consistent with the
regularity of the structure.

Figure 11 contains an atomic-resolution ADF-STEM
image of hexagonal graphene crystals with 3-fold symmetric
junctions. The detection task is more challenging than in the
embryonic stem-cell image due to blurring effects. Here the
image quality is quite low. We intend to detect the node areas
(light grey), and the connecting regions (dark grey). In this
case, the method yielded again good results.
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VII. CONCLUSION

We presented a wavelet-based framework for the detection
and classification of the centers of local symmetry in images.
The attractive features of the algorithm are (i) the multiscale
approach and the rotation invariance, which make it possible
to obtain a precise estimate of the junctions across scales,
at arbitrary orientations; (ii) robustness; and (iii) speed. Also,
since any combination of arbitrary orders of symmetry may
be tested without the need to design specific templates,
detecting arbitrary symmetry orders is possible without any
computational overhead.

APPENDIX

The Appendix contains the proofs of Theorem 1 and 2,
which are fundamental to our work. They establish the validity
of our null hypothesis (independence of wavelet coefficients)
for a broad class of isotropic processes.

A. Mathematical Preliminaries of Stochastic Processes

We now present the nonstandard preliminary concepts from
the theory of generalized stochastic processes that are required
in Section B. To prove the results, we shall work with
correlation forms, which are a generalization of the concept
of autocorrelation.

Definition 4 (Correlation Form [34]): The correlation
form of a generalized field s is

Bs{ϕ1, ϕ2} = E{〈s, ϕ1〉〈s, ϕ2〉} (32)

for ϕ1, ϕ2 ∈ S (Schwartz space), which, in cases of interest
to us, can be extended to L2.

By the kernel theorem,

Bs{ϕ1, ϕ2} =
∫

R2

∫
R2
ϕ1(r1)ϕ2(r2)Rs(r1, r2)dr1dr2, (33)

where Rs(r1, r2) ∈ S
′
(R2 × R

2) (space of tempered
distributions) is the generalized correlation function of s.

We are interested in the following cases: (i) generalized
white noise with finite variance; (ii) w.s.s. fields with zero
mean; (iii) fields whitened by L = (−	)γ2 , as an example of
a self-similar field with stationary increments.

(i) The correlation form of a generalized white noise takes
the form

Bw{ϕ1, ϕ2} = σ 2
0 〈ϕ1, ϕ2〉, (34)

where σ 2
0 is called the variance of the noise w. Thus,

the autocorrelation of the noise is σ 2
0 δ (where δ is the

Dirac impulse). Its power spectrum is flat, with

�w ≡ σ 2
0 . (35)

(ii) The correlation form of a zero mean w.s.s. field is related
to its power spectrum �s by

Bs{ϕ1, ϕ2} = 1

(2π)2

∫
R2
ϕ̂1(ω)ϕ̂2(ω)�s(ω)dω. (36)

(iii) We are considering a self-similar field s such that
(−	)γ2 s = w is an innovation field (white noise), or,
formally,

〈s, ϕ〉 = 〈w, I ∗
γ,2ϕ〉, (37)

where I ∗
γ,2 = (−	)−γ

2 is the corrected scale-invariant

inverse operator from S to L2 of (−	)γ2 with an
appropriate correction for the singularity at ω = 0.
(The operator here is a special case of a family intro-
duced in [29], hence the notation and the index 2.)
In general, the inverse operator of the fractional
Laplacian can be obtained from the Taylor series
expansion of ϕ at the origin by removing a sufficient
number of lower order terms:

I ∗
γ,2ϕ(x)

=
∫

R2

dω

(2π)2
ejxT ω

ϕ̂(ω)− ∑
|k|≤�γ−1� ϕ̂(k)(0)ωk

k!
‖ω‖γ . (38)

In the case where ϕ = ψ is a wavelet function whose
moments vanish up to degree �γ − 1�, all the terms in
the sum of (38) will be zero, and

I ∗
γ,2ψ(x) =

∫
R2

dω

(2π)2
ejxT ω ψ̂(ω)

‖ω‖γ , (39)

which corresponds to a shift-invariant operator whose
Fourier-domain description is

Î ∗
γ,2ψ(ω) = ψ̂(ω)

‖ω‖γ . (40)

As a consequence of (37), and using (40) together with
Parseval’s identity to rewrite (34) in the Fourier-domain,
we obtain the correlation form of the isotropic self-similar
field as

Bs{ψ1, ψ2} = Bw{I ∗
γ,2ψ1, I ∗

γ,2ψ2}

= σ 2
0

(2π)2

∫
R2

ψ̂1(ω)ψ̂2(ω)

‖ω‖2γ dω (41)

for functions ψ1 and ψ2 with sufficiently many vanishing
moments.

B. Proofs for the Theorems on Statistically Isotropic Images

Proof of Theorem 1: For a given scale i and position x0,
we consider the two harmonics n1, n2. We use (36) to write
the correlation form of a zero-mean w.s.s. field which, by
definition, is the same as the covariance of the corresponding
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wavelet coefficients. We write

Bs{ψ(n1)
i (· − x0), ψ

(n2)
i (· − x0)}

= 22i

(2π)2

∫
ψ̂(n1)(2iω)ψ̂(n2)(2iω)�s(ω)dω

= 22i

(2π)2

∫ ∞

0

∫ π

−π
�s(ρ)|ĥ(2iρ)|2ejn1φe−jn2φρdρdφ

= 1

(2π)2

∫ ∞

0

∫ π

−π
�s

( ρ
2i

)
|ĥ(ρ)|2ejn1φe−jn2φρdρdφ

= 1

(2π)2

∫ ∞

0
�s

( ρ
2i

)
|ĥ(ρ)|2ρdρ

∫ π

−π
ej(n1−n2)φdφ

= Ci

∫ π

−π
ej(n1−n2)φdφ, (42)

where we took advantage of the properties of the Fourier
transform and a change of variables. We used the fact that
the radial part is fixed and identical for all components. The
last integral is 1 if n1 = n2 and vanishes otherwise. This
means that the wavelet coefficients {〈s, ψ(n)i (· − x0)〉}n are
uncorrelated with common variance

1

(2π)2

∫ ∞

0
�s

( ρ
2i

)
|ĥ(ρ)|2ρdρ. (43)

In the Gaussian case, uncorrelation is equivalent to
independence.

Proof of Theorem 2: As in the proof of Theorem 1,
the covariance of the wavelet coefficients 〈s, ψ(n1)

i (·−x0)〉 and
〈s, ψ(n2 )

i (· − x0)〉 is given by the correlation form
Bs{ψ(n1)

i (· − x0), ψ
(n2)
i (· − x0)}. Since all of the moments

of our wavelets (which are based on the Simoncelli design)
vanish, we can make use of (41) and (12) to find the
covariance of the wavelet coefficients. Rewritten in polar
coordinates, it reads

Bs{ψ(n1)
i (· − x0), ψ

(n2)
i (· − x0)}

= 22iσ 2
0

(2π)2

∫ ∞

0

∫ π

−π
|ĥ(2iρ)|2
ρ2γ ej(n1−n2)φρdρdφ

= σ 2
0

(2π)2
22i

22i

∫ ∞

0

∫ π

−π
4iγ

ρ2γ |ĥ(ρ)|2ej(n1−n2)φρdρdφ

= σ 2
0

(2π)2
4iγ

∫ ∞

0

1

ρ2γ |ĥ(ρ)|2ρdρ
∫ π

−π
ej(n1−n2)φdφ

= Ci

∫ π

−π
ej(n1−n2)φdφ.

The last integral is 1 if n1 = n2 and vanishes otherwise. This
means that the wavelet coefficients {〈s, ψ(n)i (· − x0)〉}n are
uncorrelated with common variance

σ 2
0

(2π)2
4iγ

∫ ∞

0

1

ρ2γ |ĥ(ρ)|2ρdρ. (44)

In the Gaussian case, this implies that the wavelet
coefficients are i.i.d. Gaussian.

C. Description of the Software

Our algorithm has been programmed as a plug-in for
ImageJ, which is a public-domain image-processing platform.
It is implemented in Java.

Fig. 12. Graphical user interface of the detector of symmetry.

The options of the program can be controlled by the
settings window (Figure 12). This allows the user to determine
1) the different orders of symmetry to test, namely: ridge,
three-fold junction, cross intersection, 5-fold junction, and
6-fold junction; and 2) the number of wavelet scales.

The user is informed about the different steps of the
computation process by a log window. When the detection
and the classification terminate, a colored image pops up.
The different colors mark the different types of junctions. The
typical running time of the algorithm for two different orders
of symmetry for an image of size (512 × 512) pixels is around
a few seconds on a 2.4 GHz MAC.
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