
IEEE SIGNAL PROCESSING LETTERS, VOL. 13, NO. 7, JULY 2006 437

Matérn B-Splines and the Optimal
Reconstruction of Signals

Sathish Ramani and Michael Unser, Fellow, IEEE

Abstract—Starting from the power spectral density of Matérn
stochastic processes, we introduce a new family of splines that
is defined in terms of the whitening operator of such processes.
We show that these Matérn splines admit a stable representation
in a B-spline-like basis. We specify the Matérn B-splines (causal
and symmetric) and identify their key properties; in particular,
we prove that these generate a Riesz basis and that they can be
written as a product of an exponential with a fractional polynomial
B-spline. We also indicate how these new functions bridge the
gap between the fractional polynomial splines and the cardinal
exponential ones. We then show that these splines provide the
optimal reconstruction space for the minimum mean-squared
error estimation of Matérn signals from their noisy samples. We
also propose a digital Wiener-filter-like algorithm for the efficient
determination of the optimal B-spline coefficients.

Index Terms—Fractional splines, Matérn processes, Matérn
splines, minimum mean-squared error (MMSE) estimation, power
spectral density (PSD), Riesz bases.

I. INTRODUCTION

THE Matérn class is a parametric family of power spectral
densities (PSDs) that was introduced by Bertil Matérn [1]

to model a large variety of naturally occurring stationary pro-
cesses in one dimension. This model is commonly used in geo-
statistics for the prediction/estimation of spatial data and is also
well known in the Kriging literature [1], [2]. The general form
of the Matérn PSD is

(1)

It is parametrized by three real-valued quantities: the amplitude
, the exponential factor , and the degree
(which is one less than the order). A generic whitening

operator of this process is denoted by . Specific instances
are the causal and symmetric versions of the operator, which are
best defined via their Fourier transforms

causal (2)

symmetric (3)
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We define a cardinal Matérn spline with parameters as
a function such that

(4)

where is the Dirac distribution. Such a spline has singular-
ities of order at the integers.

Our goal in this letter is to construct a Riesz basis for the stable
representation of these Matérn splines. The basis is generated
from the integer-shifts of a so-called Matérn B-spline, which is
a pulse-shaped spline that is well localized in the sense of its es-
sential support being the shortest possible. We develop our for-
mulation for the causal operator, keeping in mind that a parallel
development can be made for the symmetric operator as well.

This letter is organized as follows. In Section II, we construct
the Matérn B-splines (both causal and symmetric) and present
their main properties. We then show, in Section III, how to use
these splines, and the corresponding B-spline representation, for
the optimal interpolation/estimation of Matérn stochastic pro-
cesses from their noisy samples at the integers.

II. MATÉRN B-SPLINE

A. Green Function of the Matérn Whitening Operator

Using distributional calculus [3], it can be shown that the
(causal) Green function of for noninteger is

(5)

where is the Gamma function, and is the one-sided
power function

otherwise.
(6)

Using this result, we can solve (i.e., integrate) (4) to get an ex-
plicit Matérn spline representation

(7)

where is an exponential polynomial in the null-space
of , which still needs to be specified by imposing some
boundary conditions. In the present cardinal setting, the pres-
ence of is not a problem because we can show that it is
also in the span of , which singles out these
functions as the fundamental building blocks of Matérn splines.
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Fig. 1. Causal Matérn B-splines for � = 0 to 2.5 in steps of 0.25.

Their downside, however, is that they are not well localized and
potentially nonstable, unlike their B-spline counterparts.

B. Causal Matérn B-spline

We propose to construct the Matérn B-splines of real degree
by taking appropriate (fractional) weighted differences

of the Green function (5). Here, we consider a complex but
restrict ourselves to the case .

The forward weighted-differences operator (localization op-
erator) is defined as

(8)

Its frequency response is

(9)

where (10)

Definition 1: The causal Matérn B-spline of degree
is defined as

(11)

(12)

where is the fractional polynomial B-spline of degree
defined in [4].

This implies that the Fourier transform of the B-spline is

(13)

Fig. 2. Symmetric Matérn B-splines for � = 0 to 2.5 in steps of 0.25.

C. Symmetric Matérn B-Spline

The symmetric Matérn B-spline can be constructed using a
similar fractional weighted difference of the Green function of

. Here, we propose a simpler approach, which is to define
the symmetric Matérn B-spline of degree as the autocorrela-
tion of the causal Matérn B-spline of degree

(14)

By considering the Fourier equivalent of this definition and
making use of (13), we readily calculate the Fourier transform
of the symmetric Matérn B-spline

(15)

Note that if we had considered a B-spline of twice the order, we
would have gotten a denominator that is the same as that of the
Matérn PSD (1). We will further justify this link in Section III.

Corresponding examples of causal and symmetric Matérn
B-splines with varying are plotted in Figs. 1 and 2, respectively.

D. Properties

We use to refer to both the causal and the symmetric
Matérn B-spline, unless indicated explicitly. These functions
satisfy a number of interesting properties, which we only prove
for the causal case.

Convolution: The following convolution rule holds:

(16)

This can be easily established in the Fourier domain by consid-
ering (13) or (15).

Fractional differentiation using weighted differ-
ences: We can apply a lower order Matérn operator to
the B-spline and get an explicit formula for the result:

, with . This too
is best proven in the frequency domain.

Support: From (11), we see that for ,
. Since is not compactly sup-

ported for noninteger , the same holds true for (see
Fig. 4). However, has exponential decay for ,



RAMANI AND UNSER: MATÉRN B-SPLINES AND THE OPTIMAL RECONSTRUCTION OF SIGNALS 439

Fig. 3. Causal Matérn B-splines: 
 = 0 to 5.2 in steps of 0.1, � = 0 (the
fractional polynomial case).

unlike its polynomial counterpart , which only decays as
.

Riesz bases: The Matérn B-splines generate Riesz bases for
the space of Matérn splines with knots at the integers.

Theorem 1: For , and , the functions
form a Riesz basis of the Matérn spline space

with the Riesz bounds

where is the Riemann-zeta function.
Proof: The necessary and sufficient condition for to

generate a Riesz basis is that the -periodic function

(17)

be strictly bounded from above and below [5]. We estimate the
lower bound by using the dominant term in (17)

To get the upper bound , we isolate the dominant term and

perform the following manipulation on (17):

which yields the desired result.

Fig. 4. Causal Matérn B-splines: 
 = 0 to 5.2 in steps of 0.1, � = 0:5.

Note that for , the Riesz bounds are the same as those
of the fractional polynomial B-splines [4].

Functional properties: For , we have
. This is illustrated in Figs. 1 and 2,

where the Matérn B-splines are plotted for varying values
of , starting from , which corresponds to the poly-
nomial B-splines. Since for , and

for , the same applies to the
Matérn B-splines . Also, the Matérn B-splines are infinite
and discontinuous at the integers for and continuous

, just like their fractional polynomial counterparts.
-stability: For , the Matérn B-splines are -stable

in the sense that [5].
Indeed, the sum is uniformly convergent
because of the B-spline decay. It is therefore continuous and
bounded on any finite interval because of the continuity of the
individual terms. A limit case is , which is bounded
and compactly supported and therefore obviously -stable as
well. The -stability condition is a strong one that implies that
the -norm of these B-splines is finite for .

Generalization: The Matérn B-splines fill the gap between
the fractional polynomial B-splines [4] and the exponential ones
[6]–[8]. Specifically, we recover the former by taking .
Conversely, when is an integer, we obtain an exponential
B-spline with a root of multiplicity . This generalization is
illustrated in Figs. 3 and 4, which displays the Matérn B-splines
for a range of for (the fractional polynomial case) and
for . The exponential ones (integer values of ) are
compactly supported and are represented using thicker lines.

Exponential Polynomial Reproduction: The Matérn
B-spline reproduces exponential monomials
up to degree . The result follows from the polynomial
reproduction property of its fractional polynomial counterpart.
Specifically, there exist some coefficients such that

Multiplying both sides by and using (12), we ultimately
get

(18)

which formally proves the result.
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Fig. 5. Reconstruction setup.

Fig. 6. Optimal reconstruction of a Matérn signal from noise corrupted sam-
ples: � = 1, � = 0:25, � = 3:66, and � = 24:35.

III. OPTIMAL RECONSTRUCTION OF MATÉRN SIGNALS

A strong statistical justification for using the proposed spline
framework is that the minimum mean-square error (MMSE) es-
timate of a Matérn process , given its noisy samples

, lies in a corresponding spline space. Moreover, the re-
construction can be performed efficiently according to the fil-
tering procedure outlined in Fig. 5. Note that this block dia-
gram is compatible with the popular framework of sampling in
shift-invariant spaces [9], [10]. In fact, our formulation leads to
a globally optimal solution to the sampling problem: it yields
both the optimal space and the optimal reconstruction filter.

To establish this result, we consider the measurement model
that involves the integer samples

of a realization of a Matérn process corrupted by discrete
additive white noise . The hypotheses are that
the signal has a PSD given by (1) with , that the noise
is zero-mean with variance , and that both are Gaussian and
independent from one another.

Proposition 1: The MMSE estimate of at is
given as

(19)

where is the symmetric Matérn B-spline of degree ,
and is the digital filter whose frequency response is

(20)

with and .
The result follows from the application of Theorem 5 [11],

Theorem 1 (for “spline-admissibity”), and the observation that
, where is the whitening oper-

ator of the process with innovation variance . Fig. 6 gives an
illustration of optimal reconstruction of a Matérn signal from
noisy samples.

The direct implication is that the MMSE estimator ,
as varies over , is a cardinal Matérn spline of degree .
Proposition 1 yields the optimal reconstruction space as well
as a practical algorithm for computing the B-spline coefficients

of the reconstructed signal by simple filtering of the noisy
input signal with the digital restoration filter .

IV. SUMMARY AND CONCLUSIONS

In this letter, we have defined Matérn splines and have shown
that these could be represented in terms of B-spline basis func-
tions. In doing so, we have come up with a fractional general-
ization of the exponential B-splines with a multiple root . We
have derived the main properties of the new Matérn B-splines.
We also have shown that the spline spaces spanned by those
B-splines are the optimal reconstruction spaces for stochastic
signals in the Matérn class and that the reconstruction could be
achieved by suitable filtering.
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