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ABSTRACT

The Matérn class is a parametric family of autocorrelation
functions that is commonly used in geostatistics. We argue
that a generalized, anisotropic version of this model is suitable
for capturing the correlation structure of a variety of natural
images. We specify the optimal space for the MMSE recon-
struction of stochastic Matérn signals from their uniformly-
sampled noisy measurements (generalized sampling problem).
We prove that the optimal reconstruction space is generated
by the multi-integer shifts of a Matérn function which form
a Riesz basis. Based on this representation, we propose a
practical lter-based reconstruction method that relies on the
prior identication of the Matérn parameters from the mea-
sured data. We present experimental results to justify the use
of the Matérn model and to demonstrate the performance of
our signal-adapted reconstruction technique.

1. INTRODUCTION

The Matérn class is a parametric family of autocorrelation
functions that is of practical value in geostatistics for the
prediction/estimation—also referred to as kriging—of spatial
data [1]. To the best of our knowledge, this signal model has
not yet received much attention in the signal processing lit-
erature. Recently, an extensive overview of kriging was pre-
sented in [2], but it did primarily focus on the exponential
case—the simplest instance of the Matérn model [1]. The
Matérn class can also be viewed as a (fractional) generaliza-
tion of the Markov Random Field model which is often used
for modeling images [3]. Also relevant is the observation that
many natural images exhibit a 1/‖ωωω‖τ -like spectral decay [4],
which is compatible with the Matérn model.

Our purpose in this paper is to present further arguments
in favor of the Matérn class and to demonstrate its useful-
ness for stochastic image modeling and processing. We will
concentrate on the 2D case and consider the generalized sam-
pling problem that is summarized in Fig. 1. Specically, we
assume that the signal s(x) that we are sampling is a realiza-
tion of a Matérn stochastic process. The measurements are
affected by blur (prelter h) and additive noise n. Our goal
is to obtain the best signal reconstruction srec(x) that mini-
mizes the mean square estimation error E{|srec(x)− s(x)|2}
for all x ∈ Rd. In our previous work, we have shown that
this could be achieved by means of a hybrid Wiener lter
that accepts discrete input data g[k] and determines the op-
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Fig. 1. Practical Sampling Setup and Reconstruction.

timal signal coefcients in a reconstruction space spanned
by the multi-integer shifts of a suitable generating function
ϕ(x) that is generally not bandlimited [5, 6]. Our main con-
tribution here will be to introduce an extended version of the
Matérn power spectral density (PSD) that can account for im-
age anisotropies, and to rigorously specify a Riesz basis (via
its generating function ϕ(x)) for the corresponding optimal
reconstruction space. We will demonstrate the suitability of
this model for natural images. To make the method practi-
cal, we also introduce an estimation procedure for identifying
the Matérn parameters and the noise variance from the noisy
measurements.

In the following section, we briey discuss the sampling
problem for stationary stochastic signals, its optimal solu-
tion, and the mathematical specication of a stable recon-
struction basis. In Section 3, we present the Matérn PSD
and its anisotropic extension and prove that the underlying
correlation function generates a Riesz basis of the optimal re-
construction space. In Section 4, we demonstrate the aptness
of the model in capturing the correlation structure of images
and how it can be used for improved image reconstruction.
We give a brief description of our parameter-estimation pro-
cedure and present experimental results that justify the use of
the Matérn model for reconstruction. We display examples
where our blind estimation method is competitive with the
best possible bandlimited reconstruction (oracle solution).

2. SAMPLING AND RECONSTRUCTION

Our measurement model follows the generalized sampling
setup in Fig. 1,

g[k] = (h $ s)(k) + n[k], (1)

!!"#"$%&#'(''#)'*+#,-)*-.()/))"0())*"!111 !23445"())*



where s(x) is the continuous-space signal that is a realiza-
tion of a zero-mean stationary process with autocorrelation
css(x), (h $ s)(k) are the samples of preltered signal, and
n[k] is a discrete additive, zero-mean white noise component
with variance σ2. The reconstruction space,

V (ϕ) =



f(x) =

∑

k∈Zd

c[k]ϕ(x − k) | c ∈ &2(Z
d)



 , (2)

is spanned by the multi-integer shifts of the generating func-
tion ϕ(x). For this representation to be unambiguous, we re-
quire that {ϕ(x − k)}k∈Zd forms a Lp-stable Riesz basis of
V (ϕ), for 1 ≤ p ≤ ∞. This is ensured provided that the two
admissibility conditions are met:

0 < A2
ϕ ≤

∑

k∈Zd

|ϕ̂(ωωω + 2πk)|2 ≤ B2
ϕ < ∞, (3)

sup
x∈[0 1]d

∑

k∈Zd

|ϕ(x − k)| < ∞. (4)

where ϕ̂(ωωω) is the Fourier transform of ϕ [7].
The next theorem states that the MMSE solution to the

reconstruction problem lies in an integer shift-invariant re-
construction space of the type dened above. It also gives
closed-form expressions for the optimal generator ϕ(x) and
the optimal digital correction lter r[k] in Fig. 1.

Theorem 1 [5] Given the measurement model (1), the MMSE
estimate of s(x) lies in the integer-shift-invariant space gen-
erated by

ϕ(x) = (h̄ $ css)(x), (5)

where h̄(x) = h(−x). The optimal solution is

srec(x) =
∑

k∈Zd

(r ∗ g)[k] ϕ(x − k), (6)

where the Fourier transform of the digital correction lter
r[k] is

R(ejωωω) =
1

∑
k∈Zd ϕ̂(ωωω + 2πk)ĥ(ωωω + 2πk) + σ2

. (7)

3. MATÉRN CLASS OF PSD

In this section, we present the isotropic and anisotropic (more
general) Matérn power spectral densities and show that the
Matérn correlations are valid (i.e., Lp-stable) generators of
the reconstruction space.

3.1. Isotropic Matérn PSD

The multidimensional Matérn PSD is dened as (cf. [1, 8]),

φ̂iso(ωωω) =
σ2

0

(α2 + ‖ωωω‖2)ν+d/2
, (8)

σ2
0 > 0, is the innovation variance,
α > 0, represents the autocovariance range,
ν > 0, measures the smoothness of the process.

It is an isotropic function, meaning that the process does not
possess any preferred “direction” of evolution. The corre-
sponding autocorrelation function of the process is given by,

φiso(x) =
σ2

0

√
πd

2ν−1Γ(ν + d/2)α2ν
(α‖x‖)νKν(α‖x‖), (9)

where Kν is the modied Bessel function of the second kind.
It is known that Kν(u) > 0 for positive u, and that it rapidly
decays for increasing u. We now prove that φiso(x) and its
integer-shifts form a Lp-stable Riesz basis by checking for
the admissibility conditions (3) and (4).

Proposition 1 For all ν > −d+1
4 , the function φiso(x) has

Riesz bounds given by

0 < A2
φiso

≤
∑

k∈Zd

|φ̂iso(ωωω + 2πk)|2 ≤ B2
φiso

< +∞,

A2
φiso

≥ σ4
0

(α2 + 4π2d)2ν+d
, (10)

B2
φiso

≤
(

σ4
0

α4ν+2d
+
σ4

0 2d πd/2ζ(2ν + d+1
2 )

2Γ(d
2 + 1)(2π)4ν+2d

)
, (11)

where ζ(·) is the Riemann-zeta function. For ν > 0, the func-
tion φiso(x) satises the Lp-stability condition, that is,

sup
x∈[0 1]d

∑

k∈Zd

|φiso(x + k)| < +∞, ∀ x ∈ [0 1]d.

Note that the above results hold for any number of dimen-
sions, d ≥ 1.

3.2. Anisotropic Matérn PSD

We introduce an anisotropic version of the Matérn PSD by
applying a similarity transform (scaling and rotation) of the
coordinate system. The 2-D version of the model is

φ̂ani(ωωω) = σ2
0

(α2+A · ω2
1 + B · ω2

2 + C · ω1ω2︸ ︷︷ ︸
ω2

e
(ωωω)

)ν+1
, (12)

A =
(
cos2(θ) + sin2(θ)

(1−η)2

)
, B =

(
cos2(θ)
(1−η)2 + sin2(θ)

)
,

C = −sin(θ)cos(θ)
(

1
(1−η)2 − 1

)
,

where θ is the angle between the principal direction of
anisotropy and the abscissa, and 0 ≤ η < 1 is the ellipticity of
the anisotropy. When η = 0, there is no anisotropy and (12)
reduces to (8) for d = 2, irrespective of the value of θ. Ex-
amples of isotropic and anisotropic Matérn PSDs are shown
in Figs. 2 and 3 (parameters: σ0 = 1, α = 0.25, ν = 0.5).
The generalized Matérn function, φani(x) also generates an
Lp-stable Riesz basis.
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Fig. 2. Log plot of Isotropic Matérn PSD in 2-D.

Fig. 3. Log plot of Anisotropic Matérn PSD in 2-D.

Proposition 2 For all ν > − 1
4 , the function φani(x) has

Riesz bounds given by

0 < A2
φani

≤
∑

k∈Z2

|φ̂ani(ωωω + 2πk)|2 ≤ B2
φani

< +∞,

A2
φani

≥ σ4
0

(α2 + 8π2b2)2ν+2
, (13)

B2
φani

≤
(

σ4
0

α4ν+4
+
σ4

0 2πζ(2ν + 3
2 )

(2aπ)4ν+4

)
, (14)

for some a, b > 0. For ν > 0, φani(x) satises the Lp-
stability condition, that is,

sup
x∈[0 1]d

∑

k∈Zd

|φani(x + k)| < +∞, ∀ x ∈ [0 1]d.

Since, ϕ(x) = (h̄ $ css)(x) in (5) is the generating func-
tion of the optimal reconstruction space, we would like it to
be admissible for css(x) = φani(x).

Fig. 4. Aerial View image: Isotropic PSD, η = 0.098, θ =
176.765◦, σ0 = 56.604, α = 0.021, ν = 0.410.

Fig. 5. D37 Brodatz texture: Anisotropic PSD, η = 0.407,
θ = 176.674◦, σ0 = 46.811, α = 0.083, ν = 0.320.

Proposition 3 If h(x) ∈ L1(Rd) and the set A = {k ∈ Zd :
ĥ(ωωω + 2πk) *= 0 ∀ ωωω ∈ [0 2π)d} *= ∅, then ϕ(x) = (h̄ $
φani)(x), is also an admissible generating function; i.e., ϕ(x)
generates an Lp-stable Riesz basis.

4. RECONSTRUCTION USING MATÉRN MODEL

We now propose to use the generating function ϕ(x) = (h̄ $
φani)(x) to specify the optimal reconstruction space. We con-
sider a texture (Brodatz-D37) and a natural image (Aerial
View) for this purpose. The gray dots in Figs. 4 and 5 indi-
cate the values of the periodogram of the images as a function
of ωe, which is the distance from the origin to a point whose
locus is an ellipse (see insets). The solid line in each gure is
the generalized Matérn model as a function of ωe t to the pe-
riodogram of the image. It is clearly seen that the generalized
Matérn model captures the trend of the periodograms while
accounting for the anisotropy in D37 texture via the elliptic-
ity parameter η.
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Fig. 6. Performance of reconstruction methods: SNR Varia-
tion for Aerial view.

4.1. Estimation of Matérn parameters

We estimate the parameters in φani viz-a-viz, ellipticity η, an-
gle θ and the Matérn parameters σ0, α, ν and also the noise
variance σ2 by performing a non-linear least squares mini-
mization of the following cost function,

ε =
∑

ωωω∈(0,2π)2

[
log

(
Φ̃(ωωω) + σ̃2

)
− log

(
Φ̂np(ωωω)

)
− γe

]2
,

where Φ̃(ωωω) =
∑

k∈Zd |ĥ(ωωω + 2πk)|2φ̂ani(ωωω + 2πk), Φ̂np

is the periodogram of the noisy measurements g[k] and γe =
0.57721, is the Euler-Mascheroni constant, to account for the
bias due the log function. We exclude ωωω = 0 in the summa-
tion to avoid spurious entries for the DC component in the
periodogram Φ̂np.

4.2. Results

In our experiments, the reference scale for the signal and its
reconstruction was T = 1. The signal was blurred with a
standardized Gaussian prelter and downsampled by a factor
of two. The measurements were corrupted by the addition of
various levels of white Gaussian noise.

The noise variance and the parameters of the anisotropic
Matérn PSD were estimated from these noisy measurements.
The reconstruction of the images at original resolution was
performed according to the procedure outlined in Theorem 1
using css = φani with the estimated parameters. This was
comparedwith the optimally-compensatedbandlimited recon-
struction, namely EU-bandlimited [6], the textbook imple-
mentation of the Wiener lter associated with a bandlimited
version of the PSD, and Sinc-interpolation without compen-
sation (Shannon’s method). Some of these are referred to as
ORACLE-solutions since they used the noise-free PSD to de-
rive the best possible reconstruction lter. Figs. 5 and 6 show
the SNR of reconstruction for various noise levels. We see
that we perform consistently better than the Oracle Textbook-
bandlimited and Sinc-interpolation methods. We even outper-
form the Oracle EU-bandlimited method at lower noise levels.
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Fig. 7. Performance of reconstruction methods: SNR Varia-
tion for D37 Brodatz texture.

5. CONCLUSIONS

In this work, we have suggested a practically viable method
for the MMSE reconstruction of images from their preltered
noisy samples using the Matérn stochastic model. We have
proposed the use of an anisotropic Matérn function which is a
more general model that accounts for anisotropies in images.
We also give illustrations to justify the use of the anisotropic
Matérn PSD and demonstrate the superiority of our
non-bandlimited optimal reconstruction using the anisotropic
Matérn function in comparison to the oracle-bandlimited re-
constructions.
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