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Angular Accuracy of Steerable Feature Detectors\ast 

Zsuzsanna P\"usp\"oki\dagger , Julien Fageot\dagger , Arash Amini\ddagger , John Paul Ward\S , and Michael Unser\dagger 

Abstract. The detection of landmarks or patterns is of interest for extracting features in biological images.
Hence, algorithms for finding these keypoints have been extensively investigated in the literature, and
their localization and detection properties are well known. In this paper, we study the complementary
topic of local orientation estimation, which has not received similar attention. Simply stated, the
problem that we address is the following: estimate the angle of rotation of a pattern with steerable
filters centered at the same location, where the image is corrupted by colored isotropic Gaussian noise.
For this problem, we propose an estimator formulated as linear combinations of circular harmonics
with given radial profiles. We prove that the proposed estimator is unbiased. This property allows
us to use a statistical framework based on the Cram\'er--Rao lower bound (CRLB) to study the limits
on the accuracy of the corresponding class of estimators. We aim at evaluating the performance
of detection methods based on steerable filters in terms of angular accuracy (as a lower bound),
while considering the connection to maximum likelihood estimation. Beyond the general results, we
analyze the asymptotic behavior of the lower bound in terms of the order of steerablility and propose
an optimal subset of components that minimizes the bound. We define a mechanism for selecting
optimal subspaces of the span of the detectors. These are characterized by the most relevant angular
frequencies. Finally, we project our template to the span of circular harmonics with given radial
profiles and experimentally show that the prediction accuracy achieves the predicted CRLB. As an
extension, we also consider steerable wavelet detectors.
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1. Introduction. Steerable feature detectors [39] are popular tools for the quantitative
analysis of images where the information that corresponds to the notions of rotation, direc-
tionality, and orientation is a key component. Their application area is continuously growing:
from nano to macro, from biomedical imaging [32] to astronomy [47], from material sciences
[5] to aerial and satellite imaging [20], and so on. The analysis of local directional patterns
also includes the detection of ridges and junctions of any order; applications can be found in
[44, 62, 27, 37].
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Typically, concerning steerable detectors, a two-step algorithm is used for identifying
features of interest and determine their orientation. The first step is to find their location in
an image. Then, the second step is to steer the detector centered at the given keypoints to
identify their exact orientation. Our approach is in line with this practice. Steerable functions
(a conventional detector or a wavelet frame of L2(\BbbR 2)) are used to identify the center of a
given pattern in an image. Then, we locally steer those filters that are centered at the same
point. The paper is devoted to the analysis of this second step: studying the problem of
extracting the local orientation of patterns in images. These local patterns, in particular,
include junctions or crossing points with N -fold angular symmetry of any order.

In this paper, we examine the behavior of steerable filters in orientation detection, provid-
ing a lower bound on the performance of any detector that is in the span of a given family of
steerable functions. In particular, we focus on steerable filters that are linear combinations of
circular harmonics with given radial profiles. We propose an estimator based on such steerable
filters and show that the estimator is unbiased. This allows us to analyze the limits on the
error of the estimation in a statistical framework using the Cram\'er--Rao lower bound (CRLB).
We investigate the connection to maximum likelihood estimation and show that, under some
assumptions, our measurement functions correspond to the maximum likelihood estimator.
We define the best subset of harmonics as the one that minimizes the CRLB for a given
class of detectors and we provide a criterion for obtaining it. We also analyze the asymptotic
behavior of the lower bound in terms of the number of harmonics. This gives a theoretical
limit on the precision of the estimation one can obtain with a given class of estimators. We
experimentally show that the actual performance of the given steerable detectors follows the
predicted theoretical bounds.

We focus on the continuous domain setup, because it allows for compact and intuitive
formulation. The discretization of the underlying filters can be achieved using standard tech-
niques. In practice, this step affects multiscale steerable analysis in two ways: it limits the
range of angular harmonics due to angular aliasing and limits the practical range of scales.
However, as shown in Figure 2, one can achieve a good estimation by selecting an appropriate
template with a small amount of polar-separable low-order harmonics.

1.1. State of the art. Classical methods to detect orientations are based on gradient
information (e.g., Canny edge detector [3]), on directional derivatives [62], and on the structure
tensor [19]. Variations of the latter method can be found in [24] and [2]. To capture higher-
order directional structures, the Hessian and higher-order derivatives can be used [12, 1].
While simple and computationally efficient, these methods have drawbacks: they only take
into account one specific scale and the estimation of the orientation can be overly sensitive to
noise.

Alternatively, directional pattern matching is also commonly used. It often relies on
the discretization of the orientation and thus demands a trade-off between accurate results
and computational cost. An important exception to this are the steerable filters, where one
may perform arbitrary (continuous) rotations and optimizations with a substantially reduced
computational overhead.

The basics of steerability were formulated by Danielsson [6] in the eighties and Freeman
and Adelson in the early nineties [13, 14, 15]. In [50], Simoncelli and Freeman proposed
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a new take on steerable filters: the steerable pyramid. The goal of their design was to
combine steerability with a multiscale detection scheme. This pioneering work had many
successful applications: contour detection [34], orientation analysis [48], and texture analysis
and synthesis [38]. Other applications of steerable filters were presented in [23, 63, 17, 21, 46,
61, 8].

In [30], multisteerable filters were designed and adjusted to the patterns of interest to
determine the precise angular distribution of coinciding branches. There, the detection and
classification of polar-separable patterns (including junctions) rely on a classical structure-
tensor scheme, complemented by the multisteerable filters. In [58], Unser and Chenouard
proposed a unifying parametric framework for two-dimensional (2D) steerable wavelet trans-
forms. The goal of [58] was to combine steerability with tight wavelet frames and propose a
general scheme to design such wavelets. In [40] and [41], the authors designed wavelets that
can serve as a basis to detect features such as junctions and local symmetry points. An appli-
cation of steerable wavelets for texture learning was presented in [9]. Here, steerable templates
are represented in the Fourier domain using circular harmonics. The order of the detector is
given by the number of harmonics, which also affects the performance of the detection.

An interesting instance of this direction of research is the monogenic wavelet transform
that gives access to the local amplitude and the local phase of the image, in addition to the
information on the local orientation [11, 16, 31, 53].

The extension of the steerable wavelet design based on the Riesz transform for higher
dimensions, along with potential biomedical applications, are presented in [4]. Spherical har-
monics, which are the three dimensional (3D) counterparts of circular harmonics, have also
been used to represent and detect features and shapes in three dimensions [42, 51]. There,
the authors also aim to identify symmetric structures; however, they search for symmetries in
an entire 3D shape, not locally.

Over the last decades, the notion of steerability has been further extended and generalized
to a broader group of geometric transformations. A general approach to construct scalable
functions was first given by Simoncelli et al. [49]. Perona generalized this to arbitrary compact
transformations without requiring the group properties [35]. Michaelis and Sommer set the
basis of steerability based on Abelian Lie groups [29]. Teo, in his doctoral dissertation [55]
and a series of papers with Hel-Or [56, 57], unified the existing theories and provided a solid
mathematical framework for the study of transformability based on the theory of Lie groups
and Lie algebras in general. A unified theory of steerable and quadrature filters based on Lie
groups was provided by Krajsek and Mester [26].

The authors are not aware of any previous studies that thoroughly address the angular
accuracy of steerable feature detectors.

1.2. Roadmap. The paper is organized as follows: In section 2.2, we provide a description
of our directional pattern model and formulate the estimation problem. In section 2.3, we
discuss our estimation strategy and propose a reference class of estimators. In section 2.4, we
identify the probability law of the measurement vector and introduce the CRLB. In section
2.5, we consider the connection to maximum likelihood estimation and demonstrate that our
orientation estimation framework is unbiased, which is crucial for the application of the CRLB.
In section 3, we provide the CRLB for orientation estimation based on steerable filters. We
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consider the case when the number of angular frequencies is finite (section 3.1) and also the
asymptotic case for a fixed radial profile (section 3.3). In section 3.2, we examine the question
of how to choose the best subset of harmonics to achieve the lowest CRLB. Section 4 contains
experiments related to the CRLB. In section 5, we extend our results to wavelets.

2. The estimation problem at a glance.

2.1. Notations. We use f(\bfitx ) with \bfitx \in \BbbR 2 and f(r, \theta ) with r \in \BbbR +, \theta \in [0, 2\pi ), to denote
the Cartesian and polar representations of the same 2D function f , respectively. Correspond-
ing notations in the Fourier domain are \^f(\bfitomega ) and \^f(\omega , \varphi ) with \bfitomega \in \BbbR 2 and \omega \in \BbbR +, \varphi \in [0, 2\pi ).
The Fourier transform of a Lebesgue-integrable, finite-energy function f \in L1

\bigl( 
\BbbR 2
\bigr) 
\cap L2

\bigl( 
\BbbR 2
\bigr) 

is denoted by \scrF \{ f\} = \^f and computed according to

(2.1) \^f(\bfitomega ) =

\int 
\BbbR 2

f(\bfitx )e - \mathrm{j}\langle \bfitx ,\bfitomega \rangle d\bfitx ,

where \langle \bfitx ,\bfitomega \rangle = x1\omega 1 + x2\omega 2 is the usual scalar product on \BbbR 2.
The 2D matrix of rotation by \theta 0 is denoted by

(2.2) R\theta 0 =

\biggl( 
cos(\theta 0)  - sin(\theta 0)
sin(\theta 0) cos(\theta 0)

\biggr) 
.

2.2. The estimation problem. Our interest in this paper lies in detecting a rotated pat-
tern J(\bfitx ) from a noisy signal of the form

I(\bfitx ) = J(R - \theta \ast (\bfitx  - \bfitx 0)) + S(\bfitx )(2.3)

using a steerable filter bank. Here, J denotes the general shape of the pattern of interest and
J(R - \theta \ast (\bfitx  - \bfitx 0)) its rotated version around location \bfitx 0 with an unknown angle \theta \ast . S is the
background signal, modeled as the realization of an isotropic Gaussian self-similar random
field. The motivation behind this choice is that the power spectrum of many natural images
is isotropic with an 1/\| \bfitomega \| \gamma type of decay, which is consistent with long-range dependencies
[36, 33]. Also, this model of background signal fits fluorescence microscopy images well [45],
which is relevant to many practical applications of orientation-estimation methods. Further
details on our noise model are given in Appendix A.

We shall perform the correlations between measurement filters and the image I in a sliding
fashion, and we are interested in determining the performance of this detection method in
terms of angular accuracy. To that end, we shall only examine the position where the detector
hits the target. Thus, without loss of generality, we set \bfitx 0 = 0 in (2.3).

We analyze the image I through a family of measurement filters \xi \alpha parameterized by a
(multi-)index \alpha . The measurements at location \bfitx 0 = 0 are then given by

q\alpha = \langle I, \xi \alpha \rangle = \langle J(R - \theta \ast \cdot ), \xi \alpha \rangle + \langle S, \xi \alpha \rangle .(2.4)

We also set u\alpha = \langle J, \xi \alpha \rangle and s\alpha = \langle S, \xi \alpha \rangle .
We distinguish three different cases related to the construction of q\alpha with \^\xi \alpha (\omega ) =

\^h\alpha (\omega )e
\mathrm{j}n\alpha \varphi (cf. Table 1). In this paper, we address the question of angular accuracy of

measurement filters constructed as conventional as well as wavelet detectors.
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Table 1
Construction of measurement functions.

q\alpha Radial profile Harmonics

Conventional detector

\alpha = n \in \BbbZ \^\xi n(\omega ) = \^h(\omega ) fixed e\mathrm{j}n\theta 

Wavelet detector

\alpha = (n, i) \in \BbbZ 2 \^\xi (n,i)(\omega ) = 2i\^h(2i\omega ) fixed e\mathrm{j}n\theta 

General detector

\alpha \in \BbbZ d \^\xi \alpha (\omega ) = \^h(\omega ) adaptive e\mathrm{j}n\alpha \theta 

The local orientation angle \theta \ast is estimated from the vector of measurements \bfitq = (q\alpha ).
Any estimator based on this framework is then a mapping E that takes the measurements \bfitq 
and returns an estimate \~\theta of \theta \ast .

2.3. Steerable filterbanks and estimation strategy. We perform the estimation of the
unknown angle \theta \ast by selecting a suitable filter \xi that is a linear combination of the measure-
ment filters \xi \alpha , and by selecting \~\theta as the solution of

(2.5) \~\theta = argmax\theta 0\in [0,2\pi ) \langle I, \xi (R\theta 0 \cdot )\rangle .

In order to define an estimator that meets the requirements of section 2.2, \xi needs to satisfy
three properties.

\bullet The filter \xi has to be a good approximation of the pattern of interest J , with the
consequence that (2.5) corresponds to the detection of this pattern at the correct
orientation. We note that angular (quasi-)symmetries in J might lead to misdetection
of the angle.

\bullet The filter \xi has to be robust to the background signal S, such that the estimation \~\theta 
mostly depends on the pattern J .

\bullet The estimator \~\theta in (2.5) should be computable only based on the knowledge of the
measurements (q\alpha ).

We now identify the filters \xi \alpha and \xi that allow us to achieve these three goals. To do so, we
rely on steerable filters. We briefly introduce the concepts of steerability and refer the reader
to Appendix B for more details.

We consider filters \xi \alpha \in L2(\BbbR 2) that are polar separable and have the form

(2.6) \xi \alpha (r, \theta ) = \eta \alpha (r)e
\mathrm{j}n\alpha \theta 

with \eta \alpha the radial profile and n\alpha \in \BbbZ the harmonic of \xi \alpha . We assume that \xi \alpha is normalized
such that \| \xi \alpha \| 2 = 1. The polar separability of the \xi \alpha 's implies that

\langle \xi \alpha , \xi \beta \rangle =
\int \infty 

0
\eta \alpha (r)\eta \beta (r)rdr

\int 2\pi 

0
e\mathrm{j}(n\alpha  - n\beta )\theta d\theta 

= 2\pi \delta [n\alpha  - n\beta ]

\int \infty 

0
\eta \alpha (r)\eta \beta (r)rdr(2.7)

with \delta [\cdot ] the Kronecker delta. This shows that the system (\xi \alpha ) is orthonormal when the n\alpha 

are all distinct.
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The measurement function \xi \alpha being polar separable, its Fourier transform is also polar
separable as

\^\xi \alpha (\omega , \varphi ) = \^h\alpha (\omega )e
\mathrm{j}n\alpha \varphi .(2.8)

The function \^h\alpha is related to \eta \alpha and n\alpha by the Hankel transform (see, e.g., [40, Proposition
2]).

We remark that the rotated version of \xi \alpha satisfies

(2.9) \xi \alpha (R\theta 0\bfitx ) = \xi \alpha (r, \theta + \theta 0) = e\mathrm{j}n\alpha \theta 0\xi \alpha (\bfitx ),

and is therefore steerable in the sense of Definition B.1 in Appendix B. We then select a filter
of the form \xi =

\sum 
\alpha c\alpha \xi \alpha , where the vector \bfitc = (c\alpha ) determines the shape of the filter. The

way of selecting \bfitc adequately is discussed in Proposition 2.2. Hence, \xi is the best possible
filter for the pattern J in the mean-square sense, once the measurement functions are given.

As a linear combination of steerable filters (see (2.9)), the filter \xi is steerable with

(2.10) \xi (R\theta 0\bfitx ) =
\sum 
\alpha 

c\alpha e
\mathrm{j}n\alpha \theta 0\xi \alpha (\bfitx ).

This means that it is sufficient to apply the filtering with \xi \alpha only once. Then, the rotated
filter for any arbitrary angle can be determined by a systematic and linear transformation of
the initial basis filters.

2.4. The law of measurement vector and the CRLB. We aim at evaluating the perfor-
mance of the estimators of \theta \ast \in [0, 2\pi ) depending on the measurement vectors \bfitq = (q\alpha ).

In this section, we only consider estimators \~\theta = \~\theta (\bfitq ) that are unbiased, a notion that
needs to be carefully defined for our image model (2.3). First of all, we assume in the rest
of this paper that at least one coefficient u\alpha = \langle J, \xi \alpha \rangle is nonzero for a frequency n\alpha \not = 0.
This excludes isotropic templates J for which the angular estimation is meaningless. We then
define N\mathrm{s}\mathrm{y}\mathrm{m} as the greatest common divisor of the n\alpha \not = 0 such that u\alpha \not = 0. The quantity

N\mathrm{s}\mathrm{y}\mathrm{m} reflects the angular symmetry of the template J for the radial profiles \widehat h\alpha . Then, the
angle \theta \ast is determined modulo 2\pi /N\mathrm{s}\mathrm{y}\mathrm{m}, and the unbiasedness is therefore defined as

(2.11) \BbbE [\~\theta ] = \theta \ast mod [2\pi /N\mathrm{s}\mathrm{y}\mathrm{m}] .

In practice, we often have that N\mathrm{s}\mathrm{y}\mathrm{m} = 1, typically when there are no angular symmetries on
the template. A case where N\mathrm{s}\mathrm{y}\mathrm{m} = 3 is illustrated in Figure 1 in section 4.2 for the junction
J2.

The performance of the estimator is then measured by the mean-square error

(2.12) \BbbE [(\~\theta (\bfitq ) - \theta \ast )2].

As is well known, there is a theoretical bound for the mean-square error that cannot be
surpassed by an unbiased estimator, called the CRLB. The latter is given by (see [22])

(2.13) \BbbE [(\~\theta (\bfitq ) - \theta \ast )2] \geq 1/FI(\theta \ast ) = CRLB(\theta \ast ),

where FI(\theta \ast ) is the Fisher information of the measurement vector \bfitq .
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In Theorem 2.1, we provide the mean vector, the covariance matrix, and the Gaussian
measurement vector and deduce its Fisher information. We recall here that the measurement
filters \xi \alpha are polar separable of the form (2.6).

Theorem 2.1. Consider measurement filters of the form (2.6). We assume that the \xi \alpha are
such that

(2.14)

\int \infty 

0
\omega 1 - 2\gamma | \^h\alpha (\omega )| 2d\omega < \infty ,

where the \^h\alpha are defined in (2.8). Then, the measurement vector \bfitq is Gaussian with mean
vector

(2.15) \bfitmu = \bfitmu (\theta \ast ) =
\Bigl( 
e\mathrm{j}n\alpha \theta \ast \langle J, \xi \alpha \rangle 

\Bigr) 
\alpha 

and covariance matrix

(2.16) C =

\biggl( 
\delta [n\alpha  - n\beta ]

\int \infty 

0
\omega 1 - 2\gamma \^h\alpha (\omega )\^h\beta (\omega )d\omega 

\biggr) 
\alpha ,\beta 

,

where the h\alpha are given in (2.8) and \gamma is the order of the whitening operator of S. The Fisher
information is then

(2.17) FI(\theta \ast ) = 2Re

\Biggl( \biggl( 
d\bfitmu 

d\theta \ast 

\biggr) H

C - 1 d\bfitmu 

d\theta \ast 

\Biggr) 
,

where \bfitx H = (\bfitx \ast )T is the Hermitian transpose of \bfitx .

The proof of Theorem 2.1 is postponed to Appendix C. The condition (2.14) is necessary
to make the problem well-posed, because \langle S, \xi \alpha \rangle is well-defined under this condition. It is
related to the existence of vanishing moments for \xi \alpha (see Appendix A). It is important to
notice that the mean \bfitmu (\theta \ast ) of \bfitq depends on \theta \ast , while the covariance C does not. This is due
to the assumption that the background signal is statistically isotropic.

2.5. Maximum likelihood estimator and unbiasedness. In this paper, we consider esti-
mators of the form (2.5), where \xi is a steerable filter given by \xi =

\sum 
\alpha c\alpha \xi \alpha . We show here

that, under some assumptions, this corresponds to the maximum likelihood estimator for an
adequate choice of the c\alpha . More precisely, one selects the c\alpha such that \xi corresponds to the
orthogonal projection of the pattern J to the basis filters (\xi \alpha ).

Proposition 2.2. We assume that the filters \xi \alpha have distinct harmonics (n\alpha \not = n\beta for \alpha \not = \beta )

and identical Fourier radial profiles (\widehat h\alpha = \widehat h for every \alpha ). Then, the estimator \~\theta defined in
(2.5) with \xi =

\sum 
\alpha u\alpha \xi \alpha with u\alpha = \langle J, \xi \alpha \rangle corresponds to the maximum likelihood estimator

(2.18) \theta \mathrm{M}\mathrm{L}\mathrm{E} = argmax
\theta 0\in [0,2\pi )

\BbbP (\bfitq | \theta 0)

of the image model (2.3).
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Proof. According to Theorem 2.1, conditionally to \theta \ast = \theta 0, the vector \bfitq is Gaussian
with mean \bfitmu (\theta 0) and covariance matrix C. Therefore, \BbbP (\bfitq | \theta 0) is proportional to
exp( - 1

2(\bfitq  - \bfitmu (\theta 0))
HC - 1(\bfitq  - \bfitmu (\theta 0)). Hence,

\theta \mathrm{M}\mathrm{L}\mathrm{E} = argmin
\theta 0\in [0,2\pi )

(\bfitq  - \bfitmu (\theta 0))
H C - 1(\bfitq  - \bfitmu (\theta 0)).(2.19)

The harmonics of the \xi \alpha being distinct, C is diagonal. Moreover, C[n\alpha , n\alpha ] depends only on
\eta \alpha = \eta , and is therefore independent of \alpha . This means that

\theta \mathrm{M}\mathrm{L}\mathrm{E} = argmin
\theta 0\in [0,2\pi )

(\bfitq  - \bfitmu (\theta 0))
H (\bfitq  - \bfitmu (\theta 0)).(2.20)

One can develop this latter expression. We remark that \bfitq H\bfitq and \bfitmu (\theta 0)
H\bfitmu (\theta 0) =

\sum 
\alpha | \langle J, \xi \alpha \rangle | 2

are independent of \theta 0. Therefore, we have finally,

\theta \mathrm{M}\mathrm{L}\mathrm{E} = argmin
\theta 0\in [0,2\pi )

( - 2\bfitq H\bfitmu (\theta 0)) = argmax
\theta 0\in [0,2\pi )

\sum 
\alpha 

q\alpha \langle J, \xi \alpha \rangle e - \mathrm{j}n\alpha \theta 0 .(2.21)

Moreover, recalling that q\alpha = \langle I, \xi \alpha \rangle , we can rewrite (2.5) as

\~\theta = argmax
\theta 0\in [0,2\pi )

\Biggl\langle 
I,
\sum 
\alpha 

c\alpha e
\mathrm{j}n\alpha \theta 0\xi \alpha 

\Biggr\rangle 
= argmax

\theta 0\in [0,2\pi )

\sum 
\alpha 

q\alpha c\alpha e
 - \mathrm{j}n\alpha \theta 0 .(2.22)

Hence, \~\theta = \theta \mathrm{M}\mathrm{L}\mathrm{E} as soon as c\alpha = \langle J, \xi \alpha \rangle , as expected.
We now demonstrate that the orientation estimation \~\theta defined from (2.5) with \xi =\sum 

\alpha u\alpha \xi \alpha is unbiased, which is crucial for the application of the Cram\'er--Rao bound. In
particular, Proposition 2.3 implies that \BbbE [(\~\theta  - \theta \ast )2] \geq CRLB(\theta \ast ).

Proposition 2.3. Let I be the analyzed image corresponding to the model (2.3), and \xi \alpha be
filters corresponding to different harmonics with identical Fourier radial profiles. Let N\mathrm{s}\mathrm{y}\mathrm{m} be
the greatest common divisor of the n\alpha \not = 0 such that u\alpha \not = 0 (assumed to be nonempty; see
section 2.4). Then, the estimator (2.5) with \xi =

\sum 
\alpha u\alpha \xi \alpha is unbiased in the sense of (2.11).

Proof. We recall here that u\alpha = \langle J, \xi \alpha \rangle . With Theorem 2.1, we know that \~\bfitq , defined
by \~q\alpha = q\alpha  - e\mathrm{j}n\alpha \theta \ast u\alpha , is a complex Gaussian vector with 0 mean. Starting with (2.22), we
therefore have that

(2.23) \~\theta = argmax
\theta 0

\sum 
\alpha 

| u\alpha | 2e\mathrm{j}n\alpha (\~\theta  - \theta 0) +
\sum 
\alpha 

\~q\alpha u\alpha e
 - \mathrm{j}n\alpha \theta 0 .

The first part in (2.23) is a deterministic function of \theta 0, 2\pi /N\mathrm{s}\mathrm{y}\mathrm{m} periodic, symmetric with
respect to \theta \ast , and reaching its maximum exactly for \theta 0 = \~\theta mod(2\pi /N\mathrm{s}\mathrm{y}\mathrm{m}). The second part
X(\theta 0) =

\sum 
\alpha \~q\alpha u\alpha e

 - \mathrm{j}n\alpha \theta 0 in (2.23) is random and such that

(2.24) \BbbP (X(\theta 0) \in [\theta \ast , \theta \ast +\Delta )) = \BbbP (X(\theta 0) \in [\theta \ast  - \Delta , \theta \ast ))

for any \Delta > 0. The symmetry of the deterministic part of (2.23) around \~\theta together with
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(2.24) then implies that

(2.25) \BbbP 
\biggl( \biggl\langle 

I,
\sum 
\alpha 

u\alpha e
\mathrm{j}n\alpha \theta 0

\biggr\rangle 
\in [\theta \ast , \theta \ast +\Delta )) = \BbbP 

\biggl( \biggl\langle 
I,
\sum 
\alpha 

u\alpha e
\mathrm{j}n\alpha \theta 0

\biggr\rangle 
\in [\theta \ast  - \Delta , \theta \ast )

\biggr) 
.

This means that, on average, \~\theta reaches its maximum exactly where the deterministic function
\theta 0 \mapsto \rightarrow 

\sum 
\alpha | u\alpha | 2e\mathrm{j}n\alpha (\~\theta  - \theta 0) does, which is a reformulation of (2.11).

The angle \~\theta in (2.22) is numerically computed with standard optimization techniques
or, simply, with a grid search. Finally, \~\theta is an estimator of the form (2.5), which depends
only on the measurements q\alpha , and is based on the steerable filter \xi that provides the best
approximation of the pattern J in span \{ \xi \alpha \} .

We shall now use the CRLB (2.13) together with the Fisher information (2.17) to evaluate
the optimal performance achievable by an unbiased estimator.

3. CRLB for an estimation with distinct harmonics.

3.1. The CRLB. In this section, we derive the CRLB in cases where the measurement
functions defined in (2.6) have distinct harmonics n\alpha . So that n\alpha = n, we shall consequently
index the measurement functions directly by their harmonics n \in H, where H \subset \BbbZ is the set
of all used harmonics. Specifically, we write

(3.1) \xi n(r, \theta ) = \eta n(r)e
\mathrm{j}n\theta 

and, in the Fourier domain,

(3.2) \^\xi n(\omega , \varphi ) = \^hn(\omega )e
\mathrm{j}n\varphi .

We recall that for n \not = m, \xi n and \xi m are orthogonal, due to the orthogonality of their
angular factors (see (2.7)). Moreover, we have that, for a real image I,

(3.3) q - n = \langle I, \xi  - n\rangle = \langle I, \xi n\rangle = \langle I, \xi n\rangle = qn,

where we used the fact that \eta n is real. Thus, q - n and qn essentially carry the same information,
so that the CRLB based on qn, n \in H, is the same as the CRLB based on qn with harmonics
n in the set

(3.4) H+ = \{ | n| : n \in H\} .

We further exclude n = 0 from consideration since the corresponding measurement does not
depend on the rotation angle \theta \ast . We remark that the correlation matrix C in (2.16) is diagonal
due to the distinct nature of the harmonics. As a consequence, the CRLB does not depend
on \theta \ast , as is easily deduced from Theorem 2.1.

We now calculate the CRLB for estimating the angle \theta \ast of the pattern in (2.3).

Theorem 3.1. Consider the image model (2.3). For measurements \bfitq = (qn) using distinct
harmonics n \in H, the exact form of the CRLB is

(3.5) CRLB =
\sigma 2
0/4\pi \sum 

n\in H+

n2| un| 2\int \infty 
0 \omega 1 - 2\gamma | \^hn(\omega )| 2\mathrm{d}\omega 

,

where we recall that un = \langle J, \xi n\rangle .
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The proof of Theorem 3.1 is given in Appendix D.

3.2. Conventional detector: Estimation from best \bfitN measurements. In the case of
conventional detectors, one chooses the same radial pattern \^h for all measurement functions
[58], which results in

(3.6) \^\xi n(\omega , \varphi ) = \^h(\omega )e\mathrm{j}n\varphi .

For many applications, this hypothesis is relevant because the pattern of interest J is itself
separable in polar coordinates [40]. This radial component is typically bandpass, given its
vanishing moments and finite energy. In practice, the choice of the radial profile (bandpass
filter \^h) specifies the scale of the detector.

Now we address the question of selecting the best steerable subspace for specifying our
steerable matched-filter detector. Suppose we have at our disposal the finite number N of
harmonics (i.e., a finite number of measurements). It is then natural to ask which harmonics
to consider to reduce the CRLB as much as possible. This is obtained after an immediate
corollary of Theorem 3.1.

Corollary 3.2. The CRLB for the estimation problem in the case of a single common radial
profile is

(3.7) CRLB =
1\sum 

n\in H+

n2 | un| 2
\sigma 2
0

4\pi 

\int \infty 

0
\omega 1 - 2\gamma 

\bigm| \bigm| \bigm| \^h(\omega )\bigm| \bigm| \bigm| 2 d\omega .
Corollary 3.2 simply exploits the fact that the \^hn are all equal to \^h in (3.5).

Considering (3.7), choosing the best measurements is equivalent to identifying the set
H+ \subset \BbbZ + with N members, for which the sum

(3.8)
\sum 

n\in H+

n2| un| 2

is maximized.

3.3. Conventional detector: Asymptotic behavior. Similarly to section 3.2, we fix the
radial part of \xi n as being independent of n and look at the asymptotic behavior in terms of
the number of harmonics, by choosing the set H+ of harmonics as \{ 1, . . . , N\} , and letting
N tend to infinity. Based on (3.7), we conclude that the asymptotic behavior of the CRLB
depends on the asymptotic (decay) properties of the coefficients un = \langle J, \xi n\rangle of the directional
pattern.

The question is whether the CRLB vanishes asymptotically as N \rightarrow \infty , which would
suggest the theoretical possibility of perfect estimation with infinitely many measurements.
We now study this question.

We start with a preliminary remark. By assumption, the pattern J has finite energy.
Since the measurement functions \{ \xi n\} n\in \BbbZ are orthonormal, by the Bessel inequality, we have
that

(3.9)
\sum 
n\in \BbbZ 

| un| 2 \leq \| J\| 22 < \infty ,
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hence, (un)n\in \BbbZ \in \ell 2(\BbbZ ). We see now how to refine this latter condition to have a vanishing
CRLB.

Proposition 3.3. In the framework of conventional detectors, for a pattern J \in L2(\BbbR 2), the
CRLB does not vanish when N \rightarrow \infty if and only if

(3.10)
\sum 
n\in \BbbZ 

n2| un| 22 < \infty .

Moreover, the un are the Fourier coefficients of the function

(3.11) G(\varphi ) =
1

2\pi 

\int \infty 

0

\^J(\omega , \varphi )\^h(\omega )\omega d\omega .

Therefore, the CRLB does not vanish if and only if the function G is differentiable with its
derivative being square integrable.

Proof. The CRLB is inversely proportional to (3.10), implying the first equivalence. We
then remark that, using the Parseval relation and polar coordinates, we have

un = \langle J, \xi n\rangle =
1

(2\pi )2
\langle \^J, \^\xi n\rangle =

1

(2\pi )2

\int 2\pi 

0

\int \infty 

0

\^J(\omega , \varphi )\^h(\omega )e\mathrm{j}n\varphi \omega d\omega d\varphi =
1

2\pi 

\int 2\pi 

0
G(\varphi )e\mathrm{j}n\varphi d\varphi .

(3.12)

The sequence (un) is in \ell 2(\BbbZ ), therefore, G is square integrable. The Fourier coefficients of
the (weak) derivative of G are then jnun. Hence, G is differentiable with a square integrable
derivative if and only if the sequence (jnun) is in \ell 2(\BbbZ ), proving the second equivalence in
Proposition 3.3.

The convergence of the series in (3.7) therefore depends on the decay properties of the
Fourier series of G(\varphi ), which, in turn, is related to its smoothness. In particular, if \^J has
angular jump discontinuities that are inherited by G, un will decay slowly like 1/n, and the
series will diverge. In this case, the CRLB will asymptotically vanish. This, for instance,
happens if \^J has jump discontinuities along infinite radial lines, which typically goes along
with a similar discontinuity in J (see [52]). This suggests that, for such patterns, the angular
error of a steerable detector can be made arbitrarily small by selecting a sufficient number of
harmonics.

4. Experiments. In practice, the radial profile \^h is typically chosen as the Laplacian of a
Gaussian (LoG) or a bandpass filter (even and compactly supported in the frequency domain).
For the experiments, we use the LoG filter and the first scale of the Meyer-type profile [7]

\^h(\omega ) =

\left\{     
sin
\bigl( 
\pi 
2 \nu 
\bigl( 
4\omega 
\pi  - 1

\bigr) \bigr) 
, \pi 

4 < \omega \leq \pi 
2 ,

cos
\bigl( 
\pi 
2 \nu 
\bigl( 
2\omega 
\pi  - 1

\bigr) \bigr) 
, \pi 

2 < \omega \leq \pi ,

0, otherwise

(4.1)

with the auxiliary function \nu (t) = t4(35 - 84t+ 70t2  - 20t3), \nu \in C3([0, 1]).
Other typical examples include Shannon-type [59], Simoncelli [38], Papadakis [43], and

Held [16] wavelets. Similar results are obtained when using these radial profiles due to the
fact that all these functions approximate the indicator function [\pi /4, \pi /2].



ANGULAR ACCURACY OF STEERABLE FEATURE DETECTORS 355

4.1. CRLB for analytical patterns. In this section, we compute the CRLB associated
with a few directional patterns for which explicit analytical formulas are provided. Here, we
are interested in the decay of the CRLB and how the choice of the harmonics affects this
curve. The goal is to analyze the following quantities: | un| , defined in (3.12), n| un| (as it
determines the decay rate of the CRLB), and the CRLB itself, given in (3.7), for a fixed
number of harmonics. As the pattern is given in a closed form, we compute these quantities
analytically, without the need of generating an actual discrete image.

We study four different types of patterns. Specifically,

\^J1(\omega , \varphi ) =

\Biggl\{ 
1 if cos(1.5\varphi )\beta > 0.8,

0 otherwise,
(4.2)

\^J2(\omega , \varphi ) =

\biggl( 
1

1 + \omega \lambda 

\biggr) 
cos(1.5\varphi )\beta (4.3)

\^J3(\omega , \varphi ) =

\Biggl\{ 
1 if cos(2\varphi )\beta > 0.8,

0 otherwise,
(4.4)

\^J4(\omega , \varphi ) = cos(2\varphi )\beta e - 
1
\alpha \omega (4.5)

within the support of \^h(\omega ) with \lambda = 2.1, \beta = 28, and \alpha = 2.5.
For computing the CRLB, we apply three different strategies: ``First N""; ``Best N""; and

``k-fold."" In the first case, we use the first N coefficients; in the Best N case, we select the
harmonics that maximize (3.8). In the case of k-fold symmetric patterns we choose the first
N multiples of k as harmonics. This latter choice accounts for the name ``k-fold.""

Related to (3.5), we have chosen the variance of the continuous domain Gaussian white
noise \sigma 2

0 = 1 since it provides only a scaling factor and does not influence the decay of the
curve. Figure 1 contains an illustration of the results.

In the case of sharp edges ( \^J1 (4.2) and \^J3 (4.4)), the rate of decay of the circular-harmonic
coefficients permits a theoretical vanishing limit for the CRLB. In the smooth angular cases
( \^J2 (4.3) and \^J4 (4.5)), the CRLB converges to a theoretical positive value.

Moreover, as expected, for the threefold patterns, only every third component and, for
the fourfold patterns, every fourth element plays a significant role in the estimation of the
orientation. This can be seen in the almost flat CRLB curve between multiples of three (or
four, respectively) in the FirstN strategy. We also observe a difference in performance between
generically choosing the first N k-fold symmetric coefficients (as a strategy for unknown k-fold
patterns) and making our choice of harmonics based on maximizing (3.8).

Finally, by looking at Figure 1, we observe that, with the right choice of harmonics, the
CRLB can be much reduced, even with a small number of harmonics.

4.2. Empirical optimality of the proposed estimator. In this section, we test the accuracy
of the estimation of the proposed estimator (2.22) on two symmetric and two asymmetric
patterns. Contrary to section 4.1, here we use only one analytical (Figure 2(A)) and three
discrete images (Figure 2(B), 2(C), and 2(D)) to test the accuracy of the estimator. We are
interested in the following: 1. How does the performance of the estimator relate to the actual
CRLB curve. 2. Testing empirically the unbiasedness of the estimator.
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Figure 1. First column from top to bottom: illustration of the analytically defined patterns \^J1 (4.2), \^J2

(4.3), \^J3 (4.4), and \^J4 (4.5) in the Fourier domain. Second column: | un| (3.12) and n| un| as a function of
harmonics (n). Third column: the CRLB (3.7) as a function of the number of harmonics.

The CRLB is calculated according to (3.7). By estimation, we mean the empirical error
of the estimator in the sense of (2.13). The parameters of the estimator are calculated as
follows. We build P = 1,000 different realizations to make the experiments statistically
reliable. We chose the variance of the noise such that it corresponds to a signal-to-noise
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Figure 2. Accuracy of the orientation estimation of the proposed estimator (dashed line) in the sense of
(2.13) compared to the CRLB given in (3.7) (continuous line), bias, and variance of the estimated angles from
P measurements of the proposed estimator. All angles are calculated in radians. A: Results on the analytically
defined junction \^J1 (4.2); top: with Meyer radial detector profile; bottom: with LoG detector profile. B. Results
on a threefold symmetric junction (drawn); top: with Meyer radial detector profile; bottom: with LoG detector
profile. C. Results on a T-shaped junction (drawn); top: with Meyer radial detector profile; bottom: with
LoG detector profile. D. Results on an arrow-shaped junction (drawn); top: with Meyer radial detector profile;
bottom: with LoG detector profile.

(SNR) of 17.22 dB. The typical SNR range of real images where the quality is still acceptable
is 15--35 dB, so that our experimental conditions are representative of a noisy image. The bias
of the estimator is \mu P - \theta \ast , where \mu P is the mean of the estimated angles from P measurements
\mu P = 1

P

\sum P
p=1

\~\theta p. The variance of the estimator is the variance of the estimations from P

measurements: 1
P

\sum P
p=1(

\~\theta p  - \mu P )
2. All angles are calculated in radians.

For symmetric patterns, we have chosen the analytically defined junction J1 (4.2) and a
sharp, drawn threefold junction (Figure 2, J5). For asymmetric patterns, we have chosen a
sharp, drawn T-shape junction (Figure 2, J6) and a sharp, drawn arrow-type junction (Figure
2, J7). The coefficients c\alpha in (2.22) are obtained in each case as the orthogonal projection of
the junction of interest on the measurement functions.

For the estimator, we used every third harmonic. For the radial part of our detector, we
have chosen the first scale of the Meyer wavelet profile and the LoG filter.

The results for the patterns are illustrated in Figure 2. We first show experimentally
that the estimator (2.22) is unbiased with more than one harmonic. The performances are
therefore comparable to the CRLB. We then observe that the accuracy of the estimator follows
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closely the CRLB curve, while staying above, as expected. This proves empirically the almost
optimality of the estimator (2.22) for the estimation of the angle \theta \ast .

5. Extension to wavelets.

5.1. Steerable wavelets. In this section, we extend our results on the CRLB to wavelet
detectors. Steerable wavelet frames are adapted to capture the local orientation of features, or
junctions, within a multiresolution hierarchy. To simplify the notations, we consider wavelets
that are centered at the origin. Moreover, we apply the multiorder complex Riesz transform
on a tight wavelet frame of L2

\bigl( 
\BbbR 2
\bigr) 
. Proposition 4.1 in [58] provides sufficient conditions on

the isotropic profile that has to be defined to generate a desired wavelet system. There are
various types of isotropic profiles satisfying the proposition; typical examples are given at the
beginning of section 4. For further details, we refer to [59].

Similarly to the design of conventional detectors, we take the values of n from the prede-
fined set of harmonics H = \{ n0, . . . , nN\} . The wavelet schemes generated in such a way are
often referred to as circular harmonic wavelets [58, 18]. In an extension of (3.1), the measure-
ment functions are indexed here by the pair \alpha = (n, i) of the harmonic n \in H and the scale
i \in \BbbZ . In particular, the circular harmonic wavelet \xi at scale i and harmonic channel n takes
the form

\^\xi n,i(\omega , \varphi ) = 2i\^h
\bigl( 
2i\omega 
\bigr) 
e\mathrm{j}n\varphi .(5.1)

We note that, in the case of wavelet measurements, we have multiple measurement functions
(at different scales) for the same harmonic n. We make the additional assumption that \^h is
real valued, which holds true for every aforementioned radial design. Finally, given that the
radial patterns \^h of interest are bandpass, we assume that \^h(\omega ) = 0 for \omega /\in (\pi /4, \pi ] to set
the fundamental scale.

5.2. Multiple scales: The CRLB. We recall that the goal is to estimate \theta \ast from the
measurements qn,i = \langle I, \xi n,i\rangle . We also denote un,i = \langle J, \xi n,i\rangle and sn,i = \langle S, \xi n,i\rangle .

To simplify future formulas, we introduce the following notations:

\~qn,i = 2 - i\gamma qn,i,(5.2)

bz =
1

2\pi 

\int \infty 

0
\omega z\^h(\omega )2\omega d\omega ,(5.3)

dz =
1

2\pi 

\int \infty 

0
\omega z\^h (\omega ) \^h (2\omega )\omega d\omega .(5.4)

We also set the two constants

(5.5) B = \sigma 2
0b - 2\gamma , D = \sigma 2

02
1 - \gamma d - 2\gamma .

The angle \theta \ast is estimated by steering the whole template, which can be seen as a sum of
templates. The task of estimating \theta \ast based on qn,i is the same as its estimation based on \~qn,i.
In particular, the CRLB is the same. We first give the covariance matrix of the measurements
\~qn,i.
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Proposition 5.1. The covariance matrix C of the random vector (\~qn,i)n\in \BbbZ ,i\in \BbbZ is given by

(5.6) C[(n, i), (m, k)] =

\left\{     
B if m = n, k = i,

D if m = n, | k  - i| = 1,

0 otherwise.

Proof. First, C[(n, i), (m, k)] = 0 as soon as m \not = n because the functions \xi n,i and \xi m,k

are orthogonal. Then, the assumption that \widehat h(\omega ) = 0 for \omega /\in (\pi /4, \pi ] ensures that \widehat h(2i\omega ) and\widehat h(2k\omega ) do not overlap for | k  - i| > 1, implying again that C[(n, i), (m, k)] = 0.
We now assume that m = n and | k  - i| \leq 1. When k = i, we easily recognize the

quantity (5.3) with z =  - 2\gamma in (2.16) and therefore deduce that C[(n, i), (n, i)] = \sigma 2
0b - 2\gamma = B.

Similarly, one shows using again (2.16) that C[(n, i), (n, k)] = D when | k  - i| = 1.

The main challenge in computing the Fisher information from (2.17) for wavelet measure-
ments is that, unlike in the context of section 3, the covariance matrix of the measurements
\{ \~qn,i\} is not diagonal, so it is not as straightforward to invert. But this challenge is still
surmountable because, as we see from (5.6), we can rearrange the measurements such that
the covariance matrix is (at most) tridiagonal. The exact rearrangement of the measurements
is described in detail in Appendix E.

The key idea is to divide the set of measurement indices into as few disjoint sets Gr as
possible (r = 1, . . . , g, where g denotes the total number of such sets). Then, each set Gr has
some lr elements of the form (nr, ir), . . . , (nr, ir + lr  - 1) for some harmonic nr \in H+ and
minimum scale ir. We reindex all measurements as \~qr| e using the notation

(5.7) (r| e) := (nr, ir + e - 1)

with r = 1, . . . , g and e = 1, . . . , lr. Then, the covariance matrix of the measurements \{ \~qr| e\} 
for each fixed r is Toepliz-tridiagonal of the form

(5.8) Tr =

\left(         

B D 0 0 . . . 0
D B D 0 . . . 0
0 D B D . . . 0
...

...
...

. . .
...

...
0 0 . . . D B D
0 0 . . . 0 D B

\right)         
lr\times lr

.

Moreover, the overall covariance matrix is block diagonal, with Tr, r = 1, . . . , g, as its diagonal
blocks. Using this reformulation of the problem, we are able to compute the CRLB explicitly.

Theorem 5.2. For wavelet measurements qr| e, r = 1, . . . , g, e = 1, . . . , lr, the Fisher infor-
mation is given by

FI(\theta \ast ) = 2

g\sum 
r=1

n2
r

lr\sum 
t=1

\biggl( 
B + 2D cos

\biggl( 
t\pi 

lr + 1

\biggr) \biggr)  - 1

\times 

\bigm| \bigm| \bigm| \bigm| \bigm| 
lr\sum 

e=1

2 - (ir+e - 1)\gamma ur| e sin

\biggl( 
e

t\pi 

lr + 1

\biggr) \bigm| \bigm| \bigm| \bigm| \bigm| 
2

.

(5.9)
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The CRLB for the estimation problem is given by 1/FI(\theta \ast ) and satisfies

B  - 2 | D| 
2
\sum 

n,i n
24 - i\gamma | un,i| 2

\leq CRLB \leq B + 2 | D| 
2
\sum 

n,i n
24 - i\gamma | un,i| 2

,(5.10)

where the constant B  - 2 | D| is strictly positive.

The proof of Theorem 5.2 is given in Appendix F. The Fisher information is expressed as
sums and inverses that are difficult to handle. However, we can give a fair estimate of the
CRLB by narrowing it to a range (5.10). In the case of a conventional detector, the value of
D is 0 (see (5.5)). Thus, the lower and upper bound of the range are equal and we arrive at
the same exact CRLB that we computed for the case of conventional detectors (3.7). In the
general case, it is crucial to remark that 0 < B  - 2| D| (see Appendix F); hence, the lower
bound in (5.10) is strictly positive. Finally, we remark that, as in the case of conventional
detectors, the Fisher information, and therefore the CRLB, does not depend on \theta \ast .

5.3. Asymptotic behavior for all scales and harmonics. We now consider the case where
we have access to each wavelet coefficient qn,i = \langle I, \xi n,i\rangle for n \in \BbbZ , i \in \BbbZ . Once again, for
real-valued data, we can limit ourselves to n \in \BbbZ + for computing the CRLB, due to Hermitian
symmetry.

Proposition 5.3. Assume that the order of the whitening operator associated with the Gaus-
sian self-similar random field \gamma is such that b0

| d0| \not = 21 - \gamma + 21+\gamma . Then, by observing \langle I, \xi n,i\rangle ,
the CRLB does not vanish if and only if

(5.11)
\sum 
i\in \BbbZ 

\sum 
n\in \BbbZ +

n24i\gamma | un,i| 2 < \infty .

Moreover, if J has an expansion in terms of \{ \xi n,i\} , then this is also equivalent to

( - \Delta )\gamma /2
\partial 

\partial \theta 
J(r, \theta ) \in L2(\BbbR 2).(5.12)

The proof of Proposition 5.3 is provided in Appendix G. It is the multiscale version of
Proposition 3.3. We interpret the fact that the CRLB vanishes as a possibility to perfectly
detect the correct angle from the set of measurements, assuming all the harmonics and scales
are available. The assumption on \gamma is technical and simply implies that one specific value of
\gamma should be avoided for a given wavelet. The values of such \gamma for different wavelets are given
in Appendix G.

5.4. Experiments with wavelets. In this section, we compute the CRLB of the junction
\^J2 (4.3) with decay rate \lambda = 2.1 and 4.5, respectively. These choices of the decay rate \lambda 
correspond to two cases: first, where the background decays faster than the junction (in the
Fourier domain) and, second, where it is the junction that decays faster. The value of the
exponent of the Gaussian field \gamma is fixed as 2.5.

For the experiments, we have chosen the Meyer-type wavelet (4.1). We again choose the
variance of the continuous domain Gaussian noise \sigma 2

0 = 1 since it provides a scaling factor
that does not influence the rate of decay of the curve.
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Figure 3. First column: Illustration of the analytically defined junction J2, where the decay rate of the
pattern is \lambda = 2.1, and 4.5, respectively. Second column: The CRLB as a function of the number of the largest
wavelet scale.

Based on the graphs of Figure 3, we can observe the followings. For the decay rate of \^J2,
\lambda = 2.1, one wavelet scale was not enough for the CRLB to converge to a theoretically perfect
estimation (like in Figure 1, second experiment). However, by increasing the number of scales,
the 0 bound is asymptotically achievable. This illustrates the main result of Proposition 5.3,
which shows that, by using finer scales, wavelets can improve the estimate, even in the case
of junctions of a fixed size. For the decay rate \lambda = 4.5, as expected, the CRLB converges to
a positive theoretical value.

6. Conclusion. In this paper, we considered the problem of estimating the orientations
of features in images. In particular, we examined the orientation of patterns with rotational
symmetry. Within the framework of measurement functions composed of steerable filters,
we proposed a steerable angle-estimation scheme and proved that the proposed estimator is
unbiased. We derived CRLBs on the error of estimation. We provided results on the con-
nections to maximum likelihood estimation. Moreover, we discussed the problem of selecting
the parameters in the detector functions to achieve the lowest CRLB for a given reference
template. In addition to the case of conventional detectors, we also studied the bounds on the
performance of steerable wavelet estimators. We proposed an estimator for identifying orien-
tations, and we compared its estimation error to the theoretical bounds. Finally, we provided
several experiments on different realistic junctions and directional patterns that confirm the
theory.

Appendix A. Background noise model.
For our background signal S to fulfill the requirements of self-similarity and isotropy, we

define it as the (nonstationary) solution of a fractional stochastic differential equation. The
general theory of such models and their non-Gaussian and sparse extensions is covered in [60].
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We assume that our background signal corresponds to a stochastic process S on \BbbR 2 that
is defined as the solution of the stochastic differential equation

( - \Delta )
\gamma 
2 S = W,(A.1)

where W is a 2D continuous-domain Gaussian white noise of variance \sigma 2
0 and ( - \Delta )

\gamma 
2 is the

fractional Laplacian operator associated with the isotropic Fourier-domain multiplier \| \bfitomega \| \gamma 
with \gamma \geq 0.

The intuitive idea here is to shape or ``color"" the white noise by an appropriately defined
inverse fractional Laplacian, which gives to the solution an inverse-power-law spectrum. The
field we obtain is the isotropic 2D generalization of the fractional Brownian motion [28].

The observation \langle S, f\rangle of the random process S through a suitable test function f is a
Gaussian random variable. The random process S is Gaussian with 0 mean (because W is)
and correlation form

(A.2) \scrB S(f, g) = \BbbE 
\Bigl[ 
\langle S, f\rangle \langle S, g\rangle 

\Bigr] 
.

The random variable \langle W, f\rangle is well-defined for f \in L2(\BbbR 2) [60]. Therefore, \langle S, f\rangle is
well-defined when ( - \Delta ) - \gamma /2f \in L2(\BbbR 2), which is equivalent, in the Fourier domain, to\int \infty 
0 \omega 1 - 2\gamma 

\int 2\pi 
0 | \^f(\omega , \varphi )| 2d\varphi d\omega < \infty . This condition yields (2.14) when f = \xi \alpha . Assume that f

has vanishing moments until order \lfloor \gamma \rfloor  - 1. This is, in particular, the case when f = ( - \Delta )\gamma /2\phi 
with \phi a smooth enough function in L1(\BbbR 2) \cap L2(\BbbR 2) [10, Proposition 5.1]. Then, \langle S, f\rangle is a
well-defined Gaussian random variable with mean 0 and variance \sigma 2

0\| ( - \Delta ) - \gamma /2f\| 22 = \sigma 2
0\| \phi \| 22.

The conditions on f ensure that ( - \Delta ) - \gamma /2f is square integrable. More generally, if f and g
have enough vanishing moments, then the correlation form (A.2) is evaluated as

(A.3) \scrB S(f, g) = \sigma 2
0\langle ( - \Delta ) - \gamma /2f, ( - \Delta ) - \gamma /2g\rangle = \sigma 2

0

(2\pi )2

\int \infty 

0

\int 2\pi 

0
\omega  - 2\gamma \widehat f(\omega , \varphi )\widehat g(\omega , \varphi )d\varphi \omega d\omega ,

where we have used the Parseval relation and the polar Fourier coordinates for the last equality.
We interpret (A.3) by saying that S is an isotropic random field with generalized power
spectrum PS(\bfitomega ) = PS(\omega ) = \omega  - 2\gamma .

Appendix B. Complement on steerability.
We briefly recap some basic notions and facts on steerable functions.

Definition B.1. A function \xi on the plane is steerable in the finite basis \{ \xi \alpha \} if, for any
rotation matrix R\theta 0, we can find coefficients \{ c\alpha (\theta 0)\} such that

(B.1) \xi (R\theta 0\bfitx ) =
\sum 
\alpha 

c\alpha (\theta 0)\xi \alpha (\bfitx ).

A family of functions \{ \xi \alpha \} is steerable if its linear span is invariant under arbitrary rotations.

The last part of Definition B.1 is equivalent to saying that, for each \theta 0, a matrix L(\theta 0)
exists such that

(B.2)

\left(   \xi 1(r, \theta + \theta 0)
...

\xi n(r, \theta + \theta 0)

\right)   = L(\theta 0)

\left(   \xi 1(r, \theta )
...

\xi n(r, \theta )

\right)   .
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An illustrative example of such a family is \{ cos(\theta ), sin(\theta )\} , whose rotations can be written
as

(B.3)

\biggl( 
cos(\theta + \theta 0)
sin(\theta + \theta 0)

\biggr) 
=

\biggl( 
cos(\theta 0)  - sin(\theta 0)
sin(\theta 0) cos(\theta 0)

\biggr) \biggl( 
cos(\theta )
sin(\theta )

\biggr) 
,

which is a weighted sum of the unrotated functions.
If \xi \alpha is polar separable as in (2.6), then its Fourier transform is also polar separable as

\^\xi \alpha (\omega , \varphi ) = \^h\alpha (\omega )e
\mathrm{j}n\alpha \varphi (B.4)

for some \^h\alpha related to \eta \alpha and n\alpha . We note that this formulation provides a direct connection
with the nth-order complex Riesz transform and leads to a comprehensive theory for the
design and analysis of steerable filters and wavelets [11, 25, 58, 40].

Appendix C. Proof of Theorem 2.1.
The vector \bfitq is Gaussian as a result of the ``integration"" of the background noise S. As

such, its law is characterized by its mean vector and covariance matrix. In the right part of
(2.5), the first term is deterministic and the second is random with mean 0. Hence, we have

\BbbE [q\alpha ] = \langle J(R - \theta \ast \cdot ), \xi \alpha \rangle = \langle J, \xi \alpha (R\theta \ast \cdot )\rangle = e\mathrm{j}n\alpha \theta \ast \langle J, \xi \alpha \rangle ,(C.1)

where we used (2.9) for the last equality.
For the covariance matrix, we have that

C[\alpha , \beta ] = \BbbE 
\Bigl[ 
(q\alpha  - \BbbE [q\alpha ])(q\beta  - \BbbE [q\beta ])

\Bigr] 
= \BbbE 

\Bigl[ 
\langle S, \xi \alpha \rangle \langle S, \xi \beta \rangle 

\Bigr] 
.(C.2)

Then, applying (A.3) to f = \xi \alpha and g = \xi \beta , we deduce that

C[\alpha , \beta ] =
\sigma 2
0

(2\pi )2

\biggl( \int \infty 

0
w1 - 2\gamma \widehat h\alpha (\omega )\widehat h\beta (\omega )d\omega \biggr) \delta [n\alpha  - n\beta ],(C.3)

as expected, where we have exploited the Fourier domain expression (B.4).
Finally, the Fisher information of a Gaussian model is provided by the Slepian--Bangs

formula [54, B.3.3]. In our case, however, we deal with complex Gaussian vectors, because the
measurement functions are typically complex (see (2.6)). We therefore use a generalization of
the Slepian--Bangs formula adapted to complex Gaussian random vectors [54, B.3.25]. More-
over, this formula simplifies because the covariance matrix does not depend on the parameter
\theta \ast , giving (2.17).

Appendix D. Proof of Theorem 3.1.
As already noted, the CRLBs based on the sets H and H+ are the same. We therefore

restrict the decision to positive harmonics n \in H+.
The functions \xi n are assumed to have distinct harmonics; therefore, the matrix (2.16) is

diagonal with

(D.1) C[n, n] =
\sigma 2
0

(2\pi )2

\int \infty 

0
\omega 1 - 2\gamma | \^hn(\omega )| 2d\omega .
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Knowing thatC is diagonal, we easily deduce, starting from (2.17), that the Fisher information
is in this case

FI(\theta \ast ) =
\sum 

n\in H+

(jn)e\mathrm{j}n\theta 
\ast 
un(C[n, n]) - 1( - jn)e - \mathrm{j}n\theta \ast un =

\sum 
n\in H+

n2| un| 2(C[n, n]) - 1.(D.2)

Knowing C[n, n], we deduce the Fisher information and, hence, the CRLB which is the inverse
of the Fisher information. We finally remark that the CRLB does not depend on \theta \ast in that
case.

Appendix E. Construction of the tridiagonal covariance matrix. The measurements
are rearranged in the following way to create an (at most) tridiagonal covariance matrix. Our
starting point is an arbitrary set of unique measurement indices of the form (n, i), where n is
the harmonic and i is the scale of the corresponding measurement. As before, since (n, i) and
( - n, i) carry the same information for real-valued patterns, with q - n,i = qn,i and u - n,i = un,i,
we can assume that all harmonics n are positive without loss of generality. We divide the set
of measurement indices into as few disjoint sets Gr as possible, subject to three conditions
(r = 1, . . . , g is an index for the sets).

\bullet Each set Gr consists of indices with a single fixed harmonic nr.
\bullet Each set Gr only contains indices with consecutive scales---it can also contain only a
single element.

\bullet If the two sets Gr, Gs share the same harmonic nr = ns, then the scales in Gr, Gs

differ by a minimum of 2.
The last condition is a consequence of the first two and requires one to have a minimal number
of sets. Here, g denotes the total number of such sets.

From the above conditions, it follows that each set Gr has some lr elements of the form
(nr, ir), . . . , (nr, ir + lr  - 1). We use the notation (5.7) and reindex all measurements as
\~qr| e. The idea behind this reindexing is that, following (5.6), the covariance matrix of the
measurements \{ \~qr| e\} for each fixed r is Toepliz-tridiagonal of the form (5.8). Moreover, the
overall covariance matrix is block diagonal with Tr, r = 1, . . . , g, as its diagonal blocks.

Appendix F. Proof of Theorem 5.2. We first show that the lower bound in (5.10) is
strictly positive; that is, B > 2 | D| . With the notations of section 5.2, we have that

| dz| =
1

2\pi 

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int \pi /2

\pi /4
\omega z\^h(\omega )\^h(2\omega )\omega d\omega 

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 1

2\pi 

\sqrt{} \int \pi /2

\pi /4
\omega z\^h(\omega )2\omega d\omega 

\int \pi /2

\pi /4
\omega z\^h(2\omega )2\omega d\omega 

=
1

2\pi 

1

2z/2+1

\sqrt{} \int \pi /2

\pi /4
\omega z\^h(\omega )2\omega d\omega 

\int \pi 

\pi /2
\omega z\^h(\omega )2\omega d\omega 

\leq 1

2\pi 

1

2z/2+2

\Biggl( \int \pi /2

\pi /4
\omega z\^h(\omega )2\omega d\omega +

\int \pi 

\pi /2
\omega z\^h(\omega )2\omega d\omega 

\Biggr) 
=

1

2z/2+2
bz,(F.1)
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where we have used the Cauchy--Schwarz inequality, and the inequality of arithmetic and
geometric means. By checking the equality conditions of the two inequalities, we see that
they do not happen for the cases of interest. The equality happens only if \^h(\omega ) = \^h(2\omega )
almost everywhere, which is not the case here. Thus, the inequality in (F.1) is strict. Finally,
by selecting z =  - 2\gamma , we deduce precisely that B > 2 | D| .

The estimation of \theta \ast from \{ qn,i\} is essentially the same as the estimation from \{ \~qr| e\} . In
particular, the CRLB is the same.

The measurement vector \~\bfitq is constructed by concatenating the vectors \~\bfitq r = (\~qr| 1, . . . , \~qr| lr),
r = 1, . . . , g. This is a normal vector, with its mean \~\bfitmu given by concatenating the vectors
\~\bfitmu r = (e\mathrm{j}nr\theta \ast 2 - ir\gamma ur| 1, . . . , e

\mathrm{j}nr\theta \ast 2 - (ir+lr - 1)\gamma ur| lr), r = 1, . . . , g.
The covariance of \~\bfitq , as already noted, is block diagonal of the form

\~\bfitC =

\left(     
T1 0 . . . 0
0 T2 . . . 0
...

...
. . .

...
0 0 . . . Tg

\right)     ,(F.2)

where the form of Tr is given by (5.8). Each Tr is a Toeplitz-tridiagonal matrix (or the scalar
B if lr = 1). Consequently, its eigenvalues are given by

\lambda (t)
r = B + 2D cos

\biggl( 
t\pi 

lr + 1

\biggr) 
,(F.3)

where 1 \leq t \leq lr. The corresponding eigenvectors are

\bfitv (t)
r =

\sqrt{} 
2

k + 1

\left(        
sin
\Bigl( 

t\pi 
lr+1

\Bigr) 
sin
\Bigl( 
2 t\pi 
lr+1

\Bigr) 
...

sin
\Bigl( 
k t\pi 
lr+1

\Bigr) 

\right)        .(F.4)

For positive nr (which we can assume without loss of generality), we have, according to (2.17),

FI(\theta \ast ) = 2Re

\Biggl( \biggl( 
d

d\theta 
\~\bfitmu 

\biggr) \mathrm{H}
\~\bfitC  - 1

\biggl( 
d

d\theta 
\~\bfitmu 

\biggr) \Biggr) 
= 2

g\sum 
r=1

n2
r
\~\~\bfitmu \mathrm{H}
r T

 - 1
r

\~\~\bfitmu r,(F.5)

where

(F.6) \~\~\bfitmu r = (2 - ir\gamma ur| 1, . . . , 2
 - (ir+lr - 1)\gamma ur| lr).

Thus, the explicit formula for the Fisher information is

FI(\theta \ast ) = 2

g\sum 
r=1

n2
r

lr\sum 
t=1

\biggl( 
B + 2D cos

\biggl( 
t\pi 

lr + 1

\biggr) \biggr)  - 1

\times 

\bigm| \bigm| \bigm| \bigm| \bigm| 
lr\sum 

e=1

2 - (ir+e - 1)\gamma ur| e sin

\biggl( 
e

t\pi 

lr + 1

\biggr) \bigm| \bigm| \bigm| \bigm| \bigm| 
2

.

(F.7)
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Also,

2

B + 2 | D| 

g\sum 
r=1

n2
r

\bigm\| \bigm\| \~\~\mu r

\bigm\| \bigm\| 2
2
\leq FI(\theta \ast ) \leq 2

B  - 2 | D| 

g\sum 
r=1

n2
r

\bigm\| \bigm\| \~\~\mu r

\bigm\| \bigm\| 2
2
,(F.8)

where we have used the positivity of B  - 2| D| . This shows that FI(\theta \ast ) is finite if and only if\sum g
r=1 n

2
r

\bigm\| \bigm\| \~\~\mu r

\bigm\| \bigm\| 2
2
is finite. Going back to the original indices (n, i), the CRLB therefore satisfies

(5.10).

Appendix G. Proof of Proposition 5.3. The first equivalence directly follows from
Theorem 5.2. We now show that the series

\sum 
n,i n

24 - i\gamma | un,i| 2 converges if and only if

( - \Delta )\gamma /2 \partial 
\partial \theta J(r, \theta ) \in L2(\BbbR 2), implying the second equivalence. By assumption on J , we write

J(r, \theta ) =
\sum 

(n,i)\in \BbbZ 2

vn,i\xi n,i(r, \theta ).(G.1)

We recall that, according to (53), \langle \partial \theta J, \xi n\rangle =  - \langle J, \partial \theta \xi n\rangle . Therefore,

\bigm\| \bigm\| \bigm\| \bigm\| ( - \Delta )\gamma /2
\partial 

\partial \theta 
J(r, \theta )

\bigm\| \bigm\| \bigm\| \bigm\| 2
2

=

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\sum 

(n,i)\in \BbbZ 2

vn,i( - \Delta )\gamma /2
\partial 

\partial \theta 
\xi n,i(r, \theta )

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

2

=

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\sum 

(n,i)\in \BbbZ 2

jnvn,i( - \Delta )\gamma /2\xi n,i(r, \theta )

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

2

=
\sum 

n1,n2,i1,i2

n1n2vn1,i1v
\ast 
n2,i2

\bigl\langle 
( - \Delta )\gamma /2\xi n1,i1 , ( - \Delta )\gamma /2\xi n2,i2

\bigr\rangle 
.(G.2)

With the same polar coordinate computation as in (A.3), we obtain that\bigl\langle 
( - \Delta )\gamma /2\xi n1,i1 , ( - \Delta )\gamma /2\xi n2,i2

\bigr\rangle 
is given by

2| i1 - i2|  - 2\mathrm{m}\mathrm{i}\mathrm{n}(i1,i2)\gamma 

2\pi 
\delta [n1  - n2]

\int \infty 

0
\omega 2\gamma \^h(\omega )\^h(2| i1 - i2| \omega )\omega d\omega .(G.3)

This can be simplified as

\bigl\langle 
( - \Delta )\gamma /2\xi n1,i1( - \Delta )\gamma /2\xi n2,i2

\bigr\rangle 
=

\left\{     
4 - i\gamma b - 2\gamma if n1 = n2, i1 = i2,

2 \cdot 4 - \mathrm{m}\mathrm{i}\mathrm{n}(i1,i2)\gamma d - 2\gamma if n1 = n2, | i1  - i2| = 1,

0 otherwise.

(G.4)
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Therefore,\bigm\| \bigm\| \bigm\| \bigm\| ( - \Delta )\gamma /2
\partial 

\partial \theta 
J(r, \theta )

\bigm\| \bigm\| \bigm\| \bigm\| 2
2

=
\sum 
n\in \BbbZ 

n2
\Bigl( \sum 
i\in \BbbZ 

\bigl( 
4 - i\gamma | vn,i| 2 b - 2\gamma + 2 \cdot 4 - i\gamma v\ast n,ivn,i+1d - 2\gamma + 2 \cdot 4 - (i - 1)\gamma v\ast n,ivn,i - 1d - 2\gamma 

\bigr) \Bigr) 
.(G.5)

By employing the Cauchy--Schwarz inequality,\bigm| \bigm| \bigm| \bigm| \bigm| \sum 
i

4 - i\gamma v\ast n,ivn,i+1

\bigm| \bigm| \bigm| \bigm| \bigm| \leq 
\sqrt{}    \Biggl( \sum 

i

4 - i\gamma | vn,i| 2
\Biggr) \Biggl( \sum 

i

4 - i\gamma | vn,i+1| 2
\Biggr) 

= 2\gamma 
\sum 
i

4 - i\gamma | vn,i| 2 .(G.6)

Also, we deduce

\bigm| \bigm| \bigm| \bigm| \bigm| \sum 
i

4 - (i - 1)\gamma v\ast n,ivn,i - 1

\bigm| \bigm| \bigm| \bigm| \bigm| \leq 
\sqrt{}    \Biggl( \sum 

i

4 - (i - 1)\gamma | vn,i| 2
\Biggr) \Biggl( \sum 

i

4 - (i - 1)\gamma | vn,i - 1| 2
\Biggr) 

= 2\gamma 
\sum 
i

4 - i\gamma | vn,i| 2 .

(G.7)

We arrive at the inequalities

\bigl( 
b - 2\gamma  - 2 - \gamma +2| d - 2\gamma | 

\bigr) \left(  \sum 
(n,i)\in \BbbZ 2

n24 - i\gamma | vn,i| 2
\right)  \leq 

\bigm\| \bigm\| \bigm\| \bigm\| ( - \Delta )\gamma /2
\partial 

\partial \theta 
J(r, \theta )

\bigm\| \bigm\| \bigm\| \bigm\| 2
2

\leq 
\bigl( 
b - 2\gamma + 2 - \gamma +2| d - 2\gamma | 

\bigr) \left(  \sum 
(n,i)\in \BbbZ 2

n24 - i\gamma | vn,i| 2
\right)  .(G.8)

Applying (F.1) with z =  - 2\gamma , we deduce that b - 2\gamma > 2 - \gamma +2 | d - 2\gamma | . Hence, (G.8) means that
( - \Delta )\gamma /2 \partial 

\partial \theta J(r, \theta ) \in L2(\BbbR 2) if and only if\sum 
(n,i)\in \BbbZ 2

n24 - i\gamma | vn,i| 2 < \infty .

The remaining part is to show that
\sum 

(n,i)\in \BbbZ 2 n24 - i\gamma | vn,i| 2 < \infty if and only if\sum 
(n,i)\in \BbbZ 2

n24 - i\gamma | un,i| 2 < \infty ,

from which we deduce the second part of Proposition 5.3. We therefore focus on the relation-
ship between un,i and vn,i and remark that

un,i = \langle J(r, \theta ), \xi n,i\rangle =
\sum 
n\prime ,i\prime 

vn\prime ,i\prime 
\bigl\langle 
\xi n\prime ,i\prime , \xi n,i

\bigr\rangle 
.(G.9)
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Again, it is straightforward to verify that

\bigl\langle 
\xi n\prime ,i\prime , \xi i,n

\bigr\rangle 
=

\left\{     
b0 if n = n\prime , i = i\prime ,

2d0 if n = n\prime , | i - i\prime | = 1,

0 otherwise.

(G.10)

Hence,

un,i = 2d0vn,i - 1 + b0vn,i + 2d0vn,i+1(G.11)

and

2 - i\gamma un,i =
\bigl( 
21 - \gamma d0

\bigr) \Bigl( 
2 - (i - 1)\gamma vn,i - 1

\Bigr) 
+ b0

\bigl( 
2 - i\gamma vn,i

\bigr) 
+
\bigl( 
21+\gamma d0

\bigr) \Bigl( 
2 - (i+1)\gamma vn,i+1

\Bigr) 
.(G.12)

This indicates that, for any given n, the sequence
\bigl\{ 
2 - i\gamma un,i

\bigr\} 
i\in \BbbZ is the result of applying to

the sequence
\bigl\{ 
2 - i\gamma vn,i

\bigr\} 
i
the finite impulse response filter with z transform

F (z) = 21 - \gamma d0z
 - 1 + b0 + 21+\gamma d0z.(G.13)

This filter has no poles on the unit circle. Moreover, if

b0
| d0| 

\not = 21+\gamma + 21 - \gamma ,(G.14)

then none of its zeros will lie on the unit circle. Thus,

0 < min
\omega \in [0,2\pi )

\bigm| \bigm| F \bigl( e\mathrm{j}\omega \bigr) \bigm| \bigm| 2 \leq max
\omega \in [0,2\pi )

\bigm| \bigm| F \bigl( e\mathrm{j}\omega \bigr) \bigm| \bigm| 2 < \infty .(G.15)

The filtering relationship between the two sequences implies the following inequalities on their
energies:

\biggl( 
min

\omega \in [0,2\pi )

\bigm| \bigm| F \bigl( e\mathrm{j}\omega \bigr) \bigm| \bigm| 2\biggr) \sum 
i\in \BbbZ 

\bigm| \bigm| 2 - i\gamma vn,i
\bigm| \bigm| 2 \leq \sum 

i\in \BbbZ 

\bigm| \bigm| 2 - i\gamma un,i
\bigm| \bigm| 2 \leq \biggl( max

\omega \in [0,2\pi )

\bigm| \bigm| F \bigl( e\mathrm{j}\omega \bigr) \bigm| \bigm| 2\biggr) \sum 
i\in \BbbZ 

\bigm| \bigm| 2 - i\gamma vn,i
\bigm| \bigm| 2 .

(G.16)

Thus,\biggl( 
min

\omega \in [0,2\pi )

\bigm| \bigm| F \bigl( e\mathrm{j}\omega \bigr) \bigm| \bigm| 2\biggr) \sum 
(i,n)\in \BbbZ 2

n24 - i\gamma | vn,i| 2 \leq 
\sum 

(i,n)\in \BbbZ 2

n24 - i\gamma | un,i| 2

\leq 
\biggl( 

max
\omega \in [0,2\pi )

\bigm| \bigm| F \bigl( e\mathrm{j}\omega \bigr) \bigm| \bigm| 2\biggr) \sum 
(i,n)\in \BbbZ 2

n24 - i\gamma | vn,i| 2 .(G.17)

Consequently, \sum 
n,i

n24 - i\gamma | vn,i| 2 < \infty \Leftarrow \Rightarrow 
\sum 
n,i

n24 - i\gamma | un,i| 2 < \infty ,(G.18)

as expected, and the proof is finished.
We finally remark that the value of \gamma that is excluded in the proof satisfies (G.14). We

provide the corresponding values for different radial profiles in Table 2.
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Table 2
Excluded \gamma values.

Wavelet type Excluded \gamma 

Shannon [59] \infty 
Simoncelli [38] 0.736

Meyer [7] 1.978
Papadakis [43] 1.476

Held [16] 1.443
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