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Abstract

Conventional sampling (Shannon’s sampling formulation and its approximation-
theoretic counterparts) and interpolation theories provide effective solutions to
the problem of reconstructing a signal from its samples, but they are primarily
restricted to the noise-free scenario. The purpose of this thesis is to extend the
standard techniques so as to be able to handle noisy data.

First, we consider a realistic setting where a multidimensional signal is pre-
filtered prior to sampling, and the samples are corrupted by additive noise. In
order to counterbalance the effect of noise, the reconstruction problem is formu-
lated in a variational framework where the solution is obtained by minimizing a
continuous-domain Tikhonov-like L2-regularization subject to a �p-based data
fidelity constraint. We present theoretical justification for the minimization of
this cost functional and show that the global-minimum solution belongs to a
shift-invariant space generated by a function that is generally not bandlimited.
The optimal reconstruction space is characterized by a condition that links the
generating function to the regularization operator and implies the existence of
a B-spline-like basis. We also consider stochastic formulations—min-max and
minimum mean-squared error (MMSE/Wiener) formulations—of the nonideal
sampling problem and show that they yield the same type of estimators and
point towards the existence of optimal shift-invariant spaces for certain classes
of stochastic processes. In the stochastic context, we also derive an exact for-
mula for the error of approximating a stationary stochastic signal in the presence
of discrete additive noise and justify the noise-reducing effect of regularization
through illustrations.

Next, we focus on the use of a much wider class of non-quadratic regular-
ization functionals for the problem of interpolation in the presence of noise.
Starting from the affine-invariance of the solution, we show that the Lp-norm
(p �= 2) is the most suitable type of non-quadratic regularization for our pur-
pose. We give monotonically convergent numerical algorithms to carry out the
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minimization of the non-quadratic cost criterion. We also demonstrate experi-
mentally that the proposed regularized interpolation scheme provides superior
interpolation performance compared to standard methods in the presence of
noise.

Finally, we address the problem of selecting an appropriate value for the
regularization parameter which is most crucial for the working of variational
methods in general including those discussed in this thesis. We propose a prac-
tical scheme that is based on the concept of risk estimation to achieve minimum
MSE performance. In this context, we first review a well known result due
to Stein (Stein’s unbiased risk estimate—SURE) that is applicable for data
corrupted by additive Gaussian noise and also derive a new risk estimate for
a Poisson-Gaussian mixture model that is appropriate for certain biomedical
imaging applications. Next, we introduce a novel and efficient Monte-Carlo
technique to compute SURE for arbitrary nonlinear algorithms. We demon-
strate experimentally that the proposed Monte-Carlo SURE yields regulariza-
tion parameter values that are close to the oracle-optimum (minimum MSE) for
all methods considered in this work. We also present results that illustrate the
applicability of our technique to a wide variety of algorithms in denoising and
deconvolution.

Keywords

Nonideal sampling, interpolation, regularization, regularization parameter, shift-
invariant spaces, smoothing splines, Tikhonov criterion, total-variation func-
tional, Wiener solution, Matérn class, Stein’s unbiased risk estimate (SURE),
Monte-Carlo simulation.



Résumé

Les théories traditionnelles d’échantillonnage et d’interpolation (formule
d’échantillonnage de Shannon et ses versions en théorie de l’approximation)
offrent des solutions efficaces au problème de la reconstruction d’un signal à
partir de ses échantillons, mais elles ne sont applicables que dans un scénario où
le signal n’est pas corrompu par du bruit. Le but de cette thèse est d’étendre
ces techniques standard de sorte à pouvoir traiter des données bruitées.

Tout d’abord, nous considérons un cas réaliste où un signal multidimension-
nel a été préfiltré avant d’avoir été échantillonné, et où les échantillons sont
corrompus par un bruit additif. Pour contrecarrer l’effet du bruit, le problème
de reconstruction est formulé dans un cadre variationnel où la solution s’ob-
tient par la minimisation dans le domaine continu d’un terme de régularisation
L2 inspiré par Tikhonov, sous la contrainte d’un terme de fidélité aux données
en norme �p. Nous proposons une justification théorique à la minimisation de
cette fonction-coût et montrons que la solution optimale appartient à un es-
pace invariant par translation engendré par une fonction qui n’est généralement
pas à bande limitée. L’espace de reconstruction optimal se caractérise par une
condition qui lie la fonction de génération à l’opérateur de régularisation et
sous-entend l’existence d’une base similaire à un B-spline. De plus, nous exa-
minons les formulations stochastiques du problème d’échantillonnage non idéal
telles que formulations min-max, erreur aux moindres carrés, et formulation de
Wiener, et montrons que, pour certaines classes de processus stochastiques, elles
mènent au même type d’estimateur et qu’elles indiquent l’existence d’espaces
optimaux invariants par translation. Toujours dans un contexte stochastique,
nous établissons la formule exacte de l’erreur d’approximation d’un signal sto-
chastique stationnaire en présence d’un bruit additif échantillonné. Nous jus-
tifions par le biais d’illustrations l’effet de réduction de bruit qu’apporte la
régularisation.

Ensuite, nous examinons une classe beaucoup plus large de fonctionnelles non
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quadratiques de régularisation destinées à l’interpolation en présence de bruit.
En partant de l’invariance de la solution à une transformation affine, nous mon-
trons que la norme Lp, avec p �= 2, est le type de régularisation non quadratique
qui sied le mieux à notre problème. Nous proposons des algorithmes numériques
à convergence monotone pour minimiser le critère de coût non quadratique.
En outre, nous démontrons par des expériences que la méthode d’interpolation
régularisée que nous proposons offre une meilleure performance d’interpolation
en présence de bruit que les méthodes standard.

Enfin, nous nous occupons du problème qui consiste à donner la bonne va-
leur au paramètre de régularisation, qui est un aspect des plus cruciaux du
fonctionnement de toute méthode variationnelle, y compris de celles discutées
dans cette thèse. Nous proposons une approche pratique fondée sur le concept
d’estimation de risque pour atteindre des performances optimales au sens des
moindres carrés. Dans ce contexte, nous commençons par l’examen d’un résultat
dû à Stein (estimation de risque non biaisée de Stein, ou “Stein’s unbiased risk
estimate—SURE”) qui s’applique à des données corrompues par du bruit additif
gaussien ; nous en déduisons un nouvel estimateur de risque pour un modèle de
Gauss-Poisson qui est propice à certaines applications biomédicales. Puis nous
proposons une nouvelle technique efficace de Monte-Carlo pour calculer SURE
dans le cas d’algorithmes arbitraires, y compris non linéaires. Nous démontrons
par des expériences que notre méthode “Monte-Carlo SURE” donne au pa-
ramètre de régularisation des valeurs qui sont proches des valeurs optimales au
sens des moindres carrés qu’un oracle aurait pu proposer, pour chacun des cas
considérés dans ce travail. Nous présentons finalement des résultats qui illus-
trent la pertinence de notre méthode pour un large éventail d’algorithmes de
débruitage et de déconvolution.

Mots-clés

Problème d’échantillonnage non idéal, interpolation, régularisation, paramètre
de régularisation, des espaces invariant par translation, smoothing splines, critère
de Tikhonov, critère total-variation, solution de Wiener, classe de Matérn, esti-
mation de risque non biaisée de Stein (Stein’s unbiased risk estimate—SURE),
simulation de type Monte-Carlo.
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Chapter 1

Introduction

1.1 Sampling and Interpolation

Digital computing has radically transformed the fields of signal and image pro-
cessing over the past few decades and has heralded the era of computed imaging
in biomedical applications. This is in tune with the various benefits such as
flexibility in terms of programming, high-speed computing, consistency of per-
formance, and effective storage and retrieval mechanisms that digital systems
enjoy over their analog counterparts. Since digital systems operate on discrete
sequences of samples, their applicability to real-world problems inherently re-
lies on the conversion of continuously-defined signals to discrete samples and
vice versa: The forward operation is achieved via sampling, while the reverse—
reconstruction of a continuously-defined signal from discrete samples—is per-
formed by interpolation.

In this context, Shannon’s sampling theorem represents one of the mathe-
matical foundations of digital signal processing, information and communication
theories. It states that a continuously-defined signal f(x) that contains no fre-
quencies higher than ωmax cycles per second—that is, a bandlimited signal—is
completely determined from its values at time instants spaced Tmax = π/ωmax

seconds apart [1,2]. The critical sampling period Tmax is often referred to as the
Nyquist interval [3]. The reconstruction of f(x) is in turn achieved by perform-
ing sinc-interpolation of its discrete samples [4–6]—this fits in the framework of
interpolation theory which dates back much further and was originally developed
for addressing various scientific problems in astronomy [6]. Shannon’s formu-
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2 Introduction

lation is also closely related to the theory of cardinal series and interpolatory
functions [4] due to Whittaker [2, 7–10] and others [11–13].

It is important to keep in mind that Shannon’s work symbolizes an ide-
alization: Real-world signals are seldom bandlimited; in such cases it is sug-
gested to apply an ideal anti-aliasing (low-pass) filter prior to sampling to avoid
aliasing artifacts. Again, this ideal low-pass filter is unrealizable in practice.
Also, sinc-interpolation is primarily a theoretical construct and is rarely used
in practice due to the infinite support and slow decay of the sinc-function. In-
stead, image-processing practitioners use spline interpolation [14, 15], which is
computationally more efficient and provides a good approximation to the sinc-
based approach. The reconstruction is then performed by approximating the
continuously-defined signal with an interpolating function constructed in such
a way as to agree perfectly with the signal at the given sample points. In light
of these indicators, it may be argued that interpolation and approximation the-
ories form the essential principles of many developments (including the present
work) that propose to circumvent the “idealness” of Shannon’s work.

1.2 Interpolation for Biomedical Imaging

Interpolation is used on a routine basis in image processing and biomedical imag-
ing [6, 15–19]. For instance, it is employed in graphical displays for performing
geometric transformation (scaling, rotation, skewing, etc) of discretely-defined
objects. In the context of medical imaging, geometric transformations are uti-
lized in registration for aligning multi-modal discrete medical images [20–22].
It is also used for geometrical rectification of discrete images acquired using
digital systems with wide-angle lenses and panoramic mirrors. It plays a vi-
tal role in achieving sampling grid conversions such as spiral-to-cartesian in
k-space for magnetic resonance imaging (MRI) [23]. In volumetric imaging, it is
applied for resizing three-dimensional (3-D) volume data [24]. Fitting 3-D data
on geometric shapes is also best done by performing interpolation [25]. Other
applications in biomedical imaging include volume rendering for visualization
of scalar fields [26–28], evaluation of image gradients [29, 30], texture mapping
where a 2-D image is painted on a 3-D surface [31, 32], and contour extraction
and ray-tracing [33].

While interpolation serves as a computational tool linking the discrete to
the continuous, conventional interpolation methods rely on the assumption that
the given samples are purely that of the signal-of-interest. However, in practice,
rarely do we encounter such a situation: Owing to the physics underlying many
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acquisition systems, the response of the acquisition system gets imprinted on
the signal during the data-acquisition process. Moreover, due to the imperfect
nature of the sensors that record the signal, the measured samples are frequently
corrupted by noise. As these nonideal considerations are not part of Shannon’s
sampling formulation, a direct application of conventional interpolation tech-
niques can be detrimental and lead to loss of performance.

1.2.1 Digital Correction

In order to be able to handle nonideal situations, interpolation methods must
first compensate for the nonideal nature of the samples. Fortunately, efficient
digital processing techniques can be devised to achieve this. For instance, when
the samples are noise-free, inverse filtering is typically employed to compensate
for the effect of the system response [34]. However, in the presence of noise,
this process is usually accompanied by a suitable noise-filtering strategy that
permits a stabilized inversion [35].

Probably, the most popular approach for filtering noise in this context is the
use of regularization [35]: The underlying idea is to enforce certain smoothness
constraints on the continuously-defined output to counterbalance the fluctua-
tions due to noise. A common practice in spline and regularization [35–39] lit-
erature is to use derivatives for characterizing the smoothness (or equivalently,
roughness) of a continuously-defined signal. The regularization constraints are
then typically prescribed in terms of some norm of a derivative of the output and
the problem is solved by minimizing this norm subject to the requirement that
the output also fits the given samples closely. Even though the problem is for-
mulated in terms of analog entities, the corresponding solution can be efficiently
implemented by means of digital filtering (linear or non-linear) techniques as we
shall see in Chapters 3 and 4.

1.2.2 Optimal Filtering

The use of regularization entails a constrained optimization problem where in
a regularization parameter governs the trade-off between the strength of the
applied regularization constraints and the goodness-of-fit of output to the data
samples. Depending on the value of this parameter, the output can range any-
where between being high fluctuating or heavily constrained.

Figure 1.1 illustrates the effect of this parameter on the performance of
interpolation in the case of a simple 1-D example. We are given noisy samples
marked by “∗” in Figure 1.1(a) on which we perform cubic-spline interpolation
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Figure 1.1: Illustration of the effect of noise-filtering on interpolation:
(a) Arbitrary signal and noisy samples; (b) Exact data fitting results
in a highly fluctuating output; (c) Interpolation with heavy filtering
results in loss of details (minor peaks have vanished in the output); (d)
Interpolation with optimal filtering preserves the primary signal features
while being robust to fluctuations due to noise.
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with the constraint that the squared-norm of the second-derivative of the spline
is minimum. In Figure 1.1(b), the regularization parameter is set to zero—
this is equivalent to exact-fitting of the noisy sample points. Correspondingly,
the output fluctuates excessively. Figure 1.1(c) illustrates the case where the
regularization parameter is set to a very high value. Here, the fluctuations
due to noise have significantly reduced, but while doing so, the output fails to
capture the finer details of the original signal (such as the minor peaks) as it
has been over-constrained by the heavy-handed application of regularization.

Figure 1.1(d) depicts the setting where we have set the regularization param-
eter “optimally” in the sense that we have achieved significant noise reduction
while also simultaneously capturing the subtle attributes of the original signal
as much as possible. This example illustrates the crucial role of the regulariza-
tion parameter in our constrained interpolation problem and also highlights the
necessity for finding the right amount of regularization needed for a given noisy
scenario.

1.3 Contributions of the Thesis

The main focus of this thesis is on the development of regularization methods for
the following two problems that we consider in this work: (1) Nonideal sampling
problem, and (2) Robust interpolation of noisy data in multiple dimensions.

1.3.1 Theoretical Investigation and Numerical Implemen-
tation

We consider a very general variational1 criterion (based on quadratic regulariza-
tion) for the nonideal sampling problem that can be handled analytically. The
major results are that the mathematical optimization of the criterion implicitly
leads to a shift-invariant2 reconstruction which is included in some spline-like
space (which need not necessarily be bandlimited) that is matched to the par-
ticular sampling setup and/or class of input signals. Moreover, we establish a
formal equivalence between the variational formulation and the minimum mean-
squared error (MMSE) or the Wiener solution of the nonideal sampling problem

1The term “variational” derives from the field of calculus of variations and is also generally
associated with the class of problems involving regularization criteria.

2Here, shift invariance implies that the solutions reconstructed from the given data and
that shifted by an arbitrary amount are equivalent up to the arbitrary shift. It must also be
noted that shift invariance is an important trait of many sampling and interpolation theories
including that of Shannon.
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thereby demonstrating that we can perform optimal reconstruction of stationary
stochastic signals from their noisy samples.

We also consider the use of non-quadratic regularization criteria which are
known to be better suited for signals with sharp features, especially images which
contain edges. Here, we address a more specific problem; that is, interpolation
in the presence of noise. Starting from shift-, rotation-, and scale-invariant3

requirements on the continuous-domain solution, we show that the Lp-norm4

of an appropriate vector derivative is the most suitable choice of regularization.
This includes the famous total-variation (TV) regularization (for p = 1) which
is well-known for its edge-preserving characteristics in image-processing appli-
cations. We give efficient numerical algorithms (that converge monotonically)
to carry out the optimization of the non-quadratic (for p > 1) criterion.

1.3.2 Selection of the Best Regularization Parameter

In both sampling and interpolation problems, we encounter the main issue of
the selection of the best regularization parameter. For this, we propose a novel
data-driven scheme to compute the mean-squared error (MSE) of an arbitrary
interpolation algorithm. Then, we demonstrate its applicability for the problems
considered in this thesis and show how to select the regularization parameter
in an optimal way so as to minimize the MSE of the reconstruction. Our data-
driven technique is also applicable to other inverse problems such as denoising
and deconvolution where we show how to tune various algorithm parameters to
achieve best performance in terms of the MSE.

1.4 Thesis Outline

As this thesis is intended towards the enhancement of conventional sampling
and interpolation theories, we will stick to the case of uniformly-spaced samples
throughout this work.

In Chapter 2, we will review the primary developments that have occurred
in sampling theory since Shannon’s work. These advances predominantly view
sampling as a projection operation on to a shift-invariant space. The key point

3Rotation and scale invariance are also defined in a fashion similar to shift invariance except
that instead of shifts, we now consider rotation by arbitrary angles and dilation by arbitrary
factors of the solution, respectively.

4We will specify the mathematical details of what we mean by Lp-norm in Chapter 2.
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is to relax the perfect reconstruction constraint and aim for a close approxi-
mation of the original signal, which allows for the treatment of arbitrary input
signals (which need not be bandlimited). We will also review some results in ap-
proximation theory that provide tools for the selection of appropriate sampling
procedures.

While projection-based approaches are mathematically elegant, they are nev-
ertheless restricted to noise-free sampling conditions. This forms the motiva-
tion for us to consider the nonideal sampling problem in the presence of noise
which is the topic of Chapter 3. Here, we pose the problem in a variational
framework where we minimize a data-fitting term subject to a Tikhonov-like
L2-regularization (quadratic, continuous-domain regularization) to obtain the
continuous-space solution. Apart from the fact that we solve this problem an-
alytically, we also prove the existence of a best reconstruction space and show
that it is characterized by a condition that links the generating function of the
reconstruction space to the regularization (differential) operator. We justify
that this in turn implies the existence of a B-spline-like basis. To make the
scheme practical, we specify the generating functions corresponding to the most
popular families of regularization operators (derivatives, iterated Laplacian), as
well as a new, generalized one that leads to a new brand of Matérn5 splines. We
demonstrate that our solution is general in the sense that we recover some of
the classical results when the sampling is ideal. We also establish equivalences
with the minimax and minimum mean square error (MMSE / Wiener) solutions
of the nonideal sampling problem.

In Chapter 4, we consider the scenario where the reconstruction space is
fixed before hand, but investigate a much wider class of non-quadratic regular-
ization (Lp-norm with p �= 2) for the problem of interpolation in the presence of
noise. We provide numerical algorithms based on the majorize-minimize (MM)
approach for performing the corresponding minimization of the non-quadratic
criterion. We also present experimental results that demonstrate the superior
performance of our method—which we call regularized interpolation—over con-
ventional interpolation methods when applied to noisy images.

In Chapters 5 and 6, we focus on the issue of the choice of the regularization
parameter based on the MSE of the reconstruction. Since MSE depends on
the original signal (which is unknown a priori) it is not directly computable in
practice. So, we first review a concept (in Chapter 5) in the statistics literature
that goes by the name Stein’s unbiased risk estimate—SURE—which permits

5This term is associated with Bertil Matérn’s stochastic model that is well known in kriging
theory for interpolation of spatial data [40].
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us to unbiasedly estimate the MSE purely from data when the noise is additive
Gaussian. We also derive a new risk estimate for a data model that consid-
ers a mixture of Poisson and Gaussian noise that is appropriate for bioimaging
applications. Then, we show how to compute the risk estimate for linear filter-
ing algorithms (that is, those based on quadratic regularization) with specific
application to image deconvolution in fluorescence microscopy.

In Chapter 6, we take up the problem of risk estimation for arbitrary non-
linear algorithms. We present a novel and efficient numerical method based
on Monte-Carlo simulation for estimating the MSE of arbitrary interpolation /
denoising algorithms. We also present experimental results that demonstrate
the effectiveness of our Monte-Carlo technique on a variety of denoising and
interpolation algorithms. Finally, we draw our conclusions in Chapter 7, where
we also give some insight in to possible extensions of this thesis.



Chapter 2

Noise-Free Sampling and
Linear Approximation
Theory

2.1 Introduction

Shannon’s sampling theory provides an elegant method to perfectly reconstruct
bandlimited signals from their equidistant samples [1, 2, 4, 5]. Although Shan-
non introduced his work in an information-theoretic background, sampling has
its origin1 in interpolation theory [6–10] which in itself is a subset of the more
broad field of approximation theory [42–47]. In the post-Shannon-era, approx-
imation theory played a key role in the evolution of many extensions of Shan-
non’s result [5]. The basic idea behind the approximation-theoretic approach is
to consider sampling and reconstruction as the process of approximating a (not
necessarily bandlimited) finite-energy signal in some suitable (shift-invariant)
Hilbert-subspace. The minimum-error-approximation (in the sense of squared-
norm) is obtained by projecting the input signal orthogonally onto the approxi-
mation space [44,45]. This view point has two main advantages over Shannon’s
framework: (i) It allows for the treatment of non-bandlimited signals, and (ii)
It circumvents the need for the slowly-decaying sinc-function for reconstruction.

1A historical overview of sampling theory (including some works prior to Shannon) can be
found in [4, 5, 41].

9
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In fact, reconstruction in spline-like spaces provides a computationally efficient
approximation to sinc-interpolation [14,48,49]. The connection between splines
and sampling was formally established by Unser et al. in [50] and Aldroubi et al.
in [51] where they showed that the minimum-error-approximation in spline-like
spaces is asymptotic equivalent to Shannon’s sampling framework. They also
demonstrated that the minimum-error-approximation is equivalent to a three-
step processing of the input signal: Optimal prefiltering (which corresponds to
filtering by an anti-aliasing filter in the Shannon-framework), sampling, and re-
constructing an approximating signal inside the approximation space [50,51]. In
the case where the prefilter is specified a priori, a consistent sampling strategy
was proposed in [52]; this again has the interpretation of an oblique projection
onto the approximation space.

In this chapter, we review some state-of-the-art sampling theories for the
noise-free scenario using a unifying projection formalism and extend their scope
to arbitrary sampling lattices in d-dimensions. A crucial notion in approxi-
mation theory is the error of approximation. For this, we derive an explicit
expression for the approximation error in d-dimensions. Our result also sup-
plements standard results due to de Boor et al. [44] and Blu et al. [53, 54] in
approximation theory.

In the sequel, we first present in detail the projection-interpretation of Shan-
non’s sampling theorem (1-D). Next, we discuss signal representation in a gen-
eral shift-invariant space in d-dimensions and specify a generic approximation
operator that characterizes our (generalized) sampling scheme in the noise-free
case. Then, we study various sampling strategies (such as minimum-error sam-
pling, consistent sampling, etc) which can all be described mathematically using
the same approximation operator, while making appropriate links to related re-
sults in the literature. Finally, we conclude the chapter with a discussion of the
approximation error.

2.1.1 Shannon’s Theorem Reinterpreted

The reconstruction formula accompanying Shannon’s sampling theorem (1-D)
is [1, 2, 4, 5]

f(x) =
∑
k∈Z

f(kT ) sinc
( x
T
− k

)
, (2.1)

where T > 0 is the sampling-step, and f(x) is a signal bandlimited to ωmax = π
T .

The reconstruction is achieved by computing a sum of scaled and shifted versions
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Figure 2.1: Shannon’s sampling scheme: The non-bandlimited analog
signal f(x) is prefiltered with the ideal low-pass filter 1

T sinc
(
x
T

)
to avoid

aliasing. Sampling is modeled as the multiplication of the prefiltered
signal with a train of Dirac impulses. The reconstruction is achieved by
filtering the resulting samples {g[k]} with sinc

(
x
T

)
.

of the sinc-function, sinc(x) = sin(πx)/(πx), weighted by the samples {f(kT )}.

When the input signal f(x) ∈ L2(R) is not bandlimited, then it is first
filtered by an ideal low-pass filter with the frequency response ĥideal(ωT ) prior
to sampling, where2

ĥideal(ω) = rect
( ω

2π

)
.

The corresponding impulse response is 1
T hideal

(
x
T

)
where hideal(x) = sinc(x).

The standard Shannon’s sampling model is illustrated in Figure 2.1. The cor-
responding reconstruction formula is

frec(x) =
∑
k∈Z

(
f �

1
T
hideal

( •
T

))
(kT )︸ ︷︷ ︸

g[k]

sinc
( x
T
− k

)
, (2.2)

where “�” denotes the continuous-space convolution operation and frec(x) is
the bandlimited approximation to f(x). Equation (2.2) forms the key link to
the modern projection-based framework for the sampling problem [5,44,52–54].

2The rect-function is defined as rect(x) =

j
1, |x| ≤ 1

2
,

0, otherwise.



12 Noise-Free Sampling and Linear Approximation Theory

Here, Shannon’s sampling theorem can be posed as the following optimization
problem

frec = arg min
s∈VT (sinc)

‖f − s‖2L2
, (2.3)

where VT (sinc) is the space of bandlimited functions defined as

VT (sinc) =

{
s(x) =

∑
k∈Z

c[k] sinc
( x
T
− k

)
: {c[k]} ∈ �2(Zd)

}
, (2.4)

and frec(x) represents the minimum L2-error approximation of f(x) in VT (sinc)
whenever f(x) is not bandlimited. The minimization in (2.3) is a standard
problem in functional analysis [55] whose solution can be found to be

frec(x) = PVT (sinc){f}(x)

=
∑
k∈Z

〈
f,

1
T
hideal

( •
T
− k

)〉
L2︸ ︷︷ ︸

c[k] in (2.4)

sinc
( x
T
− k

)
, (2.5)

where PVT (sinc) : L2(Rd)→ VT (sinc) is the orthogonal projection operator which
satisfies the property PVT (sinc){PVT (sinc){f}}(x) = PVT (sinc){f}(x). Since hideal

is symmetric, we have that〈
f,

1
T
hideal

( •
T
− k

)〉
L2

=
(
f �

1
T
hideal

( •
T

))
(kT ),

and so the projection formulation (cf. Equation (2.5)) is equivalent to Shannon’s
model (cf. Equation (2.2)).

2.2 Preliminaries

Modern approaches to the sampling problem rely on the projection formalism
but provide an extra degree of freedom in that they allow for reconstruction in a
general (shift-invariant) space that can be specified by the user (not necessarily
VT (sinc)). The important point is to relinquish the perfect reconstruction con-
straint and approach the problem from an approximation-theoretic perspective
which offers many advantages (see Section 2.1 at the beginning of this chapter)
over the classical framework of Shannon. Our aim, in the rest of the chapter, is
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to present an overview of some well-known results in this context. In what fol-
lows, we present our notation and then discuss signal representation in a general
shift-invariant space in d-dimensions.

2.2.1 Notations

Henceforth, we deal with scalar signals in d-dimensions. Continuous-space sig-
nals are denoted with parentheses:

f(x) : R
d → R, x = (x1, x2, · · · , xd)T ∈ R

d,

and discrete-space signals (or sequences) with brackets:

c[k] : Z
d → R, k = (k1, k2, · · · , kd)T ∈ Z

d,

where (•)T represents the transpose. We write flipped functions or sequences
with a bar:

f̄(x) = f(−x), c̄[k] = c[−k],

and denote by {c[k]} the sequence c in its entirety (that is, ∀ k ∈ Z
d). For

1 ≤ p <∞, we define the function-spaces

Lp(Rd) =

{
s(x) : ‖s‖Lp

=
∣∣∣∣
∫

Rd

|s(x)|p dx
∣∣∣∣
1
p

< +∞
}
,

�p(Zd) =

⎧⎪⎨
⎪⎩{c[k]} : ‖c‖�p =

∣∣∣∣∣∣
∑
k∈Zd

|c[k]|p
∣∣∣∣∣∣
1
p

< +∞

⎫⎪⎬
⎪⎭ .

We also denote ‖s‖L∞ = ess sup
x∈Rd

|s(x)| = inf{C ≥ 0 : |s(x)| ≤ C a.e.}

(essential supremum) and ‖c‖�∞ = sup
k∈Zd

|c[k]|. Correspondingly, we obtain the

spaces

L∞(Rd) = {s(x) : ‖s‖L∞ < +∞} , and �∞(Zd) = {{c[k]} : ‖c‖�∞ < +∞} .

The continuous-space Fourier transform of f(x) ∈ L1(Rd)
⋂
L2(Rd) is

F{f}(ωωω) = f̂(ωωω) =
∫

Rd

f(x) e−jωωω
Tx dx,
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and the discrete-space Fourier transform of {c[k]} ∈ �1(Zd)
⋂
�2(Zd) is

C(ejωωω) =
∑
k∈Zd

c[k] e−j ωωω
Tx,

where ωωωTx =
d∑
i=1

ωi xi and ejωωω = (ejω1x1 , ejω2x2 , · · · , ejωdxd). For x ∈ R
d, we

also define the Euclidean norm ‖x‖2 =
d∑
i=1

x2
i .

We denote the L2-inner product between two complex functions f(x) and
s(x) by

〈f, s〉L2 =
∫

Rd

f∗(x) s(x) dx,

and the �2-inner product between two complex sequences c[k] and b[k] by

〈c, b〉�2 =
∑
k∈Zd

c∗[k] b[k],

where (•)∗ indicates the complex conjugate. Corresponding to the above inner
products, we have the norms

‖f‖L2 =
√
〈f, f〉L2 and ‖c‖�2 =

√
〈c, c〉�2 .

Continuous-space convolution of f(x) and s(x) is denoted using the “�” symbol

(f � s)(x) =
∫

Rd

f(u) s(x− u) du = 〈f, s(x− •)〉L2 ,

and its discrete counterpart is denoted using the “∗” symbol

(c ∗ b)[k] =
∑

m∈Zd

c[m] b[k−m] = 〈c, b[k− •]〉�2 ,

respectively.

2.2.1.1 Sobolev Spaces

The approximation theoretic results that we review in this chapter are specified

with respect to the Sobolev space W ρ
2 of (possibly non-integer) order ρ >

d

2
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defined as

W ρ
2 =

{
s(x) : ‖s‖2Wρ

2

def=
∫

Rd

(1 + ‖ωωω‖2)ρ |ŝ(ωωω)|2 dωωω < +∞
}
,

which contains finite energy functions whose
γ

2
-iterated d-dimensional Lapla-

cians,3 0 ≤ γ ≤ ρ, also have finite L2-norms.

2.2.1.2 Useful Identities

We will also frequently rely on the following mathematical identities in our
analysis:

Parseval’s identity: For f, s ∈ L2(Rd),

〈f, s〉L2 =
1

(2π)d
〈f̂∗, ŝ〉L2 .

Similarly, for {b[k]}, {c[k]} ∈ �2(Zd),

〈b, c〉�2 =
1

(2π)d

∫
[0, 2π)d

B∗(ejωωω)C(ejωωω) dωωω = 〈B∗(ejωωω), C(ejωωω)〉L2([0, 2π)d),

where [0, 2π)d = {ωωω = (ω1, ω2, . . . , ωd) | ωi ∈ [0, 2π), i = 1, 2, . . . , d}.

Young’s inequality:4 For any f ∈ L1(Rd) and g ∈ Lp(Rd) [56],

‖f � g‖Lp
≤ ‖f‖L1 ‖g‖Lp

.

The same holds true for sequences, with Lp(Rd) being replaced by �p(Zd).

Inclusion-property of �p-spaces: For 1 ≤ p0 < p1 ≤ ∞,

�p0(Z
d) ⊂ �p1(Zd).

2.2.2 Shift-Invariant Spaces and Riesz Bases

Here, we first present details about a general sampling lattice and then pro-
vide conditions necessary for stable representation of functions in shift-invariant
spaces.

3The Fourier transform of a
γ

2
-iterated Laplacian of s(x) is given by ‖ωωω‖γ ŝ(ωωω) (in the

sense of distributions).
4A more general form of Young’s inequality is written as ‖f � g‖Lr ≤ ‖f‖Lp ‖g‖Lq for

f ∈ Lp, g ∈ Lq , and 1
r

= 1
p

+ 1
q
− 1.
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2.2.2.1 Sampling Lattices

We consider sampling points chosen from the set DZ
d (sampling lattice) speci-

fied as5

DZ
d =

{
z1 : z1 = Dk, k ∈ Z

d
}
, (2.6)

where D is a d×d invertible matrix; Dk represents the matrix product between
D and the d × 1 column vector k, and |D| denotes the absolute value of the
determinant of D. For D = T I, we obtain the standard sampling lattice T IZd

that corresponds to a sampling-step T > 0 (along every dimension).
The dual lattice, which plays an important role in the Fourier analysis, is

written as 2πD−T
Z
d and is given by the set

2πD−T
Z
d =

{
z2 : z2 = 2πD−Tk, k ∈ Z

d
}
, (2.7)

where D−T = (D−1)T. Then, ∀ z1 ∈ DZ
d and z2 ∈ 2πD−T

Z
d, we have

ejz
T
2 z1 = 1.
We also require the Fourier transform of f(Dx) which is given by

F{f(D•)}(ωωω) =
1
|D| f̂(D−Tωωω), (2.8)

and the Poisson’s summation formula6 which, in the current context, is written
as ∑

k∈Zd

f(Dk) ej(D
Tωωω)Tk =

1
|D|

∑
m∈Zd

f̂(ωωω − 2πD−Tm) (2.9)

whenever the summations in the l.h.s. and the r.h.s. in the above equation
converge.

2.2.2.2 Specification of the Reconstruction Space

The reconstruction is performed in the function-space VD(ϕ) specified as

VD(ϕ) =

⎧⎨
⎩ s(x) =

∑
k∈Zd

c[k]ϕ(D−1x− k) : {c[k]} ∈ �2(Zd)

⎫⎬
⎭ , (2.10)

5Detailed description of sampling lattices can be found in [57,58].
6Details of the derivation of Poisson’s formula for the DZ

d sampling lattice are given in
Appendix A.1.
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where ϕ(x) is called the generating function which has acceptable time and
frequency localization. In using VD(ϕ), we retain the shift-invariant flavor of
Shannon’s model,7 but now, invariance is possible only for shifts on the lattice
DZ

d; that is, if s(x) ∈ VD(ϕ), then for any m ∈ Z
d, s(x −Dm) ∈ VD(ϕ) as

seen below:

s(x−Dm) =
∑
k∈Zd

c[k]ϕ(D−1(x−Dm)− k)

=
∑
k∈Zd

c[k]ϕ(D−1x−m− k)

=
∑
k∈Zd

c[k−m]ϕ(D−1x− k) ∈ VD(ϕ). (2.11)

It must be noted that the coefficients {c[k]} are not necessarily the samples of
the signal and that ϕ(x) can be different from sinc(x). In fact, we are interested
in the scenario where ϕ(x) has a finite support, e.g., polynomial B-splines [14],
which helps reduce computational load significantly during reconstruction.

2.2.2.3 Riesz Bases

In order for s(x) ∈ VD(ϕ) to have a unique and stable representation in terms
of {c[k]}, the set {ϕ(D−1x−k)}k∈Zd must form a Riesz basis of VD(ϕ); that is,
∀ {c[k]} ∈ �2(Zd), there must exist constants ARϕ,2 > 0 and BRϕ,2 < +∞ such
that8

A2
Rϕ,2 ‖c‖

2
�2 ≤

∥∥∥∥∥∥
∑
k∈Zd

c[k]ϕ(D−1x− k)

∥∥∥∥∥∥
2

L2

≤ B2
Rϕ,2 ‖c‖

2
�2 . (2.12)

Proposition 2.1. The Riesz condition (2.12) is equivalent to having

A2
Rϕ,2 ≤ Aϕ(ωωω) ≤ B2

Rϕ,2 a.e., (2.13)

where

Aϕ(ωωω) =
∑
k∈Zd

|ϕ̂(ωωω + 2πk)|2.

7Due to the interpolating nature of the sinc-function, Shannon’s model satisfies the shift-
invariant property for non-integer shifts also: If s(x) ∈ VD(sinc), then s(x−Dτττ) ∈ VD(sinc)
for τττ ∈ R

d.
8The basis is orthogonal if and only if ARϕ,2 = BRϕ,2 = 1.
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While this is now a standard result in approximation and wavelet theory, it
is hard to trace back its origin in the literature. Our proof of this result is based
on the proof given in [51, Theorem 2] for the case of d = 1.

Proof. We note that

F

⎧⎨
⎩∑

k∈Zd

c[k]ϕ(D−1 • −k)

⎫⎬
⎭ (ωωω) = C(ejD

Tωωω) |D| ϕ̂(DTωωω). (2.14)

Then using Parseval’s identity, we obtain∥∥∥∥∥∥
∑
k∈Zd

c[k]ϕ(D−1x− k)

∥∥∥∥∥∥
2

L2

=
|D|2
(2π)d

∫
Rd

∣∣∣C(ejD
Tωωω)

∣∣∣2 ∣∣ϕ̂(DTωωω)
∣∣2 dωωω

=
|D|

(2π)d

∫
Rd

∣∣C(ejωωω)
∣∣2 |ϕ̂(ωωω)|2 dωωω

=
|D|

(2π)d
∑
k∈Zd

∫
[0, 2π)d

∣∣C(ejωωω)
∣∣2 |ϕ̂(ωωω + 2πk)|2 dωωω,

=
|D|

(2π)d

∫
[0, 2π)d

|C(ejωωω)|2Aϕ(ωωω) dωωω, (2.15)

where we have interchanged the summation and integral (since the integrand is
positive) while using the fact that C(ejωωω) is (2π)-periodic along each dimension.
Then, since |D| > 0 and because

‖c‖2�2 =
1

(2π)d

∫
[0, 2π)d

|C(ejωωω)|2 dωωω,

the result directly follows by noting that for

∥∥∥∥∥∥
∑
k∈Zd

c[k]ϕ(D−1x− k)

∥∥∥∥∥∥
2

L2

to be

bounded below and above by A2
Rϕ,2
‖c‖2�2 and B2

Rϕ
‖c‖2�2 , respectively, Aϕ(ωωω)

must satisfy (2.13). The technicalities associated with this last step are provided
in Appendix A.2. �

Remark 2.1. It must be noted that the (2π)-periodic (along each dimension)
Aϕ(ωωω) is nothing but the Fourier transform of the samples of the autocorrelation
of ϕ(x): {(ϕ � ϕ̄)(k)}. Moreover, if {(ϕ � ϕ̄)(k)} ∈ �1(Zd), then Aϕ(ωωω) is
uniformly continuous and (2.13) holds ∀ ωωω ∈ [0, 2π)d.
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The existence of a non-zero ARϕ,2 ensures that the basis functions are linearly
independent,9 while a finite BRϕ,2 guarantees that any s(x) ∈ VD(ϕ) has a finite
L2-norm which in turn implies that VD(ϕ) ⊂ L2(Rd). Note that ϕ = sinc is
a special case: sinc(x) automatically satisfies the Riesz condition (2.12) since
Asinc(ωωω) = 1, ∀ ωωω ∈ [0, 2π)d.

2.2.2.4 Equivalent Bases

It is important to note that the generator ϕ of VD(ϕ) is not unique. In fact,
any function ϕeq(x) of the form

ϕeq(x) =
∑
k∈Zd

q[k]ϕ(x− k),

generates a L2-stable Riesz basis of VD(ϕ)—equivalent basis—provided the se-
quence {q[k]} fulfills certain conditions specified in the following proposition
(this is the d-dimensional version of Proposition 6 in [51]).

Proposition 2.2. When ϕ satisfies (2.13), the function ϕeq(x) also generates
a L2-stable Riesz basis of VD(ϕ) if and only if the Fourier transform of {q[k]},
Q(ejωωω), satisfies

0 < mq ≤ |Q(ejωωω)| ≤Mq < +∞ a.e. (2.16)

Proof. From the definition of ϕeq, we have Aϕeq(ωωω) = |Q(ejωωω)|2Aϕ(ωωω). The
result then follows from the fact that Aϕeq(ωωω) fulfills (2.13) if and only if Q(ejωωω)
satisfies (2.16). �

2.2.2.5 Separability

In the multidimensional setting, separable basis functions play an important
role since many reconstruction algorithms (e.g., spline based interpolation, etc)
rely on separability to reduce the computational load. A separable generator is
given by

ϕsep(x) =
d∏
i=1

ϕ(xi).

9That means to say, s(x) =
X
k∈Zd

c[k]ϕ
`
D−1x− k

´
= 0, if and only if c[k] = 0, ∀ k ∈ Z

d.
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Figure 2.2: Generalized sampling setup: An arbitrary finite-energy
analog signal f(x) is first prefiltered with 1

|D|h(D
−1x) (also called the

analysis function). The obtained samples c̃[k] are then processed by
a digital correction filter q, which provides the coefficients {c[k]} for
shift-invariant reconstruction by ϕ(D−1x).

Correspondingly, all expressions—integrals, summations, Fourier transforms,
etc—can be decomposed into similar tensor products; this simplifies the analysis
since what holds true for one dimension remains true for all other dimensions.
Specifically, for the Riesz condition, one has

Aϕsep(ωωω) =
d∏
i=1

Aϕ(ωi). (2.17)

Then, one needs to verify (2.13) for only ϕ̂(ω) (the 1-D counterpart); automat-
ically, ϕ̂sep(ωωω) also satisfies (2.13) because of separability.

2.3 Sampling in Shift-Invariant Spaces

The approximation schemes that we consider are all based on the standard
three-step approach—prefiltering, sampling, and reconstruction. Figure 2.2 il-
lustrates the generic setup where the input signal is first filtered by the prefilter
1

|D|h(D
−1x) which is followed by sampling represented as the product with a

sequence of Dirac impulses. We also consider using a digital filter q that com-
putes the expansion coefficients. The reconstruction is performed by applying
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the synthesis filter ϕ(D−1x). Mathematically, we have

c̃[k] = (f �
1
|D|h(D

−1•))(Dk) =
∫

Rd

f(ξξξ)
1
|D|h(k−D−1ξξξ) dξξξ

=
〈
f,

1
|D|h(k−D−1•)

〉
L2

, (2.18)

and c[k] = (c̃ ∗ q)[k] so that the reconstruction is given by

frec(x) =
∑
k∈Zd

(c̃ ∗ q)[k]ϕ(D−1x− k). (2.19)

Accordingly, we define the approximation operator

QD{f}(x) =
∑
k∈Z

d

m∈Z
d

(∫
Rd

f(ξξξ)h(m−D−1ξξξ)
dξξξ
|D|

)
q[k−m]ϕ(D−1x− k), (2.20)

which yields the approximation frec(x) ∈ VD(ϕ) of the input signal f(x) ∈
L2(Rd).

Since ϕ completely characterizes the approximation space VD(ϕ), its selec-
tion is important for obtaining a good approximation of the original signal. In
this context, the approximation order of ϕ plays a key role as will be explained
in Section 2.4. Once the choice of ϕ has been made, h and q can be deter-
mined in accordance with the design constraints. In this context, a popular
constraint [5, 53] is the biorthogonality condition10〈∑

k∈Zd

q[k]h(n− k− •), ϕ(•)
〉
L2

= δ[n] def=
{

1, n = 0
0, n ∈ Z

d\{0} . (2.21)

A direct consequence of (2.21) is that QD becomes a projector; that is,

QD{QD{f}}(x) = QD{f}(x).

This means that if the original signal f(x) belongs to VD(ϕ) then it can be
perfectly reconstructed. This can be thought of as a generalized version of
Shannon’s result for which QD = PVD(sinc) that pertains only to bandlimited
functions. In the sequel, we describe different sampling schemes and provide
the corresponding prefilter and the digital correction filter in each case.

10In [53], this condition is specified for a setup without the digital correction filter q. How-
ever, since we have considered q explicitly in our formulation, the standard representation of
biorthogonality translates to Equation (2.21) where we have made use of the linearity of the
sampling process to associate q with the prefilter h.
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2.3.1 Minimum-Error Sampling

Here, we formulate the problem in accordance with Equation (2.3), but, we look
for the minimum L2-error approximation of f(x) ∈ L2(Rd) in VD(ϕ):

frec = arg min
s∈VD(ϕ)

‖f − s‖2L2
. (2.22)

The solution is the orthogonal projection of f on to VD(ϕ) given by

fmin(x) = PVD(ϕ){f}(x)

=
∑
k∈Zd

〈
f,

1
|D| ϕ̊(D−1 • −k)

〉
L2

ϕ(D−1x− k), (2.23)

where ϕ̊(x) ∈ VI(ϕ) (for D = I) is the dual function that is defined via its
Fourier transform:

ˆ̊ϕ(ωωω) =
ϕ̂(ωωω)
Aϕ(ωωω)

. (2.24)

This type of least-squares solution is standard in approximation and wavelet
theory [44, 54, 59, 60]; our formula (2.23) is the multidimensional transcription
of these results for an arbitrary sampling lattice DZ

d.
Since Aϕ(ωωω) is non-zero (because ARϕ,2 > 0), ϕ̊ is well-defined whenever

ϕ(x) generates a Riesz basis. It is clear that ϕ̊ satisfies the biorthogonality
relation (2.21) with h(x) = ϕ̊(−x) and q[k] = δ[k] which confirms that PVD(ϕ)

is indeed a projector. Also, the solution (2.23) represents a generalization11 of
Shannon’s model since (2.23) reduces to (2.5) when ϕ = sinc (for d = 1).

2.3.2 Consistent Sampling

In many practical situations, the prefilter h is often specified a priori. In such
cases, it is preferable to obtain a reconstruction that is consistent in the sense
that frec(x) (see Figure 2.2) yields exactly the same measurements when fed
back into the system; that is,

c̃[k] =
〈
f,

1
|D|h(k−D−1•)

〉
L2

=
〈
frec,

1
|D|h(k−D−1•)

〉
L2

. (2.25)

11It is a well-known fact that sinc(x) is orthogonal to its integer translates and is therefore
its own dual [5, 61].
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The framework for this type of reconstruction was presented by Unser et al.
in [52] for the case of d = 1. Here, we extend this for arbitrary D in d-dimensions:
Based on [52, Theorem 1], a unique reconstruction frec satisfying (2.25) can be
obtained by filtering the samples c̃[k] with the digital correction filter qcon whose
frequency response is given by

Qcon(ejωωω) =
1

Ahϕ(ωωω)
=

1∑
k∈Zd

ĥ(ωωω + 2πk) ϕ̂(ωωω + 2πk)
. (2.26)

Using Fourier domain calculations, it can be verified that the reconstruction

fcon(x) =
∑
k∈Zd

(c̃ ∗ qcon)[k]ϕ(D−1x− k) (2.27)

satisfies (2.25). In fact, the above reconstruction formula provides a generaliza-
tion of Shannon’s model for nonideal acquisition devices.

The existence of qcon is guaranteed whenever ∀ ωωω ∈ [0, 2π)d, |Ahϕ(ωωω)| ≥
mh,ϕ for some mh,ϕ > 0. Moreover, when |Ahϕ(ωωω)| ≤ Mh,ϕ < +∞, ∀ ωωω ∈
[0, 2π)d, we have that

0 <
1

Mh,ϕ
≤ |Qcon(ejωωω)| ≤ 1

mh,ϕ
< +∞.

Then, we can define an equivalent generating function

ϕcon(x) =
∑
k∈Zd

qcon[k]ϕ(x− k), (2.28)

and from Proposition 2.2,
{
ϕcon(D−1x− k)

}
k∈Zd also forms a Riesz basis of

VD(ϕ).
Equation (2.27) can also be used as a computationally efficient approxima-

tion to the minimum-error reconstruction fmin whenever the inner product with
the dual function becomes difficult to evaluate in (2.23). Using Fourier domain
calculations, it can be verified that the biorthogonality condition (2.21) is satis-
fied for q = qcon. In this case, the interpretation is that fcon is a projection onto
VD(ϕ) “perpendicular” to VD(h)—oblique projection [52]—where VD(h) is the
shift-invariant space obtained by replacing12 ϕ by h in (2.10).

12It is also required that VD(h) ⊂ L2(Rd) which is ensured provided h satisfies (2.12).



24 Noise-Free Sampling and Linear Approximation Theory

By extending the results of [52] to d-dimensions, it can be established that
the L2-error of fcon is bounded as

‖f − fmin‖L2 ≤ ‖f − fcon‖L2 ≤
1

cos(θhϕ)
‖f − fmin‖L2 , (2.29)

where θhϕ may be interpreted as the angle between the shift-invariant spaces
generated by h(x) and ϕ(x) and is specified as

cos(θhϕ) = ess inf
ωωω∈[0, 2π)d

∣∣∣∣∣∣ Ahϕ(ωωω)√
Ah(ωωω)

√
Aϕ(ωωω)

∣∣∣∣∣∣ , (2.30)

where the essential infimum reduces to infimum when the quantity on the r.h.s.
of the above equation is continuous at all ωωω ∈ [0, 2π)d.

The upper bound in (2.29), which corresponds to the worst possible case, be-
comes close to the lower bound—minimum error—whenever the angle between
analysis and reconstruction spaces is negligible. In fact, we regain the minimum
L2-error reconstruction if cos(θhϕ) = 1. This happens when h(x) ∈ VI(ϕ) (for
D = I), which refers to the case where the analysis and the synthesis spaces are
identical.

2.3.3 Interpolation

When h(x) = δ(x), the Dirac impulse, the consistent sampling technique de-
scribed in the previous section turns out to be an interpolation scheme, where
we reconstruct an interpolating function fint(x) which exactly fits the samples13

of the given signal; that is,

fint(x)|x=Dk = f(Dk). (2.31)

Interpolation is a vital ingredient of many image-processing and biomedical
applications [15] and its theory originates from ancient mathematics [6], cardinal
series [7–10] and approximation theory [48, 62]. Equation (2.31) is also known
as the interpolation condition that is enforced on fint by filtering {f(Dk)} with
the digital correction filter qint whose frequency response is [15,63] (obtained by
setting ĥ(ωωω) = 1 in (2.26))

Qint(ejωωω) =

⎛
⎝∑

k∈Zd

ϕ̂(ωωω + 2πk)

⎞
⎠−1

. (2.32)

13In order for the samples {f(Dk)} to be well-defined in the �2-sense, f(x) ∈ W ρ
2 (see

Theorem 3.1 in Chapter 3).
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Table 2.1: Summary of schemes for sampling in shift-invariant spaces

Digital Analog
Sampling Analog Correction Reconstruction Equivalent
Scheme Prefilter Filter Filter Basis
Shannon sinc(x) — sinc(x) sinc(x)

Minimum-error ϕ̊(−x) δ[k] ϕ(x) ϕ(x)
Consistent h(x) qcon ϕ(x) ϕcon(x)

Interpolation δ(x) qint ϕ(x) ϕint(x)

The corresponding reconstruction—the interpolating signal fint—is given by

fint(x) =
∑
k∈Zd

(c̃ ∗ qint)[k]ϕ
(
D−1x− k

)
, (2.33)

where c̃[k] = f(Dk) in this case. The equivalent generating function (provided
Qint(ejωωω) meets 0 < mqint ≤ |Qint(ejωωω)| ≤ Mqint < +∞) is nothing but the
interpolator

ϕint(x) =
∑
k∈Zd

qint[k]ϕ(x− k), (2.34)

which fulfills ϕint(x)|x=k = δ[k]: This is the equivalent of the biorthogonality
condition (2.21) for the current setting. In fact, this property is naturally satis-
fied by the sinc-function and therefore, (2.33) may be considered as an extension
of Shannon’s model to interpolation using an arbitrary basis.

We summarize in Table 2.1 the attributes of different sampling schemes
considered so far and highlight the analog prefilter, the digital correction filter
and the equivalent basis in each case.

2.4 Characterizing the Approximation Error

Since projection-based approaches rely on the approximation of the original
signal in some subspace VD(ϕ) ⊂ L2(Rd), it is imperative to characterize the
associated L2 approximation error ‖f − QD{f}‖L2 . However, we observe that
‖f − QD{f}‖L2 obeys the following rule (which can be derived by suitable
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change of variables):

‖f(•)−QD{f}(•)‖L2 = (|D|) 1
2 ‖f(D•)−QI{f(D•)}(•)‖L2

,

that is, the error of approximating f(x) using a shift-invariant representation on
the lattice DZ

d is equal (up to a multiplicative constant) to that of approximat-
ing f(Dx) by the same representation on the standard lattice Z

d. Therefore,
for mathematical ease, we will treat the case of

D = T I,

where T > 0 is the sampling-step that is identical along every dimension. Cor-
respondingly, the error takes the form

εf (T ) = ‖f −QT I{f}‖L2 .

The following result then provides an exact Fourier domain formula for εf (T )
(this is the d-dimensional version of Theorem 1 in [54]).

Theorem 2.1. Let the Fourier transforms |ĥ(ωωω)| ≤ Mh < +∞ ∀ ωωω ∈ R
d and

|Q(ejωωω)| ≤ Mq < +∞ ∀ ωωω ∈ [0, 2π)d. Then, ∀ f ∈ W ρ
2 , the approximation

error εf (T ) is given by

εf (T ) = εdom(f, T ) + O(T ρ), (2.35)

where14 εdom(f, T ) is the dominating component that can be computed exactly
in the Fourier domain as

εdom(f, T ) =
[

1
(2π)d

∫
Rd

Ehϕ(ωωωT ) |f̂(ωωω)|2 dωωω
] 1

2

, (2.36)

and where Eh,ϕ(ωωω) represents the Fourier domain error kernel given by

Eh,ϕ(ωωω) =
∣∣∣1−Q(ejωωω) ĥ(ωωω) ϕ̂(ωωω)

∣∣∣2
+

∑
k∈Zd\{0}

∣∣Q(ejωωω)
∣∣2 ∣∣∣ĥ(ωωω)

∣∣∣2 |ϕ̂(ωωω + 2πk)|2 . (2.37)

Proof. The proof is given in Appendix A.3. �

14We write s(x) = O(xn) if lim
x→0

sup

˛̨̨
˛ s(x)xn

˛̨̨
˛ < +∞.
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Since the form of the multidimensional error kernel Eh,ϕ(ωωω) is similar to that
of the one-dimensional one in [54, Equation (21)] the accompanying analysis
in [54] also remains largely valid in our case; that is, εdom(f, T ) allows for
the prediction of the general error behavior of a sampling scheme by simple
examination of Ehϕ(ωωω). To see this, we manipulate and rewrite the error kernel
as

Eh,ϕ(ωωω) =
(

1− |ϕ̂(ωωω)|2
Aϕ(ωωω)

)
+Aϕ(ωωω)

∣∣∣Q∗(ejωωω) ĥ∗(ωωω)− ˆ̊ϕ(ωωω)
∣∣∣2 . (2.38)

Then, for the case of minimum L2-error sampling (h(x) = ϕ̊(−x) and Q(ejωωω) =
1), the error kernel reduces to

Eϕ̊,ϕ(ωωω) = 1− |ϕ̂(ωωω)|2
Aϕ(ωωω)

, (2.39)

which is in agreement with the fact that the orthogonal projection onto VT I(ϕ)
minimizes the approximation error. For Shannon’s model, orthogonal projection
onto the space of bandlimited functions results in the kernel (see Figure 2.3 for
the case of d = 1)

Esinc,sinc(ωωω) = 1− rect
( ωωω

2π

)
, (2.40)

which makes sense since in this case the error is entirely due to the out-of-band
portion of the signal.

We plot (for d = 1) Eh,ϕ(ω) in Figure 2.3 for the considered sampling
schemes— minimum L2-error sampling, consistent sampling and interpolation—
corresponding to the following two cases: (a) h(x) = rect(x) and ϕ(x) = β1(x)
(the linear B-spline or the tent function [14]), and (b) h(x) = β1(x) and
ϕ(x) = β3(x) (the cubic B-spline [14]). We also show Esinc,sinc(ω) (in gray)
corresponding to Shannon’s setup.

As expected, Eϕ̊,ϕ(ω), which corresponds to the minimum L2-error solu-
tion, is closer to Esinc,sinc(ω). Note that the kernel corresponding to consistent
sampling—Eh,ϕ(ω)—is only slightly suboptimal; it converges to the minimum-
error solution when the analysis filter becomes close to the synthesis space (see
Figure 2.3(b)). This is also indicated by the 1

cos(θhϕ) values (see Equation (2.29))
which is 1.155 for case (a) while it is only 1.030 for case (b). Finally, sampling
without prefiltering (h(x) = δ(x))—interpolation—is the least favorable ap-
proach as the signal components above the Nyquist frequency contribute twice
to the approximation error both due to aliasing and because the reconstruction
is not perfect in VT I(ϕ) for in-band frequencies.
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(a) Eh,ϕ(ω) for h(x) = rect(x) and ϕ(x) = β1(x)
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(b) Eh,ϕ(ω) for h(x) = β1(x) and ϕ(x) = β3(x)

Figure 2.3: Approximation error kernels corresponding to the schemes
namely, Shannon sampling, minimum L2-error sampling, consistent
sampling and interpolation, for two different setups: In both (a) and (b)
the kernel Eϕ̊,ϕ corresponding to minimum L2-error sampling is closest
to the ideal one of Shannon Esinc,sinc (in gray), while Eh,ϕ (consistent
sampling) closely follows Eϕ̊,ϕ. The kernel Eδ,ϕ corresponding to inter-
polation is always higher than the other two indicating that sampling
without prefiltering can be detrimental.
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2.5 Approximation Order

It is reasonable to expect the approximation error εf (T ) to decrease as the
sampling-step T becomes smaller. A key concept in this context is the approx-
imation order which describes the rate at which εf (T ) decays; specifically, we
write that VT I(ϕ) provides approximation order L [44] if ∀ f ∈W ρ

2 , ρ ≥ L, the
approximation error corresponding to the orthogonal projection behaves as

‖f − PVT I(ϕ){f}‖L2 ≤ constant× TL ‖f‖WL
2
. (2.41)

2.5.1 Strang-Fix Conditions

A popular result due to Strang and Fix [45] says that (2.41) is true if and only
if the Fourier transform ϕ̂(ωωω) of ϕ(x) satisfies15 the following conditions:

ϕ̂(0) �= 0, and ϕ̂(|ααα|)(2πk) = 0 for
{

k ∈ Z
d\{0},

0 ≤ |ααα| ≤ L− 1, (2.42)

where |ααα| =
d∑
i=1

αi and ϕ̂(|ααα|)(ωωω) =
∂α ϕ̂(ωωω)

∂ωα1
1 ∂ωα2

2 · · · ∂ωαd

d

. If ϕ satisfies (2.42),

then it is said to be of order L. This is more apparent if we expand ϕ̂(ωωω+2πk),
k ∈ Z

d in terms of its Taylor series around ωωω = 0:

ϕ̂(ωωω + 2πk) =
∞∑
l=0

∑
|ααα|=l

ϕ̂(|ααα|)(ωωω + 2πk)
∣∣∣
ωωω=0

ωωωααα

ααα!
,

where we have used the standard multi-index notation:
ωωωααα

ααα!
=

d∏
i=1

ωαi
i

αi!
. Then,

from (2.42), we see that ∀ k ∈ Z
d,

ϕ̂(ωωω + 2πk) = ϕ̂(0) δ[k] +O(‖ωωω‖L). (2.43)

In a similar manner, the concept of approximation order can be extended to the
general projector QT I; obviously this necessitates conditions similar to (2.43)
jointly on q, h and ϕ: Specifically, it can be shown that if ∀ k ∈ Z

d,

Q(ejωωω) ĥ(ωωω) ϕ̂(ωωω + 2πk) = δ[k] +O(‖ωωω‖L), (2.44)
15The first-order (L = 1) Strang-Fix condition with ϕ̂(0) = 1 is equivalent to a partition of

unity, namely,
X
k∈Zd

ϕ(x−k) = 1, ∀ x ∈ [0, 1)d. If ϕ satisfies the partition of unity condition,

then lim
T→0

εf (T ) = 0 [5].
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then all the terms in the r.h.s. of (2.37) are O(‖ωωω‖L). Using the same Taylor
expansion argument, then we have that ∀ f ∈W ρ

2 , ρ ≥ L,

‖f −QT I{f}‖L2 ≤ constant× TL ‖f‖WL
2
, (2.45)

which is a standard result in approximation theory [44–46,64,65].

2.5.2 Asymptotic Form of the Error for d = 1

One can obtain an explicit form for the leading constant in (2.45) in the case
of d = 1 (1-D signals) as described in [53, 54]. For d = 1, (2.44) is equivalent
to saying that that ϕ and hq(•) =

∑
k∈Z

q[k]h(• − k) are quasibiorthonormal of

order L; that is, in addition to the Strang-Fix conditions of order L on ϕ, the
moments of hq(−x) and of ϕ̊(x) are equal [54]:∫

R

xαhq(−x) dx =
∫

R

xαϕ̊(x) dx, (2.46)

for α = 0, 1, · · · , L − 1. Then, ∀ f ∈ W ρ
2 , ρ ≥ L, the asymptotic form of the

error εf (T ) can be deduced as [53,54]:

εf (T ) = CL T
L ‖f (L)‖L2 as T → 0, (2.47)

where f (L) is the L-th derivative of f and CL is the asymptotic error constant
given by

CL =

√
E(2L)
h,ϕ (0)
(2L)!

, (2.48)

where E(2L)
h,ϕ (T ) is the (2L)-th derivative of Eh,ϕ(T ).

Equations (2.45) and (2.48) play a crucial role in the selection of the basis
function since the approximation order L of ϕ dictates the decay rate of the
error: The higher the value of L, the faster the decay and therefore, the better
is the quality of the reconstruction. For a fixed ϕ, we can also study the perfor-
mance of various approximation algorithms such as projectors (orthogonal and
oblique) and interpolators by comparing the leading constant CL correspond-
ing to each algorithm. For instance, let us consider the case (a) of Figure 2.3.
Here, for the interpolation algorithm CLint = 1

2
√

30
≈ 9.1287 × 10−2, while for

the orthogonal and oblique projectors CLortho = CLobl = 1
12

√
5
≈ 3.7267× 10−2,
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which is the smallest possible constant achievable in the current setting. This
further substantiates the argument at the end of Section 2.4 for the improved
performance of the projectors (orthogonal and oblique) over the interpolator.
Case (b) is no different, where again, the projectors have a good edge over the
interpolator: CLortho = CLobl = 1

240
√

21
≈ 9.0924× 10−4, while CLint = 1

72
√

70
≈

1.66× 10−3, respectively.

2.6 Quasi-Interpolation

The performance of interpolation can be boosted by giving up the exact fitting
constraint (see Section 2.3.3) and by designing the digital correction filterQ(ejωωω)
so as to minimize the second term16 on the r.h.s. of Eh,ϕ(ω) in (2.38) for
h(x) = δ(x). The resulting scheme is termed quasi-interpolation where “quasi”
refers to the fact that the exact fitting condition is satisfied only for polynomials
of degree n = 0, 1, · · · , L− 1 [53,54,65].

Under the assumption that the input signal has a more or less constant
spectrum over the bandlimited support, the above minimization leads to the
optimal filter [54]

qquasi[k] =
1

(2π)d

∫
[−π, π)d

ˆ̊ϕ(ωωω) e−jωωω
Tk dωωω. (2.49)

Thus, Qquasi(ejωωω) is chosen so that it matches ˆ̊ϕ(ωωω) over ω ∈ [−π, π)d, thereby
attempting to mimic the minimum L2-error solution in this frequency band.

The filter q can also be designed based on the asymptotic form of the error
εf (T ) whenever the assumption of constant spectrum does not apply. The
corresponding design constraint is

Q∗(ejωωω)− ˆ̊ϕ(ωωω) = O(‖ωωω‖N ), (2.50)

which is based on a weaker hypothesis and is therefore more relevant to practical
situations.

2.7 Summary

In this chapter, we reviewed some key concepts in linear approximation theory
and their application to the sampling problem. The common strategy underly-

16The first term on the r.h.s. of (2.38) is the minimum of Eh,ϕ(ωωω) that is achieved by the
orthogonal projector.
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ing the many extensions considered here—minimum L2-error sampling, consis-
tent sampling, and interpolation—is to pose sampling and reconstruction as an
approximation problem in some given shift-invariant space.

We studied results pertaining to the analytical computation of the L2-
approximation error, the dominant component of which can be determined by
integrating the spectrum of the input signal against a Fourier domain error ker-
nel Eh,ϕ(ωωω). Based on quantitative analysis of the approximation error, it was
seen that the approximation order of the basis function is the key parameter
that controls the quality of reconstruction.



Chapter 3

Nonideal Sampling in the
Presence of Noise

3.1 Introduction

The approximation-theoretic solutions discussed in the previous chapter provide
a mathematically elegant framework for extending Shannon’s work. However,
they rely on the assumption that the sampling process is noise-free which is
usually not the case in practice. Moreover, prior to sampling, real-world signals
often pass through an acquisition device whose impulse response is in general
nonideal.

Digital filtering techniques such as inverse filtering [34, 52] have been pro-
posed to partially compensate for these departures from “idealness”. In the
presence of noise, the digital correction filter is sufficiently regularized for sta-
bility purposes.1 This forms the key aspect of the work of Eldar et al. [66] who
presented an extended formulation of projection-based approach for the prob-
lem of nonideal sampling in the presence of noise. Their idea is to compute
the reconstruction of a 1-D signal f(x) from noisy (nonideal) measurements
in some general integer-shift-invariant space V (ϕ), where ϕ(x) is an arbitrary
generating function specified a priori, by suitable digital processing of the non-
ideal samples. As in the classical case [34], this corresponds to a special kind of

1This chapter is based on the article: S. Ramani, D. Van De Ville, T. Blu and M. Unser,
“Nonideal Sampling and Regularization Theory,” IEEE Transactions on Signal Processing,
vol. 56, no. 3, pp: 1055–1070, March 2008.

33
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Table 3.1: Characteristics of Various Sampling Schemes

Method
Acquisition

Noise
Reconstruction

DimensionDevice Space

Shannon [2] Ideal No Bandlimited 1-D

Interpolation
Ideal No

Shift-Invariant,
Multi-D[6,15,19,65] Splines

Peterson et al. [67] Ideal No Bandlimited Multi-D

Minimum-Error
Dual No Shift-Invariant Multi-D[44]

Papoulis [68] Nonideal No Bandlimited 1-D

Consistent,
Nonideal No

Shift-Invariant,
1-DUnser et al. [52] Splines

Eldar et al. [66] Nonideal Yes Shift-Invariant 1-D

This work Nonideal Yes “Matched” Multi-D

(regularized-inverse, Wiener) filtering, except that the digital correction filter
explicitly depends on ϕ [66]. The bottom-line is that the user is free to select
the reconstruction space he wishes, provided of course that he optimizes the
digital correction filter accordingly.

Having this added flexibility is desirable, but it also raises the important issue
of the selection of a reconstruction space that is most suitable for a particular
sampling set-up and/or class of input signals. This is precisely the question that
we will address here while also extending some of the previous formulations to
the multidimensional setting. Table 3.1 summarizes the characteristics of some
well-known methods in literature in comparison to what is developed in this
chapter. In contrast with the previous works (such as those listed in Table
3.1), we want to infer the “optimal” reconstruction space together with the
reconstruction algorithm in a deductive fashion through a global mathematical
optimization process.

We consider a realistic setting where a multidimensional signal is prefiltered
prior to sampling, and the samples are corrupted by additive noise as illus-
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Prefilter
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Noise

�g[k]
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Linear /

Non-linear
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�c[k]
ϕ(x) �frec(x)

Reconstruction

Figure 3.1: Block diagram of the generalized sampling problem: The
acquisition device specifies the prefilter h(x) which acts in the contin-
uous domain. The choice of the generator ϕ(x) specifies the recon-
struction space. The optimal coefficients {c[k]} are determined from
the noisy samples {g[k]} as the result of a numerical linear / nonlinear
optimization process.

trated in Figure 3.1. We formulate the reconstruction problem in a variational
framework wherein the continuous-space solution is obtained by the minimiza-
tion of a data-fidelity term subject to a continuous-space regularization con-
straint (Tikhonov-like functional). The data-fidelity term (which is possibly
non-quadratic) ensures that the continuous-space solution is consistent. For the
regularization, we choose a convex-increasing function of the L2-norm of a gen-
eralized derivative L{•} of the reconstruction (Tikhonov regularization). This
gives rise to a general setting which is mathematically tractable and also leads
to the specification of an “optimal” reconstruction space.

3.1.1 Contributions

We summarize below the main contributions of the thesis pertaining to this
chapter:

• We establish through mathematical minimization of the variational crite-
rion that the “optimal” reconstruction space is shift-invariant in nature
and that the continuous-space global minimum solution has an exact an-
alytical form.

• For quadratic data-fidelity, we prove that the optimal solution can be ob-
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tained by a simple one-step hybrid-linear filtering (discrete in - continuous
out) of the measurements. For the non-quadratic case, the solution can be
computed by nonlinear optimization of the coefficients of its shift-invariant
representation.

• We show that the generator of the “optimal” reconstruction space is tied
to the regularization operator L via an optimality condition. As a di-
rect consequence, the regularization operator completely characterizes the
reconstruction space which can be interpreted as a generalization of [66].

• We also justify that the reconstruction framework is closer to spline theory
than it is to the traditional view of sampling/deconvolution. A conceptual
advantage is that there are no numerical approximations involved (e.g.
finite differences to estimate derivatives, etc): All calculations are exact
and performed analytically in the continuous domain (similar to what is
done in the context of the wavelet transform).

• We present statistical arguments that suggest the same type of shift-
invariant reconstruction mechanism when the input signal belongs to cer-
tain classes of stochastic processes. In fact, we uncover a functional equiv-
alence between the variational and Wiener solutions to the problem of
nonideal sampling in the presence of noise, which in turn helps us to se-
lect the most appropriate regularization functional. In this context, we
also develop a new Matérn B-spline which is appropriate for sampling and
interpolation of images with ‖ωωω‖−τ -like spectra [69].

3.1.2 Organization of the Chapter

We review in Section 3.2 some mathematical results that we will use in our anal-
ysis. The generalized sampling problem is investigated in Section 3.3. We first
give a precise statement of the problem and discuss the mathematical hypotheses
that are essential to the analysis. We then derive the general continuous-space
solution to our variational reconstruction problem and prove that it is included
in some optimal shift-invariant space. Section 3.4 is dedicated to the analysis
of the stability of the reconstruction; the end result is a set of relatively mild
constraints on the frequency response of the regularization operator. We illus-
trate our results with some concrete examples in Section 3.5. In particular,
we consider explicit classes of separable and isotropic regularization operators
and characterize the corresponding reconstruction spaces. This also leads to
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the definition of a new brand of multidimensional Matérn splines, which ex-
tend Rabut’s polyharmonic family [70]. Finally, in Section 3.6, we revisit our
sampling problem from an estimation theoretic point of view and derive the
corresponding minimax and MMSE solutions. This allows us to draw an in-
teresting link with the variational formulation leading to some equivalences of
solutions for the deterministic and stochastic cases.

3.2 Preliminaries

For ease of notation, we use the standard sampling lattice, Z
d (that corresponds

to D = I in (2.6) in Chapter 2 and normalized sampling-step T = 1), hence-
forth unless specified otherwise.2 We represent the integer-shift-invariant space3

generated by ϕ(x) as

V (ϕ) =

⎧⎨
⎩s(x) =

∑
k∈Zd

c[k]ϕ(x− k) : c ∈ �2(Zd)

⎫⎬
⎭ . (3.1)

For the expansion in (3.1) to be well defined, ϕ(x) must satisfy the following
stability conditions.

Definition 3.1. A function ϕ(x) : R
d → R is a stable generator of V (ϕ) if and

only if it satisfies the two “stable representation” (SR) conditions:

SR :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ARϕ,2 = ess inf
ωωω∈[0, 2π)d

√∑
k∈Zd

|ϕ̂(ωωω + 2πk)|2 > 0,

sup
x∈[0, 1)d

∑
k∈Zd

|ϕ(x + k)| < +∞.
(3.2)

This is more general than the L2-Riesz condition we saw in Chapter 2 in the
sense that we are now dealing with Lp-spaces for 1 ≤ p ≤ ∞, which requires the
stronger second SR condition. The two SR conditions together ensure that the
set of functions {ϕ(x−k)} forms a Lp-stable Riesz basis for all 1 ≤ p ≤ ∞ [71];

2The results can be easily extended to handle an arbitrary sampling lattice DZ
d using the

Fourier transform relation (2.8) and the suitably modified Poisson’s summation formula (2.9)
of Chapter 2.

3We drop the subscript T in VT (ϕ) for ease of notation since we have set T = 1 here.



38 Nonideal Sampling in the Presence of Noise

that is, ∀ {c[k]} ∈ �p(Zd),

ARϕ,p ‖c‖�p ≤

∥∥∥∥∥∥
∑
k∈Zd

c[k]ϕ(x− k)

∥∥∥∥∥∥
Lp

≤ BRϕ,p ‖c‖�p , (3.3)

where ARϕ,p > 0 and BRϕ,p < +∞ are appropriate constants. The norm
equivalence (3.3) implies that V (ϕ) ⊂ Lp(Rd) for all 1 ≤ p ≤ ∞.

We will also take advantage of the following Young-type inequality which
asserts that the second SR condition is preserved through convolution.

Proposition 3.1. Let ϕ1(x) satisfy the second SR condition and let ϕ2(x) =
(f � ϕ1)(x) for some f(x) ∈ L1(Rd). Then ϕ2(x) also satisfies the second SR
condition; that is,

sup
x∈[0, 1)d

∑
k∈Zd

|ϕ2(x + k)| < +∞. (3.4)

Proof. Consider the series

∑
k∈Zd

|ϕ2(x + k)| =
∑
k∈Zd

∣∣∣∣
∫

Rd

f(x′)ϕ1(x + k− x′) dx′
∣∣∣∣

≤
∫

Rd

|f(x′)|

⎛
⎝∑

k∈Zd

|ϕ1(x + k− x′)|

⎞
⎠ dx′

≤ ‖f‖L1

⎛
⎝ sup

x′∈[0, 1)d

∑
k∈Zd

|ϕ1(x′ + k)|

⎞
⎠ < +∞,

where the above inequality holds ∀ x ∈ [0, 1)d, including the value x0 for which
the l.h.s. achieves its maximum. �

Remark 3.1. It should be noted that (f � ϕ1)(k) ∈ �1(Zd), which is obvious
when we set x = 0 in (3.4).

Proposition 3.2. Let ϕ satisfy the two SR conditions. Then, the function

ϕeq(x) =
∑
k∈Zd

q[k]ϕ(x− k)
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satisfies the first SR condition, if and only if the Fourier transform of the se-
quence {q[k]}, Q(ejωωω), obeys

|Q(ejωωω)| ≥ AQ > 0 a.e. (3.5)

A sufficient condition for ϕeq(x) to satisfy the second SR condition is that
‖q‖�1 < +∞.

Proof. The first part directly follows from Proposition 2.2 in Chapter 2. The
second part follows from Proposition 3.1 above. �

Remark 3.2. A direct consequence of Proposition 3.2 is that ϕeq also generates
a Lp-stable Riesz basis of V (ϕ).

3.3 Nonideal Sampling and Regularization

3.3.1 Problem Specification

The problem we consider is the recovery of a continuous-space real-valued signal
f(x) given some equally spaced, noisy measurements {g[k]}. The deterministic
signal f(x) is convolved with a prefilter h(x) prior to sampling and the gener-
alized samples are corrupted by additive noise. Specifically, the measurement
model associated with Figure 3.1 is

g[k] = (h � f)(k) + n[k] = y[k] + n[k], (3.6)

where {g[k]} are the measurements, y[k] = (h�f)(k), k ∈ Z
d, are the generalized

samples (samples of the prefiltered signal) and n[k] is a discrete additive, zero-
mean noise component.

Throughout this chapter, we assume that the analog prefilter h(x), which
represents the point spread function (PSF) of the nonideal acquisition device,
is of either forms below:

(i) PSF defined over a continuum: h(x) ∈ L1(Rd),

(ii) Sampled PSF (or discrete filter): h(x) =
∑
k∈Zd

hd[k] δ(x−k), where hd[k] ∈

�1(Zd).
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A necessary condition for the sampling problem to be well defined is that the
prefilter be BIBO (Bounded-Input Bounded-Output) stable,4 as implied by (i)
or (ii). The PSF in (ii) is not rigorously in L1(Rd); however, it can be shown
that it satisfies all corresponding Young-type inequalities. Note that (ii) also
includes the identity filter h(x) = δ(x) (ideal sampling) as a special case.

We adopt a variational approach and formulate the reconstruction prob-
lem as an optimization task. The solution is obtained by minimizing an error
criterion denoted by J(g, u) which depends on the input measurements {g[k]}
and the continuous-space reconstruction u(x). The specification of the cost-
functional J(g, u) is based on the following two key points:

(a) The reconstruction should be sufficiently constrained (e.g., smooth or
slowly varying) to make up for the fact that we are missing information
in between pixels and to counterbalance the effect of noise, and

(b) The generalized samples corresponding to the reconstruction should be
close to the given measurements to ensure some level of consistency.

Specifically, among all continuously-defined functions u(x) ∈ L2(Rd), we are
seeking the optimal signal reconstruction,

frec(x) = arg min
u∈L2(Rd)

J(g, u), (3.7)

where the cost functional J(g, u) is given by

J(g, u) =
∑
k∈Zd

|g[k]− (h � u)(k)|p

︸ ︷︷ ︸
Data−Fidelity Term

+λ Θ(‖L{u}‖2L2
)︸ ︷︷ ︸

Regularization

. (3.8)

L is a suitable shift-invariant differential (or regularization) operator, λ a pos-
itive real number, and Θ(•) is a convex increasing function. The L2-norm in
the regularization term is a measure of the “roughness” of the reconstruction.
Minimization of J(g, u) therefore ensures sufficient smoothness in the recon-
struction while the data-fidelity term constrains the generalized samples of the
reconstruction to be “close” to the measurements in the �p-sense. The parame-
ter λ ≥ 0 controls the amount of regularization imposed on the reconstruction.
We will discuss the issue of selecting an appropriate value for this parameter in
Section 3.6 and in a more general context in Chapters 5 and 6.

4Correspondingly, we have |ĥ(ωωω)| < +∞, ∀ ωωω ∈ R
d.



3.3 Nonideal Sampling and Regularization 41

The above cost functional reduces to the well known Tikhonov criterion when
p = 2 and Θ(x) = x. Moreover, we will show in Section 3.6 that the solution
corresponding to the Tikhonov criterion is functionally equivalent to the ones
obtained for the minimax estimation and the stochastic (or Wiener) formulation
of the generalized sampling problem.

At this point, it is important to note that J(g, u) is a hybrid criterion that
has a discrete part—the data-fidelity term—and an analog one—the regulariza-
tion functional—that imposes smoothness constraints on the continuous-domain
solution. It is this latter term together with the extent of the search space5 that
differentiates our problem from a more traditional deconvolution task which is
usually entirely formulated in the discrete domain. Here, we are attempting to
solve the deconvolution and interpolation problems simultaneously and hoping
that the criterion will dictate an “optimal” discretization procedure.

We believe that the present cost-functional is the most general one that
can be solved analytically in the continuous-space domain. It allows for a non-
quadratic data-fidelity term in the spirit of Fu et al. [72] and Nikolova [73], but
it excludes some popular non-quadratic regularization such as total-variation
(TV) [74,75], which are not mathematically tractable in the present continuous-
space framework. We must admit that this restriction constitutes a limitation
of our formulation, but it is also clear that the generalized sampling problem is
more difficult than the classical deconvolution problem: We are not only trying
to get the optimal solution at the sample locations, but also in-between pixels,
which adds another level of ill-posedness.

As we shall see, it is the presence of the L2-norm of L{•} in the regulariza-
tion term that makes the derivation of the continuous-space solution feasible.
Indeed, we will show that the continuous-space solution is well-defined and that
it belongs to an “optimal” subspace, V (ϕopt), that is shift-invariant and inde-
pendent upon the input signal. Moreover, for p = 2, there is a direct solution
that can be computed elegantly by simple digital filtering of the discrete mea-
surements. This is illustrated in Figure 3.1 in the reconstruction setup where
the measurements {g[k]} are first compensated for their nonidealness using lin-
ear/nonlinear optimization techniques (that can be implemented efficiently via
digital filtering); the reconstruction then is performed in the shift-invariant space
generated by ϕ = ϕopt.

5We are optimizing the criterion over L2(Rd), which is considerably larger than the sub-
space of bandlimited functions. To make an analogy, L2(Rd) is to V (sinc)—or, equivalently,
�2(Zd)—what the real numbers are to the integers.
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3.3.2 Consistent Sampling in V (ϕ)

In the noise-free case, it is reasonable to decrease the weight of the regularization
(λ→ 0) and to seek a signal reconstruction that is consistent with the measure-
ments. This corresponds to the case where the samples of the continuous-space
function are equal to the measurements (so that the data-fidelity term is zero).
This is the approach to the generalized sampling problem that was developed
initially in [51] for a signal reconstruction in some predefined shift-invariant
space V (ϕ) (see Section 2.3.2 in Chapter 2). We will review this solution here,
keeping in mind that it is not necessarily optimal because of the restriction
on the search spaces (that is, V (ϕ) instead of L2(Rd)). Under suitable condi-
tions [51, Theorem 1], the consistent signal reconstruction in V (ϕ) is unique
and is given by

fcon(x) =
∑
k∈Zd

(g ∗ r0)[k]ϕ(x− k),

where r0 is the digital restoration filter whose frequency response is [51]

R0(ejωωω) =
1∑

k∈Zd

ĥ(ωωω + 2πk)ϕ̂(ωωω + 2πk)
. (3.9)

Note that this filter corresponds to the convolution inverse of the sequence
{(h�ϕ)(k)}. We check for the consistency of (h� fcon)(x) by sampling it at the
integers:

(h � fcon)(x)|x=n∈Zd =
∑
k∈Zd

(g ∗ r0)[k] (h � ϕ)(n− k) = g[n].

This holds true because (r0 ∗ (h � ϕ))[n] = δ[n] and the interchange of the sum
and integral is justified using Lebesgue’s dominated convergence theorem in
combination with Cauchy-Schwarz’s inequality. The condition for the existence
(and unicity) of the consistent sampling (CS) solution is that the denominator
of (3.9) is non-vanishing; that is, ∀ ωωω ∈ [0, 2π)d,

CS :

∣∣∣∣∣∣
∑
k∈Zd

ĥ(ωωω + 2πk)ϕ̂(ωωω + 2πk)

∣∣∣∣∣∣ > 0, (3.10)

which imposes a joint constraint on ϕ(x) and h(x). This guarantees the BIBO
stability of the reconstruction filter r0. Indeed, the Lp-stability of ϕ (SR con-
dition) implies that {(h � ϕ)(k)} ∈ �1(Zd) (see Remark 3.1 at the beginning of
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this chapter). The results then follow from Wiener’s lemma [76], which ensures
that the inverse filter {r0[k]} ∈ �1(Zd). The argument also holds in the case
where h is a sampled PSF.

3.3.3 Space of Admissible Solutions

We now go back to our initial minimization problem (3.7) with λ > 0. While
searching for a global solution in L2(Rd), we must exclude all potential candi-
dates for which the cost is infinite. We therefore say that the function u(x) ∈
L2(Rd) is admissible with respect to the criterion (3.7) if and only if J(g, u) is
finite. In particular, this implies that

‖L{u}‖2L2
=
∫
x∈Rd

|L{u(x)}|2 dx ≤ μ2
0 < +∞. (3.11)

This together with the fact that we are looking for a solution with finite L2-norm
gets translated into u(x) ∈WL

2 , where

WL
2 =

{
f(x) :

∫
Rd

|f̂(ωωω)|2(1 + |L̂(ωωω)|2) dωωω < +∞
}

is the generalized Sobolev space associated with the operator L. Thus, the
problem can be restated as

frec(x) = arg min
u∈WL

2

J(g, u). (3.12)

Additionally, for the data-fidelity term in J(g, u) to be finite (in the p = 2 case),
the samples of the solution frec ∈WL

2 should be well-defined in the �2-sense (we
examine the cases where p �= 2 when we actually present the solution to the
minimization problem). This is ensured provided that L acts as a differential
operator and enforces sufficient smoothness on the solution. In multiple di-
mensions, a classical choice for L is the γ

2 -iterated multidimensional Laplacian
operator (γ > 0), whose transfer function6 is L̂(ωωω) = ‖ωωω‖γ [77–79]. This leads
to the Sobolev space W γ

2 of order γ that contains finite energy functions whose
Laplacians up to order γ

2 have finite L2-norm [70, 79]. Among other properties
of W γ

2 , the one that is of interest to us is for real γ > d
2 ,

f(x) ∈W γ
2 =⇒ {f(k)}k∈Zd ∈ �2(Zd).

6The transfer function of a linear differential operator is defined in the sense of distributions:

L{ψ} F←→ L̂(ωωω) ψ̂(ωωω), where ψ is a valid test function. For instance, in 1-D, d
dx

F←→ jω.
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For a proof of this result (in 1-D), see [54, Appendix C].
In the present work, we propose to extend this result to a larger class of

multidimensional differential operator L. To that end, we impose the following
admissibility condition on L which guarantees the minimum required degree of
smoothness.

Definition 3.2. L is an admissible multidimensional differential operator if and
only if

∑
k∈Zd

1
1 + |L̂(ωωω + 2πk)|2

≤ C0 < +∞. (3.13)

The above condition implicitly controls the minimal “growth” rate of L̂(ωωω),
because the above series converges only when L̂(ωωω) grows faster than ‖ωωω‖ d

2 which
is the limit case. If the generalized differential operator L is admissible, then
the following theorem ensures that the associated generalized Sobolev space WL

2

has the properties that we demand.

Theorem 3.1. Let WL
2 be the generalized Sobolev space associated with the

admissible regularization operator L. Then

f(x) ∈WL
2 =⇒ {f(k)} ∈ �2(Zd),

and the Poisson’s summation formula holds:∑
k∈Zd

f(k) e−j ωωω
Tk =

∑
k∈Zd

f̂(ωωω + 2πk) a.e.

Proof. The proof is given in Appendix B.1. �

For the present context, we extend the scope of the above theorem to func-
tions of type (h � f)(x) using the following proposition.

Corollary 3.1. If f(x) ∈ WL
2 and h(x) ∈ L1(Rd), then (h � f)(x) ∈ WL

2 and
(h � f)(k) ∈ �2(Zd).

Proof. Since h(x) ∈ L1(Rd), |ĥ(ωωω)| ≤ ‖h‖L1 < +∞, and the result is obvious
from the definition of WL

2 and the application of Theorem 3.1. The same holds
for the sampled PSF case too. �
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It is also clear that the search for a suboptimal solution in some subspace
V (ϕ) only makes sense if V (ϕ) ⊂ WL

2 . This is equivalent to requiring that the
following upper Riesz bound be finite:

BRLϕ,2 = ess sup
ωωω∈[0, 2π)d

√∑
k∈Zd

|L̂(ωωω + 2πk) ϕ̂(ωωω + 2πk)|2 < +∞.

3.3.4 Solution to the Variational Problem

To minimize the cost functional J(g, u), we first observe that the data-fidelity
term depends on the generalized samples of the solution exclusively, which sug-
gests a two-stage optimization strategy. We first deal with the regularization
part of the problem. Let us denote by u0(x) the optimal solution to our prob-
lem. The main part of the argument will be the construction of a function
fcon(x) which belongs to some “optimal” shift-invariant space V (ϕopt), that is
consistent with u0(x) in the sense that ∀ k ∈ Z

d,

y[k] = (h � u0)(k) = (h � fcon)(k),

and which has the least Θ(‖L{•}‖2L2
) among all consistent functions in WL

2 (see
Section 3.3.4.1). This leads us to conclude that there is a solution of our global
optimization problem that belongs to the space V (ϕopt) (see Sections 3.3.4.2 and
3.3.4.3). Once the optimal space is known, we only need to determine the coef-
ficients {c[k]} of the shift-invariant representation which yields the discretized
version of the problem presented in Section 3.3.4.4. The quadratic case, which
can be solved explicitly, is dealt with in Section 3.3.4.5.

3.3.4.1 Consistent, Shift-Invariant Solution

The optimal generating function for our problem will be denoted by ϕopt(x).
We also introduce a sufficient condition for optimality which will be justified by
Theorem 3.2 below.

Definition 3.3. Let ϕopt(x) be a generating function that satisfies the SR and
CS conditions for a given prefilter h(x). Then, ϕopt(x) is said to be optimal
with respect to the problem (3.7) if there exists a sequence {q[k]} ∈ �1(Zd) such
that

Optimality Condition OC : L∗L{ϕopt(x)} =
∑
k∈Zd

(q ∗ q̄)[k] h̄(x− k), (3.14)

where L∗L is the self-adjoint operator whose transfer function is |L̂(ωωω)|2.
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We now construct a function fcon(x) ∈ V (ϕopt) that is consistent with the
optimal solution u0(x) and therefore yields the same data-fidelity term. This
can always be done, as stated below.

Proposition 3.3. Let ϕopt(x) be optimal as in Definition 3.3. Then, if the
samples {y[k] = (h � u0)(k)} ∈ �2(Zd), there exists a unique consistent function
fcon(x) ∈ V (ϕopt) such that (h�u0)(k) = (h�fcon)(k), ∀ k ∈ Z

d. It is given by

fcon(x) =
∑
k∈Zd

(y ∗ r0)[k]︸ ︷︷ ︸
c[k]

ϕopt(x− k), (3.15)

where the digital reconstruction filter r0 is specified by (3.9) with ϕ = ϕopt.
Moreover, we have the equivalence {(h � u0)(k)} ∈ �2(Zd)⇐⇒ fcon(x) ∈WL

2 .

Proof. The first part of the proposition is a direct application of the consistent
sampling solution presented in Section 3.3.2. Since {r0[k]} ∈ �1(Zd) (CS Con-
dition) and {y[k] = (h � u0)(k)} ∈ �2(Zd), we have {c[k] = (y ∗ r0)[k]} ∈ �2(Zd)
by Young’s inequality. This implies that ‖fcon(x)‖L2 < +∞, because ϕopt gen-
erates a Riesz basis. To further prove that ‖L{fcon}‖L2 < +∞, we need to
show that L{ϕopt} has an upper Riesz bound: By Proposition 3.1, we have
(h � ϕopt)(k) ∈ �1(Zd). This together with the fact that |Q(ejωωω)| is bounded
from above yields

∑
k∈Zd

|L̂(ωωω + 2πk) ϕ̂opt(ωωω + 2πk)|2

= |Q(ejωωω)|2
⎛
⎝∑

k∈Zd

ĥ∗(ωωω + 2πk) ϕ̂∗
opt(ωωω + 2πk)

⎞
⎠

< +∞,

which ensures that BRLϕopt ,2
is finite. We have thus established the forward

implication: {(h � u0)(k)} ∈ �2(Zd) =⇒ fcon(x) ∈ WL
2 . The converse is a

consequence of Theorem 3.1. �

An interesting property that will be used later on is that the frequency
response R0(ejωωω) of the corresponding optimal reconstruction filter is always
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strictly positive. This can be seen by writing (3.14) in the Fourier domain as:

ϕ̂opt(ωωω) = ĥ∗(ωωω)
|Q(ejωωω)|2

|L̂(ωωω)|2

=⇒ ĥ(ωωω) ϕ̂opt(ωωω) = |ĥ(ωωω)|2 |Q(ejωωω)|2

|L̂(ωωω)|2
≥ 0, (3.16)

which implies
∑
k∈Zd

ĥ(ωωω + 2πk)ϕ̂opt(ωωω + 2πk) ≥ 0, ∀ ωωω ∈ [0, 2π)d. In fact, the

latter is a strict inequality because of the CS condition.

3.3.4.2 Global Optimality of the Shift-Invariant Solution

Now that we have constructed the consistent function fcon(x), it only remains to
show that it is the one with the least Θ(‖L{•}‖2L2

) value. To do this, we establish
a norm identity that decomposes ‖L{u}‖2L2

into two orthogonal components.

Theorem 3.2. Let V (ϕopt) ⊂ WL
2 be the function space generated by ϕopt as

in Definition 3.3. Then, the following orthogonality property holds:

∀ u(x) ∈WL
2 , ‖L{u}‖2L2

= ‖L{u− fcon}‖2L2
+ ‖L{fcon}‖2L2

, (3.17)

where fcon(x) is the unique consistent function in V (ϕopt) such that

(h � fcon)(x)|x=k = (h � u)(k), ∀ k ∈ Z
d,

as specified in Proposition 3.3.

Proof. The proof is given in Appendix B.2. �

Setting u = fcon in (3.17) minimizes the function norm ‖L{•}‖L2 . Thus,
fcon(x) ∈ V (ϕopt) minimizes ‖L{u}‖2L2

among all functions in WL
2 having con-

sistent samples.

3.3.4.3 General Solution

Putting the pieces together, we get our main theorem, which states that the
solution to our optimization problem has a unique representation in the integer-
shift-invariant space V (ϕopt).
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Theorem 3.3. Given the measurements {g[k]} ∈ �p(Zd) and the “optimal”
subspace of WL

2 , V (ϕopt) = span{ϕopt(x − k)}k∈Zd with ϕopt as in Definition
3.3, one has the following problem equivalence

min
u∈WL

2

J(g, u) ≡ min
f∈V (ϕopt)

J(g, f), (3.18)

for any general cost function of the form (3.8). This implies that the optimal
signal reconstruction can be written as

frec(x) =
∑
k∈Zd

c[k]ϕopt(x− k),

and the optimization performed over the discrete set of coefficients {c[k]} ∈
�2(Zd), which narrows down the search considerably.

Proof. We first concentrate on the case p ≥ 2. Since we are looking for a
reconstruction u(x) ∈ WL

2 , the generalized samples {(h � u)(k)} ∈ �2(Zd) ⊂
�p(Zd) and the cost functional J(g, u) is always well defined. The cost (3.8) is
convex over WL

2 because it is the sum of two (strictly) convex sub-functionals.
We are therefore guaranteed that the left hand side of the problem in (3.18)
has a global minimum associated with the solution u0(x). The corresponding
consistent reconstruction in V (ϕopt) is denoted by fcon,0(x) and is such that (h�
u0)(k) = (h � fcon,0)(k), ∀ k ∈ Z

d. Applying Theorem 3.2 to the regularization
part of the criterion, we have

J(g, u) =
∑
k∈Zd

|g[k]− (h � u)(k)|p

+λΘ
(
‖L{fcon,0}‖2L2

+ ‖L{u− fcon,0}‖2L2

)
, (3.19)

where the data-fidelity term and the consistent function fcon,0 ∈ V (ϕopt) are
fixed and uniquely tied to u. The optimality of u0 implies that J(g, u0) ≤
J(g, fcon,0). On the other hand, the comparison of (3.19) for u = u0 and u =
fcon,0 indicates that J(g, u0) ≥ J(g, fcon,0) because the data-fidelity term is the
same in both cases and the function Θ is convex increasing. Thus, the conclusion
is that J(g, u0) = J(g, fcon,0), which proves our assertion.

For p < 2, the situation is more restricted because the cost J(g, u) explodes
if the samples {(h � u0)(k)} ∈ �2(Zd)\�p(Zd). The minimization of J(g, u)
therefore automatically confines the samples {(h�u0)(k)} to lie in �p(Zd). Since
�p(Zd) ⊂ �2(Zd) for 1 ≤ p < 2, the shift-invariant solution fcon,0(x) ∈ V (ϕopt)
is still valid by Proposition 3.3 and Theorem 3.2. �
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The above result is conceptually pleasing because the continuous-space op-
timization problem (3.12) does not make any a priori assumption on the form
of the reconstruction. The shift-invariant structure of the solution comes out as
a result of the mathematical optimization. The generator of the optimal recon-
struction space is specified by the optimality condition OC; that is, the operator
L determines the generator ϕopt(x). This simply means that the reconstruction
space should be “matched” to the regularization operator.

Note that the fundamental solution of (3.14)—that is, q[k] = δ[k]—is ϕopt(x) =
(h̄ �ρ)(x), where ρ(x) is a Green’s function of the self-adjoint operator L∗L, and
this generator is generally not bandlimited.

3.3.4.4 Optimal Discretization of the Problem

Once the reconstruction space V (ϕopt) is specified, we only need to search for
the expansion coefficients {c[k]} ∈ �2(Zd) of the solution. To do this, we write
(h � fcon,0)(k) = (c ∗ ξ)(k), where ξ[k] = (h � ϕopt)(k). Using (3.14) for the
second term, the cost can be rewritten in terms of the signal coefficients {c[k]}:

J(g, frec) = J(g; c)
= ||g − (c ∗ ξ)||p�p + λΘ

(
〈q ∗ q̄ ∗ c, ξ ∗ c〉�2

)
, (3.20)

where we have used the fact that

‖L{frec}‖2L2
= 〈L∗L{frec}, frec〉L2 = 〈q ∗ q̄ ∗ c, ξ ∗ c〉�2 .

We are therefore faced with a nonlinear optimization problem. Even though the
problem does generally not have an explicit analytical solution, the good news
is that J(g; c) is a convex function of the coefficients c, which ensures that any
local minimum automatically yields a global solution. The minimization can
therefore be done by using any standard gradient-based nonlinear optimization
technique [80].

3.3.4.5 Solution of the Quadratic/Tikhonov Problem

When p = 2 and Θ(x) = x, the cost functional (3.20) is quadratic in {c[k]}
(Tikhonov criterion [35]) and the derivation of the optimal solution can be
carried out analytically. This yields an efficient digital filtering reconstruction
algorithm.
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Corollary 3.2. When p = 2, Θ(x) = x and {g[k]} ∈ �2(Zd), the global mini-
mum of the cost functional J(g, u) is achieved by

frec(x) =
∑
k∈Zd

(rλ ∗ g)[k]ϕopt(x− k), (3.21)

where the frequency response of the optimal restoration (digital correction) filter
rλ is given by

Rλ(ejωωω) =
1∑

k∈Zd

ĥ(ωωω + 2πk)ϕ̂opt(ωωω + 2πk) + λ |Q(ejωωω)|2
. (3.22)

Proof. Setting p = 2 and Θ(x) = x in (3.20) and equating the partial derivative
of J(g; c) with respect to c[k] to zero yields,

(ξ̄ ∗ ξ ∗ c)[k] + λ(ξ̄ ∗ q ∗ q̄ ∗ c)[k] = (ξ̄ ∗ g)[k].

Rewriting the above equality in the Fourier domain, we obtain the desired result:

C(ejωωω) =
G(ejωωω)∑

k∈Zd

ĥ(ωωω + 2πk) ϕ̂opt(ωωω + 2πk) + λ |Q(ejωωω)|2
= Rλ(ejωωω)G(ejωωω),

where G(ejωωω) is the Fourier transform of the given samples {g[k]}. �

Since R0(ejωωω) is strictly positive and because Q(ejωωω) is bounded, the filter
Rλ(ejωωω) is strictly positive and bounded as well. Therefore, by writing the
solution (3.21) in the Fourier domain, we obtain

f̂rec(ωωω) = ϕ̂eq(ωωω)G(ejωωω), (3.23)

where ϕ̂rec(ωωω) = Rλ(ejωωω) ϕ̂opt(ωωω) is the equivalent basis function (see Remark
3.2) that needs to be applied to the measurements G(ejωωω) to produce the
continuous-space signal reconstruction, as illustrated in Figure 3.2. Indeed,
we are ensured that ϕrec(x) generates a Lp-stable Riesz basis because of the
boundedness of Rλ(ejωωω) (see Proposition 3.2).

3.4 Stability of the Reconstruction

In this section, we examine ϕopt from a spline-theoretic point of view and provide
guidelines for selecting L so that the problem is well posed. To this end, we
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Figure 3.2: Reconstruction setup for the case of p = 2: Linear Filtering
of measurements {g[k]}.

rewrite the optimality condition (3.16) in the Fourier domain as ϕ̂opt(ωωω) =
ĥ∗(ωωω) |β̂(ωωω)|2, where

β̂(ωωω) =
Q(ejωωω)
L̂(ωωω)

(3.24)

is interpreted as the Fourier transform of the generalized B-spline associated
with the operator L [70,81]. The construction of a B-spline is typically achieved
by selecting a filter Q(ejωωω) that cancels the zeros of L̂(ωωω) in order to produce a
frequency response β̂(ωωω) that is bounded. In the sequel, we will only consider
“spline admissible” operators for which the corresponding generalized B-spline
generates an Lp-stable Riesz basis.

Definition 3.4. The operator L is said to be spline-admissible with B-spline
β(x) if and only if

L{β}(x) =
∑
k∈Zd

q[k] δ(x− k), (3.25)

where {q[k]} ∈ �1(Zd), and β(x) satisfies the SR condition.

Note that the above equation is just a restatement of (3.24) in the signal
domain. The non-trivial aspect here is the existence of the lower Riesz bound
ARβ ,2, which needs to be checked on a case-by-case basis.
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The optimal generating function can therefore be regarded a compound gen-
eralized B-spline given by

ϕopt(x) = (h̄ � β � β̄)(x). (3.26)

We will now see that this interpretation of ϕopt greatly simplifies our task of
making sure that the conditions SR and CS for the well-posedness of our re-
construction problem are met. Interestingly, both conditions are tightly linked
when we are working with the optimal basis.

Proposition 3.4. Let ϕopt be the optimal generator. If h(x) ∈ L1(Rd) and L
is spline-admissible, then we have the following equivalence:

ϕopt satisfies the SR conditions ⇐⇒ ϕopt satisfies the CS condition.

Proof. Let us start from the left. Since ϕopt satisfies the first SR condition, we
have a strictly positive lower bound for the series∑
k∈Zd

|ϕ̂opt(ωωω + 2πk)|2 =
∑
k∈Zd

|ĥ(ωωω + 2πk)|2 |β̂(ωωω + 2πk)|4 ≥ A2
Rϕopt ,2

> 0,

∀ ωωω ∈ [0, 2π)d. Since all individual terms are positive, continuous functions7

of ωωω (because h(x) ∈ L1(Rd) and β(x) ∈ L1(Rd) since L is spline-admissible),
this means that for each ωωω0 ∈ [0, 2π)d, there is at least one k ∈ Z

d such that
ĥ(ωωω0 + 2πk) β̂(ωωω0 + 2πk) �= 0. Thus, ∀ ωωω ∈ [0, 2π)d, the sum∑
k∈Zd

ĥ(ωωω + 2πk) ϕ̂opt(ωωω + 2πk) =
∑
k∈Zd

|ĥ(ωωω + 2πk)|2 |β̂(ωωω + 2πk)|2 > 0, (3.27)

is strictly positive so that ϕopt satisfies the CS condition. For the converse
implication, we see right away that the second SR condition is satisfied by
ϕopt because of (3.26) and Proposition 3.1. Then, from Remark 3.1, we have
{(h � ϕopt)(k)} ∈ �1(Zd). Therefore, the l.h.s. of (3.27) is continuous and since
it is also strictly positive, there exists m > 0, such that∑

k∈Zd

|ĥ(ωωω + 2πk)|2 |β̂(ωωω + 2πk)|4 ≥ m > 0,

which proves that the first SR condition is met as well. �
7If a function f(x) ∈ L1(Rd), then its Fourier transform f̂(ωωω) is uniformly continuous. The

same is true for sequences: if {c[k]} ∈ �1(Zd), then C(ejωωω) is uniformly continuous.
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The key to the above equivalence is the optimality of ϕopt(x) which leads
to series of positive terms in both the SR and the CS conditions. However,
the question still remains as how to ensure the existence of at least one non-
vanishing product ĥ(ωωω0 + 2πk) β̂(ωωω0 + 2πk) for each ωωω0 ∈ [0, 2π)d and some
k = k(ωωω0) ∈ Z

d. Unfortunately, this may be quite tedious to check directly.
What we propose here is an easy alternative where the user only has to worry
about the placement of the zeros of L̂(ωωω) in relation to those of ĥ(ωωω).

Theorem 3.4. Let the following be true:
(i) L be spline-admissible,
(ii) h(x) ∈ L1(Rd) be non-pathological in the sense that there exists

A2
Rh,2

= inf
ωωω∈[0, 2π)d

∑
k∈Zd

|ĥ(ωωω + 2πk)|2 > 0, and, (3.28)

(iii) L̂(ωωω) and ĥ(ωωω) have no common zeros.
Then, ϕopt satisfies SR and CS conditions.

Proof. First we note that ĥ(ωωω) and β̂(ωωω) are continuous and bounded because
h(x) ∈ L1(Rd) and L is spline-admissible. Suppose that L̂(ωωωn) = 0 for ωωωn ∈ R

d,
n ∈ I where I ⊂ Z

d is a finite index set. These zeros must necessarily be
cancelled by some corresponding zeros of Q(ejωωω) which is 2π-periodic. This
implies that

β̂(ωωωn + 2πk) =
{
Cβ,n, k = 0,
0, otherwise,

where Cβ,n �= 0 is a real constant. Moreover, β satisfies the SR conditions
because of the spline admissibility of L. Therefore, the only zeros of β̂(ωωω) are
{ωωωn + 2πk, k ∈ Z

d\{0}, n ∈ I}. Since ĥ(ωωωn) �= 0 (L̂(ωωω) and ĥ(ωωω) have no
common zeros), we see that∑

k∈Zd

|ĥ(ωωωn + 2πk)|2 |β̂(ωωωn + 2πk)|2 = |ĥ(ωωωn)|2 C2
β,n > 0,

for all the zeros of β̂(ωωω). Therefore, the only way ĥ(ωωω + 2πk) β̂(ωωω + 2πk) can
vanish is when ĥ(ωωω) has a 2π-periodic zero, which cannot be the case because
of (3.28). Thus, we are ensured that for each ωωω0 ∈ [0, 2π)d, there is at least one
k ∈ Z

d such that ĥ(ωωω0 + 2πk) β̂(ωωω0 + 2πk) �= 0. Following the argument used
in Proposition 3.4, this implies that SR and CS conditions are both satisfied
by ϕopt(x). �
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The placement of the zeros L̂(ωωω) has some important effect on the recon-
struction. Qualitatively, the regularization will be the least at the frequencies
where |L̂(ωωω)| is minimum. In the limit when L̂(ωωωn) = 0, the restoration filter
simplifies to

Rλ(ejωωωn) =
1∑

k∈Zd

|ĥ(ωωωn + 2πk)|2 |β̂(ωωωn + 2πk)|2

=
1

ĥ(ωωωn)ϕ̂opt(ωωωn)
< +∞, (3.29)

because Q(ejωωω)|ωωω=ωωωn = 0 and β̂(ωωωn + 2πk) = 0, k ∈ Z
d\{0}, by construction.

Interestingly, this is the same response as that of a classical (non-regularized)
inverse filter.

In light of this observation and Theorem 3.4, it makes good sense to place the
zeroes (or minimal values) of L̂(ωωω), where ĥ(ωωω) takes its maximum (typically,
ωωω = 0) and vice versa. We will now consider some concrete examples and specify
families of regularization operators that are well suited for lowpass systems. We
will then return to the issue of the selection of the “best” regularization operator
in Section 3.6, where we present an alternative stochastic formulation of the
generalized sampling problem.

3.5 Case Illustrations

In this section, we examine a few special cases of the generalized sampling setup.
The key point is that the reconstruction space is derived from the regularization
operator via the optimality condition OC. We illustrate this connection with
concrete examples that are relevant to image processing.

3.5.1 Ideal versus Nonideal Sampling

The prefilter h(x) in the generalized sampling setup in Figure 3.1 models the
PSF of the acquisition device. The simplest, idealized case is h(x) = δ(x),
which corresponds to a perfect sampling of the signal. The problem described
by (3.12) then reduces to the multidimensional version of the smoothing spline
problem investigated in [78, 81, 82]. In that case, we can simply ignore ĥ(ωωω) in
all formulas and invoke Theorem 3.4 to show that the problem is well posed,
provided that the regularization operator L is spline-admissible.
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Likewise, we can account for the physical effect of an optical system. In the
paraxial approximation of optics, the system is shift-invariant with a general
lowpass behavior; the optical PSF is in L1(R3) and does not exhibit structured
set of zeros (2π-periodic). Hence, stability is usually not a problem.

By contrast, some man-made sensors, such as CCD cameras whose impulse
responses are indicator functions, do exhibit zeroes on a regular grid in the
Fourier domain; e.g., hCCD(x1, x2) = rect(x1, x2) ⇒ ĥCCD(ωωω) = 0, ωωω =
2πk, k �= 0. Fortunately, the gain at zero frequency is non-zero (lowpass be-
havior) so that condition (3.28) is generally satisfied.

3.5.2 Regularization Operators and Reconstruction Spaces

Since most natural images are predominantly lowpass, it is desirable to recon-
struct the lower part of the spectral content with minimum distortion which can
be achieved through a judicious placement of the zeros of L̂(ωωω) near the origin
(see Equation (3.29)). This strategy is also justified by the lowpass behavior of
most PSFs and our desire to minimize instabilities by having L̂(ωωω) small where
ĥ(ωωω) is large, and vice versa. In what follows, we consider examples of multidi-
mensional regularization operators that are associated with the most prominent
families of spline functions: Tensor-product polynomial splines [48, 62], and
polyharmonic splines [70,83], the latter being the non-separable counterpart of
the former. We also introduce a generalized class of isotropic operators that
lead to a new brand of “Matérn” splines, the relevance of which will be further
justified in Section 3.6.

3.5.2.1 Separable Operators

We first study the separable case, where the Fourier transform of the multidi-
mensional operator L̂(ωωω) can be decomposed into a product of simple monomials.
The prototypical example is a succession of nk-th order derivatives along each
spatial coordinate leading to

L̂Sep(ωωω) =
d∏
k=1

(jωk)nk , nk ≥ 1. (3.30)

Since L̂Sep(ωωω) has multiple zeros at ωωω = 000, we must choose Q(ejωωω) in (3.24) to
cancel these out. The canonical choice is

QSep(ejωωω) =
d∏
k=1

(1− e−jωk)nk ,
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which yields a multidimensional B-spline whose Fourier transform is

β̂Sep(ωωω) =
d∏
k=1

(
1− e−jωk

jωk

)nk

=
d∏
k=1

e
−jωnk

2

(
2 sin(ωk/2)

ωk

)nk

. (3.31)

This expression is separable and can be inverted in a coordinate-wise fashion.
The end result is a tensor-product B-spline:

βSep(x) =
d∏
k=1

βnk−1
(
xk −

nk
2

)
, (3.32)

where βn−1(x) is Schoenberg’s symmetric polynomial B-spline of degree n − 1
(or order n) [62]. Since the 1-D B-splines are compactly supported and generate
1-D Lp-stable Riesz bases, the same holds true for βSep(x) in higher dimensions.

Let us now look at two concrete examples of sampling configurations. The
first is h(x) = δ(x) (ideal sampling) with a second derivative regularization
nk = 2 for all k. In that case,

ϕopt(x) = (βSep � β̄Sep)(x) =
d∏
k=1

β3(xk),

which is a tensor-product symmetrical cubic B-spline. Thus, we may rely on the
present variational formalism to justify the use of cubic interpolation which is
quite popular in image processing applications; this corresponds to the limiting
case λ→ 0 where the data-fidelity term vanishes (perfect fit).

The second example is h(x) = rect(x) (CCD camera) with a first derivative
regularization nk = 1 for all k. In that case,

ϕopt(x) = (h̄ � βSep � β̄Sep)(x) =
d∏
k=1

β2(xk),

which is a quadratic B-spline. Note that without the prefilter, we would have
ended up with a linear spline solution which is the poor man’s solution to
the interpolation problem. As far as image analysis is concerned, we believe
that a quadratic spline model is preferable, one of the reason being that it
is better suited for the evaluation of image differentials because of its higher
order continuity [84]. Thanks to the present formulation and the fact that
most images are captured using a pixel-integration device, we can invoke the
present variational argument to support the use of quadratic splines in imaging
applications. We are not aware of any previous justification in that direction.
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3.5.2.2 Laplace Operators

The prime example of a non-separable, isotropic operator is the γ
2 -iterated (or

fractional) Laplacian whose Fourier transform is given by

L̂Lap(ωωω) = ‖ωωω‖γ , γ >
d

2
. (3.33)

For γ = 2, we recover the classical Laplacian which is a popular, local operator.
Similar to the 1-D separable case, the choice of an appropriate localization

filter

QLap(ejωωω) =
∥∥∥2 sin

(ωωω
2

)∥∥∥γ
that cancels out the multiple zeros at ωωω = 000 yields the polyharmonic B-spline
function of order γ for β(x) [70,85]; these can be written in the Fourier domain
as

β̂γ(ωωω) =

∥∥∥2 sin
(ωωω

2

)∥∥∥γ
‖ωωω‖γ , (3.34)

where ‖ωωω‖ =

√√√√ d∑
k=1

ω2
k and ‖sin(ωωω)‖ =

√√√√ d∑
k=1

sin2(ωk). The polyharmonic B-

splines fulfill the SR condition as well as the convolution property:

βγ1 � βγ2 = βγ1+γ2 .

If we now consider the case of an ideal sampling device together with a γ
2 -iterated

Laplacian regularizer, we end up with the optimal generator

ϕopt(x) = (βγ � β̄γ)(x) = β2γ(x),

which is a polyharmonic B-spline of order 2γ. The corresponding solution to the
quadratic problem in Section 3.3.4.5 is then the equivalent of the polyharmonic
smoothing spline estimator investigated by Tirosh et al. [78].

3.5.2.3 Generalized Isotropic Operators

We now introduce a generalization of the fractional Laplacian operator that has
the important advantage of being associated with an extended family of station-
ary processes, including the so-called Matérn class [40,86]. This stochastic link
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will be made explicit in Sections 3.6.2 and 3.7 in connection with the MMSE
(or Wiener) estimator. We note that there is also a stochastic interpretation
of the polyharmonic spline estimator [69, 78], but it is much more intricate be-
cause it involves fractional Brownian motion fields which are non-stationary
processes [69,78]. The idea here is to keep the isotropy property by having L̂(ωωω)
be a function of ‖ωωω‖, but to displace the zeros from the origin by considering
an operator whose Fourier transform is

L̂Iso(ωωω) = L̂Iso(‖ωωω‖) =
N∏
m=1

(αm + ‖ωωω‖2)γm , (3.35)

with αm > 0, γm > d
2 , m = 1, 2, . . . , N .

Since L̂Iso(ωωω) does not vanish, there is actually no need for localization. So
we simply set QIso(ejωωω) = 1 and define the generalized Matérn B-spline with
parameters {(αm, γm)}m=1,2,··· ,N as

β̂Iso(ωωω) =
N∏
m=1

β̂αm,γm
(ωωω),

where β̂αm,γm
(ωωω) = (αm + ‖ωωω‖2)−γm . Interestingly, we are able to compute the

inverse Fourier transform of β̂αm,γm
(ωωω) which is given by (see Appendix B.3)

βαm,γm
(x) =

(
‖x‖

2
√
αm

)νm Kνm
(
√
αm ‖x‖)

2d−1
√
πd Γ(νm + d

2 )
, (3.36)

with νm = γm − d/2; Kν(x) is the modified Bessel function of the second kind
which rapidly decays (faster than polynomial decay) for increasing x and is
positive for ν > 0 and x > 0 [87]. This result constitutes the multidimensional
extension of the 2-D formula given in [86].

Therefore, βαm,γm
(x) is positive for γm > d/2, and consequently βIso(x),

which is a N -fold convolution product,

βIso(x) = βα1,γ1(x) � βα2,γ2(x) � . . . βαN ,γN
(x), (3.37)

is positive as well. Moreover, since β̂Iso(ωωω) ∈ L1(Rd) [87], βIso(x) is uni-
formly continuous. The following proposition then ensures that L̂Iso(ωωω) is spline-
admissible.

Proposition 3.5. For γm > d
2 , m = 1, 2, . . . N , the operator L̂Iso(ωωω) is spline-

admissible; that is, the function βIso(x) given by (3.37) satisfies the SR condi-
tions.
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Proof. Consider the periodic function F (ωωω) defined as

F (ωωω) =
∑
k∈Zd

|β̂Iso(ωωω + 2πk)|2 =
∑
k∈Zd

N∏
m=1

1
(αm + ‖ωωω + 2πk‖2)2γm

>
N∏
m=1

1
(αm + 4π2d)2γm

> 0,

which involves strictly positive terms only. Thus, we have the lower Riesz bound
inequality satisfied:

AβIso,2 ≥
N∏
m=1

(αm + 4π2d)−γm > 0.

To prove the second SR condition, we observe that βIso(x) > 0, ∀ x ∈ R
d.

Therefore, the task boils down to showing that∑
k∈Zd

βIso(x + k) < +∞, ∀ x ∈ [0, 1)d.

We first prove that this condition is satisfied by each βαm,γm
(x). Consider the

series
∑
n∈Zd

β̂αm,γm
(2πn) which can be bounded from above

∑
n∈Zd

β̂αm,γm
(2πn) =

∑
n∈Zd

1
(αm + ‖2πn‖2)γm

<
1
αγm
m

+
∑

n∈Zd\{0}

1
‖2πn‖2γm

< +∞,

where the series on the r.h.s. is known to converge whenever γm > d
2 . We then

use Poisson’s formula to obtain∑
k∈Zd

βαm,γm
(x + k) = (2π)d

∑
n∈Zd

β̂αm,γm
(2πn)ej2πn

Tx

≤ (2π)d
∑
n∈Zd

β̂αm,γm
(2πn) < +∞.

The result then follows from the repeated application of Proposition 3.1. �
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3.6 Stochastic Formulations

The subject matter of this chapter until now has been the theoretical analysis
of a variational approach to the nonideal sampling problem in the presence of
noise. The signal and measurements were treated as deterministic entities, and
the solution to the problem was obtained by finding the global minimum of a cost
functional. However, there are also alternative formulations for the situations
where the measurements are of stochastic nature and where we have some a
priori knowledge on the class of signals. The reconstruction problem can then
be posed as an estimation problem where the continuous-space reconstruction
is estimated from the given measurement so as to minimize the mean square
error (MSE). Following [66] we consider two formulations. In the first, the
signal to be reconstructed is treated as deterministic, while the additive noise
is considered to be of stochastic nature. In this case, we extend the results
of [66] to multiple dimensions and perform a minimax estimation to obtain
the reconstruction. In the second case, which we call the Wiener formulation,
both the signal (continuous) and the noise (discrete) are modeled as stationary
processes. The solution is obtained by minimizing the MSE of the reconstruction
at each point in R

d. Interestingly, this brings out a direct connection with the
variational problem for the p = 2 case (the Tikhonov criterion) and leads to
identical reconstruction algorithms for some particular choice of L and λ.

3.6.1 Connection with the Minimax Estimator

When the signal is deterministic and the noise is stationary, the reconstruction
problem can be posed as a minimax estimation problem [66]. In this case, we
assume that the signal s(x) ∈WL

2 with ‖L{s}‖L2 ≤ μ0 where the upper bound
expresses our a priori knowledge on the class of input signals. The additive
noise is modeled as a discrete, zero-mean stationary process with power spectral
density (PSD) Cn(ejωωω).

The criterion we minimize is the worst case projected MSE which eliminates
explicit dependence of the solution on the unknown signal [66]. The projection is
made onto some reconstruction space V (ϕ) generated by ϕ(x) which is decided a
priori (and not necessarily optimal). In that framework, the minimization of the
criterion over the signal coefficients {c[k]} yields a digital correction filter rMX [k]
which, when applied on the measurements together with the basis function,
gives the reconstruction, as illustrated in Figure 3.2. Thus, the reconstruction
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at x0 ∈ R
d is obtained as

frec(x0) = arg min
s∈V (ϕ)

max
‖L{f}‖L2≤μ0

E{|PV (ϕ){f}(x0)− s(x0)|2}, (3.38)

where E{•} represents the expectation operation with respect to the random
vector corresponding to the noise and PV (ϕ){f}(x) is the orthogonal projection
of the deterministic input signal f(x) onto the shift-invariant space V (ϕ). The
minimax reconstruction in V (ϕ) is then given by

frec(x) =
∑
k∈Zd

(rMX ∗ g)[k]ϕ(x− k). (3.39)

By extending the argumentation of [66] to multiple dimensions, we can derive
the frequency response of digital correction filter rMX [k] that minimizes the
minimax criterion (3.38); it is given by

RMX(ejωωω) =

⎛
⎝∑

k∈Zd

ĥ(ωωω + 2πk)ϕ̂(ωωω + 2πk)
|L̂(ωωω + 2πk)|2

⎞
⎠

⎛
⎝∑

k∈Zd

|ϕ̂(ωωω + 2πk)|2
⎞
⎠
⎛
⎝Cn(ejωωω)

μ2
0

+
∑
k∈Zd

|ĥ(ωωω + 2πk)|2

|L̂(ωωω + 2πk)|2

⎞
⎠
. (3.40)

The key point for our purpose is that, in the case of additive white noise, the
minimax and Tikhonov reconstruction filters can be made rigorously equivalent,
as stated in the following proposition.

Proposition 3.6. The reconstruction filters for the above minimax estimation
problem and the Tikhonov problem in Section 3.3.4.5 are identical provided that:
(1) The discrete additive noise is white; that is, Cn(ejωωω) = σ2,
(2) The generator ϕ(x) for the minimax method satisfies the optimality condition
OC; that is, ϕ(x) = ϕopt(x),

(3) The regularization parameter is set to its optimal value λeq =
σ2

μ2
0

.

Proof. By substituting Cn(ejωωω) = σ2 and ϕ̂(ωωω) = ϕ̂opt(ωωω) = ĥ∗(ωωω) φ̂(ωωω) where

φ̂(ωωω) =
|Q(ejωωω)|2

|L̂(ωωω)|2
and multiplying and dividing by |Q(ejωωω)|2 in the r.h.s. of
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(3.40), we obtain

RMX(ejωωω) =

⎛
⎝∑

k∈Zd

ϕ̂opt(ωωω + 2πk) ĥ(ωωω + 2πk) φ̂(ωωω + 2πk)

⎞
⎠

×

⎛
⎝∑

k∈Zd

|ϕ̂opt(ωωω + 2πk)|2
⎞
⎠−1

×

⎛
⎝σ2

μ2
0

|Q(ejωωω)|2 +
∑
k∈Zd

|ĥ(ωωω + 2πk)|2 φ̂(ωωω + 2πk)

⎞
⎠−1

=
1⎛

⎝λeq|Q(ejωωω)|2 +
∑
k∈Zd

ĥ(ωωω + 2πk) ϕ̂opt(ωωω + 2πk)

⎞
⎠

= Rλeq(e
jωωω).

Thus, (3.39) is equivalent to (3.21) for λeq =
σ2

μ2
0

. �

It is interesting to note that this equivalence only holds when we are con-
sidering the optimal generator ϕopt. Otherwise, the Tikhonov and minimax
solution are generally different, as discussed in [66].

3.6.2 Unification with the Wiener Formulation

We now move one step further and consider that the input signal is a stochastic
entity as well. Specifically, we assume that s(x) is a realization of a continuous-
space zero-mean stationary process with PSD ĉs(ωωω) = F{cf (•)}(ωωω), where
cf (x) ∈ L2(Rd) is the corresponding autocovariance function. The measure-
ments are the same as in (3.6), except that the additive noise is now modeled
as a zero-mean discrete stationary process whose autocorrelation and PSD are
denoted by cn[k] and Cn(ejωωω), respectively. It is further assumed that the signal
and noise are uncorrelated.

The solution in this formulation is obtained by minimizing the MSE of the
reconstruction at any fixed location x0 ∈ R

d,

minE{|f(x0)− frec(x0)|2}. (3.41)

It should be noted that we minimize the MSE of the reconstruction and not the
projected MSE, as done in [66]. Hence, our solution is the global minimum of
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the MSE. Keeping in line with the previous reconstruction framework, we will
see that the optimal solution belongs once again to an integer-shift-invariant
space that is generated by some optimal function ϕW(x) where the subscript
stands for Wiener.

We want to emphasize the fact that the minimization of (3.41) is a hybrid
version (discrete input - continuous output) of the standard Wiener problem,
which is usually either stated in the discrete or purely continuous domain [88].
This said, the method of proof8 and solution are quite similar to the traditional
ones and have already been deployed in the context of generalized sampling
[89]. Therefore, in what follows, we simply present the hybrid Wiener solution
(without proof) in a form that suits our notation.

Proposition 3.7. Consider the measurements G = {g[k] = (h � f)(k) +
n[k]}k∈Zd , where s(x) is a realization of a continuous-space stationary process
with autocorrelation function cs(x) ∈ L2(Rd) and {n[k]} is a discrete stationary
noise component with PSD Cn(ejωωω). Then, the linear minimum mean square
error (LMMSE) estimator of the signal f(x0) given G can be written as

frec(x0) =
∑
k∈Zd

(rW ∗ g)[k]ϕW(x0 − k), (3.42)

where the optimal Wiener generator is ϕW(x) = (h̄ � cf )(x), and where the
frequency response of the optimal restoration (digital correction) filter rW is
given by

RW(ejωωω) =
1

Cn(ejωωω) +
∑
k∈Zd

ϕ̂W(ωωω + 2πk)ĥ(ωωω + 2πk)
. � (3.43)

It is important to note that this LMMSE formula is valid for any x0 ∈ R
d

and that the complete estimator frec(x), x ∈ R
d is included in the integer-shift-

invariant subspace space V (ϕW). It is also well known from estimation theory
that the Wiener solution is optimal among all estimators (not just among the
linear ones) when both the signal and noise are Gaussian distributed.

We observe that the PSD of the measurements is given by

Cg(ejωωω) =
∑
k∈Zd

ĉs(ωωω + 2πk) |ĥ(ωωω + 2πk)|2 + Cn(ejωωω),

8Here, we are interested in the linear minimum MSE estimate. The proof is then based on
setting up a Yule-Walker-like system which when solved results in the integer-shift-invariant
structure for the solution in Equation (3.42).
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which coincides with the denominator of (3.43). Thus, a necessary and sufficient
condition for the Wiener filter to be well defined (that is, bounded) is that this
quantity be non-vanishing (a sufficient condition is Cn(ejωωω) > 0). Also, if we
take the Fourier transform of (3.42), we see that the solution is of the same form
as (3.23) where the Fourier transform of the equivalent basis function is given
by

ϕ̂W, eq(ωωω) =
ϕ̂W(ωωω)
Cg(ejωωω)

=
ĥ∗(ωωω) ĉs(ωωω)
Cg(ejωωω)

. (3.44)

Once again, the optimal reconstruction space is generally not bandlimited, un-
less either h(x) or s(x) are bandlimited to start with. Here too, the reconstruc-
tion filters for the deterministic and stochastic cases can be made equivalent.
This equivalence helps us not only associate the optimal generating function to
the autocorrelation function of the signal, but also allows us to choose the best
regularization operator L and the best regularization parameter λopt for the
Tikhonov solution in Corollary 3.2. Comparing the solutions (3.21) and (3.42)
for the deterministic and stochastic cases respectively, we obtain the equiva-
lence which corresponds to the case Q(ejωωω) = 1 and Cn(ejωωω) = σ2; that is, the
Tikhonov and Wiener reconstruction algorithms become equivalent when the
discrete additive noise is white and the regularization operator is chosen such
that it whitens the input signal.

Proposition 3.8. The Tikhonov and Wiener solutions are functionally equiv-
alent provided that:

(1) L is the whitening operator of the underlying continuous-space stochastic
process; that is, L∗L{cf (x)} = σ2

0 δ(x),

(2) The measurement noise is white with variance σ2, and

(3) The regularization parameter is set to its optimal value λopt =
σ2

σ2
0

.

Proof. The proof is obvious once conditions (1) and (2) are substituted in equa-
tions (3.14) and (3.22). �

We now conclude the section by illustrating this equivalence for the gener-
alized isotropic operator introduced in Section 3.5.2.3. Consider a stationary
processes (for instance, the Matérn process) whose PSD is given by

ĉs(ωωω) = σ2
0 (α2 + ‖ωωω‖2)−2γ . (3.45)
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It is readily seen that the corresponding whitening operator is

L̂Iso(ωωω) = (α2 + ‖ωωω‖2)γ , (3.46)

which is a special instance of (3.35) with αm = α2, γm = γ and N = 1.
Therefore the optimal estimate for such a process lies in the space generated by

ϕW(x) = (h̄ � βIso � β̄Iso)(x),

and the optimal regularization parameter is given by λopt = σ2

σ2
0
. In the case

where h(x) = δ(x) (ideal sampling), the optimal generator happens to be a
Matérn B-spline with parameters (α, 2γ) whose explicit form is given by (3.36).
Thus, the conclusion is that the Matérn splines are the optimal basis functions
for approximation of such signals from their (noisy) samples. In the following
section, we provide some experimental justification for the use of this model for
sampling and interpolation of natural images.

Note that the equivalence established in the above corollary is meaningful
only for operators of the type (3.35) and is not applicable to the Laplacian
because the corresponding PSD is not defined in the classical sense.

3.7 Matérn Model for the Nonideal Sampling
Problem

The Matérn class of functions—those of the type (3.36)—derive from the Matérn
stochastic model that is of practical value in geostatistics for the prediction/
estimation—also referred to as kriging—of spatial data [40]. The Matérn class
can be viewed as a (fractional) generalization of the Markov Random Field
model which is often used for modeling images [90]. Also relevant is the obser-
vation that many natural images exhibit a ‖ωωω‖−τ -like spectral decay [69], which
is compatible with the Matérn PSD given by (3.45).

Our purpose here is to present further arguments in favor of the Matérn class
and to demonstrate its usefulness for stochastic image modeling and processing.
We will concentrate on the 2-D case and consider the generalized sampling
problem that is summarized in Figure 3.2. Specifically, we assume that the
signal f(x) that we are sampling is a realization of a Matérn stochastic process
(with PSD as given by Equation (3.45)). We also propose an extended version of
the Matérn B-spline that can account for image anisotropies in 2-D—anisotropic
Matérn B-spline βAni—and demonstrate its suitability for natural images. We
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then compute the Wiener solution (3.42) keeping in mind that it is equivalent
to the Tikhonov solution that is graphically portrayed in Figure 3.2 when the
operator L whitens the process f(x). To make the method practical, we develop
an estimation procedure for identifying the Matérn B-spline parameters (both of
isotropic and anisotropic) and the noise variance from the noisy measurements
{g[k]}.

3.7.1 Anisotropic Matérn B-spline

Here, we introduce an anisotropic version of the Matérn B-spline in 2-D by
applying a similarity transform (scaling and rotation) to the coordinate system;
that is, we construct the new frequency variable

ω̃ωω = Rθ Kωωω, (3.47)

where Rθ is the matrix corresponding to the counter-clockwise rotation of the
R

2-plane by θ and K represents the scaling operation along the ω2 axis by
(1− κ)−1:

Rθ =
[

cos(θ) sin(θ)
− sin(θ) cos(θ)

]
, and K =

[
1 0
0

(
1

1−κ
) ]

, (3.48)

where 0 ≤ κ < 1 is called as the ellipticity of the anisotropy. Then, the
anisotropic Matérn B-spline is defined via its Fourier transform as

β̂Ani(ωωω) =
σ2

0

(α2 + ω2
e (ωωω))γ

, (3.49)

where ωe(ωωω) is the distance from the origin to a point ωωω whose locus is an ellipse:
Starting from (3.47), we have

ω2
e (ωωω) = ‖ω̃ωω‖2 = ω̃ωωTω̃ωω = ωωωT R−θ K2 Rθ ωωω

=
(

cos2(θ) +
sin2(θ)
(1− κ)2

)
ω2

1 +
(

cos2(θ)
(1− κ)2 + sin2(θ)

)
ω2

2

+ sin(2θ)
(

1− 1
(1− κ)2

)
ω1ω2. (3.50)

When κ = 0, there is no anisotropy and (3.49) reduces to the isotropic case

β̂Iso(ωωω) =
σ2

0

(α2 + ‖ωωω‖2)γ ,
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irrespective of the value of θ. Examples of isotropic and anisotropic Matérn
B-splines are shown in Figures 3.3 and 3.4, respectively, for σ0 = 1, α = 0.25,
γ = 1.5, θ = π

4 and κ = 0.75. The anisotropic Matérn function, βAni(x) also
generates a Lp-stable Riesz basis as shown below.

Proposition 3.9. For all γ > 1 (for d = 2), the function βAni(x) satisfies both
the SR conditions.

Proof. We rewrite (3.50) as

ω2
e (ωωω) = (ω1 cos(θ) + ω2 sin(θ))2 +

(
−ω1 sin(θ) + ω2 cos(θ)

1− κ

)2

. (3.51)

Then, ∀ 0 ≤ κ < 1, we have 1 ≤ (1− κ)−1 < +∞ and so, we can bound ω2
e (ωωω)

as

‖ωωω‖2 ≤ ω2
e (ωωω) ≤ 1

(1− κ)2 ‖ωωω‖
2, (3.52)

where we made use of the fact that

‖ωωω‖2 = (ω1 cos(θ) + ω2 sin(θ))2 + (−ω1 sin(θ) + ω2 cos(θ))2.

Correspondingly, for γ > 1, we have the following inequality from (3.52):

σ2
0(1− κ)2

(α2(1− κ)2 + ‖ωωω‖2)γ ≤ β̂Ani(ωωω) ≤ σ2
0

(α2 + ‖ωωω‖2)γ . (3.53)

The result then follows from the application of Proposition 3.5 to the (isotropic)
lower and upper bounds in (3.53). �

3.7.2 Reconstruction using the Matérn Model

We propose to use the generating function ϕW(x) = (h̄�βAni�β̄Ani)(x) to specify
the optimal reconstruction space which corresponds to the whitening operator
with the Fourier transform

L̂Ani(ωωω) = (α2 + ωe(ωωω))γ .

For illustration purposes, we consider a texture (Brodatz-D37) and a natural
image (Aerial View). The gray dots in Figures 3.5 and 3.6 indicate the values



68 Nonideal Sampling in the Presence of Noise

Figure 3.3: Plot of the logarithm of Isotropic Matérn B-spline in 2-D.

Figure 3.4: Plot of the logarithm of Anisotropic Matérn B-spline in 2-D.
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Figure 3.5: Aerial View image: Approximately Isotropic Matérn B-
spline, κ = 0.098, θ = 96.77◦, σ0 = 56.604, α = 0.021, γ = 1.410.

Figure 3.6: D37 Brodatz texture: Anisotropic PSD, κ = 0.407, θ =
94.68◦, σ0 = 46.811, α = 0.083, γ = 1.320.
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of the periodogram of the noise-free images as a function of ωe (see insets).
The solid line in each figure is the generalized Matérn model as a function of
ωe fit to the periodogram of the image. It is clearly seen that the generalized
Matérn model captures the trend of the periodograms while accounting for the
anisotropy in D37 texture via the ellipticity parameter κ.

3.7.2.1 Estimation of Matérn parameters

We estimate the parameters in βAni viz-a-viz, ellipticity κ, angle θ and the
Matérn parameters (σ0, α, γ), and also the noise variance σ2 by performing a
non-linear least squares minimization of the following cost function,

ℵ(σ0, α, γ, κ, θ, σ̃) =
∑

ωωω∈(0,2π)2

[
log

(
Υ̃(ωωω) + σ̃2

)
− log

(
Υ̂np(ωωω)

)
− γe

]2
,

which measures the “distance” between the periodogram of the noisy measure-
ments Υ̂np and that of the reconstruction (when it is fed back into the noisy
sampling system) Υ̃(ωωω) given by

Υ̃(ωωω) =
∑
k∈Zd

|ĥ(ωωω + 2πk)|2 |β̂Ani(ωωω + 2πk)|2.

The constant γe ≈ 0.57721 is the Euler-Mascheroni number, which is used here
to compensate for the bias due the log function.9 We also exclude ωωω = 0 in the
summation to avoid spurious entries for the DC component in Υ̂np.

3.7.2.2 Simulation Results

In our experiments, the reference scale for the signal and its reconstruction was
T = 1. The signal was blurred with a standardized Gaussian prefilter and
downsampled by a factor of two. The measurements were corrupted by various
levels of white Gaussian noise.

The noise variance and the parameters of the anisotropic Matérn PSD were
estimated from these noisy measurements, as described in Section 3.7.2.1. The
reconstruction of the images at original resolution was performed according
to the procedure outlined in Proposition 3.7 using cf = βAni � β̄Ani with the
estimated parameters. This was compared with

9The random variable Υ̂np is χ-squared distributed when the noise is Gaussian. The details
of the connection between χ-squared random variables and the Euler-Mascheroni number can
be found in [78].
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Figure 3.7: Performance of reconstruction methods: SNR Variation
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• the multidimensional version of the optimally-compensated bandlimited
reconstruction of Eldar et al. [66] (represented in Figures 3.7 and 3.8 as
EU-bandlimited),

• the textbook implementation of the Wiener filter associated with a ban-
dlimited version of the ϕ̂W (that is, using rect

(
ωωω
2π

)
ϕ̂W(ωωω)), and

• sinc-interpolation without compensation (Shannon’s method).

Some of these are referred to as oracle solutions since they used the PSD of
the noise-free image at the original resolution to derive the best possible re-
construction filter. Figures 3.7 and 3.8 show the signal-to-noise ratio (SNR) of
the reconstruction for various noise levels at the sampling stage. We see that
the proposed algorithm performs consistently better than the oracle textbook-
bandlimited and sinc-interpolation methods. It also outperforms the oracle
EU-bandlimited method at lower noise levels.

3.8 An Approximation Error Formula for the
Noisy Scenario

In line with Section 2.4 of Chapter 2, we derive here a formula for the approxi-
mation error corresponding to the nonideal sampling problem. Specifically, we
consider the setup of Figure 3.2, where we assume the additive noise component
to be zero-mean with PSD Cn(ejωωω) (the corresponding autocorrelation sequence
is {cn[k]}). We also restrict ourselves to the case where the input signal f(x) is
a realization of a stationary stochastic process10 with PSD ĉf (ωωω) (the autoco-
variance function is cf (x)). We also assume that f and the noise are mutually
independent.

Similar to Equation (2.20) (see Chapter 2), we specify the approximation
operator QT I{f} corresponding to the setup of Figure 3.2 for the sampling
lattice DZ

d = T IZd (see Sections 2.2.2.1 and 2.4 of Chapter 2), where T > 0 is

10The case where the signal is deterministic and the noise is random is very difficult to
treat technically and is not considered in this thesis: On close examination of the problem,
it can be found that neither the L2-norm-based error (such as that considered in Section 2.4
of Chapter 2) that is appropriate for deterministic signals, nor the statistical mean-squared
error measure (appropriate for random signals), nor a combination of both serve as a stable
measure for quantifying the error of approximation for this case.
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the sampling step, as follows:

frec(x) = QT I{f}(x) =
∑

k,m∈Zd

g[m] r[k−m]ϕ
(x
T
− k

)
,

where
(

x
T

)
=

(
x1
T ,

x2
T , . . . ,

xd

T

)
, {g[k]} are the noisy measurements whose k-th

sample is

g[k] =
∫

Rd

f(ξξξ)
1
T d

h

(
k− ξξξ

T

)
dξξξ + n[k],

1
Tdh

( •
T

)
and ϕ

( •
T

)
are the accordingly-scaled analog prefilter and reconstruc-

tion filter, respectively, and {n[k]} represents the additive noise component.
For quantifying the approximation error, we consider the statistical expec-

tation of the “time”-averaged error [53,66] given by

εf,noisy(T ) = E

{
lim

τ→+∞
1

(2τ)d

∫
[−τ, τ)d

|f(x)−QT I{f}(x)|2 dx

}
,

where the expectation is taken jointly over f and the noise. Since the inte-
grand in the above equation is non-negative, we can move the expectation inside
the integral (Lebesgue’s monotone-convergence theorem). Then, as E{|f(x) −
QT I{f}(x)|2} is T -periodic11 (it is T -periodic along every dimension), εf,noisy(T )
reduces to [53]

εf,noisy(T ) =
1
T d

∫
[0, T )d

E
{
|f(x)−QT I{f}(x)|2

}
dx.

The following result then yields an explicit formula for εf,noisy(T ) that can be
computed in the Fourier domain similar to Equation (2.36) in Chapter 2.

Proposition 3.10. Let h(x) ∈ L1(Rd), {r[k]} ∈ �1(Zd) and let ϕ satisfy the
SR conditions. Then, provided cf ∈WL

2 and {cn[k]} ∈ �2(Zd), we have

εf,noisy(T ) = εf (T ) + εnoise(r, ϕ), (3.54)

where

εf (T ) =
1

(2π)d

∫
Rd

Eh,ϕ(ωωωT ) ĉf (ωωω) dωωω.

11This can be easily verified by expanding E{|f(x)−QT I{f}(x)|2}.
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Eh,ϕ(ωωω) is the Fourier domain error kernel given by

Ehϕ(ωωω) = 1− |ϕ̂(ωωω)|2
Aϕ(ωωω)

+Aϕ(ωωω)
∣∣∣R∗(ejωωω) ĥ∗(ωωω)− ˆ̊ϕ(ωωω)

∣∣∣2 , (3.55)

and

εnoise(r, ϕ) =
1

(2π)d

∫
Rd

Cn(ejωωω) |R(ejωωω)|2 |ϕ̂(ωωω)|2 dωωω,

where R(ejωωω) is the Fourier transform of the sequence {r[k]}.

Proof. The proof is given in Appendix B.4. �

We make the following observations about the error εf,noisy(T ):

• It is composed of two components: The first one, εf (T ), corresponds to
the error due to approximation of f by frec when there is no noise; this is
equivalent to the εdom(f, T ) component in (2.36) in Chapter 2 with |f̂(ωωω)|2
replaced by ĉf (ωωω) (this is also the d-dimensional version of [53, Equation
(18)]).

• The second term, εnoise(r, ϕ), is the contribution of the noise component
exclusively; that is, it corresponds to the energy of reconstructing the noise
only when there is no signal.

εnoise(r, ϕ) depends only on the choice of the digital correction filter
r and the generating function ϕ and is independent of f and T which is
quite expected since, in the current setting, the noise has “no knowledge”
of f . Moreover, making the sampling-step size small has no noise-reducing
effect. Therefore, as T → 0, the first term will progressively disappear,
while the second term becomes predominant.

• When the noise is white, Cn(ejωωω) = σ2, and εnoise(r, ϕ) simply reduces
to εnoise(r, ϕ) = σ2‖ϕeq‖2L2

, where ϕeq is the equivalent basis function
(see Figure 3.2). Therefore, for a given σ, εf,noisy(T ) represents a trade-
off between the error of approximation of the noise-free signal and the
(signal-independent) contribution due to noise.

When σ → 0, we get back the result (d-dimensional version) corre-
sponding the noise-free case of [53]: εf (T ) plays the dominant role and
the approximation theoretic results of Chapter 2 (see Section 2.4) are ap-
plicable.
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Conversely, for large σ, εnoise(r, ϕ) becomes the dominant term; then
the reasoning using approximation order (see Section 2.5 in Chapter 2)
may no longer be valid in this setting. We present an illustration in Figure
4.1 in Chapter 4 that highlights this observation.

The only way εnoise(r, ϕ) can be reduced is by using a digital correction filter
r that makes ‖ϕeq‖2L2

small. This is precisely achieved by the regularized filter
rλ (with Fourier transform Rλ(ejωωω) given by Equation (3.22)), as illustrated in
Figures 3.9 and 3.10 (in the 1-D case) for λ = 0 and λ = 1

2 , respectively. The
prefilter and the reconstruction filter are the same as those considered in case (a)
of the illustration in Section 2.4 of Chapter 2: h(x) = rect(x) and ϕ(x) = β1(x),
the linear B-spline.

For λ = 0, rλ is not regularized (see Figure 3.9(c) where Rλ(ejω) enhances
the higher frequencies predominantly) and the situation corresponds to consis-
tent reconstruction or exact fitting of the noisy measurements. Correspondingly,
the contribution of noise to the error is εnoise(r, ϕ) ∝ ‖ϕeq‖2L2

≈ 297.224; the
shaded area under the curve in Figure 3.9(b) spans frequencies |ω| ≤ π. How-
ever, for λ = 1

2 , rλ is sufficiently regularized (Figure 3.10(c) where Rλ(ejω) has
a low-pass behavior) and consequently, the spectrum of ϕeq has significantly
shrunk (see Figure 3.10(b)); the corresponding value of ‖ϕeq‖2L2

is ≈ 52.408
which is lesser than in the case of λ = 0. This clearly illustrates the effective-
ness of regularization in tackling the noise problem.

However, the error kernel Eh,ϕ is also dependent on rλ: Selecting a value
λ > 0 implies that we are altering the approximation characteristics of the
reconstruction setup. This is seen in Figures 3.9(a) and 3.10(a): For the case
of λ = 0, the error kernel Eh,ϕ is closer to zero for |ω| ≤ π

2 indicating that
the (noise-free) approximation error—εf in (3.54)—is less for these frequencies,
while for λ = 1

2 this range has shrunk to |ω| � π
4 . Thus, for a stochastic signal

whose PSD is predominantly concentrated in the low-pass region (e.g., Matérn
class of PSDs), it can be easily verified that the two components of εf,noisy have
conflicting behaviors; that is, an increase in the value of λ reduces εnoise(r, ϕ) but
at the cost of increasing the (noise-free) approximation error εf and vice versa.
This is precisely what we meant by the term trade-off earlier in this context.
Therefore, λ must be selected carefully so as to reduce εnoise(r, ϕ) while not
increasing εf too much: This observation is coherent with the argument in
Section 3.3.1 that is in general applicable to many variational problems. We
take up the problem of choosing an appropriate value for λ in Chapters 5 and
6.
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Figure 3.9: Plots of (a) the error kernal Eh,ϕ(ω), (b) |ϕeq(ω)|2, and
(c) Rλ(ejω), for h(x) = rect(x), ϕ(x) = β1(x) and λ = 0. The shaded
region in (b) denotes the area under |ϕeq(ω)|2 which is nothing but
‖ϕeq‖2L2

≈ 297.224.
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Figure 3.10: Plots of (a) the error kernel Eh,ϕ(ω), (b) |ϕeq(ω)|2, and
(c) Rλ(ejω), for h(x) = rect(x), ϕ(x) = β1(x) and λ = 1

2 . The shaded
region in (b) denotes the area under |ϕeq(ω)|2 which is nothing but
‖ϕeq‖2L2

≈ 52.408.



78 Nonideal Sampling in the Presence of Noise

3.9 Summary

In this chapter, we formulated nonideal sampling in the presence of noise as
a variational problem where the continuous-space solution is obtained by the
minimization of a data-fidelity term subject to a continuous-space regularization
constraint (Tikhonov-like functional) based on generalized differential operator
L. In this formulation the signal and noise are treated as deterministic entities.
By carrying out the mathematical optimization, we showed that the global
minimum of the criterion lies in an integer-shift-invariant space whose generator
ϕopt is matched to the operator L through an optimality condition (OC) that
gives rise to a B-spline interpretation of ϕopt(x) and ensures the Lp-stability of
the representation.

Once a reconstruction space is specified, the expansion coefficients of the
solution can be obtained by means of a non-linear optimization process. In the
particular case where p = 2 and Θ(x) = x (Tikhonov criterion), the solution
has an explicit analytical form and can be computed by a one-step hybrid-linear
filtering (discrete in - continuous out) of the measurements.

The proposed formulation is quite general and extends most of the solutions
to the sampling problem that have been proposed so far (see Chapter 2); it
also encompasses the various classes of smoothing spline estimators [78,81]. We
further justified this fact by presenting illustrations of various regularization
operators and the corresponding reconstruction spaces.

Finally, we also presented a stochastic formulation of the generalized sam-
pling problem, providing explicit minimax and LMMSE solutions. We showed
that, for appropriate regularization operator L and the regularization param-
eter λ, the solution corresponding to the deterministic Tikhonov criterion is
functionally equivalent to the ones obtained in the stochastic signal process-
ing framework. The bottomline is that the regularization operator should be
matched to the spectral behavior of the signal (whitening operator) and the
regularization strength set inversely proportional to the signal-to-noise ratio.

In the stochastic context, we also developed an exact formula for the ap-
proximation error εf,noisy for the noisy scenario and showed that it is composed
of two components namely, the error of approximation of the noise-free signal
εf and a signal-independent contribution due to the noise εnoise(r, ϕ) that de-
pends only on the reconstruction setup. We also demonstrated that the use of
regularization (rλ for λ > 0) reduces εnoise(r, ϕ) but at the cost of increasing
εf . This serves as another argument that strongly indicates the need for careful
selection of the regularization parameter λ.



Chapter 4

Non-quadratic
Regularization for
Interpolation of Noisy Data

4.1 Introduction

Interpolation is the process of fitting discrete data samples with a continuously-
defined model that is usually represented as a weighted sum of shifted basis
functions [15,19]. The standard approach is to specify the model so as to fit the
data exactly [6]. In the context of sampling, interpolation is the reconstruction
procedure that is employed when the acquisition device is ideal (see Section 2.3.3
in Chapter 2). When the basis functions of the interpolation model take a unit
value at the origin and are zero at all other integer locations—an interpolator—
the weights are given by the data samples themselves. Otherwise, they are
determined by imposing an exact-fitting requirement [63] (see Equation 2.31
in Chapter 2). The standard approach, though meaningful in the noise-free
scenario, is less appropriate when data samples are corrupted by noise since the
model is forced to fit noise also.

To deal with the problem of noisy data,1 we extend the notions that we devel-
oped in the previous chapter—variational approach and the use of regularization—

1This chapter is based on the article: S. Ramani, P. Thévenaz and M. Unser, “Regularized
Interpolation for Noisy Images,” submitted to IEEE Transactions on Medical Imaging.

79
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for the problem of interpolation in the presence of noise. The resulting scheme
is termed regularized interpolation where the objective is to obtain the solution
by minimizing a variational criterion that jointly measures the data-fitting er-
ror and the regularity of the continuous-domain solution. Various researchers
have formulated interpolation in the variational framework to accommodate
regularization constraints [36–39, 66, 81, 91–95]. These works can be broadly
classified into digital-domain or analog-domain approaches: The former refer to
the case where the solution is a discrete entity defined on a grid that is finer
than that of the data—these methods specifically cater to the image-upsampling
problem [92–95]. In the latter case, a continuously-defined solution—typically, a
smoothing-spline—is obtained by minimizing the L2-norm of some scalar deriva-
tive of the solution [36–39,66,81,91] subject to certain data-fitting requirements.
In fact, the latter corresponds to the special cases that we discussed in Section
3.5 of the previous chapter.

In this chapter, we propose a regularized interpolation scheme that extends
the continuous approach so as to include a much wider-class of regularizations
based on non-quadratic criteria—the motivation is to overcome the shortcom-
ing of the Tikhonov-like quadratic regularization which is known for its over-
smoothing behavior that smears important signal features such as edges in im-
ages.

4.1.1 Contributions

• Keeping in mind the desirable feature of affine invariance (that is, invari-
ance to translation, rotation and scaling operations) of the solution, we
show that the Lp-norm of an appropriate vector derivative is the most
suitable choice of regularization for our problem. This includes the edge-
preserving total-variation (TV) regularization (p = 1) which we propose
to use in this work.

We consider a shift-invariant model for our regularized interpolation
scheme and obtain the weights by minimizing the Lp-norm subject to
a data-domain constraint that measures the statistical infidelity of the
solution to the given data (in terms of a negative log-likelihood function).

• We handle the problem in a numerical optimization framework and present
monotonically convergent algorithms based on the majorize-minimize (MM)
strategy [96] for performing the corresponding minimization.

We validate our method by carrying out 2-D rotation experiments on
noisy medical images and illustrate its superior performance over standard
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interpolation. We also numerically justify that the use of TV-like non-
quadratic regularization brings about further improvement over quadratic
regularization.

4.1.2 Organization of the Chapter

For the sake of consistency, we briefly review the standard interpolation tech-
nique [63] (described in detail in Section 2.3.3 in Chapter 2) in Section 4.2
following which we present a numerical example in Section 4.2.1 to demonstrate
its poor performance when applied to noisy data. In Section 4.3, we elaborate
the proposed regularized interpolation scheme. We first specify the problem
mathematically and provide hypotheses related to the data-fidelity and regu-
larization terms. Then, we present algorithms to carry out the corresponding
optimization based on an appropriate discretization of the problem. Section 4.4
is dedicated to experimental results where we numerically verify the superiority
of the proposed approach over other methods in the literature. In Section 4.5,
we provide evidence that the proposed scheme achieves a reasonable tradeoff
between computational cost and performance improvement and also discuss is-
sues related to the selection of the regularization parameter. Finally, we draw
our conclusions in Section 4.6.

4.2 Standard Interpolation

Standard interpolation is the process of computing a continuously-defined func-
tion fint(x), which exactly fits an unknown analog signal f(x) at the given
sample points {f(k)}k∈Zd . Typically, fint is constructed as

fint(x) =
∑
k∈Zd

f(k)ϕint(x− k), (4.1)

where ϕint(x) is an interpolating function; that is, ϕint(0) = 1 and
ϕint(x)|x=k∈Zd\{0} = 0. Popular examples of ϕint are the linear B-spline [14]
and the sinc-function which perform linear and bandlimited interpolation, re-
spectively.

Thévenaz et al. [63] provided an equivalent formulation of (4.1) for an arbi-
trary non-interpolating function ϕ(x) by considering the integer-shift-invariant
model

fint(x) =
∑

m∈Zd

c[m]ϕ(x−m), (4.2)
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where the coefficients {c[m]} are determined by solving the set of linear equa-
tions2

fint(x)|x=k =
∑

m∈Zd

c[m]ϕ(k−m) = f(k), k ∈ Z
d,

which ensures perfect fitting of the given samples. In this chapter, we propose to
use the shift-invariant model (4.2) for our regularized interpolation scheme, but
here, we are going to specify {c[m]} based on certain regularization requirements
on the interpolation model in addition to the data-fitting constraint (see Section
4.3.2).

4.2.1 Standard Interpolation in the Presence of Noise

While standard interpolation (exact fitting) is desirable in the noise-free sce-
nario, it can lead to unfavorable results when applied on noise-corrupted data.
To demonstrate this, we consider the following experiment: First, we rotate
some noise-free input image by a random angle using a high-quality interpo-
lator. Then, we add zero-mean white Gaussian noise of variance σ2 to obtain
a prescribed signal-to-noise ratio (SNR). Finally, we rotate back the noisy im-
age with nearest-neighbour (using the rect-function), linear, and cubic B-spline
based interpolation. We repeat this for a fixed number of realizations and av-
erage the SNR of the output image over all realizations. We show in Figure 4.1
the plot of the (averaged) SNR of the output image for a range of input SNRs.
We observe that piecewise linear interpolation outperforms cubic splines at high
noise levels which contradicts the usual behavior.3

This can be explained as follows: Since standard interpolation is a linear
operation (see Section 2.3.3 in Chapter 2) and because noise is zero-mean and
uncorrelated with the image (which we assume is a realization of a stationary
process), we can use the approximation error formula εf,noisy (see Equation
(3.54)) that we derived in Section 3.8 of Chapter 3 to this setting:4 εf,noisy is
composed of the noise-free error component εf and the contribution εnoise that
is entirely due to noise.

2Solving the linear system is equivalent to filtering the given samples with an IIR interpo-
lation filter (see Section 2.3.3 in Chapter 2)). However, in practice, the interpolation filter is
implemented using computationally efficient recursive filtering techniques [63].

3For the noise-free case, we saw in Chapter 2 (based on approximation-theoretic results)
that cubic-spline interpolation provides better quality compared to piecewise linear interpo-
lation.

4In the context of interpolation, h(x) = δ(x) and ϕeq = ϕint, the interpolator.
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Figure 4.1: Rotation experiment in the presence of noise: Piecewise
linear interpolation performs better than cubic splines at high noise
levels (input SNR < 24 dB) contradicting the expected behavior. We
show in the inset the central region of the image which was used for
computing SNR.

From Equation (3.54) (see Chapter 3), it is seen that εf is completely charac-
terized by the approximation order L [53] (see Section 2.5 in Chapter 2); that is,
the ability of the model to reproduce polynomials of degree n = 0, 1, . . . , L− 1.
It is known from approximation theory [53] that the higher the value of L, the
lower the εf error. Since LCubic > LLinear > LRect, we have that

εfCubic < εfLinear < εfRect . (4.3)

As given in Proposition 3.10 in Chapter 3, the contribution due to noise is
nothing but εnoise(ϕ) = σ2‖ϕint‖2L2

, where σ2 is the noise variance. Computing
it for ϕ = rect (εnoise(rect) = σ2), ϕ = β1, the linear B-spline (εnoise(β1) = σ2 2

3 ),
and ϕ = β3, the cubic B-spline (εnoise(β3) ≈ 0.874σ2), we observe that

εnoise(β1) < εnoise(β3) < εnoise(rect). (4.4)

Therefore, in Figure 4.1, at high noise levels (input SNRs in the range 0 to 24
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dB) where the effect of εnoise is dominant, piecewise linear interpolation does
better than cubic splines because of (4.4). At low noise levels (input SNR >
24 dB), εf becomes effective and the cubic splines take the lead due to (4.3).
Nearest-neighbour interpolation has the poorest performance at all noise levels
since both εf and εnoise are higher for the rect function than for linear and cubic
B-splines.

4.3 Regularized Interpolation

When the input data is noisy, it is meaningful to adopt a variational approach
to enforce regularity constraints on the interpolation model that counterbalance
the effect of noise. This leads to a regularized interpolation scheme that searches
for a “smooth” function f(x) which provides a reasonably good fit of the input
data {g[k]}.

4.3.1 Problem Formulation

We develop the problem in a penalized-likelihood setting in the spirit of [97–99]
where the solution is obtained by minimizing a cost functional J{g, f} composed
of a negative log-likelihood term (also called the data-fidelity term) L{g, f} and
a continuous-space regularization functional Ψ{f}: The log-likelihood measures
the goodness-of-fit between {g[k]} and {f(k)} in a statistical sense, while the
regularization penalizes heavy oscillations in the solution.

Mathematically, this is written as

fλ = arg min
f
J{g, f}, (4.5)

where

J{g, f} = L{g, f}+ λΨ{f},

and where λ > 0 is the regularization parameter that governs the tradeoff
between goodness-of-fit and smoothness of fλ. We shall take up the problem
of choosing an appropriate λ in Chapters 5 and 6 where we propose a practical
scheme that provides the “best” fit within the given class of solutions.

4.3.1.1 Data-Fidelity Term

In the penalized-likelihood framework, we have that L{g, f} = − log(℘(g|f))
where ℘ is the probability density of {g[k]} given {f(k)}, or, equivalently, the
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probability density of the random vector characterizing the noise in the data.
Here, L{g, f} is always a discrete-domain entity since it measures the statistical
infidelity of the samples of f to the data. We consider that the noise is sta-
tistically independent at different sample locations. Then, the joint-probability
density can be written as ℘(g|f) =

∏
k ℘k(g[k] |f(k)), where ℘k is the marginal

density, so that5

L{g, f} = −
∑
k

log(℘k(g[k] |f(k))). (4.6)

In this chapter, we deal with two specific instances of (4.6). The first is i.i.d.
zero-mean additive white Gaussian noise (AWGN), where

℘k(g[k] |f(k)) ∝ e−κ(g[k]−f(k))2 .

This leads to the negative log-likelihood

LQ{g, f} =
∑
k

(g[k]− f(k))2. (4.7)

From a signal-processing perspective, the AWGN model is often preferred for
mathematical ease as the quadratic nature of LQ simplifies the optimization
process.

When the noise is non-Gaussian in nature the corresponding log-likelihood
is non-quadratic. As an example of this case, we consider the signal-dependent
Poisson model (non-stationary) that is appropriate for imaging applications
such as fluorescence microscopy [100] and emission tomography [101]. Here,
the sample g[k] represents the detector counts at the k-th pixel and

℘k(g[k] |f(k)) = (g[k]!)−1 e−f(k)(f(k))g[k].

The corresponding negative log-likelihood is given by (up to the additive con-
stant log(g[k]!) which is irrelevant for optimization purposes)

LPoisson{g, f} = −
∑
k∈Zd

g[k] log(f(k)) +
∑
k∈Zd

f(k). (4.8)

For numerical tractability, we only use the log-likelihood of the pure Poisson
component neglecting other factors like the detector gain and variance of the
background radiation since these can be modeled as being part of {f(k)}.

5In this context, the �p data-fidelity in Equation (3.8) in the previous chapter can be
interpreted as the log-likelihood corresponding to a zero-mean additive generalized-Gaussian
noise model.
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4.3.1.2 Regularization

We consider the following general form as our regularization functional:

Ψ{f(•)} =
∫

Rd

Φ(‖L{f(•)}(x)}‖) dx, (4.9)

where L is a vector composed of linear differential operators {Lm}dLm=1 which
measures the “smoothness” of f(x) in terms of

‖L{f}(x)‖ =

(
dL∑
m=1

(Lm{f}(x))2
) 1

2

,

and where Φ is called the potential function that defines the penalty associated
with ‖L{f}(x)‖.

The main difference from the regularization Θ(‖L{•}‖2L2
) in (3.8) (see Chap-

ter 3) is that we now use a vector differential operator L in place of a scalar
one (L in Chapter 3) and most importantly, we explore the possibility of a non-
quadratic regularization, in the sense that we do not restrict ourselves to the
case of the quadratic norm ‖L{•}‖2L2

in (3.8). Due to the positivity of ‖L{f}‖,
Φ need only be specified on the set of non-negative real numbers.

Definition 4.1. The one-sided potential function Φ is said to be appropriate
for the purpose of regularization if it is non-negative, Φ(x) ≥ 0, and increasing
Φ′(x) > 0, ∀ x ≥ 0. �

This definition is consistent with the minimization in (4.5) since we wish
to increase the penalty whenever ‖L{f}‖ increases. In order for (4.9) to be
beneficial for the interpolation problem, we additionally require that Ψ{f} be
invariant to translation, rotation, and dilation. Then, it is guaranteed that the
solution is invariant to such transformations of the given data, thereby becoming
independent of the data-grid. Mathematically, the invariance requirements are
prescribed as follows: We want the value of Ψ{f} to remain unchanged (up to
a multiplicative constant) when f is

1. shifted by x0 ∈ R
d (translation-invariance)

Ψ{f(• − x0)} = Ψ{f(•)}, (4.10)

2. rotated about the origin by an arbitrary angle θ (rotation-invariance)

Ψ{f(Rθ•)} = Ψ{f(•)}, and (4.11)
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3. dilated by τ > 0 (scale-invariance)

Ψ
{
f
(•
τ

)}
= C(τ)Ψ{f(•)}, (4.12)

where C(τ) > 0 is an appropriate scalar that is differentiable with respect
to τ ; its role is to balance the regularization against a change of scale at
which it is calculated.

Since Ψ{f(•)} is specified via the norm ‖L{f(•)}(x)‖, affine invariance of
Ψ{f(•)} (4.10)-(4.12) necessitates that ‖L{f(•)}(x)‖ be preserved under trans-
lation, rotation, and dilation of f , up to the Lebesgue measure in the integral
(4.9). This curtails the choice of L to those that are shift-, rotation-, and scale-
invariant in nature.

Definition 4.2. The vector-differential operator L is said to be a shift-, rotation-
, and scale-invariant operator if ‖L{f(•)}(x)‖ commutes with translation

||L{f(• − x0)}(x)|| = ||L{f(•)}(x− x0)||, (4.13)

with rotation

||L{f(Rθ•)}(x)|| = ||L{f(•)}(Rθx)||, (4.14)

and with dilation∥∥∥L{
f
(•
τ

)}
(x)

∥∥∥ = ρ(τ)
∥∥∥L {f (•)}

(x
τ

)∥∥∥ , (4.15)

where ρ(•) > 0 is a differentiable function that captures the response of L to a
scaling of the coordinate system.

Interestingly, common multivariate differential operators such as the gradient
(L =∇∇∇) and the Laplacian (L = Δ) turn out to be shift-, rotation-, and scale-

invariant in nature. In the case of the gradient operator, we have Lm =
∂

∂xm
,

m = 1, 2, . . . , d. Obviously, the relation

∂f(x/τ)
∂xm

= τ−1 ∂f(x)
∂xm

∣∣∣∣
x=x/τ

implies that the response of∇∇∇ to the dilation operation is ρ(τ) = τ−1. Similarly,

for the case of the Laplacian L = Δ =
d∑

m=1

∂2

∂x2
m

(scalar operator), we see that

ρ(τ) = τ−2 in (4.15).
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Going back to (4.9), it may seem that Φ can be arbitrarily chosen. This
is true with respect to translation and rotation invariance of Ψ{f} since (4.13)
and (4.14) ensure that without the need for specifying an explicit functional
form for Φ. However, invariance of Ψ{f} to dilation calls for special attention
as it couples the scale invariance of L and the effect of dilation on the potential
function Φ. In fact, this connection together with (4.12) narrows down the
choice of Φ as shown in the following theorem.

Theorem 4.1. Let L be a linear, scale-, rotation-, and shift-invariant differen-
tial operator and the potential function Φ be as defined in Definition 4.1. Then,
Ψ{f} is invariant to scaling of the coordinates if and only if Φ(x) = xp, ∀ x ≥ 0
with p > 0.

Proof: Writing down (4.12) explicitly in terms of integrals yields∫
Rd

Φ
(∥∥∥L{

f
( ·
τ

)}
(x)

∥∥∥) dx = ζ(τ)
∫

Rd

Φ(‖L{f}(x)‖) dx. (4.16)

We start from the l.h.s. of (4.16) and use the fact that L is scale-invariant (4.15)
to obtain∫

Rd

Φ
(∥∥∥L{

f
( ·
τ

)}
(x)

∥∥∥) dx =
∫

Rd

Φ
(
ρ(τ)

∥∥∥L {f}(x
τ

)∥∥∥) dx

= τd
∫

Rd

Φ(ρ(τ) ‖L{f}(x)‖) dx. (4.17)

Then, comparing the r.h.s. of (4.17) and (4.16), we infer that Φ must necessarily
satisfy

Φ(ρ(τ)x) = ϑ(τ)Φ(x) ∀ x ∈ R, (4.18)

where ϑ(τ) = τ−d ζ(τ). Differentiating (4.18) with respect to τ and setting
τ = 1, we get

xΦ′(x) = pΦ(x), (4.19)

where we have used the fact that ρ(1) = 1 (there is no scaling for τ = 1 in
(4.15)) and p = ϑ′(1)

ρ′(1) is a real number. The general solution to (4.19) is of the
form6 Φ(x) = γ1x

p
+ + γ2(−x)p+, where γ1 and γ2 are arbitrary constants, and

xp+ =
{
xp, if x ≥ 0,
0, otherwise.

6The general solution may contain distributions for negative integer values of p [102].
However, in the present context, we would like the solution to be a true function of x, which
leads to the given form for Φ.
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Using the hypothesis that Φ is defined only for x ≥ 0 and is non-negative
and increasing, we see from (4.19) that p > 0, which leads to the desired result
(up to a multiplicative real constant) Φ(x) = xp, ∀ x ≥ 0 with p > 0.

Conversely, it is verified that the form Φ(x) = xp ensures scale invariance of
Ψ{f}. �

As a direct consequence of Theorem 4.1, we see that the following Lp-norm is
the only choice of regularization with respect to (4.12): Substituting Φ(x) = xp

in (4.9), we get

Ψ{f} =
∫

Rd

||L{f}(x)||p dx. (4.20)

In this work, we shall focus on the convex class of regularization functionals in
(4.20) which precludes p < 1. Therefore, the practical range of interest of the
p-values is 1 ≤ p ≤ 2. Some popular instances of convex Ψ{f} in (4.20) that
can be found in regularization or spline literature are

1. Total-variation regularization [74, 103, 104] where p = 1, L = ∇∇∇, and
ζ(τ) = τd−1,

2. Quadratic regularization: Set p = 2

(a) Laplacian semi-norm [105] with L = Δ and ζ(τ) = τd−4,

(b) Duchon’s semi-norm of order M [106] where L is a vector composed
of every possible M -th order partial derivative operator and ζ(τ) =
τd−2M .

4.3.2 Discretization of the Problem

As we are dealing with an interpolation problem, we seek a solution of the form

fλ(x) =
∑
k∈Zd

cλ[k]ϕ(x− k) (4.21)

for our regularized scheme. Then, the original problem (4.5) can be posed as
the discrete-domain optimization problem

{cλ[k]}k∈Zd = arg min
{c[k]}

k∈Zd

Jλ{g, c}. (4.22)
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The associated cost Jλ is a function of {c[k]} given by

Jλ{g, c} = L{g, (c ∗ b)}

+λ

∫
Rd

⎛
⎜⎝ dL∑
m=1

⎛
⎝∑

k∈Zd

c[k] Lm{ϕ}(x− k)

⎞
⎠2

⎞
⎟⎠

p
2

dx, (4.23)

where we have used f(k) =
∑

m∈Zd

c[m] b[k −m] with b[k] = ϕ(k)|k∈Zd in the

data-fidelity term. Thus, while we consider the same continuous-domain model
in (4.2) and (4.21), standard and regularized schemes differ in the way the
coefficients are obtained. However, when λ→ 0 in (4.23), the regularized scheme
(4.22) converges to the standard case (4.2) since we only minimize L{g, (c ∗ b)}
which leads to close-fitting of data; at the other extreme, as λ → ∞, (4.22)
results in a maximum-likelihood estimate within the null-space of Lm, m =
1, . . . , dL.

4.3.2.1 Quadratic Regularization

When p = 2, the integrand in the r.h.s. of (4.23) is a quadratic term. Up
to technical details related7 to ϕ and {Lm}dLm=1 [66, 91], the integral can be
evaluated analytically to yield

dL∑
m=1

∫
Rd

⎛
⎝∑

k∈Zd

c[k] Lm{ϕ}(x− k)

⎞
⎠2

dx = 〈c ∗ q, c〉�2 = ΨQ{c},

where {q[k]}k∈Zd is the discrete sequence given by

q[k] =
dL∑
m=1

qm[k] (4.24)

=
dL∑
m=1

∫
Rd

Lm{ϕ}(x) Lm{ϕ}(x− k) dx. (4.25)

Thus, in the quadratic case (p = 2), the discretization of Ψ{f} implicitly follows
from (4.25) and leads to a quadratic function ΨQ{c} of the coefficients.

7As discussed at the end of Section 3.3.3 in Chapter 3, we can argue here that the sum-
mation and the integral can be exchanged whenever Lm{ϕ} satisfies the first SR condition in
(3.2), ∀ m = 1, 2, · · · , dL.
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4.3.2.2 Non-Quadratic Regularization

In this case, the problem (4.22) can be handled only in a numerical optimization
framework. For the purpose of numerical tractability, we replace the integral in
(4.23) by a Riemann sum which leads to the discrete non-quadratic regulariza-
tion

ΨNQ{c} =
∑
k∈Zd

(
dL∑
m=1

((c ∗ ηm)[k])2
) p

2

, (4.26)

where ηm[k] = Lm{ϕ}(k) represents the discretized version of the differential
operator Lm. The use of ΨNQ{c} for regularized interpolation distinguishes this
work from those in the literature [36,37,39,66,81,91] which primarily deal with
quadratic regularization.

From (4.26), it is seen that the numerical characterization of Ψ{f} for p �= 2
still accommodates the following important analog-domain feature: The dis-
cretized derivatives ηm are be obtained by sampling the corresponding continuous-
domain derivatives Lm{ϕ}, m = 1, 2, . . . , dL. We illustrate this connection in
Section 4.3.4 where we present ηm, m = 1, . . . , dL, for the case of the gradient
operator and polynomial B-splines.

4.3.3 Algorithms for Regularized Interpolation

When the cost Jλ is quadratic (Gaussian likelihood LQ and p = 2), the opti-
mization can be performed mathematically [66, 91] which leads to an explicit
closed-form solution that is related to {g[k]} in a linear fashion (as was seen in
Section 3.3.4.5 in Chapter 3). Otherwise, the optimization has to be performed
numerically and the corresponding solution depends on {g[k]} in a non-linear
fashion. The same is true whenever the data-fidelity is dictated by a non-
Gaussian likelihood irrespective of whether the regularization is quadratic or
not. This is summarized in Table 4.1 where we present the characteristics of
different regularized interpolation schemes.

In the sequel, we describe in detail the minimization procedure that we adopt
for the Gaussian-likelihood setting (first two rows of Table 4.1). We also briefly
mention some conventional optimization strategies for a general non-Gaussian
likelihood and give a detailed exposition for the Poisson-likelihood case.
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Table 4.1: Characteristics of different Penalized-likelihood interpola-
tion schemes

Likelihood Type of
Model Regularization Optimization Solution Algorithm

Gaussian Quadratic Analytical
Explicit, Linear,

Closed-Form One-Step

Gaussian Non-quadratic Numerical Numerical
Non-Linear,

Iterative

Non-Gaussian
Quadratic,

Numerical Numerical
Non-Linear,

Non-quadratic Iterative

4.3.3.1 Gaussian Likelihood with Quadratic Regularization

The cost to be minimized is composed of LQ and ΨQ; that is,

JGLQ{g, c} =
∑
k∈Zd

(g[k]− (c ∗ b)[k])2 + λ 〈c ∗ q, c〉�2 . (4.27)

Since JGLQ{g, c} is quadratic in {c[k]}, the minimization is performed (as done
in Section 3.3.4.5 in Chapter 3) by setting its derivative with respect to c[k] to
zero which yields

(c ∗ b ∗ b̄+ λ q ∗ c)[k] = (g ∗ b̄)[k], (4.28)

where b̄[k] = b[−k].
Equation (4.28) can be solved in the discrete-space Fourier domain to obtain

Cλ(ejωωω) = Rλ(ejωωω)G(ejωωω) (4.29)

=
(

B∗(ejωωω)
|B(ejωωω)|2 + λQ(ejωωω)

)
G(ejωωω), (4.30)

where Cλ(ejωωω), G(ejωωω), B(ejωωω), and Q(ejωωω) are the Fourier transforms8 of the
solution {cλ[k]}, the data {g[k]}, and the sequences {b[k]} and {r[k]}, respec-
tively.

8Conditions necessary for the existence and stability of Rλ(ejωωω) have to checked on a case-
by-case basis and can be done in a fashion similar to that described in Section 3.4 in Chapter
3.
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Equation (4.30) amounts to writing cλ[k] = (rλ∗g)[k] where rλ is the digital-
correction filter whose frequency response is Rλ(ejωωω). The solution is therefore
linear, in the sense that fλ(x) is related to {g[k]} in a linear fashion. The
implementation of (4.30) is straightforward and can be done via Fast-Fourier-
Transform (FFT). We also note that Rλ(ejωωω)→ 1

B(ejωωω) for λ→ 0, in which case
fλ performs standard interpolation of {g[k]} [63]. However, while B(ejωωω) can
be separable, this is never the case for Rλ(ejωωω) when λ > 0.

Algorithm 4.1. Algorithm for minimizing JGLQ for a given λ.

(1) Precompute and store B(ejωωω), Q(ejωωω), and G(ejωωω)

(2) Construct Rλ(ejωωω) and compute Cλ(ejωωω) using (4.30) for the given λ

(3) Perform inverse Fourier transform of Cλ(ejωωω) to obtain {cλ[k]}

4.3.3.2 Gaussian Likelihood with Non-Quadratic Regularization

In this case, we maintain LQ in the cost while we plug in ΨNQ for the regular-
ization which results in

JGLNQ{g, c} =
∑
k∈Zd

(g[k]− (c ∗ b)[k])2 + λΨNQ{c}. (4.31)

The presence of ΨNQ in (4.31) makes JGLNQ non-quadratic. Nevertheless, we
note that JGLNQ is convex in {c[k]} for the considered range of p. Several
methodologies such as the majorize-minimize (MM) approach [96] (or, equiv-
alently, bounded-optimization) and the half-quadratic method [107–109] have
been developed in the past to handle non-quadratic convex costs. More recently,
Nikolova et al. showed that the half-quadratic and bounded-optimization ap-
proaches are equivalent for cost functions of the type JGLNQ [110]. In the present
work, we resort to the MM approach as it is easy to comprehend: The idea is
to replace the original difficult task by several easy-to-optimize problems that
will guarantee monotonic decrease of the cost criterion [96]. Below, we briefly
summarize the mathematical details underlying the MM philosophy, after which
we apply it to minimize JGLNQ .

In the MM setting, we construct an auxiliary cost function JAUX{c|ct} at the
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current estimate {ct[k]} such that

JGLNQ{g, ct} = JAUX{g, ct|ct},
JGLNQ{g, c} < JAUX{g, c|ct}, c �= ct. (4.32)

Then, the idea is to find the estimate ct+1 at the next iteration such that

JAUX{g, ct+1|ct} < JAUX{g, ct|ct}, (4.33)

which leads to a definite decrease of JGLNQ as shown below:

JGLNQ{g, ct+1} = JAUX{g, ct+1|ct}+ JGLNQ{g, ct+1} − JAUX{g, ct+1|ct}︸ ︷︷ ︸
< 0 using (4.32)

< JAUX{g, ct|ct} (using (4.33))
= JGLNQ{g, ct}.

Our construction of the auxiliary cost JAUX is based on the inequality [96]

|x|p ≤ 2− p
2
|x0|p +

p

2
x2|x0|p−2,

for 1 ≤ p < 2 and some x0 �= 0, where the equality holds only when p = 2 or
x = x0. The inequality is preserved under summation and multiplication by
λ > 0 which leads to

λΨNQ{c} ≤ λ
p

2

∑
k∈Zd

|χt[k]|p−2
dL∑
m=1

((c ∗ ηm)[k])2 +Aχt
, (4.34)

where

χt[k] =

√√√√ dL∑
m=1

((ct ∗ ηm)[k])2 and Aχt
= λ

(
2− p

2

)
ΨNQ{ct} (4.35)

is a constant independent of {c[k]}. Thus, we obtain

JAUX{g, c|ct} =
∑
k∈Zd

(g[k]− (c ∗ b)[k])2

+λ
p

2

∑
k∈Zd

|χt[k]|p−2
dL∑
m=1

((c ∗ ηm)[k])2

+Aχt
,
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which satisfies (4.32). Moreover, we note that JAUX is quadratic in {c[k]}—we
minimize it by setting its derivative to zero. This results in the following system
of linear equations: ∀ k ∈ Z

d

(c ∗ b ∗ b̄)[k]
+

λ
p

2

dL∑
m=1

∑
m∈Zd

|χt[m]|p−2 (c ∗ ηm)[m] ηm[m− k]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ = (g ∗ b̄)[k]. (4.36)

The presence of {χt[k]} in (4.36) prohibits the use of Fourier-domain techniques
such as those used in Section 4.3.3.1. Nevertheless, the MM technique requires
only a decrease of JAUX ; there is no need to minimize it completely. Therefore,
efficient numerical schemes such as the conjugate-gradient (CG) method can be
utilized to solve (4.36) partially. This leads to Algorithm 4.2.

Algorithm 4.2. MM algorithm for minimizing JGLNQ for a given λ and p.

(1) Precompute and store {(b̄ ∗ b)[k]} and {(g ∗ b̄)[k]}

(2) Initial estimate = {c0[k]}k∈Zd ; t = 0

Repeat Steps 3, 4 and 5 until Stop Criterion is met

(3) Compute {χt[k]}k∈Zd using {ct[k]}k∈Zd

(4) Apply CG iterations to partially solve for {ct+1} in (4.36)

(5) Set t = t+ 1

4.3.3.3 Non-Gaussian Likelihood

Non-Gaussian likelihood functions invariably require iterative techniques for
minimization of the associated cost. If the negative log-likelihood L{g, (c∗b)} is
a non-convex function of {c[k]}, conventional techniques such as the non-linear
conjugate gradient and BFGS methods [111] may be used for determining the
local minima of the associated cost Jλ. The basic idea underlying these methods
is to find a numerical solution by iteratively reducing the norm of the gradient
of Jλ.

However, if L{g, (c∗ b)} is a convex function, the MM-strategy (4.32) can be
used for developing elegant algorithms that guarantee monotonic decrease of Jλ.
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Moreover, it is well known that the minimization of a convex Jλ always leads
to a solution that is the global-minimum of Jλ. In this chapter, we consider the
Poisson likelihood as a prototypical example of a convex non-quadratic data-
fidelity term. The corresponding optimization procedure (Algorithm C.1) is
given in Appendix C for both quadratic (ΨQ) and non-quadratic regularization
(ΨNQ).

4.3.4 Spline-Based Regularized Interpolation

Here, we make explicit the link between the sequences {ηm}dLm=1, {qm}dLm=1,
and ϕ and L for spline-based interpolation which is well-suited for imaging
problems [14,63]. We consider a separable generating function given by

ϕ(x) = ϕ(x1)ϕ(x2) · · ·ϕ(xd), (4.37)

where ϕ(x) is the univariate generating function. For L, we select the gra-
dient operator: Then, the proposed regularization includes the total-variation
functional (for p = 1) which is of particular interest to us because of its edge-
preserving characteristics [74].

The separable nature of ϕ(x) in (4.37) leads to the separability of the cor-
responding discrete sequences {b[k]}, {ηm[k]}dLm=1, and {qm[k]}dLm=1, as written
below:

b[k] = b[k1] b[k2] · · · b[kd],

where b[k] = ϕ(x)|x=k. For the gradient operator, we have dL = d, which yields
for m = 1, . . . , d,

ηm[k] =
d∏
l=1
l �=m

b[kl] b(1)[km],

where b(1)[k] = ϕ′(x)|x=k and

qm[k] =
d∏
l=1
l �=m

a[kl] a(2)[km],

where a[k] = (ϕ̄ � ϕ)(x)|x=k, ϕ̄(x) = ϕ(−x), and a(2)[k] = (ϕ̄′ � ϕ′)(x)|x=k.
We list out the sequences {b[k]}, {b(1)[k]}, and {a(2)[k]} (in terms of their trans-
fer functions B(z), B(1)(z), and A(2)(z), respectively) in Tables 4.2 and 4.3, for
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Table 4.2: Transfer functions B(z) and B(1)(z) corresponding to vari-
ous spline degrees

n B(z) B(1)(z)

1 1 1
2 (z−1 − z)

2 3
4 + 1

8 (z−1 + z) 1
2 (z−1 − z)

3 4
6 + 1

6 (z−1 + z) 1
2 (z−1 − z)

4 115
192 + 19

96 (z−1 + z) + 1
384 (z−2 + z2) 11

24 (z−1 − z) + 1
48 (z−2 − z2)

5 11
20 + 13

60 (z−1 + z) + 1
120 (z−2 + z2) 5

6 (z−1 − z) + 1
24 (z−2 − z2)

ϕ(x) = βn(x), which is the symmetric polynomial B-spline of degree n ≥ 1 [14].
We see that {b(1)[k]} and {a(2)[k]} are very different from the simple finite-
difference filters (pixel-to-pixel difference) that are typically used in the litera-
ture for TV-based image restoration.

4.4 Results

We validate the proposed regularized interpolation scheme by carrying out 2-D
rotation experiments in the presence of noise similar to those described in Sec-
tion 4.2.1. We adopt the polynomial B-spline model in (4.37) for all implemen-
tations and use the gradient operator for regularization. Standard interpolation
is performed as described9 in [63], while, in the regularized case, we implement
Algorithm 4.1 using FFTs; the various steps of the non-linear algorithms (cf.
Algorithm 4.2 and Algorithm C.1—see Appendix C) are executed via discrete
convolutions. In the experiments, we set p = 1 for the non-quadratic regular-
ization (NQR). The stopping criterion for Algorithm 4.2 and Algorithm C.1 is
‖ct+1−ct‖2 < 10−4N−1‖g‖�2 , where N is the size of {g[k]}, while the maximum

9The coefficients {c[k]} are obtained by prefiltering the samples with the interpolation filter
(qint in (2.32) in Chapter 2). Then, the interpolation is performed by computing the sum of
shifted ϕ’s weighted by the coefficients.
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Table 4.3: Transfer function A(2)(z) corresponding to various spline degrees

n A(2)(z)

1 2− (z−1 + z)

2 1− 1
3 (z−1 + z)− 1

6 (z−2 + z2)

3 2
3 −

1
8 (z−1 + z)− 1

5 (z−2 + z2)− 1
120 (z−3 + z3)

4 35
72 −

11
360 (z−1 + z)− 17

90 (z−2 + z2)− 59
2520 (z−3 + z3)− 1

5040 (z−4 + z4)

5
809
2160 + 1

64 (z−1 + z)− 31
1890 (z−2 + z2)

− 907
24192 (z−3 + z3)− 25

18144 (z−4 + z4)− 1
362880 (z−5 + z5)

number of allowed iterations is set to 25 (with 20 CG iterations in each main
loop) for Algorithm 4.2 and it is set to 300 for Algorithm C.1.

The performance of all methods is quantified by the signal-to-noise ratio
(SNR) computed as

SNR = 10 log10

⎛
⎜⎜⎝

∑
k∈Ω

f2(k)

∑
k∈Ω

(f(k)− fλ(k))2

⎞
⎟⎟⎠ , (4.38)

where {f(k)} and {fλ(k)} are the values of the continuous-domain noise-free
signal and regularized output, respectively, sampled on the grid of data. The
SNR is evaluated inside a circular region Ω concentric with the image so as to
avoid boundary effects.

Our main aim in this chapter is to characterize the best-possible performance
of the proposed regularized interpolation methods. For this purpose, we conduct
oracle-based experiments; that is, we set λ so as to obtain fλ that yields the
highest SNR for a given realization of the noisy data {g[k]}. In Chapters 5
and 6, we take up the problem of developing a data-driven scheme for obtaining
the “optimal” λ directly from {g[k]}. Specifically, we develop a Monte-Carlo
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method in Chapter 6 for estimating the SNR corresponding to an arbitrary
interpolation/denoising algorithm and apply it for selecting the “optimal” λ for
our regularized interpolation problem.

4.4.1 Regularized versus Standard Interpolation

We compare the proposed regularized scheme against standard interpolation by
carrying out two sets of 2-D rotation experiments where the setup is exactly
similar to that described in Section 4.2.1. For the first experiment, we use a
512×512 image of a CT slice (central portion shown in the inset of Figure 4.2).
For the second, we consider a stack of clean MRI images [112] (T1, T2, and PB
images that are zero-padded to size 300×300 so as to provide enough margins for
the rotations) where we use different slices picked randomly from the MRI stack
for different realizations. We perform standard interpolation (non-regularized)
using nearest-neighbour, linear, and cubic B-spline, while, for regularized meth-
ods, we consider quadratic regularized (QR) cubic B-spline (Algorithm 4.1) and
non-quadratic regularized (NQR) cubic B-spline (Algorithm 4.2), respectively.

4.4.1.1 SNR Comparison

We plot the output SNR for each of these methods in Figures 4.2 and 4.3 cor-
responding to the CT slice and the MRI stack, respectively. In both figures, we
observe the following: The nearest-neighbour method always performs poorly,
which is expected. For low input SNRs (< 24 dB in Figure 4.2 and < 32 dB in
Figure 4.3), piecewise linear interpolation does better than cubic B-spline: This
behavior was already explained in Section 4.2.1. The most important obser-
vation is that both regularized interpolation methods (QR and NQR) perform
far better than the non-regularized ones at high noise levels. The consistently
superior trend exhibited by regularized interpolation in both figures clearly illus-
trate its robustness against noise. Finally, the output SNR of the two regularized
methods (for cubic B-spline) converges to that of the non-regularized cubic B-
spline for relatively high input SNRs since the effect of regularization becomes
negligible under very low noise.

4.4.1.2 Visual Comparison

We present in Figure 4.4 output images for one realization of the experiment
in Section 4.4.1 (with MRI stack). Since standard cubic B-spline interpolation
is not regularized, the corresponding output (Figures 4.4(c)) is still noisy. On
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Figure 4.2: Rotation experiments on noisy versions of a slice of a CT
image: Comparison of performance of non-regularized and regularized
interpolation.

Figure 4.3: Rotation experiments on noisy versions of MRI slices:
Comparison of performance of non-regularized and regularized interpo-
lation.
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(a) (b)

(c) (d)

(e)

Figure 4.4: Visual Comparison: (a) Noise-free image; (b) Noisy data,
rotation angle ≈ -60◦, SNR ≈ 16 dB; (c) Non-regularized cubic B-spline
interpolation result, SNR = 17.12 dB; (d) Quadratic regularized (QR)
cubic interpolation result (p = 2, optimal λ in Algorithm 4.1) SNR =
19.49 dB; (e) Non-quadratic regularized (NQR) cubic interpolation re-
sult (p = 1, optimal λ in Algorithm 4.2) SNR = 21.04 dB. The reported
SNR values were calculated over the support of the noise-free image
displayed here.
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the contrary, regularized methods lead to significant noise reduction as seen in
Figures 4.4(d) and 4.4(e) corresponding to QR-cubic and NQR-cubic outputs,
respectively.

4.4.2 Regularized Interpolation: Varying Spline Degree

To study the effect of the basis function ϕ on the discretization of the non-
quadratic regularization (NQR) in (4.26), we repeat the experiment in Section
4.4.1 (for MRI images) with B-splines of integer degree varying from 1 to 5
and focus on NQR interpolation (Algorithm 4.2). We show in Figure 4.5 the
performance of the NQR interpolation based on linear (n = 1), quadratic (n =
2), cubic (n = 3), quartic (n = 4), and pentic (n = 5) B-splines, respectively.

The output SNR consistently increases with the degree of the B-spline over
the entire range of input SNRs indicating that higher-degree B-splines yield
better performance with NQR interpolation. Particularly, there is a notable
improvement going from linear to a higher-degree B-spline. This is probably
because, for the linear B-spline, the discretization does not adequately capture
the features of the corresponding continuous-domain model, while the situation
improves when n ≥ 2. For higher-order B-splines (n ≥ 4), we only observe
marginal increments in the output SNR that tends to saturate. This is to be
expected since the cardinal splines (corresponding to these B-splines) rapidly
converge to the sinc-function with increasing n [14].

4.4.3 Experiments with Poisson Noise

Until now, we have presented results that demonstrate the superior performance
of regularized interpolation (using Algorithm 4.1 and Algorithm 4.2) for data
corrupted by additive Gaussian noise. In this section, we investigate the pro-
posed approach using Algorithm C.1 (in Appendix C) by performing rotations
in the presence of signal-dependent Poisson noise (results not shown). The out-
come was very similar to that exhibited in Figures 4.2 and 4.3, and we summarize
our findings here by stating again that the proposed regularized interpolation
scheme outperforms standard methods by a wide margin.

Our concern here is rather to investigate whether or not the choice of the
data-fidelity term based on the likelihood model is crucial for regularized inter-
polation. Specifically, we propose to study the performance of quadratic data
fidelity LQ (which corresponds to a Gaussian likelihood) when applied to signal-
dependent Poisson noise and compare it with LPoisson which is statistically the
most appropriate data-fidelity term for this type of noise. For this, we repeat
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Figure 4.5: Non-quadratic regularized (NQR) interpolation for varying
spline-degree.
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Figure 4.6: Comparison of the effect of likelihood on non-quadratic
regularized (NQR) interpolation.
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the experiment (with CT slice) described in Section 4.4.1, but, here, we con-
sider data corrupted by signal-dependent Poisson noise. To generate Poisson
noise, we make use of the RandomJ plugin [113] for the ImageJ freeware. The
intensity value of the noise-free image at a given pixel characterizes the Pois-
son noise at that pixel (mean of the Poisson random variable). So we vary the
maximum-allowed intensity Imax in the test image to simulate Poisson noise of
varying strengths. For instance, a low Imax value indicates a low-count situation
(i.e., low input SNR). We perform NQR-cubic interpolation using Algorithm 4.2
(Gaussian-likelihood) and Algorithm C.1 (Poisson likelihood). The respective
output SNRs are plotted in Figure 4.6 as a function of Imax (in log2-scale).

For Imax ≤ 25, which corresponds to an average of six or less counts per
pixel for the CT slice image in Figure 4.6, Algorithm C.1 yields substantial
improvement (≥ 1 dB) over Algorithm 4.2 pointing to the superiority of the
Poisson-likelihood model for low-count situations. However, when Imax > 25,
Algorithm 4.2 and Algorithm C.1 yield more-or-less similar performances indi-
cating that the effect of the likelihood model is no longer significant.

4.5 Discussion

4.5.1 Quadratic versus Non-Quadratic Regularization

Among the regularized schemes investigated in this work, NQR interpolation
(based on TV regularization) performs significantly better than QR interpola-
tion both in terms of visual quality and SNR: In Figure 4.4 the NQR result
(Figure 4.4(e)) is sharper and less noisy than the QR result (Figure 4.4(d)),
while in Figures 4.2 and 4.3 we see that NQR brings about a consistent SNR
improvement over QR interpolation at high noise levels. These results are a di-
rect consequence of the fact that TV-like NQRs have a good ability to preserve
important signal features (such as edges) while Tikhonov-like QRs tend to blur
them thus compromising the quality. Therefore, from a performance point of
view, it is better to employ TV-like NQR for regularized interpolation.

4.5.2 Influence of the Likelihood Model

It is commonly believed that the likelihood term plays a significant role in vari-
ational problems. While this is true in some situations, it often turns out that,
in the presence of a strong regularization, the solution is dictated more by the
regularization than by the likelihood. We presented an example in Section 4.4.3
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to demonstrate this for the case of Poisson noise: The Poisson likelihood LPoisson

outperforms the Gaussian likelihood LQ for low-count Poisson data, while they
yield almost the same performance in the high-count case. Thus, when the
choice of the data-fidelity term is not crucial, algorithms can be designed to
reduce the amount of computations. For instance, since Algorithm 4.2 uses LQ

for the data fidelity, it only requires the linearization of the regularization—the
corresponding optimization is simple as it only amounts to solving a set of linear
equations. This is difficult to accomplish under the Poisson-likelihood model—
the logarithm in LPoisson requires careful handling of the problem as positivity
of the solution often becomes a harsh constraint. In most practical situations,
the number of counts is sufficiently large that the deviation from the Poisson
likelihood model is negligible. In such cases, LQ can be used in place of LPoisson

without compromising on the performance.

4.5.3 Computational Cost

In our analysis so far, we ranked the various regularized interpolation algorithms
purely based on performance gain. However, we must also consider the compu-
tation cost associated with these algorithms. In [63], Thévenaz et al. performed
a thorough cost-performance analysis for standard interpolation; for a given
quality measure, their emphasis was on reducing the cost of evaluating ϕ(x−k)
for many arguments (x − k). In the context of regularized interpolation, since
we are concerned with obtaining {c[k]}, we only consider the cost of computing
the coefficients for a given ϕ. In the sequel, we provide a rough measure of this
cost for the various (regularized and non-regularized) algorithms presented in
this work.

Since, for standard interpolation, the {c[k]} are computed by linear filtering
of the data [63], it can be achieved with O(N) complexity. In the context of
regularized interpolation, Algorithm 4.1 is easily implemented in the Fourier
domain (via FFTs)—it requires about O(N log(N)) operations. Thus, with
only a slightly larger computation load (an extra log(N) factor), Algorithm 4.1
yields significant improvement in quality and is generally preferable to standard
interpolation.

Algorithm 4.2 is iterative in nature and requires the evaluation of several
convolutions in its intermediate steps. The convolutions are always performed
on the estimate {ct[k]} with {b[k]}, {ηm[k]}dLm=1. To simplify the process, we
disregard the size of these sequences and associate the same cost C to the
computation of {(b ∗ b̄ ∗ ct)[k]} and {(ηm ∗ ct)[k]}. Since the CG-solver is the
predominant step in Algorithm 4.2, we wish to analyze the complexity associated
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with one CG iteration by taking the following into consideration:

(1) The cost of evaluating the l.h.s. of (4.36),

(2) The cost of calculating {χ[k]} is averaged over the total number Q of CG
iterations (the {χ[k]} are calculated outside the CG-loop),

(3) The convolution in the r.h.s. of (4.36) is ignored as it can be precomputed.

Thus, we require

dLC

Q
+ (2dL + 1)C + dLN (4.39)

operations for one CG-iteration in Algorithm 4.2.
Similarly, for Algorithm C.1, at each iteration, we need to evaluate the

constants {A1m}, {A2m}, and {A3m} (see Appendix C) which are of the same
size as {ct[k]}. Going through the corresponding expressions, it can be deduced
that the associated cost is

C(4dL + 2) +N(dL + 1) (4.40)

for one iteration of Algorithm C.1. From (4.39) and (4.40), it is clear that
Algorithm C.1 is more demanding than Algorithm 4.2 which is coherent with
our discussion in Section 4.5.2. Similarly, from a quality point of view, Figures
4.2 and 4.3 indicate that Algorithm 4.2 is preferable to Algorithm 4.1 for strong
Gaussian noise. Therefore, Algorithm 4.2 is best-suited to carry out regularized
interpolation in a general setting. However, at low noise levels, the effect of
regularization becomes negligible (the output SNR curves in Figures 4.2 and
4.3 eventually meet); then, it may be desirable to use Algorithm 4.1 as it has
the lowest computational complexity.

4.6 Summary

Standard interpolation performs exact fitting of the given data. In the pres-
ence of noise, we have shown that this can have a detrimental influence on the
interpolation quality. To interpolate noisy data, we have developed a regular-
ized scheme that counterbalances the effect of noise by imposing smoothness
constraints (variational approach) on the resulting continuous-domain solution.
We have adopted an integer shift-invariant signal model for interpolation where
the model parameters (coefficients of the integer-shift-invariant expansion) are
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obtained by minimizing the statistical infidelity of the solution to the given data
(negative log-likelihood data term) subject to a regularization.

Based on affine invariance of the solution, we showed that the Lp-norm of a
vector derivative is the most suitable choice of regularization for our purpose.
In addition to Tikhonov-like quadratic functional (which leads to smoothing-
spline-like interpolants in Chapter 3), this includes non-quadratic ones such
as the edge-preserving total-variation (TV) regularization. We have presented
algorithms based on the MM (majorize-minimize) strategy to perform the op-
timization of the coefficients for non-quadratic cost criteria.

We have carried out 2-D rotation experiments in the presence of noise and
numerically quantified the performance of standard (non-regularized) and regu-
larized interpolation. We observed that regularized interpolation always yields
a significant improvement in quality over standard interpolation. Furthermore,
among the regularized methods, we could note that non-quadratic regularized
(NQR) interpolation consistently outperforms the quadratic regularized (QR)
one; we associate this phenomenon to the fact that NQR interpolation preserves
edges and achieves better noise reduction than QR interpolation. We conclude
from these observations that regularized interpolation, specifically, NQR inter-
polation, can be of potential interest in medical-imaging applications.





Chapter 5

Data-driven Methods for
Risk Estimation

5.1 Introduction

The successful application of regularization in the variational formulation of im-
age reconstruction (discussed in the previous two chapters) entails the selection
of an appropriate value for the regularization parameter λ. The same problem
is encountered in the more general context of inverse problems in imaging1 (e.g.,
deconvolution, and the less-ill-posed denoising problem) where parameters of a
reconstruction algorithm—represented as the vector λλλ that includes e.g., number
of iterations, step-size of the algorithm, regularization parameter, etc—must be
adjusted “correctly” in order to obtain satisfactory results. To accomplish this,
researchers usually resort to empirical methods: The most-common techniques
include the use of the discrepancy principle [114], the L-curve methods [115–117]
and generalized cross-validation (GCV) [39, 114, 118–126]. Alternatively, the
problem can also be formulated in a Bayesian framework by imposing model-
based constraints as prior knowledge on the noise-free signal [127–130].

1This chapter is based on the following articles:
S. Ramani, T. Blu and M. Unser, “Monte-Carlo SURE: A Black-Box Optimization of Regu-
larization Parameters for General Denoising Algorithms,” IEEE Transactions on Image Pro-
cessing, vol. 17, no. 9, pp. 1540–1554, 2008, and
S. Ramani, C. Vonesch and M. Unser, “Deconvolution of 3D Fluorescence Micrographs with
Automatic Risk Minimization,” ISBI’08, Paris, France, pp. 732–735, May 14–17, 2008.
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In the context of denoising and deconvolution, however, the mean-squared er-
ror (MSE)—also called the risk—of the reconstruction is the preferred measure
of quality to optimize λλλ. This is also the case with the regularized interpolation
algorithm (see Chapter 4) where we use the SNR measure which is directly de-
pendent on the MSE.2 Unfortunately, MSE depends on the noise-free signal (as
is the case with Equation (4.38) in Chapter 4) which is generally unavailable or
unknown a priori. A practical approach, therefore, is to replace the true MSE
by a reliable estimate in the scheme of things. This forms the main theme of
this chapter where we review and derive analytical formulas for risk estimates
(that is, estimates of MSE): The key idea is to exploit the statistical properties
of the noise which helps us get away with the dependence of MSE on the original
unknown signal. Accordingly, we have to specify a suitable noise model for our
imaging/sampling process—this is not difficult since, in many practical appli-
cations, noise is more easy to characterize or observe than the original signal.
The corresponding risk estimate will then depend on the parameters of the noise
model which can be also be estimated from the given data.

5.2 Contributions and Chapter Organization

In this chapter, we focus on two types of noise models: The first is the addi-
tive Gaussian model which is the most prominent one in the signal-processing
literature. Here, we review a well-known result in the statistical [131] and image-
denoising literature [132–136] that goes by the name Stein’s unbiased risk esti-
mate—SURE. We present details of the derivation of SURE for the denoising
problem in Section 5.3.

Next, we consider a Poisson-Gaussian mixture model that is appropriate for
fluorescence microscopy imaging [100, 137, 138]. In this case, we derive a new
risk estimate for the problem of deconvolution of 3-D fluorescence micrographs
in Section 5.4.1. We also propose a simple technique for estimating the noise-
model parameters from the given data.

We provide simulation results in Sections 5.3.3 and 5.4.4 which justify the
applicability of risk estimates for tuning λλλ in denoising and deconvolution prob-
lems. We also present experimental results on real-world fluorescence microscopy
data. Specifically, we focus on linear algorithms3 in this chapter in order to il-
lustrate the concepts clearly. The case of non-linear algorithms is treated in
Chapter 6.

2In fact, the denominator of the SNR measure in Equation (4.38) is nothing but MSE.
3Linear algorithms are those whose outputs depend on the input in a linear fashion.



5.3 Denoising Using Stein’s Unbiased Risk Estimate 111

5.3 Denoising Using Stein’s Unbiased Risk Es-
timate

5.3.1 Notation and Problem formulation

We slightly digress from the continuous-domain notations introduced in Chapter
2 and work with discrete-domain quantities to accurately formulate what we said
earlier in this chapter. We adopt the standard vector formulation of a denoising
problem: We observe the noisy data y ∈ R

N given by

y = x + b, (5.1)

where x ∈ R
N represents the vector containing the samples of the unknown

deterministic noise-free signal and b ∈ R
N denotes the vector containing zero-

mean white Gaussian noise of variance σ2, respectively. We are given a denoising
algorithm which is represented by the operator fλλλ : R

N → R
N that maps the

input data y onto the signal estimate:

x̃ = fλλλ(y), (5.2)

where λλλ represents the set of parameters characterizing fλλλ; these should be
adjusted appropriately to yield the best estimate of the signal.

Here, we are interested in the optimization of λλλ so as to minimize MSE given
by

MSE(λλλ) =
1
N
‖x− fλλλ(y)‖2 =

1
N

N∑
k=1

(xk − fλλλk(y))2, (5.3)

where fλλλk(y) represents the k-th component of the vector fλλλ(y). By expanding
the r.h.s. of (5.3), we get

MSE(λλλ) =
1
N
‖x‖2 +

1
N
‖fλλλ(y)‖2 − 2

N
xTfλλλ(y).

The first term on the r.h.s. of the above equation, ‖x‖2, is an irrelevant constant
that does not depend on λλλ. The term ‖fλλλ(y)‖2 is easily calculated as it depends
on the output fλλλ(y). The only term that prevents us from using MSE(λλλ) is
xTfλλλ(y) since this term cannot be computed as x is usually unknown a pri-
ori. In order to circumvent this difficultly, we propose to estimate MSE(λλλ)
(that is, compute SURE) purely from y and fλλλ(y), as illustrated by the “MSE
estimation” box in Figure 5.1.
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Figure 5.1: The signal estimate x̃ is obtained by applying the λλλ-
dependent denoising algorithm on the observed data y. The MSE box
then computes the estimate SURE(λλλ) of the MSE between the noise-free
x and the denoised x̃ as a function of λλλ, knowing only y and fλλλ(y). The
best estimate of the signal is obtained by finding that λλλ which minimizes
the surrogate mean-squared error.

5.3.2 Stein’s Unbiased Risk Estimate—SURE

In his hallmark paper [131], Stein established the framework for unbiased esti-
mation of the risk (or MSE) of an arbitrary estimator in the presence of Gaussian
noise. SURE is a well-established technique in the statistical literature and is
beginning to gain attention within the signal-processing community. Notably, it
has been used in the context of (orthonormal) wavelet denoising [132,133] where
the SURE strategy has proven to be quite powerful and has been incorporated
in some state-of-the-art algorithms [134–136]. In what follows, we briefly review
the theory of SURE and then illustrate the concept in the simpler case of a
linear algorithm, which also yields a closed-form solution.

5.3.2.1 Theoretical Background

In the sequel, we assume that fλλλ is a continuous and bounded operator (that is,
the input-output mapping is continuous and a small perturbation of the input
necessarily results in a small perturbation of the output). We also require that
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the divergence of fλλλ with respect to the data y given by

divy{fλλλ(y)} =
N∑
k=1

∂fλλλk(y)
∂yk

(5.4)

is well defined in the weak sense.4 Then, the following theorem, which is a
version of Stein’s result in [131], provides us with an expression for an unbiased
estimate—SURE—of MSE.

Theorem 5.1. Given y as in (5.1), SURE corresponding5 to fλλλ(y) is a random
variable η : R

N → R, specified as

η(λλλ) =
1
N
‖y − fλλλ(y)‖2 − σ2 +

2σ2

N
divy{fλλλ(y)}. (5.5)

Moreover, η(λλλ) is an unbiased estimator of MSE(λλλ); that is,

Eb

{
1
N
‖x− fλλλ(y)‖2

}
= Eb{η(λλλ)}, (5.6)

where Eb{•} represents the expectation with respect to b.

Proof. The proof is given in Appendix D.1. �

In the SURE formulation, MSE(λλλ) is estimated purely based on the input
data y, the divergence of fλλλ(y), and the noise statistics (here, it depends on
the noise variance σ2); it requires no knowledge whatsoever of the noise free
signal x. The basis for the approach is that there are many more data points6

than unknown parameters λλλ. Therefore, thanks to the law of large numbers,
both 1

N ‖x − fλλλ(y)‖2 and divy{fλλλ(y)} are quite stable estimates of Eb{ 1
N ‖x −

fλλλ(y)‖2} and Eb{divy{fλλλ(y)}}, respectively, meaning that SURE provides a

4That is to say, 〈divy{fλλλ(y)}, ψ(y)〉 = −〈fλλλ(y),∇yψ(y)〉, ∀ ψ ∈ S where ∇yψ(y) is the
gradient of ψ(y) with respect to y and S is the space of rapidly decaying test functions that are

infinitely differentiable. We also require (as explain in Appendix D.1) Eb

n˛̨̨
∂fλλλk(y)

∂yk

˛̨̨o
< ∞,

k = 1, 2, · · · , N [131,139], which is satisfied by most algorithms encountered in practice.
5It can be easily shown that when the additive Gaussian noise has mean μμμ ∈ R

N and is
colored with covariance matrix C, η(λλλ) = 1

N
‖y−fλλλ(y)‖2−σ2+ 2

N
μμμT fλλλ(y)+ 2

N
divy{Cfλλλ(y)}.

This is slightly more general in that it reduces to the expression in the r.h.s. of (5.5) when
μμμ = 0 and C = σ2I (corresponding to the zero-mean white noise scenario).

6For image denoising applications, N represents the number of pixels and is usually very
large; typically, N ≥ 2562.
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fairly accurate proxy for the true MSE. Hence, it can be applied for data-driven
optimization of a wide range of denoising problems.

The divergence divy{fλλλ(y)} requires the evaluation of N partial derivatives
of fλλλ. However, when fλλλ is a linear algorithm, the divergence evaluation sim-
plifies significantly as demonstrated next. For the case of non-linear algorithms
(including those for which fλλλ does not have an explicit functional form), we
develop a novel Monte-Carlo procedure for divergence estimation in Chapter 6.

5.3.2.2 Application to Denoising and Regularized Interpolation Based
on Linear Algorithms

Linear algorithms are usually associated with quadratic cost functions: The
better-known examples are Tikhonov filters [117, 122] and smoothing splines
[70, 78, 81, 140] and quadratic-regularized (QR) interpolation (see Chapter 4)
in the variational setting, MAP estimators under the Gaussian prior [129], and
Wiener filter [89,122] in the stochastic setting. Such estimators can be described
by the following matrix transformation:

fλλλ(y) = Fλλλy, (5.7)

where Fλλλ is a N ×N matrix that depends on λλλ. Thus, the desired divergence
term is explicitly evaluated as

divy{fλλλ(y)} = divy{Fλλλ y} = trace{Fλλλ}, (5.8)

which yields an explicit expression for SURE.
In this context, smoothing splines and quadratic-regularized (QR) interpo-

lation algorithms deserve a special mention because Fλλλ corresponding to their
discretized-versions is circulant and so its structure can be exploited for effi-
cient computation of the trace. If we re-sample the smoothing splines solution
(Section 3.3.4.5 in Chapter 3 with h(x) = δ(x)) or the quadratic-regularized
solution (Section 4.3.3.1 in Chapter 4), it yields a discretized signal estimate of
the form

fλλλ(y)[k] =
∑

m∈Zd

(y ∗ rλ)[m]ϕ(k−m) = (y ∗ rλ ∗ b)[k], (5.9)

where {y[k]} represents the infinite sequence of noise-corrupted input, fλλλ(y)[k]
is the k-th component of the infinite-dimensional output fλλλ(y), b[k] = ϕ(x)|x=k,
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and λλλ = λ is the regularization parameter. The required divergence is divy{fλλλ(y)}
whose k-th component is given by

∂fλλλ(y)[k]
∂y[k]

= (rλ ∗ b)[0]. (5.10)

It is independent of k and can be computed in the Fourier domain as

(rλ ∗ b)[0] =
1

(2π)d

∫
[0, 2π)d

Rλ(ejωωω)

⎛
⎝∑

k∈Zd

ϕ̂(ωωω + 2πk)

⎞
⎠

︸ ︷︷ ︸
Fλ(ejωωω)

dωωω, (5.11)

where Rλ(ejωωω) is the frequency response of rλ.
In the finite dimensional case, the smoothing spline denoised output can be

obtained using (5.7) where Fλ is the block-circulant matrix formed from the
filter taps (rλ ∗ b)[k] and is diagonalized by the Fast-Fourier-Transform (FFT)
matrix. Its eigenvalues are nothing but the samples of the frequency response
Fλ(ejωωω) whose sum yields the desired trace.

5.3.3 Results

The simulations presented in this section are based on the data model (5.1): We
consider a variety of test images (including some standard ones; see Figure 5.2)
corrupted by white Gaussian noise whose standard deviation σ is assumed to be
known.7 We consider two types of problems: The first is denoising using poly-
harmonic smoothing splines8 (PSS) [78] and the second is quadratic-regularized
interpolation (QR-cubic) discussed in Section 4.4.1 of Chapter 4. For denoising
experiments, we quantify the performance of the methods using

SNR = 10 log10

(
‖x‖2

‖x− fλλλ(y)‖2
)
, (5.12)

while for interpolation experiments, we compute SNR given by (4.38).
In both problems, we consider the task of selecting the regularization pa-

rameter λ. Our approach is to do this by minimizing SURE (η(λ) given by
(5.5)) which requires the knowledge7 of σ. We also compare the SURE-based

7σ can be estimated reliably in practice using the median estimator of Donoho et al. [132].
8In doing this, we only wish to exemplify the use of SURE and do not contend with

state-of-the-art denoising methods.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2: Standard noise-free test images: (a) Boats (512 × 512),
(b) Barbara (512× 512), (c) Peppers (256× 256), (d) MRI (256× 256),
and (e) the Shepp-Logan phantom (256 × 256). In (f), we consider a
realization of fractional Brownian motion (fBm) with Hurst exponent
0.5 on a uniform grid of size 256 × 256 for which the first-degree PSS
estimator is optimal in the MSE sense [78].
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Table 5.1: Comparison of Performances of GCV- and SURE-based
Denoising by First-degree Polyharmonic Smoothing Splines (PSS)

Input SNR
4 8 12 16 20(dB)

Image Measure
Oracle 11.83 13.69 15.81 18.27 21.20

Boats SURE 11.83 13.69 15.81 18.27 21.20
GCV 11.76 13.36 14.80 16.04 20.02
Oracle 9.76 11.63 14.08 17.08 20.51

Barbara SURE 9.76 11.63 14.08 17.08 20.51
GCV 9.55 9.55 12.04 16.02 20.00
Oracle 12.40 14.63 17.02 19.59 22.35

MRI SURE 12.40 14.63 17.02 19.59 22.35
GCV 11.98 13.57 14.77 16.07 20.04
Oracle 10.74 12.47 14.70 17.44 20.68

Peppers SURE 10.74 12.47 14.70 17.44 20.68
GCV 10.74 12.42 12.10 16.04 20.01
Oracle 9.91 11.79 14.13 17.06 20.45

Shepp-Logan SURE 9.91 11.79 14.13 17.06 20.45
GCV 9.88 11.78 14.12 17.00 20.28
Oracle 15.29 16.87 18.64 20.59 22.85

fBm SURE 15.29 16.87 18.64 20.59 22.85
GCV 15.29 16.85 18.52 20.12 21.23

methodology with GCV-based approach [39] (that is, where λ is obtained by
minimizing the GCV measure): GCV is a popular alternative to SURE as it
does not require the knowledge of noise variance (unlike SURE) and is asymp-
totically optimal; that is, λGCV minimizes the MSE as N → ∞. However,
its applicability is rather restricted to linear algorithms for which it is defined
as [39]

GCV(λ) =
N−1‖y − Fλy‖2

(1−N−1trace{Fλ})2
. (5.13)



118 Data-driven Methods for Risk Estimation

5.3.3.1 Denoising Using Polyharmonic Smoothing Splines (PSS)

We implement the smoothing spline estimator of [78] using first-degree poly-
harmonic B-splines. All SNR values reported in this section were computed by
averaging over three independent simulations. The output SNR9 obtained by
adjusting λ based on SURE and generalized cross-validation (GCV) is tabu-
lated for various input SNRs and test images in Table 5.1. Also listed are the
oracle output SNR values corresponding to the case where λ was selected by
minimizing MSE(λ).

As seen from the table, the output SNR values corresponding to SURE
is equal or very close to the oracle values. While the performance of GCV is
similar to that of the SURE at high noise levels, it becomes steadily poorer with
decreasing noise level. This may be due to the fact that GCV does only perform
optimally under special conditions [141, Proposition 3.1] which are probably not
fulfilled in the present experiments.

This is also in tune with the plots of MSE(λ) and SURE(λ) versus λ in
Figures 5.3(a) and 5.3(b) where we see that SURE(λ) faithfully reproduces the
trend of the oracle MSE(λ) in both cases. Also λSURE obtained by minimiz-
ing SURE(λ) is very close to λOracle that achieves the minimum of MSE(λ).
However, λGCV (minimum of GCV(λ)) is far from λOracle and correspondingly,
the performance of the GCV-based approach is not optimal in the MSE-sense
compared to the SURE-based procedure.

5.3.3.2 Quadratic-Regularized (QR) Interpolation

Since MSE for regularized interpolation algorithms10 (the denominator of Equa-
tion (4.38) in Chapter 4) is exactly the same as (5.3) up to notation, the SURE
formula for denoising (cf. Equation (5.5)) is also applicable to the regularized
interpolation problem discussed in the previous chapter.11 Specifically, we con-
centrate on the case of QR-cubic algorithm as it is linear (cf. Algorithm 4.1
in Chapter 4); the procedure for computing the desired divergence outlined in
Section 5.3.2.2 is therefore applicable to this case too.

We repeat now the experiment (with MRI stack) described in Section 4.4.1
(see Chapter 4) where, for each noisy realization, we compute GCV(λ) and

9The input SNR (cf. Table 5.1) is computed in all experiments by replacing the denomi-
nator in (5.12) by Nσ2.

10This supplements the results presented in Section 4.4.1 of Chapter 4.
11But, it does not apply to the problem of reconstruction from nonideal samples discussed

in Chapter 3 since that also involves deconvolution implicitly. We shall take up the problem
of risk estimation for deconvolution in Section 5.4.1.
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Figure 5.3: Plots of MSE(λ) and SURE(λ) versus λ for a realization
(input SNR = 8 dB) of the denoising experiment using polyharmonic
smoothing splines (PSS) on (a) Boats image, and (b) MRI image. In
both cases, it is clearly seen that SURE(λ) captures the trend of the
oracle MSE(λ). Moreover, λSURE is very close to λOracle, while λGCV

is far from λOracle which yields a sub-optimal performance in terms of
MSE.
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Figure 5.4: Plots of MSE(λ) and SURE(λ) versus λ for two realizations
(input SNR = 0 dB) of the rotation experiment (see Section 4.4.1 in
Chapter 4) with QR-cubic interpolation. Again, in both cases, SURE(λ)
captures the trend of MSE(λ) and unlike λGCV, λSURE is close to λOracle.
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SURE(λ) along with MSE(λ). The noise variance was assumed to be known7

in all experiments for computing SURE(λ). We plot SURE(λ) and MSE(λ) as
functions of λ in Figures 5.4(a) and 5.4(b) for two realizations of this experiment
at 0 dB input SNR (test images shown in the inset). It is clearly seen that the
SURE curves capture the trend of the corresponding MSE curves. Moreover,
they also yield very close estimates of the optimal λ in both illustrations, while
GCV fails to achieve this. This indicates that a SURE-based tuning procedure
is more reliable than GCV even at such low levels of input SNR.

We further quantify the performance of GCV and SURE in Table 5.2 where
we list out the output SNR (averaged over all the realizations of the MRI-stack
experiment corresponding to an input SNR) obtained by minimizing GCV and
SURE for the QR-cubic interpolation algorithm. Also provided are the oracle
values of the output SNR (obtained by minimizing the corresponding MSE).
Again, we see that the GCV-based result is far from the oracle for input SNRs
in the range 8 ≤ SNR ≤ 28 dB. This behavior is similar to that observed in
Table 5.1 and the same explanation applies here too. But SURE-based tuning
consistently yields SNR values very close to the oracle.

One must also note the following important difference between the denoising
and the interpolation experiment: Unlike the former (see Section 5.3.3.1) where
the reported SNR accounts only for denoising, the output SNR values for the
latter take into account both the effect of denoising and the detrimental action
of interpolation. Thus, in Table 5.2, we observe a saturation effect of output
SNR which is quite expected: At lower noise levels, the effect of interpolation is
more pronounced than that of denoising and therefore, the output SNR due to
GCV, SURE and even the oracle MSE, converge to the same value corresponding
to the non-regularized cubic B-spline interpolation (see Figures 4.2 and 4.3 in
Chapter 4).

The results from Sections 5.3.3.1 and 5.3.3.2 confirm our claim that SURE
provides a reliable means of estimating the MSE. Moreover, we demonstrated
that SURE is more robust than GCV and that SURE-based adjustment of
parameters yields a performance that is close to the oracle-optimum. These
observations indicate that SURE can be reliably employed for data-driven ad-
justment of parameters of (linear) denoising and regularized interpolation algo-
rithms. The method can also be extended for non-linear algorithms, as shown
in Chapter 6.



122 Data-driven Methods for Risk Estimation

Table 5.2: Output SNR for QR-cubic interpolation obtained by MSE-
based (Oracle), SURE-based and GCV-based tuning of λ

Input SNR (dB)
Output SNR (dB)

Oracle SURE GCV
0 13.95 13.95 13.82
4 15.75 15.75 15.43
8 17.66 17.66 16.94
12 19.71 19.71 18.28
16 21.95 21.95 19.67
20 24.40 24.40 21.39
24 27.09 27.09 25.20
28 30.03 30.03 29.09
32 33.19 33.19 32.86
36 36.39 36.39 36.39
40 39.35 39.35 39.23
44 41.78 41.78 41.88
48 43.43 43.42 43.40
52 44.38 44.38 44.37
56 44.83 44.82 44.80
60 45.04 45.04 44.99

5.4 Deconvolution of 3-D Fluorescence Micro-
graphs

Deconvolution is widely used to enhance 3-D fluorescence microscopy images,
both to facilitate their visual inspection and to improve the results of subse-
quent computer-assisted analysis steps [100]. Although many deconvolution
techniques are available [142], they seldom yield agreeable results without hu-
man intervention—they are not completely automatic. As explained earlier, the
oft encountered problem here is the selection of the appropriate regularization
parameter λ. Here, we extend the concept of risk estimation (discussed in Sec-
tion 5.3) to the deconvolution problem and propose to apply it for adjusting
λ.

Since, in practical applications, fluorescence images are obtained via a CCD
detector, the additive Gaussian noise model alone is inadequate; one must also
take into account the signal-dependent Poisson noise model [100]. To this end,
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we consider a Poisson-Gaussian mixture model where the Poisson component
accounts for photon-counting noise and the Gaussian component describes the
read-out noise of the CCD detector [137]; these two components describe the
CCD characteristics satisfactorily [138]. We then derive a new unbiased risk
estimate (URE) for this data model. To the best of our knowledge, this has
neither been documented before, nor applied for deconvolution of 3-D fluores-
cence microscopy images. The computation of the proposed URE requires the
knowledge of the gain of the Poisson component and the mean and the variance
of Gaussian read-out noise. These quantities depend on the calibration of the
microscope and are either unspecified or difficult to measure in practice. We
therefore also propose a simple technique to estimate these parameters from the
given data.

In what follows, we briefly describe the image formation model and derive
the formula for the new URE that corresponds to this model. We then show how
to compute this for Tikhonov deconvolution (a linear algorithm) and validate
it experimentally by presenting numerical results on simulated data. Following
that we apply our method to real 3-D microscopy data.

5.4.1 New Unbiased Risk Estimate for a Poisson-Gaussian
Mixture Model

5.4.1.1 Image Formation

The image formation of a wide-field microscope is classically described by the
following 3-D convolution model [100]: Y (•) = (h ∗ χ)(•) where χ(•) is the 3-D
object of interest (we have neglected the effect of the background), Y (•) is the
intensity map of the blurred object and h(•) (under the paraxial approxima-
tion) is the shift-invariant blur function of the microscope [100]. Typically, the
blurred image Y is digitized by a CCD detector array which, in the process,
introduces measurement noise. For numerical tractability, we apply a suitable
discretization of the continuous convolution (h ∗χ) which leads to the following
matrix formulation of the model:

y = αP{Hx}+ b, (5.14)

where α is the gain factor and the operator P{•} represents the effect of Poisson
noise; the mean and variance of the Gaussian read-out noise b are denoted by
μ and σ2, respectively and the matrix H, which approximates the continuously
defined h, is treated as block-circulant. Additionally, we assume independence
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of the individual components of the random variable y and that of the photon-
counting process and the read-out noise.

5.4.1.2 Unbiased Risk Estimate—URE

We use the notation introduced in Section 5.3.1: Here, fλλλ : R
N → R

N represents
a deconvolution algorithm that operates on the N × 1 data vector y to yield
the deconvolved signal estimate x̃; that is, x̃ = fλλλ(y), where λλλ = λ is the
regularization parameter. We also assume that fλλλ can be decomposed as

fλλλ(y) = HTf̄λλλ(y),

where f̄λλλ is a bounded and continuous operator with a well-defined divergence12

(see Equation (5.4)). Our interest here is to derive a formula for an unbiased
risk estimate (URE) of x̃.

Definition 5.1. The risk estimate that corresponds to the Poisson-Gaussian
(PG) mixture data model (5.14) is a random variable η : R

N → R given by

ηPG(λλλ) =
1
N
‖x‖2 +

1
N
‖fλλλ(y)‖2 +

2σ2

Nα
divy{ḡλλλ(y)} − 2

Nα
(y − μ1)T ḡλλλ(y),

where 1 is a N ×1 column vector of 1’s, ek is a N ×1 vector whose components
are all zero except for the k-th one which is unity and the components of ḡλλλ are
such that

ḡλλλk(y) = f̄λλλk(y − α ek).

The following theorem then ensures that ηPG(λλλ) is indeed unbiased.

Theorem 5.2. Let fλλλ be such that Ey{|̄fλλλk(y)|} <∞, and

Ey

{∣∣∣∣∂ f̄λλλk(y)
∂yk

∣∣∣∣
}
<∞,

for k = 1, 2, · · · , N . Then random variable ηPG(λλλ) is an unbiased estimate of
MSE(λλλ); that is,

Ey{MSE(λλλ)} = Ey{ηPG(λλλ)},

where Ey{•} represents the expectation with respect to the random variable y.
12More precisely, we require that (as explained in Appendix D.2) Ey{|̄fλλλk(y)|} < ∞ and

Ey

j˛̨̨
˛∂ f̄λλλk(y)

∂yk

˛̨̨
˛
ff
<∞, k = 1, 2, · · · , N .
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Proof. The proof of this result is given in Appendix D.2. �

The term (y − μ1)Tḡλλλ(y) in ηPG(λλλ) corresponds to the contribution of the
Poisson component of the noise, while divy{ḡλλλ(y)} is due to the Gaussian com-
ponent (as exemplified in the proof in Appendix D.2), respectively. We may
then interpret ηPG(λλλ) as a more general version of Equation (5.5) in the sense
that it includes the Gaussian-based risk estimate for deconvolution as a special
case: If the Poisson component of the noise were absent, then, ηPG(λλλ) reduces
to

ηG(λλλ) =
1
N
‖x‖2 +

1
N
‖fλλλ(y)‖2 +

2σ2

N
divy{f̄λλλ(y)} − 2

N
(y − μ1)T f̄λλλ(y),

which is the risk estimate corresponding to a pure additive Gaussian noise model
(with mean μ and covariance matrix σ2I) for the deconvolution problem.

The unbiasedness of ηPG (cf. Theorem 5.2) indicates the equality of ηPG and
MSE in the event N → ∞, where N is the number of pixels. For practical
purposes, therefore, ηPG can be used as a reliable substitute for MSE for very
large N (especially image stacks). Moreover, we note that, except for the first
term ‖x‖2 in ηPG (which is a non-relevant constant for our purpose), all the
other terms are purely derived from y and therefore computable. In this work,
we propose to minimize ηPG(λλλ) for finding the optimal λ.

5.4.2 Deconvolution Algorithm

The URE ηPG has a closed form expression that is in principle computable for
certain classes of estimators. In the sequel, we restrict ourselves to the linear
setting which is adequate for our purpose and completely tractable mathemat-
ically. We consider the Tikhonov-regularized algorithm [142] which yields an
explicit expression for fλλλ. The signal estimate is obtained by minimizing the
Tikhonov criterion JTik (which is based on discrete entities):

fλλλ(y) = arg min
u

JTik{u}, (5.15)

JTik{u} = ‖y −Hu‖2 + λ‖Pu‖2,

where P is the matrix (typically block-circulant) that represents a suitable reg-
ularization operator (discretized laplacian or gradient) and λ is regularization
parameter. The solution of (5.15) takes the classical form

fλλλ(y) = (HTH + λPTP)−1︸ ︷︷ ︸
Fλ

HT y. (5.16)
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When H and P are block-circulant, so is Fλ. Then the above matrix solution
is efficiently implemented via FFTs. Moreover, commutativity of Fλ and HT

(circulant matrices) yields f̄λλλ(y) = Fλy. Thus the URE (without the constant
‖x‖2) can be deduced as

ηPG,Tik(λ) =
1
N
‖FλHTy‖2 +

2
Nα

⎛
⎝ (σ2 − μα)Trace{Fλ}
−(y − μ1)TFλy
+αTrace{Dy Fλ}

⎞
⎠ , (5.17)

where Dy = diag{y}. The circulant nature of Fλ facilitates the computation
of Trace{Fλ} and Trace{Dy Fλ}. The former is easily computed in the Fourier
domain: It is the sum of the corresponding DFT coefficients, while the latter
simplifies to Trace{Dy Fλ} = 1

NTrace{Fλ}1Ty.

5.4.3 Estimation of CCD parameters

The use of ηPG,Tik requires the knowledge of the CCD dependent parameters
(α, μ, σ2). While μ and σ2 (of the read-out noise) may be measured by running
separate calibration experiments [137], α is not totally synonymous with the
gain that is typically provided in microscopes and must therefore be estimated
from the given data. For this purpose, we develop a simple procedure that is
essentially based on the following identities:

μy[k] def= Ey{yk} = α(Hx)k + μ, (5.18)

σ2
y[k] def= Vary{yk} = α2(Hx)k + σ2, (5.19)

where (Hx)k is the k-th component of Hx. This leads to the relationship

σ2
y[k] = αμy[k] + (σ2 − μα).

Then, the idea is to estimate μy[k] and σ2
y[k], k = 1, 2, . . . ,K for some K < N

and perform a linear regression analysis on (μy[k], σ2
y[k])Kk=1: The slope yields

the gain α and the intercept yields the constant κ = (σ2 − μα).
To estimate (μy[k], σ2

y[k])Kk=1, we first segment y into K non-overlapping
regions wherein the underlying blurred signal Hx is approximately constant in
each region. This is accomplished by running a very few number of iterations
(typically < 4) of heavily regularized 2-D total-variation denoising (TVD) (see
Section 6.4.2 of Chapter 6) on each slice of y—the advantage of using TVD
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is that it not only reduces the noise in y but automatically yields a piecewise
constant approximation yPC of Hx. We then define level values

εk = min{yPC}+ (k − 1)Δ,

and corresponding segments

Ωk =
{

1 ≤ i ≤ N : εk −
Δ
2
≤ yPCi < εk +

Δ
2

}
,

where k = 1, 2, . . . ,K and Δ is a predefined width of each level. This basically
ensures a non-redundant partitioning of the image-stack y: Ωk

⋂
Ωl = ∅, k �= l

and
⋃K
k=1 Ωk = IN , where IN = {1, 2, . . . , N}.

Estimates of μy[k] and σ2
y[k] are computed for each segment as the corre-

sponding sample mean and sample variance,13 respectively:

μ̂y[k] =
1
Nk

∑
i∈Ωk

yi,

σ̂2
y[k] =

1
Nk − 1

∑
i∈Ωk

(yi − μ̂y[k])2,

where Nk is the cardinality of the set Ωk. Since most of the noise is sufficiently
reduced in yPC , assuming that min{Hx} = 0 (which is mostly the case with
biological images), μ is simply estimated as min{yPC}. Thus, knowing α, κ and
μ, we easily obtain a formula for estimating σ2.

5.4.4 Results

5.4.4.1 Simulations

First, we numerically validate the proposed URE ηPG,Tik (cf. Equation (5.17))
and the estimation scheme described in Section 5.4.3. For this, we performed
the following simulation: We used the 2-D uniform blur kernel of size 9× 9 and
blurred the image show in the inset of Figure 5.5 according to (5.14). The max-
imum intensity in the noise-free blurred signal (Hx) was set so as to simulate
an average of 8 photons per pixel. Then, we generated a noisy realization of
the blurred version for the following parameter setting: (α, μ, σ2) = (10, 20, 10).

13The more sophisticated meadian-of-absolute-deviations (MAD) approach can also be used
for estimating the variance. However, due to a large N , sample-variance estimates are suffi-
ciently robust and so we choose to use this for simplicity.
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(α, μ, σ2) = (10, 20, 10) of the image shown in the inset. Estimated
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Figure 5.6: Plot of MSE(λ), and the URE ηPG,Tik(λ) computed using
estimated parameters (α̂, μ̂, σ̂) = (10.07, 18.54, 9.3). The URE captures
the trend of MSE and yields λURE that is close to the oracle optimum
λMSE unlike λGCV: Correspondingly, MSE(λURE) < MSE(λGCV) indi-
cating that URE-based approach yields a better result.



5.4 Deconvolution of 3-D Fluorescence Micrographs 129

(a) (b)

(c) (d)

(e)

Figure 5.7: Zoomed in version of (a) Original unblurred noise-free
image, (b) Blurred noisy image, and Deconvolution results obtained by
minimizing (c) MSE (Oracle), (d) GCV, and (e) URE. The URE-based
result is visually close to the oracle and is also less noisy compared to
GCV-based one
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From the blurred noisy image, we estimated the CCD parameters using the
method described in Section 5.4.3 with Δ = 0.2. Figure 5.5 shows the cor-
responding regression plot. The estimated parameter values are α̂ = 10.07,
μ̂ = 18.54, and σ̂ = 9.3: It is clearly seen that the fit (dashed line) almost
overlaps with the true relationship (solid line) between μy and σ2

y indicating
the reliability of our estimation procedure.

We then applied the deconvolution algorithm (5.16) using a Laplacian opera-
tor for P. The URE ηPG,Tik was computed using the estimated CCD parameter
values and plotted in Figure 5.6 in comparison with the MSE (cf. Equation
(5.3)) without the ‖x‖2 term. It is clearly seen that the URE correctly predicts
the shape of MSE curve for the entire range of λ. The slight offset is due to the
multiplicative nature of the gain α: Even a slight difference from the true value
shifts the URE vertically. But this does not move the optimal value of λ, as
seen in Figure 5.6 where the URE closely determines the minimum of the MSE.

For comparison, we also tested the performance of GCV ((see Equation
5.13)): λGCV yields a sub-optimal performance compared to the λURE (λGCV =
0.0548 is far from the oracle optimum λOracle = 0.1692 and is less than λURE =
0.1841 ≈ λOracle). Correspondingly, the GCV-based result in Figure 5.7(d) is
under-regularized [122] and is therefore more noisy compared to the URE-based
result in Figure 5.7(e). This is also reflected in the MSE values:

MSE(λGCV) = 5.81,
MSE(λURE) = 2.89,

MSE(λOracle) = 2.87.

Thus, the proposed URE achieves superior performance; the lesser performance
of GCV may be due to the fact that it is linked to MSE in the measurement
domain (see Equation 5.13) which is suitable for denoising, but less appropriate
for deconvolution.

5.4.4.2 Real-World Data

We now present results for automatic Tikhonov deconvolution of real 3-D wide-
field fluorescence micrographs. The data was acquired on a Leica DM 5500B sys-
tem equipped with a cooled CCD camera, at the EPFL BioImaging and Optics
Platform.14 Figure 5.9(a) shows the maximum-intensity projection (MIP) of the
acquired 3-D image-stack of a C. Elegans embryo (420×320×270 voxels≈ 70 MB
in TIFF format). The sample was labeled with three fluorophores: Alexa568

14Courtesy: Prof. Pierre Gönczy, EPFL/SV/ISREC.
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Figure 5.8: Plot of (μ̂y, σ̂
2
y) for the (a) Red, (b) Green, and (c) Blue

channels of real data and corresponding fits.
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(a)

(b)

(c)

Figure 5.9: Real Data Set 1: Maximum-intensity projections (MIP)
of (a) Noisy real-world data, (b) GCV-based deconvolution result, and
(c) URE-based deconvolution result.
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(a)

(b)

Figure 5.10: Real Data Set 2: Maximum-intensity projections (MIP)
of (a) Noisy real-world data and (b) URE-based deconvolution result
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(vesicles, red channel), Alexa488 (microtubules, green channel), and Hoechst
(chromosomes, blue channel). The blurring matrix H to be used in the decon-
volution algorithm (see Equation 5.16)) was generated mathematically based on
a standard diffraction-limited PSF model [100] using the manufacturer-provided
imaging parameters (magnification: 63×; numerical aperture: 1.4; immersion
oil refractive index: 1.518).

Figure 5.8 documents the linear regression on (μy, σ
2
y) estimated for data in

the red, green, and the blue channel, respectively. The estimated parameters
are

Red channel: (α̂, μ̂, σ̂) = (2.15, 217.65, 29.41),
Green channel: (α̂, μ̂, σ̂) = (2.13, 143.81, 26.51),
Blue channel: (α̂, μ̂, σ̂) = (1.08, 25.27, 11.09).

For this data set, the MATLAB (FFT-based) implementation of the Tikhonov
deconvolution algorithm required approximately 3 GB of memory and took
about 20 seconds to produce a deconvolved signal estimate for a single λ on
a 2.66 GHz (dual core) Intel-Mac with 6 GB RAM. The three channels were
processed separately using the method described above for λ that minimized
the GCV measure and ηPG,Tik . The MIP of the deconvolved data set is shown in
Figures 5.9(b) and 5.9(c) corresponding to GCV- and URE-based approaches,
respectively. It is seen that the URE-based result has a better contrast and
is slightly less noisy (in the Green channel) compared to the GCV-based one.
Also, the URE-based result captures a lot more of the filament structure of the
microtubules than does the GCV-based one indicating the superior performance
of the proposed URE over GCV.

Another set of deconvolution results is presented in Figure 5.10 correspond-
ing to a different C. Elegans embryo data set (464× 320× 270 voxels ≈ 76 MB
in TIFF format). Here, the reduction of typical wide-field haze in the Red chan-
nel is prominent in the URE-based deconvolution result (see Figure 5.10(b)):
The red light coming from the vesicles has been reassigned to a more concen-
trated and brighter volume; this is in accordance with the fact that vesicles
are relatively small biological structures. Also, the filament structure of the
microtubules is visible with significantly better contrast.

5.5 Summary

In this chapter, we focussed on the problem of data-driven optimization of algo-
rithm parameters λλλ for some inverse problems (denoising and deconvolution) in
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imaging. Our approach was to do this so as to achieve a minimum-MSE perfor-
mance. In order to circumvent the explicit dependence of MSE on the unknown
noise-free signal, we resorted to the concept of risk estimation wherein the MSE
is estimated purely from the given data and the mathematical description of
the algorithm. We first studied a well-known result due to Stein [131] (Stein’s
unbiased risk estimate)—SURE—that is applicable whenever the noise is ad-
ditive white Gaussian. We showed how to compute SURE for linear denoising
and regularized interpolation algorithms and demonstrated experimentally that
SURE-based selection of the regularization parameter for these two problems
yields optimal results in terms of MSE.

Next, we considered the problem of deconvolution of 3-D fluorescence mi-
croscopy images. Based on a practical model for CCD data that takes into
account Poisson photon-counting noise and Gaussian read-out noise, we derived
the formula for a new unbiased risk estimate (URE) for an arbitrary deconvo-
lution algorithm. We also devised a scheme for estimating the CCD parameters
(the detector gain, mean and variance of the read-out noise) necessary for com-
puting the proposed URE from the given data. We showed how to compute
the URE for a linear deconvolution algorithm and validated it using phantom
data. We also presented deconvolution results for real 3D wide-field microscopy
images. Based on these results (denoising, regularized interpolation and de-
convolution), we come to the conclusion that risk estimation provides a robust
framework for data-driven tuning of algorithm parameters based on MSE.





Chapter 6

Monte-Carlo Risk
Minimization for Non-linear
Algorithms

In this chapter,1 we focus on the problem of computing SURE2 (Stein’s unbiased
risk estimate) for MSE-based data-driven adjustment of the parameters (λλλ) of
an arbitrary non-linear algorithm fλλλ. For ease of analysis, we only deal with the
denoising problem, while the technique introduced here can, in principle, also be
extended to other inverse problems such as deconvolution [143]. We also show
that the technique developed in this chapter is applicable to the non-quadratic
regularized (NQR) interpolation problem of Chapter 4.

6.1 Problem Statement

As explained in Section 5.3.2.1 of the previous chapter, the divergence divy{fλλλ(y)}
of the denoising operator fλλλ is the key ingredient of SURE. It can be com-
puted analytically only in some special cases such as when the denoising op-

1This chapter is based on the article: S. Ramani, T. Blu and M. Unser, “Monte-Carlo
SURE: A Black-Box Optimization of Regularization Parameters for General Denoising Algo-
rithms,” IEEE Transactions on Image Processing, vol. 17, no. 9, pp. 1540–1554, 2008.

2Throughout this chapter, we restrict ourselves to the additive white Gaussian noise
model. Nevertheless, we discuss the possibility of extending the current approach to a signal-
dependent Poisson noise model in the next chapter.
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erator performs a coordinate-wise non-linear mapping, when the signal esti-
mate is obtained by a linear transformation of the noisy data (linear filter-
ing [122]), or when both are combined in a specific way (e.g., wavelet thresh-
olding [132,133,135,136]). For linear algorithms, the desired divergence reduces
to the trace of the corresponding matrix transformation (see Section 5.3.2.2
of Chapter 5). However, in a general setting, the explicit evaluation of the
divergence is often out of reach. Especially challenging are cases where the
functional form of the denoising operator is not known, for example when the
denoised output is the result of an iterative optimization procedure. Since most
of the variational and Bayesian methods fall into this category, there are many
key algorithms for which the evaluation of the required divergence term is nei-
ther tractable mathematically nor even feasible numerically.3 In this chapter,
we address this limitation by proposing a novel and computationally efficient
scheme that is applicable for a general denoising scenario.

6.2 Contributions and Chapter Organization

Our method is based on Monte-Carlo simulation: The denoising algorithm is
probed with additive noise and the response signal is manipulated to estimate
the desired divergence. This leads to a black-box interpretation of the proposed
technique—it completely relies on the output of the denoising operator and does
not need any information about its functional form. We also provide sufficiency
conditions on the denoising operator so that estimation procedure is stable. We
validate the proposed scheme by presenting numerical results for a variety of
popular denoising methods—total-variation (TV) denoising, redundant-wavelet
soft-thresholding (for which the desired divergence evaluation is known to be
a non-trivial task), and some classical ones such as orthonormal-wavelet soft-
thresholding.

The chapter is structured as follows: In Section 6.3, we present Monte-Carlo
strategies for estimating the divergence of an arbitrary denoising algorithm.
First, we review a simple scheme for the special case of arbitrary linear algo-
rithms4 and then proceed to describe a new method for arbitrary non-linear
operators. In Section 6.4, we briefly describe the working of some denoising

3The divergence computation requires the evaluation of N partial derivatives of the de-
noising operator where N (typically, ≥ 2562) is the number of pixels in image-processing
applications. Therefore, for a general denoising operator, this task can be quite overwhelming
from a computational point of view.

4It must be noted we had concentrated only on the case of linear algorithms characterized
by circulant matrices in the previous chapter (see Section 5.3.2.2).
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algorithms that we consider in this work following which we numerically verify
the validity of the proposed Monte-Carlo procedure in Section 6.5. We present
experimental results in Section 6.6 and demonstrate numerically that SURE,
computed using the new Monte-Carlo strategy, faithfully imitates the behavior
of MSE. We show that it is always capable of uncovering the optimal value of
the parameter (regularization parameter for the variational methods and soft-
threshold value for the wavelet-based methods). Additionally, we illustrate that
the new Monte-Carlo scheme is suitable for denoising methods characterized by
multiple parameters. In the process, we compare the performance of these de-
noising algorithms in terms of visual quality and signal-to-noise ratio (SNR). For
the sake of completeness, we also present experimental results to exemplify the
applicability of the proposed method for the non-quadratic regularized (NQR)
interpolation (see Chapter 4).

6.3 Monte-Carlo Estimation of the Divergence

We now investigate Monte-Carlo techniques for the computation of divy{fλλλ(y)}.
We start by revisiting a method that is valid in the linear case only [144, 145],
but which can be very useful when the matrix Fλλλ is not available explicitly.
Following that, we introduce a more general technique that is applicable for
arbitrary (non-linear) algorithms.

6.3.1 Linear Algorithm with Unstructured System Matri-
ces

In many practical situations, especially with large data-sets, the matrix Fλλλ is
not available explicitly; instead Equation (5.7) (see Section 5.3.2.2 in Chap-
ter 5) is implemented iteratively by using some suitable numerical solver (e.g.,
conjugate gradient, multigrid technique [146, 147]). It follows that the trace is
not directly accessible. There are matrix methods (such as the power method)
that can produce an estimate of trace{Fλλλ} in an iterative fashion starting from
(5.7), but they tend to be memory- and computation-intensive. To tackle this
difficulty, we propose the use of the following Monte-Carlo algorithm which es-
timates the required trace stochastically with O(N) computational cost (up to
the complexity of realizing (5.7)). It is implemented by applying the estimator
to noise only, as described next.
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Algorithm 6.1. Monte-Carlo algorithm for estimating
1
N

trace{Fλλλ}.

• Generate a zero-mean i.i.d. random vector b′ of unit variance.

• For a given λλλ = λλλ0 do the following:

1. Evaluate b̃ = Fλλλb′ for λλλ = λλλ0

2. Compute the estimate of 1
N trace{Fλλλ} as 1

N b′Tb̃

Algorithm 6.1 is a standard procedure in the literature [144, 145] and has a
twofold advantage over the iterative matrix methods mentioned before: Firstly,
it is memory-efficient because, at any given point, it only stores Fλλλb′ and not
Fλλλ itself. Secondly, from a computation point of view, the method is as good
as the initial algorithm itself since we can simply apply it to noise. The validity
of the algorithm is guaranteed by the fact that the random variable b′T Fλλλ b′

is an unbiased estimator of trace{Fλλλ}, which is a well-established result in the
literature [144,145,148,149].

Proposition 6.1. Let b′ be a zero-mean i.i.d. random vector with unit variance

and t̂ =
1
N

b′T Fλλλ b′, where the factor
1
N

accounts for the averaging of MSE

(see Equation (5.3) in Section 5.3.1 of Chapter 5) over all samples. Then,5

Eb′{t̂} =
1
N

trace{Fλλλ}. � (6.1)

For image-processing applications, it is reasonable to believe that a single
realization of b′ will yield a sufficiently low variance estimate [144, 150]. This
is because, in practice, most denoising algorithms operate only “locally” (that
is, Fλλλ is more or less diagonal with rapidly decaying off-diagonal elements).
Qualitatively speaking, the components {b̃i}Ni=1 of b̃ are therefore “nearly” in-
dependent. Since N is large for images (typically N ≥ 2562), by law of large
numbers t̂ − Eb′{t̂} does not fluctuate more than 1√

N
; this eliminates any ne-

cessity for additional algorithm evaluations. A more quantitative argument can
be made by computing the variance of t̂ which is given by

Varb′{t̂} =
1
N2

(
trace{FT

λλλFλλλ}+ trace{F2
λλλ}+ (Eb′{b′4} − 3)

N∑
k=1

F 2
kk

)
,

5The proof of this result is straightforward and can be found in [144].
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where Fkk is the k-th diagonal element of Fλλλ and Eb′{b′4} is the fourth-order
moment of the random variable b′. Again, since Fλλλ is “approximately” diagonal,
the quantities trace{FT

λλλFλλλ} and trace{F2
λλλ} are of the order of N . The variance

is then bounded as

Varb′{t̂} ≤ constant
N

.

Thus, in principle, t̂ asymptotically converges to N−1trace{Fλλλ} in the mean-
squared-error sense. A further option is to reduce Varb′{t̂} by selecting a b′

that has small a fourth-order moment. For instance, it has been suggested
to choose b′ such that its components are either +1 or -1 with probability
1
2 [145,148,149]; for such a b′, the variance is lower than that obtained using a
Gaussian b′ [145,149].

6.3.2 General Algorithm for Non-Linear Problems

Similar to the technique described above, our strategy for a non-linear fλλλ is
essentially based on probing the system with noise, but is slightly more involved
because of the nonlinearity of fλλλ. Specifically, we propose to investigate fλλλ(y +
εb′) which may be thought of as a random perturbation around the operating
point of the algorithm. The output is then compared with fλλλ(y) which yields
a differential response of fλλλ evaluated at y. The following theorem states that
this differential response yields the desired divergence as ε decreases.

Theorem 6.1. Let b′ be a zero-mean i.i.d. random vector (that is independent
of y) with unit variance and bounded higher order moments. Then,

divy{fλλλ(y)} = lim
ε→0

Eb′

{
b′T

(
fλλλ(y + εb′)− fλλλ(y)

ε

)}
, (6.2)

provided that fλλλ admits a well-defined second-order Taylor expansion. Other-
wise, the expression is still valid in the weak sense (sufficient to apply Theorem
6.1) provided that

‖fλλλ(y)‖ ≤ C0(1 + ‖y‖n0), (6.3)

for some n0 > 1 and C0 > 0 (that is, fλλλ is tempered).

Proof. We write the second-order Taylor expansion of fλλλ(y + εb′) as

fλλλ(y + εb′) = fλλλ(y) + εJfλλλ(y)b′ + ε2rfλλλ , (6.4)
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where Jfλλλ(y) is the Jacobian matrix of fλλλ evaluated at y and rfλλλ represents
the vector containing the (Lagrange) remainder terms corresponding to each
component of fλλλ. In this case, the components rfλλλk of rfλλλ are bounded in the
expectation sense; that is, Eb′{|rfλλλk|} < +∞, k = 1, 2, . . . , N .

Then, subtracting fλλλ(y) from (6.4) and multiplying by b′T from the left
yields

Eb′{b′T(fλλλ(y + εb′)− fλλλ(y))} = εEb′{b′T Jfλλλ(y)b′}+ ε2Eb′{b′Trfλλλ}
= ε trace{Jfλλλ(y)}+ C2ε

2,

where Eb′{b′Trfλλλ} = C2 and |C2| < +∞ because {Eb′{|rfλλλk|} < +∞}Nk=1 and
b′ has bounded higher-order moments. When ε→ 0, we immediately see that

lim
ε→0

1
ε
Eb′{b′T(fλλλ(y + εb′)− fλλλ(y))} = trace{Jfλλλ(y)} = divy{fλλλ(y)},

which yields the desired result.
We could also obtain the proof of the weak form of the result (when the

second derivatives are not necessarily well-defined), but it is more technical. It
involves standard but tedious usage of mathematical tools of measure theory
such as the Fubini theorem and the Lebesgue’s dominated convergence theorem
and is given in Appendix E.2. �

Theorem 6.1 is a powerful result since nowhere did we have to express the
functional form of fλλλ explicitly, thus making (6.2) suitable for a wide variety of
algorithms. The important point is that fλλλ is treated as a black box, meaning
that we only need access to the output of the operator, irrespective of how it is
implemented. From a calculus point of view, it can be regarded as the stochastic
definition of the divergence of a vector field in multiple dimensions where fλλλ(y+
εb′)− fλλλ(y) may be understood as the first-order (random) difference of fλλλ. It
may also be thought of as a generalization of a result due to Wahba [151, 152]
and Girard [153] developed in the context of RGCV which is only applicable for
“mildly” non-linear problems, in the sense that Jfλλλ(y) ≈ Jfλλλ(x). We discuss
this further in Section 6.6.1.1.

Equation (6.2) (including the limit) forms the basis of our Monte-Carlo ap-
proach for computing SURE for a non-linear fλλλ. Since, in practice, the limit
in (6.2) cannot be implemented due to finite machine precision, we propose the
following approximation:

1
N

divy{fλλλ(y)} ≈ 1
Nε

b′T(fλλλ(y + εb′)− fλλλ(y)), (6.5)
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Figure 6.1: The dotted box depicts the module that estimates
1
N divy{fλλλ(y)} according to (6.5). The dashed box represents the SURE
module (depicted as MSE estimation box in Figure 5.1 of Chapter 5)
which computes the SURE according to Equation (5.5) (see Chapter 5).

where the factor 1
N accounts for the averaging (of SURE) over all the pixels.

The r.h.s. of (6.5) amounts to adding a small amount of noise (of variance ε2)
to y and evaluate fλλλ(y+ εb′). The difference fλλλ(y+ εb′)− fλλλ(y) is then used to
obtain an estimate of the divergence. The schematics of implementing (6.5) is
illustrated in Figure 6.1. The validity of the approximation in (6.5) depends on
how small ε can be made. In practice, we must select a ε small enough to mimic
the limit, but still large enough so as to avoid round-off errors in fλλλ(y+εb′). As
demonstrated in Section 6.5, the admissible range of ε covers several decades,
so that the choice of this parameter is not critical.

We now give an algorithm for Monte-Carlo divergence estimation (and SURE)
which is quite straightforward and easy to implement. It assumes that a “suit-
ably” small ε has been selected and a zero-mean unit variance i.i.d. random
vector b′ has been generated. It also uses only one realization of b′ for the
same reason given in Section 6.3.1: The law of large numbers is applicable to
1
N b′Tfλλλ(y + εb′) whenever fλλλk(y + εb′) is “approximately” independent for dif-
ferent k. This assumption is quite valid in practice because fλλλ mostly performs
“local” operations (for instance, finite-length wavelet filters and coordinate-wise
thresholding are used in wavelet-based methods and finite-difference filters are
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used in TV denoising). We present experimental results in Section 6.6 that
support this claim.

Algorithm 6.2. Algorithm for estimating
1
N

divy{fλλλ(y)} and SURE(λλλ) for
a given λλλ = λλλ0.

1. For λλλ = λλλ0, evaluate fλλλ(y)

2. Build z = y + εb′. Evaluate fλλλ(z) for λλλ = λλλ0

3. Compute div = 1
Nε b′T (fλλλ(z)− fλλλ(y)) and SURE(λλλ0) using (5.5).

Another significant observation is that whenever fλλλ is linear, the two Monte-
Carlo algorithms discussed in this work turn out to be rigorously equivalent.
This is formally stated in the following proposition.

Proposition 6.2. Let fλλλ be linear as in Equation (5.7) (see Chapter 5) and
b′ be a zero-mean i.i.d. random vector with unit variance. Then, without the
limit, the r.h.s. of (6.2) reduces to that of (6.1), independent of ε.

Proof. Starting from the main term in the r.h.s. of (6.2) and using (5.7) and
(6.1) we obtain the desired result:

1
ε
Eb′{b′T(fλλλ(y + εb′)− fλλλ(y))} =

1
ε
Eb′{b′TFλλλ(y + εb′ − y)}

= Eb′{b′TFλλλ b′}
= Trace{Fλλλ}.

�

6.4 Description of Some Popular Denoising Al-
gorithms

Now that we have a practical means of estimating divy{fλλλ(y)} for an arbitrary
fλλλ, we demonstrate the applicability of Monte-Carlo SURE for some popular
denoising algorithms such as total-variation denoising (TVD) and redundant
scale-dependent wavelet soft-thresholding (RSWST). Also included in the evalu-
ation are orthonormal scale-dependent wavelet soft-thresholding and smoothing
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splines6 for which SURE takes an explicit form. For the variational methods
(TVD and smoothing splines), the parameter λλλ = λ represents the regularization
tradeoff, while for the wavelet-based methods, λλλ controls the scale-dependent
thresholds. In the forthcoming sections, we first describe each algorithm along
with its associated characteristics.7 We then discuss numerical issues related to
choice of ε to be used in Algorithm 6.2. Finally, we present experimental results
that validate our arguments.

6.4.1 Scale-Dependent Wavelet Soft-Thresholding

6.4.1.1 Orthonormal Wavelets (OSWST)

If W is the matrix corresponding to an orthonormal wavelet transform, the
OSWST denoised signal is given by fλλλ(y) = WTc̃, where

c̃ = arg min
c

⎧⎨
⎩‖y −WTc‖2 +

∑
i,k

λi,s,q |cik|q
⎫⎬
⎭︸ ︷︷ ︸

JW{y,c}

. (6.6)

The second term in the r.h.s. of the above equation is equivalent to the Besov
norm of the corresponding continuously defined signal estimate [154]. The quan-
tity cik is the k-th wavelet coefficient in the i-th sub-vector of c (corresponding
to the i-th sub-band) and

λi,s,q = 2−iq(s+
d
2− d

q )λ

is the scale-dependent regularization parameter for s, λ ∈ R
+; the dimension of

the data is d, while q corresponds to the �q-norm of the coefficient vector. For
our experiments, we set d = 2 and q = 1 (for image denoising with �1 constraint
on the wavelet coefficients), which yields the scale-dependent regularization pa-
rameter

λi,s = 2−i(s−1)λ. (6.7)

The advantage of selecting an orthogonal transform is that it decouples JW so
that (6.6) is equivalent to independently minimizing scalar cost functions on a

6We again present the results for denoising by polyharmonic smoothing splines (PSS, see
Section 5.3.3.1 of Chapter 5) for comparison and completeness.

7For the description of SURE computation for smoothing splines, see Section 5.3.2.2 in
Chapter 5.
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coefficient-by-coefficient basis. The minimization of scalar cost corresponding
to c̃ik is then simply achieved by a soft-thresholding operation [154] with the
threshold λi,s

2 so that

c̃ik = Tλi,s
(cik) =

{
cik −

λi,s

2 sign(cik) if |cik| >
λi,s

2 ,

0 if |cik| ≤
λi,s

2 ,
(6.8)

where cik is the k-th wavelet coefficient in the i-th sub-band of the wavelet
transform c = Wy. Due to the orthonormality of W, MSE (and hence SURE)
is invariant under the transform (Parseval equivalence). Therefore c replaces
y, while Tλi,s

replaces fλλλ in Equation (5.5) (see Chapter 5). The required
divergence is then simply computed to be σ2

∑
i,k �A(cik), where A = {cik :

|cik| >
λi,s

2 ∀ i, k} and �{•} is the indicator function.
The OSWST is akin to the SureShrink algorithm of Donoho et al. [132]

in that they both apply soft-thresholding in an orthonormal (wavelet) trans-
form domain. However, the two methods significantly differ from each other
in the way they select the threshold levels: While SureShrink assigns a thresh-
old value to each sub-band by independent sub-band minimization of SURE,
OSWST optimizes the threshold parameters (λ, s) (that characterize the sub-
band dependent threshold value in Equation (6.7)) by minimization of SURE
computed over all the sub-bands (entire wavelet decomposition).

6.4.1.2 Redundant Wavelets (RSWST)

Redundant discrete wavelet transforms are over-complete representations that
are advantageous for denoising, mainly due to their better shift-invariant prop-
erties [155–157]. We consider the undecimated wavelet transform (UWT) with
an orthonormal filter pair in the redundant paradigm (tight-frame). Our de-
noising function is again the scale dependent soft-thresholding operator Tλi,s

but now applied on the UWT coefficients. For s = 1 in (6.7), λi,s = λ yields
the same threshold level for all sub-bands i in which case both OSWST and
RSWST perform universal soft-thresholding of the corresponding wavelet co-
efficients. However, unlike OSWST, there is no cost function associated with
RSWST. Moreover, as shown in [136], Parseval’s equivalence is no longer valid
in the redundant wavelet domain which forces us to evaluate SURE in the signal
domain.

Writing fλλλ(y) = WTTTT (Wy), where W is a UWT matrix and TTT the vector
containing the soft-thresholding operators Tλi,s

(see Equation (6.8)), it is im-
mediately clear that evaluating divy{fλλλ(y)} is arduous because the output of TTT
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depends on Wy thus demanding explicit access to each element of W. How-
ever, since the soft-thresholding operator is continuous and weakly-differentiable
[133], RSWST (and OSWST included) satisfies the weaker hypotheses of Theo-
rem 6.1 and therefore qualifies for Monte-Carlo estimation procedure described
in Section 6.3.2. In fact, RSWST constitutes a good demonstration example
for illustrating the signal-domain computation of SURE using Algorithm 6.2 to
perform a combined optimization of the two threshold parameters λλλ = (λ, s).

6.4.2 Total-Variation Denoising (TVD)

While wavelet-based denoising forms an active research area in its own right,
other denoising procedures that have flourished in the literature, include varia-
tional and PDE based methods of which the most popular is TV denoising [74].
The idea behind TVD is to minimize the total-variation of an image that is
constrained to be “close” to the given noisy data. The problem has been formu-
lated in both continuous and discrete domains [74, 158]. The solution is either
found by evolving a PDE derived from the Euler-Lagrange equation or by per-
forming some kind of iterative optimization (e.g., bounded optimization using
Majorization-Minimization (MM) [96] or half-quadratic [159] optimization).

Here, we consider the discrete domain formulation of Figueiredo et al. [158]
where the TV denoised image is obtained by minimizing the cost functional

JTV(y,u) = ‖y − u‖2 + λTV(u), (6.9)

where

TV(u) =
∑
k

√
(Dhu)[k]2 + (Dvu)[k]2

is the discrete 2-D total-variation norm and Dh and Dv are matrices correspond-
ing to the first-order finite difference in the horizontal and vertical directions,
respectively. JTV is convex and can be minimized using an iterative MM al-
gorithm [158]. Then, starting from the update equation, it can be established
in a straightforward (but tedious) manner that fλλλ for TVD admits at least a
second-order Taylor expansion.8 TVD is a typical example where SURE can-
not be evaluated analytically while our Monte-Carlo method circumvents the
difficulty.

8The derivation of this result is given in Appendix E.1.
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6.5 Range of Validity of the Proposed Monte-
Carlo SURE

The two main conditions for Algorithm 6.2 to work are that fλλλ satisfies the
hypotheses of Theorem 6.1 and ε is “small”. Ideally, we would like to let ε tend
towards zero in (6.5) as dictated by (6.2), but this cannot be realized exactly in
practice due to finite machine precision. When ε is too small, numerical round-
off errors become more prominent because fλλλ becomes insensitive to changes
in ε. In effect, this phenomenon fixes a lower bound for ε which may vary
depending on the sensitivity of fλλλ. To elucidate this, we selected the following
non-linear algorithms: TVD and RSWST (with threshold value λ

2 ) which satisfy
at least one of the hypotheses of Theorem 6.1 and found, based on numerical
experiments with Java that ε ≥ 10−12 was admissible for these algorithms.
We then applied Algorithm 6.2 with Gaussian b′ for each of these methods for
different values of ε and a wide range of λ for the Boats test image with input
SNR9 4 dB.

We observed that when ε was decreased from ε = 1 down to 10−12, Algorithm
6.2 yielded SURE values which not only captured the trend of MSE over a wide
range of λ but also yielded very good estimates of the optimal λ for the TVD
and RSWST methods, in agreement with Theorem 6.1. We illustrate this in
Figures 6.2(a) and 6.2(b) for the cases of ε = 0.1 and ε = 0.01 for TVD and
RSWST, respectively, where the corresponding curves nearly overlap and are
also close to the MSE curve over the entire range of λ. At the other end, as
soon as ε � 2, we started to observe significant bias (cf. uppermost curves in
Figure 6.2 corresponding to ε = 10) which indicates that large ε is not desirable
for non-linear problems. We therefore conclude that whenever the assumptions
of Theorem 6.1 are valid, the proposed estimation procedure is quite robust
with respect to ε (when ε→ 0) and it yields meaningful results when ε is made
“small”.

Next, to investigate the relevance of the underlying differentiability hypothe-
ses in Theorem 6.1, we applied Algorithm 6.2 to RSWHT which performs hard-
thresholding with the threshold value λ

2 . Since the hard-thresholding operator
is neither continuous nor weakly-differentiable [160], RSWHT violates the hy-
potheses of Theorem 6.1. Numerically, this is reflected in the increasing insta-
bility of the SURE curves as ε decreases in Figure 6.2(c). In this case, violating
the hypotheses of Theorem 6.1 leads to a variance of Monte-Carlo SURE that

9The input SNR in all experiments is computed using (5.12) in Chapter 5 by replacing the
denominator with Nσ2.
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Figure 6.2: Plots of MSE(λ) and (Monte-Carlo) SURE(λ) for different
ε: (a) TVD, (b) Haar-RSWST with threshold value λ

2 , and (c) Haar-
RSWHT with threshold value λ

2 for noisy Boats image with SNR = 4
dB (σ = 29.45).



150 Monte-Carlo Risk Minimization for Non-linear Algorithms

increases without bound with decreasing ε.

It must be noted that the hard-thresholding function is quite an extreme case
and has been considered here purely to illustrate the sharpness of the hypotheses
of Theorem 6.1 to certify whether or not a denoising algorithm is suitable for
the proposed Monte-Carlo SURE. Fortunately for us, most common algorithms
encountered in practice satisfy the required differentiability hypothesis and can
be optimized with Algorithm 6.2 as demonstrated next.

6.6 Results

6.6.1 Results with One-Parameter Optimization

We now present numerical results for SURE-based optimization of a single pa-
rameter (only λ) for the denoising methods discussed in Section 6.4. In doing
this, we exemplify the use of SURE, but do not contend with state-of-the-art
denoising methods. For our experiments, we consider different categories of test
images in Figure 5.2 (see Chapter 5). We choose the Haar wavelet transform for
the wavelet based methods to match the wavelet filter with the first-order finite
difference filter employed in TVD. We used J = 4 levels of decomposition in all
cases and did not perform any thresholding on the coarse-scale projection of the
signal. We also considered the polyharmonic smoothing splines (PSS) method
(see Section 5.3.3.1 of Chapter 5) for the sake of completeness.

The performance of the methods is quantified by the SNR of the output fλλλ(y)
given by (5.12) (see Chapter 5). All SNR values reported here were obtained by
averaging over three independent simulations. We consider images corrupted
by white Gaussian noise whose standard deviation σ is again assumed to be
known.10 In all experiments, the value of σ is set to achieve the desired input
SNR computed by replacing ‖x − fλλλ(y)‖2 with Nσ2 in (5.12). Besides, in the
implementation of the denoising methods, periodic boundary conditions were
used when required. For PSS and OSWST, SURE was computed analytically,
while for TVD and RSWST, the proposed Monte-Carlo method (Algorithm 6.2)
was used with zero-mean i.i.d. Gaussian random vectors of standard deviation
ε = 0.1.

10In practice, σ can be reliably estimated using the median estimator of Donoho et al. [132].
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Table 6.1: Comparison of RGCV- and SURE-based Performances of
Denoising by RSWST

Input SNR
4 8 12 16 20(dB)

Image Measure
Oracle 11.87 14.07 16.49 19.07 21.91

Boats
SURE 11.87 14.06 16.49 19.07 21.90
RGCVNL 9.42 11.45 13.05 16.56 20.03
RGCV∗

NL 11.65 13.97 15.19 18.83 20.60
Oracle 12.20 14.64 17.26 20.08 23.08

MRI
SURE 12.19 14.64 17.26 20.07 23.08
RGCVNL 9.63 12.04 13.90 17.82 21.18
RGCV∗

NL 12.11 14.44 16.97 19.99 22.87
Oracle 12.05 14.57 17.28 20.04 22.88

Peppers
SURE 12.04 14.56 17.28 20.04 22.88
RGCVNL 9.34 11.96 13.93 17.86 20.86
RGCV∗

NL 11.94 14.27 16.18 19.98 22.82
Oracle 13.98 17.59 21.28 25.02 28.82

Shepp-Logan
SURE 13.98 17.58 21.26 25.00 28.81
RGCVNL 10.82 14.51 17.19 22.04 25.93
RGCV∗

NL 13.66 16.90 19.89 24.27 28.32

6.6.1.1 Comparison with Randomized GCV

Here, we compare the performances of SURE and the randomized generalized
cross-validation (RGCV) for the RSWST (s = 1) algorithm in terms of SNR
improvement. The RGCV measure is computed using the Monte-Carlo version
(for non-linear algorithms) proposed by Girard [153]:

RGCVNL(λ) =
N−1‖y − fλ(y)‖2

(1−N−1ε−1b′T[fλ(y + εb′)− fλ(y)])2
, (6.10)

where ε = 0.9σ is used in (6.10) as recommended in [153]. The output SNR
obtained by adjusting λ based on SURE and RGCVNL) is tabulated11 for various
input SNR and test images in Table 6.1.

11Table 6.1 supplements the results of Table 5.1 in Chapter 5 for the non-linear denoising
algorithm RSWST.



152 Monte-Carlo Risk Minimization for Non-linear Algorithms

It was observed that the λ selected by RGCVNL(λ) was far from the opti-
mum value in all cases: This can be attributed to the bias originating from the
recommended value of ε and the fact that RSWST does not probably satisfy the
“mild” non-linearity assumption of Wahba and Girard [151–153]. As a result,
the performance of RGCVNL is poor at all noise levels.

Following the philosophy underlying (6.2) and the argumentation in Section
6.5, we therefore decided to inspect another version of RGCVNL, denoted by
RGCV�

NL, which utilized a small value: ε = 0.1. It is observed that ε = 0.1
dramatically improves the performance as reflected in the output SNR values
corresponding to RGCV�

NL: This demonstrates the validity of the proposed
Monte-Carlo procedure for estimating the divergence for algorithms with “ar-
bitrary” non-linearities. However, it should be noted that the performance of
RGCV�

NL is still not on par with SURE, which consistently imitates the oracle
(that is, MSE) for all noise levels and considered test images. This indicates
that GCV-like measures, though having the advantage of not requiring σ2, may
not always yield optimal performance for all denoising algorithms.

6.6.1.2 MSE-SURE Comparison

A series of relevant graphs (SURE(λ), MSE(λ) versus λ) for four denoising
methods are shown in Figures 6.3 and 6.4. It is observed that SURE follows
the MSE curve remarkably well in all the cases thereby leading to accurate
estimates of the optimal λ. We observed the same trend for all test images and
input SNRs which confirms the consistency of our method. The agreement is
somewhat better in the case of larger images (Boats, Barbara) as compared to
the Peppers image which is probably due to the fact that we have 4 times more
pixels to estimate MSE (law of large numbers).

These results demonstrate the validity of the approximation in (6.5). The
RSWST method is a borderline case for which the formula (6.2) is only true in
the weak sense because the second derivative of the soft-thresholding operator is
not well-defined for the two critical values ±λ2 . Yet, Algorithm 6.2 still performs
well in accordance with the second part of Theorem 6.1.

It should also be noted that this type of extensive estimation over a wide
range of λ (as shown in Figures 6.3 and 6.4) has been done purely for the
purpose of illustration. In practice, we can rely on bracketing methods (golden-
mean search) which do not use any derivative information in order to find the
minimum of SURE in a much smaller number of steps (typically 10 steps).
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Figure 6.3: MSE(λ) and SURE(λ) for (a) Haar-OSWST (s = 1), (b)
TVD (ε = 0.1), (c) Haar-RSWST (s = 1, ε = 0.1) for noisy Peppers
image with SNR = 4 dB (σ = 33.54).
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Figure 6.4: MSE(λ) and SURE(λ) for (a) Haar-OSWST (s = 1), (b)
TVD (ε = 0.1), and (c) Haar-RSWST (s = 1, ε = 0.1) for noisy Boats
image with input SNR = 4 dB (σ = 29.45).
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6.6.1.3 Visual Comparison

To highlight the different characteristics of the denoising methods it is best to
compare the results visually. Figure 6.5 shows the denoised outputs of four
algorithms with optimized parameters. The smoothing spline estimator, as its
name suggests, attempts to smooth the noisy fluctuations during the denoising
process. But in doing so, it also smoothes the underlying image leading to
smudged edges (as seen in Figure 6.5(c)), which is the main disadvantage of
this approach.

The Haar-OSWST (s = 1) preserves some edge information but produces
a blocky output (see Figure 6.5(d)) because small detail coefficients are set to
zero by the univariate soft-thresholding operator. There is a loss of image details
and the reconstructed output exhibits artifacts corresponding to the footprints
of the basis function (Haar wavelet). The Haar wavelet is at the low end of what
can be achieved with an orthonormal wavelet transform; the use of a wavelet
with better regularization properties (symlets, higher order spline wavelets, etc)
yields better results—typically +0.5 dB additional gain (results not shown).

The TV denoised image appears significantly better than the earlier two (see
Figure 6.5(e)). Yet, although the edges are preserved as per the TV constraint,
the output exhibits some artificial blockiness due to the fact that the algorithm
tends to favor piecewise constant solutions.

The Haar-RSWST (s = 1) yields the best visual output, which correlates
with the higher SNR value (11.90 dB). This can be attributed to the redun-
dant nature of the underlying transform. Interestingly enough, the result is not
penalized by the lower order of the Haar transform (piecewise-constant approxi-
mation), in fact, it is quite the contrary (as was also noticed in [136]). This is in
contrast with the non-redundant case where higher order wavelets yield better
results, but nothing that comes close to the result in Figure 6.5(f).

6.6.1.4 Computational Cost

Two main aspects of any denoising algorithm are the associated computational
cost and the yielded SNR improvement. In general, these two aspects are con-
flicting in nature and the user must strike a good balance between them. In
terms of computational efficiency, the four methods can be ranked as follows:

(i) The Haar-OSWST method (J = 4 levels), which requires of the order of
2× 4N operations, while it uses the same amount of storage as the image
itself.
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(ii) Polyharmonic smoothing splines; these are implemented efficiently using
the FFT and therefore require O(N log2N)+N operations while storage-
wise, it is equivalent to the Haar-OSWST method.

(iii) The Haar-RSWST method; it is implemented using the algorithm à trous
[156] which, for J = 4, requires a total of 13 × 2 × 4N computations. It
should be noted that the performance improvement yielded by the redun-
dancy of the transform is at the cost of requiring 13N storage locations
which is probably one potential downside of this method.

(iv) TVD; the MM algorithm of [158] required an average of 13 main itera-
tions. At any given iteration, the method uses few-N locations (typically
< 4N) for storing intermediate iteration variables. Additionally, for each
main iteration, we performed 20 conjugate-gradient iterations to solve an
associated linear system. This leads to a total of 260N operations to ob-
tain a single denoised signal estimate implying that TVD is the costliest
of all the considered methods.

6.6.1.5 SNR Improvement

We now make a quantitative comparison of the methods in terms of SNR im-
provement. For the sake of comparison, the SNR is computed for outputs ob-
tained by setting λ based on both MSE and SURE. This is tabulated in Table
6.2 where the first value in each cell gives the SNR obtained by choosing λ
based on MSE (oracle SNR), while the second corresponds to that obtained by
Monte-Carlo SURE optimization. The maximum of the SNRs with respect to
all the methods is indicated in bold-face font for each image and noise variance.
Several observations are in order:

• The first and the most important one is that the SNR obtained based on
MSE and SURE are either equal or different only in the second decimal
place for all tested cases. This indicates the reliability and robustness of
our Monte-Carlo SURE optimization procedure.

• Haar-OSWST (s = 1) performs poorly, especially at high noise levels.
This is due to the inflexible nature of the soft-thresholding operator and
blocky-reconstruction of the Haar wavelet. However, as noted earlier, one
may be able to boost the performance slightly by using a higher order
wavelet (typically + 0.5 dB additional gain).
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• The linear smoothing spline technique is among the least effective method
for natural image denoising. It is seemingly better than Haar-OSWST
(s = 1) at high noise levels for almost all images due to the fact that it
smoothes the noisy image thereby strongly reducing the harsh effect of
noisy fluctuations. But, it also smoothes the underlying signal making it
the least-preferred method for images with rich texture (for instance, the
Barbara image).

However, the first-degree polyharmonic smoothing spline outperforms
all the other methods for the fBm image, which is in agreement with the
theory [78]. This also strengthens the fact that smoothing splines are
ideal whenever the underlying image fits the statistical model. A similar
behavior is observed for the MRI image which may be due to the fact that
MRI images are mostly fractal-like [161] and their power spectrum can be
well approximated by the ‖ωωω‖−α spectral law [69].

• As expected, the use of redundant transform improves the denoising qual-
ity compared to Haar-OSWST (s = 1). The Haar-RSWST (with s = 1)
method provides a gain of more than 2 dB compared to Haar-OSWST
(s = 1) at large levels of noise. Notably, it is also the best method for all
the images with the exception of fBm and the Shepp-Logan phantom.

• TVD performs better than PSS and Haar-OSWST (s = 1) (and even
(λ, s)-optimized Haar-OSWST, see the following subsection for details),
whenever the images are smooth without strong textures (for instance,
the Peppers image and the Shepp-Logan phantom). This shows that TVD
is competitive or even better than classical wavelet denoising methods
[158] for images that fall well within the piecewise-constant category. The
Shepp-Logan phantom is noteworthy in this context as it is a good example
of a piecewise constant image. Unsurprisingly, TVD performs better than
all the considered methods for this particular image, as indicated in Table
6.2.

In the presence of rich texture (the Barbara image), however, TVD
performs worse than all wavelet based methods, which is quite expected
because the TV prior is not well-suited for such images. In fact, any
texture is considered part of the noise and is annihilated by TVD.

To conclude, we infer that, of the considered methods, some are better suited
than others for certain type of images: While overall Haar-RSWST yields the
best results for natural images, smoothing splines are well adapted to fractal-like
processes and TVD does best for piecewise-constant images.
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6.6.1.6 Non-Quadratic Regularized (NQR) Interpolation

This section supplements the results presented in Section 4.4.1 of Chapter 4
and Section 5.3.3.2 of Chapter 5. Here, we test the applicability of the Monte-
Carlo SURE method for selecting the regularization parameter for non-quadratic
regularized (NQR) interpolation which is based on a non-linear algorithm (cf.
Algorithm 4.2, Chapter 4).

We consider the multiple-image experiment described in Section 4.4.1 (with
MRI stack) where, for each noisy realization, we compute SURE(λ) for NQR-
cubic regularized interpolation scheme along with the corresponding MSE(λ).
The noise variance was assumed to be known in all experiments for computing
SURE(λ). We plot MSE(λ) and SURE(λ) in Figures 6.6(a) and 6.6(b) for
two realization of this experiment at 0 dB input SNR (test images shown in
the inset). It is clearly seen that the SURE curves capture the trend of the
corresponding MSE curves. Moreover, it also yields very close estimates of the
optimal λ in both cases.

Table 6.3 lists the output SNR (averaged over all the realizations of the
MRI-stack experiment corresponding to an input SNR) corresponding to SURE
for the NQR-cubic interpolation algorithm. Also provided are the oracle values
of the output SNR (obtained by minimizing MSE). We see that SURE-based
tuning consistently yields SNR values very close to the oracle indicating that it
can be reliably employed for data-driven adjustment of λ for NQR interpolation.

6.6.2 Results with Multi-Parameter Optimization

So far we have only provided results for SURE-based one-parameter optimiza-
tion (specifically, for the regularization parameter). However, there is no major
difficulty in applying our method for multi-parameter optimization as well. The
brute force approach would be to perform an exhaustive search in multiple
dimensions to find the best parameter values that minimize SURE. A better
way is to perform the search by applying derivative-free optimization. The
Powell-Brent algorithm, which uses bracketing and parabolic interpolation for
line-search and takes about n(n+1)/2 iterations to converge for n set of param-
eters, is well-suited for our problem as long as the number of parameters stays
reasonably small (typically n < 10).

Here, we test the concept with the optimization of λλλ = (λ, s) for the PSS,
Haar-OSWST and Haar-RSWST methods. For the PSS method, s matches the
order of the spline to the Hurst exponent of the underlying noise-free signal.
This fact has been applied in [78] where the optimal (λ, s) is obtained by fitting
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Figure 6.6: Plots of MSE(λ) and SURE(λ) versus λ for two realiza-
tions (input SNR = 0 dB) of the rotation experiment (see Section 4.4.1
in Chapter 4) with NQR-cubic interpolation. In both cases, SURE(λ)
captures the trend of MSE(λ) and also yields a value of the regulariza-
tion parameter that is close to oracle optimum which minimizes MSE.
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Table 6.3: Output SNR for NQR-cubic interpolation obtained by MSE-
based (Oracle) and SURE-based tuning† of λ

Output SNR (dB)
QR-Cubic NQR-CubicInput SNR (dB)

Oracle SURE Oralce SURE
0 13.95 13.95 14.13 14.11
4 15.75 15.75 16.10 16.10
8 17.66 17.66 18.22 18.22
12 19.71 19.71 20.45 20.44
16 21.95 21.95 22.85 22.85
20 24.40 24.40 25.44 25.43
24 27.09 27.09 28.25 28.24
28 30.03 30.03 31.19 31.19
32 33.19 33.19 34.23 34.22
36 36.39 36.39 37.20 37.19
40 39.35 39.35 39.86 39.85
44 41.78 41.78 42.02 42.02
48 43.43 43.42 43.51 43.51
52 44.38 44.38 44.38 44.38
56 44.83 44.82 44.83 44.83
60 45.04 45.04 45.02 45.02

†Also presented are the results for QR-cubic interpolation (for comparison and completeness).

a fractal-like model to the power spectrum of the noisy image. However, in our
approach this is not required as λ and s are optimized together using SURE. For
the wavelet methods, adjusting s changes the threshold value in each sub-band
according to (6.7) and our understanding is that this yields better denoising per-
formance than universal soft-thresholding. In all our experiments, we observed
that the 2-D Powell optimization of the respective methods took no more than 4
iterations at various noise levels for all the test images. The results are tabulated
in Table 6.4.

With PSS, the combined optimization does not yield any significant improve-
ment for the fBm since a degree 1 spline is theoretically the best in the MSE
sense (Wiener solution) [78]. As expected PSS still performs the best of all the
methods for the fBm image. The improvement for Boats, Barbara, Peppers and
the Shepp-Logan phantom is also less significant because these images are not



6.6 Results 163

T
ab

le
6.

4:
C

om
pa

ri
so

n
of

(λ
,s

)–
op

ti
m

iz
ed

m
et

ho
ds
�

Im
a
g
e

In
p
u
t

S
N

R
(d

B
)

4
8

1
2

1
6

2
0

P
S
S

(1
1
.8

5
,
1
1
.8

5
)

(1
3
.7

6
,
1
3
.7

6
)

(1
5
.9

2
,
1
5
.9

1
)

(1
8
.3

8
,
1
8
.3

8
)

(2
1
.2

9
,
2
1
.2

9
)

B
o
a
ts

H
a
a
r-

O
S
W

S
T

(1
1
.0

7
,
1
1
.0

6
)

(1
3
.0

8
,
1
3
.0

6
)

(1
5
.4

8
,
1
5
.4

8
)

(1
8
.2

5
,
1
8
.2

3
)

(2
1
.3

1
,
2
1
.3

1
)

H
a
a
r-

R
S
W

S
T

(1
2
.8

7
,
1
2
.8

7
)

(1
4
.9

2
,
1
4
.9

2
)

(1
7
.1

6
,
1
7
.1

6
)

(1
9
.5

3
,
1
9
.5

2
)

(2
2
.1

5
,
2
2
.1

5
)

P
S
S

(9
.8

5
,
9
.8

5
)

(1
1
.6

3
,
1
1
.6

3
)

(1
4
.2

3
,
1
4
.2

3
)

(1
7
.2

9
,
1
7
.2

9
)

(2
0
.6

6
,
2
0
.6

6
)

B
a
rb

a
ra

H
a
a
r-

O
S
W

S
T

(9
.6

3
,
9
.6

2
)

(1
1
.9

2
,
1
1
.9

1
)

(1
4
.7

4
,
1
4
.7

1
)

(1
7
.8

9
,
1
7
.8

8
)

(2
1
.3

3
,
2
1
.3

2
)

H
a
a
r-

R
S
W

S
T

(1
0
.8

6
,
1
0
.7

9
)

(1
3
.0

3
,
1
3
.0

1
)

(1
5
.7

0
,
1
5
.7

0
)

(1
8
.8

4
,
1
8
.8

0
)

(2
2
.1

2
,
2
2
.1

2
)

P
S
S

(1
5
.3

0
,
1
5
.2

9
)

(1
6
.8

9
,
1
6
.8

9
)

(1
8
.6

7
,
1
8
.6

7
)

(2
0
.6

6
,
2
0
.6

6
)

(2
2
.9

5
,
2
2
.9

5
)

fB
m

H
a
a
r-

O
S
W

S
T

(1
2
.8

5
,
1
2
.8

4
)

(1
4
.4

3
,
1
4
.4

2
)

(1
6
.2

4
,
1
6
.2

1
)

(1
8
.4

2
,
1
8
.4

0
)

(2
1
.2

1
,
2
1
.2

1
)

H
a
a
r-

R
S
W

S
T

(1
5
.0

4
,
1
5
.0

0
)

(1
6
.6

8
,
1
6
.6

7
)

(1
8
.4

9
,
1
8
.4

9
)

(2
0
.3

7
,
2
0
.3

6
)

(2
2
.1

6
,
2
2
.1

2
)

P
S
S

(1
2
.7

0
,
1
2
.7

0
)

(1
5
.1

9
,
1
5
.1

8
)

(1
7
.8

5
,
1
7
.8

5
)

(2
0
.6

5
,
2
0
.6

5
)

(2
3
.5

1
,
2
3
.5

1
)

M
R

I
H

a
a
r-

O
S
W

S
T

(1
1
.0

9
,
1
1
.0

8
)

(1
3
.3

9
,
1
3
.3

6
)

(1
6
.0

6
,
1
6
.0

1
)

(1
8
.9

5
,
1
8
.9

2
)

(2
2
.0

7
,
2
2
.0

6
)

H
a
a
r-

R
S
W

S
T

(1
3
.7

3
,
1
3
.7

2
)

(1
6
.0

5
,
1
6
.0

4
)

(1
8
.5

6
,
1
8
.5

6
)

(2
1
.2

1
,
2
1
.1

7
)

(2
3
.9

8
,
2
3
.9

5
)

P
S
S

(1
0
.7

4
,
1
0
.7

4
)

(1
2
.4

7
,
1
2
.4

7
)

(1
4
.7

1
,
1
4
.7

1
)

(1
7
.5

1
,
1
7
.5

1
)

(2
0
.7

7
,
2
0
.7

7
)

P
ep

p
er

s
H

a
a
r-

O
S
W

S
T

(1
0
.8

5
,
1
0
.8

4
)

(1
3
.2

4
,
1
3
.2

3
)

(1
5
.9

7
,
1
5
.9

4
)

(1
8
.8

4
,
1
8
.8

2
)

(2
1
.8

9
,
2
1
.8

8
)

H
a
a
r-

R
S
W

S
T

(1
2
.9

5
,
1
2
.9

4
)

(1
5
.4

2
,
1
5
.4

1
)

(1
8
.0

7
,
1
8
.0

6
)

(2
0
.7

1
,
2
0
.7

1
)

(2
3
.4

0
,
2
3
.4

0
)

P
S
S

(9
.9

2
,
9
.9

2
)

(1
1
.8

0
,
1
1
.8

0
)

(1
4
.1

3
,
1
4
.1

3
)

(1
7
.0

6
,
1
7
.0

6
)

(2
0
.4

5
,
2
0
.4

5
)

S
h
ep

p
-

H
a
a
r-

O
S
W

S
T

(1
2
.4

0
,
1
2
.3

1
)

(1
5
.9

1
,
1
5
.8

5
)

(1
9
.5

1
,
1
9
.4

8
)

(2
3
.2

6
,
2
3
.2

1
)

(2
7
.0

4
,
2
6
.9

9
)

L
o
g
a
n

H
a
a
r-

R
S
W

S
T

(1
4
.3

6
,
1
4
.2

4
)

(1
7
.9

0
,
1
7
.8

4
)

(2
1
.5

7
,
2
1
.5

4
)

(2
5
.2

6
,
2
5
.2

6
)

(2
9
.0

5
,
2
9
.0

2
)

�
E

a
ch

ce
ll

is
fo

rm
a
tt

ed
a
s

(O
ra

cl
e

v
a
lu

e,
E

st
im

a
te

d
v
a
lu

e)



164 Monte-Carlo Risk Minimization for Non-linear Algorithms

very fractal-like. In contrast, there is a significant improvement (� 1 dB at high
input SNR) for the MRI image which provides further support for the claim
that MRI images are fractal-like and the order s must be matched to the fractal
dimension to obtain best results.

As noted in Table 6.4, this combined optimization is shown to produce a
consistent SNR increase for both Haar-OSWST and Haar-RSWST methods. In
fact, in the redundant case it leads to an increase of about +1 dB for smooth
images like Peppers, Boats and fBm at high noise levels. Thus the optimized
Haar-RSWST performs the best of all the considered methods for all natural
images which exemplifies the fact that redundant transforms make a powerful
denoising tool.

However, it must be emphasized that the results provided in this section are
purely for the purpose of illustrating multi-parameter optimization of SURE
computed by the proposed Monte-Carlo scheme. In our experiments, we consid-
ered a set of popular denoising algorithms with adjustable parameters without
making any specific claim concerning their overall optimality. In fact, we have
intentionally chosen some test images which favor one or the other algorithm to
illustrate that the issue of finding a “best” algorithm is not so clear-cut.

The reader who is interested in state-of-the-art methods is referred to the
relevant literature; in particular the BiShrink (dual tree complex wavelet de-
composition) [162], BLS-GSM (full steerable pyramidal decomposition) [163],
ProbShrink (undecimated Daubechies symlets) [164], and SURE-LET (with re-
dundant Haar transform) [136]. Depending on the type of image these more-
advanced techniques can yield a further SNR improvement of the order of 1 dB.
In some cases such as SURE-LET, they already take full advantage of the pos-
sibility of automatic SURE-based parameter adjustment, with the important
difference that the underlying solution is explicit as opposed to our black-box
approach where it is obtained numerically. The benefit with the latter scheme
is that it requires no hypothesis concerning the analytical form of the solution
and therefore has a wider range of applicability.

6.7 Summary

Computation and application of SURE for denoising problems demands the
evaluation of the divergence of the denoising operator with respect to the given
noisy data. The calculation of this divergence for a general denoising problem
may turn out to be non-trivial, especially if the operator does not have explicit
analytical form as is the case with iterative algorithms (variational, PDE-based
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and Bayesian methods). In this chapter, we introduced a Monte-Carlo technique
that circumvents this difficulty and makes SURE viable for an arbitrary denois-
ing scenario, especially when the computation of the associated divergence is
mathematically intractable or numerically infeasible. By adding a perturbation
to the signal, our method essentially implements a random first-order difference
estimator of the divergence of the denoising operator. From a calculus point
of view, this can be related to a stochastic definition of the divergence of a
vector field. The final outcome is a black-box scheme which yields SURE nu-
merically using only the output of the denoising algorithm without the need for
any knowledge of its internal working.

We demonstrated the applicability of our method by performing Monte-
Carlo SURE optimization of some popular denoising algorithms in the wavelet
(both orthonormal and redundant) and variational (linear and non-linear) set-
tings. We found that SURE computed using the proposed technique perfectly
predicts MSE in all considered cases, thereby yielding correct values for the op-
timal threshold and the regularization parameter for the respective problems.
We also substantiated this argument for NQR (non-quadratic regularized) in-
terpolation algorithms. Further, we provided (experimental) justification that
the proposed method is applicable for optimization of multiple parameters by
performing SURE-based optimization of the thresholds for denoising by scale-
dependent wavelet soft-thresholding. We showed that the SNR obtained by
SURE-based optimization is in almost perfect agreement with the oracle solu-
tion (minimum MSE) for all considered cases. This suggests that Monte-Carlo
SURE can be reliably employed for data-driven adjustment of parameters in a
large variety of denoising and NQR interpolation problems involving additive
Gaussian noise.





Chapter 7

Summary and Conclusions

In this thesis, we investigated the problem of nonideal sampling and interpola-
tion in the presence of noise. Our approach was based on a variational formu-
lation of the problem where reconstruction/interpolation is achieved by impos-
ing suitable continuous-domain regularization constraints to counterbalance the
detrimental effect of noise.

We started with a general Tikhonov-like regularization criterion (Chapter 3)
that is specified as a function of the L2-norm of an arbitrary scalar differential
operator L. Then, we showed based on theoretical reasoning that the globally-
optimal solution of the variational problem belongs to an integer-shift-invariant
space V (ϕopt) (for the case of uniformly-spaced data samples) that is completely
characterized by the operator L—the generator ϕopt and hence V (ϕopt) are
together specified via an optimality condition that links L to ϕopt. This type
of shift-invariant reconstruction mechanism closely relates to spline theory and
therefore lends a smoothing-spline flavor to the solution.

Once V (ϕopt) is specified, the coefficients of the shift-invariant reconstruction
are found by solving a suitable linear/non-linear optimization problem that
involves the discrete data samples. The main point here is that, although the
problem is originally formulated in the analog domain, the resulting solution
can be efficiently implemented by digital filtering.

We also proposed stochastic formulations of the nonideal sampling problem—
min-max and (analog-domain) minimum mean-squared error (MMSE)/Wiener
estimation—and established a functional equivalence between the variational
and Wiener solutions: This happens whenever L whitens the noise-free signal
(that is, the application of L to the signal results in continuous-domain white
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noise). This is one of the key findings of the study since it offers a way of
selecting the ideal regularization operator for MMSE-optimal reconstruction of
(stochastic) signals from their noisy samples. In this context, we investigated
the Matérn stochastic model that describes the power spectral density of signals
with (α + ‖ωωω‖)−γ-like spectra. We also constructed a new class of Matérn B-
splines that generate the optimal reconstruction spaces for the class of Matérn
stochastic processes.

In the second part of the thesis (Chapter 4), we focussed on non-quadratic
regularization (NQR) prescribed as the Lp-norm (p �= 2) of some general vector
derivative L. This particular choice was dictated by affine invariance (shift,
rotation and scale invariance) of the solution to geometric transformation of
the coordinate system. Interesting, it includes the popular total-variation (TV)
regularization which is appropriate for signals with strong features (e.g., im-
ages with edges). We then used the Lp-norm-based NQR for the problem of
regularized interpolation of noisy data and presented majorize-minimize (MM)
algorithms for carrying out the optimization of the corresponding non-quadratic
cost criterion. We found from 2-D rotation experiments on noisy medical im-
ages that the use of Lp-norm-like NQR provides better interpolation perfor-
mance than quadratic regularized and non-regularized (standard) interpolation
schemes.

In the third and final part of the thesis (Chapters 5 and 6), we developed
novel data-driven methods for finding the optimal (in the MSE sense) regu-
larization parameter for the variational problems considered in this work. Our
approach was based on the concept of risk estimation which provides an unbiased
means of estimating the MSE purely from the given data. Here, we reviewed
Stein’s unbiased risk estimate—SURE—for the case of additive Gaussian noise
and also developed a new risk estimate that is applicable for a Poisson-Gaussian
mixture model. Furthermore, we introduced a novel and efficient Monte-Carlo
technique for computing SURE for arbitrary non-linear algorithms. In all our
experiments we found that the regularization parameter selected by minimizing
the risk estimate yields a performance that was very close or equivalent to the
oracle optimum (minimum MSE), indicating the reliability of our approach for
practical problems.

We conclude from our study that the proposed regularized interpolation
technique together with the data-driven selection of the optimal regularization
parameter provides a completely automatic and practical way of performing ro-
bust interpolation of noisy data and can be of potential interest to biomedical-
imaging practitioners. Moreover, our Monte-Carlo risk estimation has the po-
tential of being applicable to a variety of variational problems such as denoising
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and deconvolution.

Future Research Directions

We now discuss some possible directions along which the present work can be
extended.

Multilevel Algorithms

The current drawback of Algorithm 4.2 (in the context of non-quadratic regular-
ized (NQR) interpolation) is its high computational cost. Multilevel algorithms
may be devised to circumvent this difficultly. The general principle underly-
ing a multilevel algorithm is to successively break down a problem prescribed
at a finer scale (level or grid) into essentially similar tasks defined at coarser
scales, solve them and combine their outputs coherently to achieve the origi-
nal objective [146]. Since the problem is solved at coarser scales, a multilevel
method provides a computationally cheap alternative to conventional methods
that operate only at the finest scale. This principle can therefore be applied to
our NQR interpolation problem so as to speed up Algorithm 4.2. Furthermore,
spline-based interpolation offers multilevel methods an additional advantage in
this context as they can take advantage of the inherent multiresolution proper-
ties of B-splines [14].

Risk Estimation for a Poisson Noise Model

Extensions Based on Monte-Carlo SURE

In Chapter 6, we specifically focussed on risk estimation for non-linear algorithms—
Monte-Carlo SURE—for an additive Gaussian noise model. However, it is not
difficult to extend this to a signal-dependent Poisson noise model (such as that
considered in Section 5.4.1.1 of Chapter 5) that is appropriate for biomedical
imaging [100].

A signal-dependent Poisson noise model can be thought of (up to second-
order statistics) as additive Gaussian with signal-dependent variance. There-
fore, we can use Monte-Carlo SURE for this scenario provided we estimate the
variance at each pixel. But, since the mean and the variance are the same
for a Poisson random variable, the given noisy data itself can be used as an
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estimate of the variance map provided the Poisson counts at each pixel are suf-
ficiently high. In practice, this last requirement is often ensured and therefore,
our Monte-Carlo scheme can be reliably employed for risk estimation.

New Monte-Carlo Poisson Risk Estimator

For low Poisson-count-data (e.g., tomography), the Gaussian approximation
described above may no longer hold and a rigorous risk estimator based on
Poisson statistics (such as that described in [139]) needs to be used. For instance,
for the denoising scenario, this requires the computation of the following sum

N∑
k=1

yk [fλλλk(y)− fλλλk(y − ek)] , (7.1)

where N is the number of pixels, y = P{x} is the N × 1 noisy data vector, x
is the N × 1 noise-free signal vector, fλλλ : R

N → R
N is mapping that describes

the denoising algorithm, fλλλk(y) represents the k-th component of the denoised
output vector fλλλ(y) and ek is a column vector whose components are all zero
except the k-th one which is unity.

A term-by-term evaluation becomes difficult to perform numerically for large
data sizes. Approximations based on the Taylor series may then be used [165],
but these may become unreliable especially for low-count data. This motivates
the need for Monte-Carlo methods—such as that involving the response of fλλλ
to a perturbation of y by a small amount of additive noise—for the estimation
of (7.1) for arbitrary fλλλ.

Hypothesis Testing for Estimation of the Noise Model

Since risk estimates by construction depend on the parameters of the noise
model, estimating the model parameters forms a key component of the entire
scheme. Specifically, the gain of the Poisson component in Equation (5.14) in
Chapter 5 plays a vital role in bioimaging: This quantity is signal-dependent
and therefore cannot be obtained from calibration experiments. The technique
we devised in Section 5.4.3 of Chapter 5 is empirical in that it uses a certain
denoising strategy to isolate patches in the data that are approximately con-
stant. We believe that computationally-efficient techniques based on hypothesis
testing may also be devised for the same problem. Such methods would offer
a more robust means of identifying patches in the data that are statistically
justified to be constant.



Appendix A

Details of Some Results of
Chapter 2

A.1 Sampling in the DZ
d lattice

The sampling of f(x) in the lattice DZ
d is modeled as a product of f(x) with

the series of Dirac masses
∑
k∈Zd

δ(x−Dk):

fsamp(x) = f(x)
∑
k∈Zd

δ(x−Dk) =
∑
k∈Zd

f(Dk) δ(x−Dk).

Now, since

δ(x−Dk) F←→ e−j(D
Tωωω)Tk,∑

k∈Zd

δ(x−Dk) F←→ (2π)d

|D|
∑

m∈Zd

δ(ωωω − 2πD−Tm),

where the above Fourier transform has been performed in the sense of distribu-
tions, we have

F{fsamp(•)}(ωωω) = F

⎧⎨
⎩f(•)

∑
k∈Zd

δ(• −Dk)

⎫⎬
⎭ (ωωω) =

∑
k∈Zd

f(Dk) e−j(D
Tωωω)Tk.
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But,

F

⎧⎨
⎩f(•)

∑
k∈Zd

δ(• −Dk)

⎫⎬
⎭ (ωωω) =

1
(2π)d

⎛
⎝f̂(•) � (2π)d

|D|
∑

m∈Zd

δ(• − 2πD−Tm)

⎞
⎠ (ωωω),

where � represents the continuous-domain convolution operation. Evaluating
the r.h.s. of the above equation, we obtain the Poisson’s summation formula∑

k∈Zd

f(Dk) e−j(D
Tωωω)Tk =

1
|D|

∑
m∈Zd

f̂(ωωω − 2πD−Tm),

provided both the summations converge.

A.2 Condition for the Existence of Riesz Bases

Here, we provide a detailed proof of Proposition 2.1 in Chapter 2. First, we
establish that Aϕ(ωωω) ≥ A2

Rϕ,2
by contradiction. Suppose there exists a set

C =
{
ωωω ∈ [0, 2π)d : Aϕ(ωωω) < A2

Rϕ,2

}
,

whose measure is not zero:
∫

C

dωωω > 0. Then, correspondingly, let us consider a

sequence {c1[k]} such that its Fourier transform

C1(ejωωω) =
{

1, ωωω ∈ C,
0, ωωω ∈ [0, 2π)d\C.

Obviously, {c1[k]} ∈ �2(Zd): (using Parseval’s identity)

‖c1‖2�2 =
1

(2π)d

∫
[0, 2π)d

|C1(ωωω)|2 dωωω =
1

(2π)d

∫
C

dωωω <
1

(2π)d

∫
[0, 2π)d

dωωω = 1. (A.1)

Then, we have∫
[0, 2π)d

|C1(ejωωω)|2 (Aϕ(ωωω)−A2
Rϕ,2) dωωω =

∫
C

(Aϕ(ωωω)−A2
Rϕ,2) dωωω < 0,

which contradicts the left-side inequality in (2.12) for c = c1. Therefore, C must
necessarily be of measure zero so that Aϕ(ωωω) ≥ A2

Rϕ,2
a.e.
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Similarly, for the upper bound, if there exists

D =
{
ωωω ∈ [0, 2π)d : Aϕ(ωωω) > B2

Rϕ,2

}
that has a non-zero measure, we consider a sequence {c2[k]} whose Fourier
transform C2(ejωωω) is such that

C2(ejωωω) =
{

1, ωωω ∈ D,
0, ωωω ∈ [0, 2π)d\D.

Then, similar to (A.1), we have {c2[k]} ∈ �2(Zd) and∫
[0, 2π)d

|C2(ejωωω)|2 (Aϕ(ωωω)−B2
Rϕ,2) dωωω =

∫
D

(Aϕ(ωωω)−B2
Rϕ,2) dωωω > 0,

which contradicts the right-side inequality in (2.12) for c = c2. Therefore, we
must have that Aϕ(ωωω) ≤ B2

Rϕ,2
a.e.

Conversely, if A2
Rϕ,2

≤ Aϕ(ωωω) ≤ B2
Rϕ,2

a.e., we start from

A2
Rϕ,2 ‖c‖

2
�2 ≤

1
(2π)d

∫
[0, 2π)d

|C(ejωωω)|2Aϕ(ωωω) dωωω ≤ B2
Rϕ,2 ‖c‖

2
�2 ,

and retrace our steps from (2.15) to obtain (2.12) which completes the proof.

A.3 Approximation Error Formula in d-dimensions

Our proof of Theorem 2.1 is essentially similar to that given in [54]. By hy-
pothesis |ĥ(ωωω)| < ∞, |Q(ejωωω)| < ∞ and ϕ generates a L2-stable Riesz basis.
Moreover, by substituting |L(ωωω)|2 = (1 + ‖ωωω‖2)ρ− 1 in Theorem 3.1 and Corol-
lary 3.1 in Chapter 3, it can be verified that{(

f �
1
T d

h
( •
T

))
(kT )

}
∈ �2(Zd).

Therefore, the Fourier transform of QT I{f}(x) is given by

F{QT I{f}}(ωωω) = Q(ejωωωT ) ϕ̂(ωωωT )
∑
k∈Zd

f̂

(
ωωω +

2π
T

k
)
ĥ(ωωωT + 2πk)
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is well-defined in the L2 sense. Therefore, by Parseval’s identity,

‖QT I{f}‖2L2
=

1
(2π)d

‖F{QT I{f}}‖2L2

=
1

(2π)d

∫
Rd

∣∣∣∣∣∣Q(ejωωωT ) ϕ̂(ωωωT )
∑
k∈Zd

f̂

(
ωωω +

2π
T

k
)
ĥ(ωωωT + 2πk)

∣∣∣∣∣∣
2

dωωω

=
1

(2π)d

∫
[0, 2π

T )d

⎛
⎜⎜⎝

|Q(ejωωωT )|2Aϕ(ωωωT )

×

∣∣∣∣∣∣
∑
k∈Zd

f̂

(
ωωω +

2π
T

k
)
ĥ(ωωωT + 2πk)

∣∣∣∣∣∣
2

⎞
⎟⎟⎠ dωωω.

Since the integrand is positive, we can exchange summation and integration to
obtain

‖QT I{f}‖2L2
=

1
(2π)d

∫
Rd

⎛
⎜⎝ f̂∗(ωωω) ĥ∗(ωωωT ) |Q(ejωωωT )|2Aϕ(ωωωT )

×
∑
k∈Zd

f̂

(
ωωω +

2π
T

k
)
ĥ(ωωωT + 2πk)

⎞
⎟⎠ dωωω.

Since, |〈f, QT I{f}〉L2 | ≤ ‖f‖L2 ‖QT I{f}‖L2 < +∞ by Cauchy-Schwarz in-
equality, we can similarly manipulate 〈f, QT I{f}〉L2 to get

〈f, QT I{f}〉L2 =
1

(2π)d

∫
Rd

⎛
⎜⎝ f̂∗(ωωω)Q(ejωωωT ) ϕ̂(ωωωT )

×
∑
k∈Zd

f̂

(
ωωω +

2π
T

k
)
ĥ(ωωωT + 2πk)

⎞
⎟⎠ dωωω.

Therefore, by Parseval’s identity,

ε2f (T ) = ‖f‖2L2
+ ‖QT I{f}‖2L2

− 2〈f, QT I{f}〉L2

=
1

(2π)d

(∥∥∥f̂∥∥∥2

L2

+ ‖F {QT I{f}}‖2L2
− 2Re

{〈
f̂ , F {QT I{f}}

〉
L2

})
= ε21 + ε22,

where

ε21 =
1

(2π)d

∫
Rd

|f̂(ωωω)|2

⎛
⎜⎝

1
+ |ĥ(ωωω)|2 |Q(ejωωωT )|2Aϕ(ωωωT )
− 2Re

{
ĥ(ωωω)Q(ejωωωT ) ϕ̂(ωωωT )

}
⎞
⎟⎠ dωωω

=
1

(2π)d

∫
Rd

|f̂(ωωω)|2 Eh,ϕ(ωωωT ) dωωω,
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and

ε22(f, T ) =
1

(2π)d

∫
Rd

f̂∗(ωωω)Q(ejωωω)

⎡
⎢⎢⎢⎣

(
ĥ∗(ωωωT )Q∗(ejωωωT )Aϕ(ωωωT )

− 2 ϕ̂(ωωωT )

)
×

∑
k�=0

f̂

(
ωωω +

2π
T

k
)
ĥ(ωωωT + 2πk)

⎤
⎥⎥⎥⎦ dωωω.

Writing εcorr(f, T ) = εf − ε1, we see that

εcorr(f, T ) =
ε22

εf + ε1
= 0, (A.2)

whenever ε2 = 0, which happens when f is bandlimited to(
− π
T

(k + 1), − π
T

k
]⋃[ π

T
k,

π

T
(k + 1)

)
=⇒ f̂∗(ωωω) f̂

(
ωωω +

2π
T

k
)

= 0, ∀ k �= 0, (A.3)

or h is bandlimited to [−π, π)d:

ĥ(ωωωT + 2πk) = 0, ∀ k �= 0. (A.4)

Next, in order to bound |εcorr(f, T )|, we partition the Fourier transform f̂(ωωω)
as follows:

f̂k(ωωω) =

⎧⎪⎨
⎪⎩

f̂(ωωω), if
π

T
ki ≤ |ωi| <

π

T
(ki + 1), i = 1, 2, . . . , d,

0, otherwise,
(A.5)

so that f̂(ωωω) =
∑

k∈Z
d
+

S{0}
f̂k(ωωω), where Z

d
+ = {k ∈ Z

d : ki ≥ 1, i = 1, 2, . . . , d}.

The underlying idea is to exploit properties (A.2) to (A.4) of εcorr: Since the
signal fk(x) (corresponding to the k-th bandpass segment f̂k(ωωω)) is bandlimited
to the frequency range(

− π
T

(k + 1), − π
T

k
]⋃[ π

T
k,

π

T
(k + 1)

)
,

we have εcorr(fk, T ) = 0, which leads to

ε2fk(T ) =
1

(2π)d

∫
Rd

|f̂k(ωωω)|2 Eh,ϕ(ωωωT ) dωωω.
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Then, since

∣∣∣∣∣∣
∑

k∈Z
d
+

S{0}
f̂k(ωωω)

∣∣∣∣∣∣
2

=
∑

k∈Z
d
+

S{0}
|f̂k(ωωω)|2 from (A.5), using Minkowski’s

inequality, we obtain

ε1 =

⎛
⎝ 1

(2π)d
∑

k∈Z
d
+

S{0}

∫
Rd

∣∣∣f̂k(ωωω)
∣∣∣2 Eh,ϕ(ωωωT ) dωωω

⎞
⎠

1
2

≤
∑

k∈Z
d
+

S{0}

(
1

(2π)d

∫
Rd

∣∣∣f̂k(ωωω)
∣∣∣2 Eh,ϕ(ωωωT ) dωωω

) 1
2

=
∑

k∈Z
d
+

S{0}
εfk . (A.6)

Also,

ε1 ≥
(

1
(2π)d

∫
[− π

T ,
π
T )d

∣∣∣f̂(ωωω)
∣∣∣2 Eh,ϕ(ωωωT ) dωωω

) 1
2

= εf0 . (A.7)

Thus, (A.6) and (A.7) together lead to

2εf0 − ε1 ≤ ε1 ≤
∑

k∈Z
d
+

S{0}
εfk ,

or, equivalently,

εf0 −
∑
k∈Z

d
+

εfk ≤ ε1 ≤ εf0 +
∑
k∈Z

d
+

εfk , (A.8)

which implies that

|ε1 − εf0 | ≤
∑
k∈Z

d
+

εfk . (A.9)

We now bound
∑
k∈Z

d
+

εfk as follows: Since ωi is bounded below by π
T ki in the

k-th segment of (A.5), we find that, for ρ >
d

2
,

1 ≤ ‖ωωω‖
2ρ

‖k‖2ρ
T 2ρ

π2ρdρ
.
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Therefore,

∑
k∈Z

d
+

εfk ≤ T ρ

πρ
√
dρ

∑
k∈Z

d
+

1
‖k‖ρ

(
1

(2π)d

∫
Rd

‖ωωω‖2ρ |f̂k(ωωω)|2 Eh,ϕ(ωωω) dωωω
) 1

2

.

Then, using Cauchy-Schwarz inequality for discrete sequences, we obtain

∑
k∈Z

d
+

εfk ≤ T ρ
√
‖Eh,ϕ‖L∞

πρ
√
dρ

√√√√ ∑
k∈Z

d
+

1
‖k‖2ρ ,

×

⎛
⎝ 1

(2π)d

∫
Rd

‖ωωω‖2ρ
∑
k∈Z

d
+

|f̂k(ωωω)|2 dωωω

⎞
⎠

1
2

.

Again,
∑
k∈Z

d
+

|f̂k(ωωω)|2 =

∣∣∣∣∣∣
∑
k∈Z

d
+

f̂k(ωωω)

∣∣∣∣∣∣
2

=
∣∣∣f̂(ωωω)− f̂0(ωωω)

∣∣∣2 from (A.5). Therefore,

∑
k∈Z

d
+

εfk ≤ T ρ
√
‖Eh,ϕ‖L∞

πρ
√
dρ

∥∥∥f (ρ) − f (ρ)
0

∥∥∥
L2

√√√√ ∑
k∈Z

d
+

1
‖k‖2ρ , (A.10)

where ‖f (ρ)‖L2 =
(

1
(2π)d

∫
Rd

‖ωωω‖2ρ |f(ωωω)|2 dωωω
) 1

2

<∞, when f ∈W ρ
2 . In order

to bound
∑
k∈Z

d
+

‖k‖−2ρ, we set ‖k‖2 = m and write

∑
k∈Z

d
+

1
‖k‖2ρ =

∑
m≥1

N (m)
mρ

,

where N (m) is the number of points on a sphere of radius
√
m in d-dimensions.

Obviously, N (m) is upper-bounded by the volume of the hyper-annulus of unit
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thickness and radius
√
m:

N (m) ≤ π
d
2

Γ
(
d
2 + 1

) ((m+ 1)
d
2 −m d

2 )

=
π

d
2

Γ
(
d
2 + 1

) m d
2

[(
1 +

1
m

) d
2

− 1

]

≤ π
d
2

Γ
(
d
2 + 1

) m d
2−1(2

d
2 − 1),

where we have used the fact that
(
1 + 1

m

) d
2 ≤ 2

d
2 for m ≥ 1. Therefore, we have

∑
k∈Z

d
+

1
‖k‖2ρ ≤ π

d
2 (2

d
2 − 1)

Γ
(
d
2 + 1

) ∑
m≥1

1

mρ− d
2 +1

=
π

d
2 (2

d
2 − 1)

Γ
(
d
2 + 1

) ζ

(
ρ− d

2
+ 1

)
<∞, (A.11)

where ζ is the Riemann-zeta function which, in this case, is finite whenever
ρ > d

2 . Thus, putting together all the results (A.9)-(A.11), we get

|ε1 − εf0 | ≤
T ρ

√
‖Eh,ϕ‖L∞

πρ
√
dρ

π
d
4

√
2

d
2 − 1√

Γ
(
d
2 + 1

)
√
ζ

(
ρ− d

2
+ 1

) ∥∥∥f (ρ) − f (ρ)
0

∥∥∥
L2

≤ K T ρ
∥∥∥f (ρ)

∥∥∥
L2

Λ(f, T ), (A.12)

where

K =
π

d
4−ρ√

dρ Γ
(
d
2 + 1

)
√

2
d
2 − 1

√
ζ

(
ρ− d

2
+ 1

)
‖Ehϕ‖L∞ ,
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and

Λ(f, T ) =

∥∥∥f (ρ) − f (ρ)
0

∥∥∥
L2∥∥f (ρ)

∥∥
L2

=
1∥∥f (ρ)
∥∥
L2

⎛
⎝ 1

(2π)d

∫
Rd

‖ωωω‖2ρ
∑
k∈Z

d
+

|f̂k(ωωω)|2 dωωω

⎞
⎠

1
2

=
1∥∥f (ρ)
∥∥
L2

(
1

(2π)d

∫
Rd\[− π

T ,
π
T )d

‖ωωω‖2ρ |f̂(ωωω)|2 dωωω

) 1
2

≤ 1.

Following a similar line of reasoning, we can establish an inequality such as
(A.8) for εf so that

|εf − εf0 | ≤ K T ρ
∥∥∥f (ρ)

∥∥∥
L2

Λ(f, T ). (A.13)

Thus, combining (A.12) and (A.13), we obtain

|εcorr| ≤ |εf − ε1| ≤ |εf − ε0|+ |ε1 − ε0|

≤ 2K T ρ
∥∥∥f (ρ)

∥∥∥
L2

Λ(f, T )

≤ 2K T ρ
∥∥∥f (ρ)

∥∥∥
L2

(since Λ(f, T ) ≤ 1),

so that εcorr = O(T ρ), which completes the proof.





Appendix B

Proofs of Some Results of
Chapter 3

B.1 Sobolev Spaces—Proof of Theorem 3.1

Consider AI(ωωω) =
∑

k∈I f̂(ωωω + 2πk) for some f(x) ∈ WL
2 and I, a bounded

subset of Z
d. Using the Cauchy-Schwarz inequality, we have,

|AI(ωωω)|2 =

∣∣∣∣∣∣
∑
k∈I

f̂(ωωω + 2πk)

√
1 + |L̂(ωωω + 2πk)|2√
1 + |L̂(ωωω + 2πk)|2

∣∣∣∣∣∣
2

≤
(∑

k∈I

1
1 + |L̂(ωωω + 2πk)|2

)(∑
k∈I

(1 + |L̂(ωωω + 2πk)|2)|f̂(ωωω + 2πk)|2
)

≤ C0

∑
k∈Zd

(1 + |L̂(ωωω + 2πk)|2)|f̂(ωωω + 2πk)|2 = C0 B(ωωω). (B.1)

But, B(ωωω) ∈ L2([0, 2π)d), as seen below: Since f(x) ∈ WL
2 and using Fubini-

Tonelli theorem we write,∫
[0, 2π)d

B(ωωω) dωωω =
∑
k∈Zd

∫
[0, 2π)d

(1 + |L̂(ωωω + 2πk)|2)|f̂(ωωω + 2πk)|2 dωωω

=
∫

Rd

(1 + |L̂(ωωω)|2)|f̂(ωωω)|2 dωωω < +∞. (B.2)

181
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Thus, AI(ωωω) ∈ L2([0, 2π)d) because of (B.1) and (B.2). Moreover,

|AI(ωωω)| ≤
√
C0

√
B(ωωω) ≤

√
C0 (1 + B(ωωω)),

and ∫
[0, 2π)d

√
B(ω) dωωω ≤ (2π)d +

∫
[0, 2π)d

B(ωωω) dωωω < +∞. (B.3)

Now, consider the following limit:

lim
I→Zd

AI(ωωω) = A(ωωω) =
∑
k∈Zd

f̂(ωωω + 2πk).

Since |AI(ωωω)|2 is bounded by an integrable function (cf. (B.1)), we use Lebesgue’s
dominated convergence theorem and write,∫

[0, 2π)d

|A(ωωω)|2 dωωω =
∫

[0, 2π)d

lim
I→Zd

|AI(ωωω)|2 dωωω

= lim
I→Zd

∫
[0, 2π)d

|AI(ωωω)|2 dωωω < +∞.

Thus, A(ωωω) ∈ L2([0, 2π)d) and therefore has a Fourier series expansion:

A(ωωω) =
∑
k∈Zd

c[k]e−jωωω
Tk a.e.

Again using Lebesgue’s dominated convergence theorem (|AI(ωωω)| is bounded
by an integrable function), the coefficient c[k] can be written as

c[k] =
1

(2π)d

∫
[0, 2π)d

A(ωωω) ejωωω
Tk dωωω =

1
(2π)d

∫
[0, 2π)d

lim
I→Zd

AI(ωωω) ejωωω
Tk dωωω

=
1

(2π)d
lim

I→Zd

∫
[0, 2π)d

AI(ωωω) ejωωω
Tk dωωω

=
1

(2π)d

∫
Rd

f̂(ωωω) ejωωω
Tk dωωω

= f(k).

Thus, the coefficients {c[k]} are nothing but the samples of the function f(x)
evaluated at x = k ∈ Z

d. Finally, because A(ωωω) ∈ L2([0, 2π)d), by Parseval’s
identity we have {f(k)} ∈ �2(Zd).
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B.2 Orthogonality Principle—Proof of Theorem
3.2

For any u ∈ WL
2 , we have (h � u)(x) ∈ WL

2 by Corollary 3.1, as well as {(h �
u)(k)} ∈ �2(Zd), by Theorem 3.1. Correspondingly, Proposition 3.3 ensures
that fcon ∈WL

2 .
Now, consider the function defined as s(x) = u(x) − fcon(x). Since WL

2 is
closed, s(x) ∈WL

2 . Consequently, (h�s)(x) ∈WL
2 and (h�s)(k) ∈ �2(Zd). But,

(h � s)(k) = 0, ∀ k ∈ Z
d, because of the consistency of fcon(x). Therefore, the

following Poisson’s summation formula holds:∑
k∈Zd

(h � s)(k) e−jωωω
Tk =

∑
k∈Zd

ĥ(ωωω + 2πk) ŝ(ωωω + 2πk) = 0, a.e.,

and hence, ∥∥∥∥∥∥
∑
k∈Zd

ĥ(ωωω + 2πk)ŝ(ωωω + 2πk)

∥∥∥∥∥∥
L2([0, 2π)d)

= 0. (B.4)

Writing,

‖Lu‖2L2
= ‖L{u− fcon + fcon}‖2L2

= ‖L{s}‖2L2
+ ‖L{fcon}‖2L2

+ 〈L{s},L{fcon}〉L2 ,

it only remains to show that 〈L{s},L{fcon}〉L2 = 0. Letting

D(ejωωω) = R0,opt(ejωωω)|Q(ejωωω)|2
∑
k∈Zd

ĥ(ωωω + 2πk) û(ωωω + 2πk),

and using Parseval’s relation,

〈L{fcon},L{s}〉L2 =
1

(2π)d
〈L̂f̂con, L̂ŝ〉L2

=
1

(2π)d

∫
Rd

D(ejωωω) ĥ(ωωω) ŝ(ωωω) dωωω

= lim
I→Zd

1
(2π)d

∫
[0, 2π)d

D(ejωωω)

(∑
k∈I

ĥ(ωωω + 2πk) ŝ(ωωω + 2πk)

)
dωωω.
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Then, using Cauchy-Schwarz inequality, we see that

〈L{fcon},L{s}〉L2 ≤
(

1
(2π)d

∥∥D(ejωωω)
∥∥
L2([0, 2π)d)

)

×

⎛
⎝ lim

I→Zd

∥∥∥∥∥∑
k∈I

ĥ(ωωω + 2πk) ŝ(ωωω + 2πk)

∥∥∥∥∥
L2([0, 2π)d)

⎞
⎠

= 0.

Since R0,opt(ejωωω), |Q(ejωωω)| are bounded and (h � u)(k) ∈ �2, the first norm is
finite and by (B.4), the limit of the second norm tends to zero, thus proving
(3.17) in Chapter 3.

B.3 Inverse Fourier Transform of d-dimensional
Matérn B-spline

Using the definition of the Gamma function Γ(•):

Γ(γm)(αm + ‖ωωω‖2)−γm =
∫ ∞

0

tγm−1e−t(αm+‖ωωω‖2) dt,

we write the inverse Fourier transform of β̂αm,γm
(ωωω) as

βαm,γm
(x) =

(2π)−d

Γ(γm)

∫ ∞

0

tγm−1 exp
(
−αmt+

‖x‖2
4t

)

×
(∫

ωωω∈Rd

exp
(
−t

∥∥∥ωωω − j x
2t

∥∥∥2
)

dωωω
)

︸ ︷︷ ︸
=

(√
π

t

)d
dt.

Substituting t =
‖x‖

2
√
αm

e−u and manipulating, we obtain

βαm,γm
(x) = C

(
‖x‖√
αm

)νm
∫ ∞

0

cosh (νmu) e−‖x‖√αm cosh(u) du

= C
(
‖x‖√
αm

)νm

Kνm
(
√
αm‖x‖),
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where νm = γm − d
2 , C = (

√
(2π)d 2γm−1 Γ(γm))−1 and the integral in the last

step is the modified Bessel function of the second kind [87].

B.4 Approximation Error for the Noisy Scenario

To prove Proposition 3.10, we first expand E
{
|f(x)−QT I{f}(x)|2

}
to get

E
{
|f(x)−QT I{f}(x)|2

}
= E

{
|f(x)|2

}
+ E

{
|QT I{f}(x)|2

}
− 2E {f(x)QT I{f}(x)} .

We concentrate on the second term

E
{
|QT I{f}(x)|2

}
= E

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
k,l∈Z

d

m,n∈Z
d

g[l] g[n] r[k− l] r[m− n]ϕ
(x
T
− k

)
ϕ
(x
T
−m

)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭ ,

where we can exchange the summation and expectation provided

E

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
k,l∈Z

d

m,n∈Z
d

|g[l] g[n]| |r[k− l] r[m− n]|
∣∣∣ϕ(x

T
− k

)
ϕ
(x
T
−m

)∣∣∣
⎫⎪⎪⎪⎬
⎪⎪⎪⎭ <∞,

which we verify now. Since the argument inside E{•} is positive, we move the
expectation inside and use the fact that E{| • |} ≤ 1 + E{| • |2} to get∑

k,l∈Z
d

m,n∈Z
d

E{|g[l] g[n]|} |r[k− l] r[m− n]|
∣∣∣ϕ(x

T
− k

)
ϕ
(x
T
−m

)∣∣∣ (B.5)

≤
∑

k,l∈Z
d

m,n∈Z
d

(1 + E{|g[l]|2}) (1 + E{|g[n]|2}) |r[k− l] r[m− n]|

×
∣∣∣ϕ(x

T
− k

)
ϕ
(x
T
−m

)∣∣∣ .
Now, since noise is zero-mean and independent of f , we have ∀ k ∈ Z

d,

E{|g[k]|2} = E

{[
1
T d

(
f � h

( •
T

))
(kT )

]2
}

+ cn[0],
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where � represents continuous convolution operation and cn[k] = E{n[l]n[k+l]}
is the auto-correlation sequence of the noise. The first term on the r.h.s. of the
above equation can be bounded as

E

{[
1
T d

(
f � h

( •
T

))
(kT )

]2
}

≤ 1
T 2d

∫
Rd

∫
Rd

E {|f(ξξξ1) f(ξξξ2)|}
∣∣∣∣h
(
k− ξξξ1

T

)
h

(
k− ξξξ2

T

)∣∣∣∣ dξξξ1 dξξξ2

≤ 1
T 2d

∫
Rd

∫
Rd

(1 + E
{
|f(ξξξ1)|2

}
) (1 + E

{
|f(ξξξ2)|2

}
)

×
∣∣∣∣h
(
k− ξξξ1

T

)
h

(
k− ξξξ2

T

)∣∣∣∣ dξξξ1 dξξξ2

≤ (‖h‖L1)
2(1 + cf (0))2 def= Mcf ,h <∞, (B.6)

since h(x) ∈ L1(Rd) by hypothesis. Therefore, (B.5) becomes∑
k,l∈Z

d

m,n∈Z
d

E{|g[l] g[n]|} |r[k− l] r[m− n]|
∣∣∣ϕ(x

T
− k

)
ϕ
(x
T
−m

)∣∣∣

≤ (1 +Mcf ,h + cn[0])2 (‖r‖�1)2
⎛
⎝ sup

x∈[0, T )d

∑
k∈Zd

∣∣∣ϕ(x
T
− k

)∣∣∣
⎞
⎠2

<∞,

since {r[k]} ∈ �1(Zd) and ϕ satisfies the SR conditions. Therefore, we can
exchange the expectation and the summation in E

{
|QT I{f}(x)|2

}
to get

E
{
|QT I{f}(x)|2

}
=

∑
k,l∈Z

d

m,n∈Z
d

E{g[l] g[n]} r[k− l] r[m− n]ϕ
(x
T
− k

)
ϕ
(x
T
−m

)

=
∑

k,l∈Z
d

m,n∈Z
d

(g + cn)[n− l] r[k− l] r[m− n]ϕ
(x
T
− k

)
ϕ
(x
T
−m

)
,

where (expectation and integration operations can be interchanged due to (B.6))

g[k] =
1
T 2d

(
h
(
− •
T

)
� cf � h

( •
T

))
(kT ).
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Since cf ∈ WL
2 , we have {g[k]} ∈ �2(Zd) from Theorem 3.1 and Corollary

3.1. Therefore, {(r ∗ g ∗ r̄)[k]} ∈ �2(Zd) by Young’s inequality (see Section 3.2
in Chapter 3), where ∗ represents discrete convolution operation. Similarly,
{(r ∗ cn ∗ r̄)[k]} ∈ �2(Zd) because {cn[k]} ∈ �2(Zd).

Thus, we have

E
{
|QT I{f}(x)|2

}
=

∑
k∈Zd

(r ∗ (g + cn) ∗ r̄)[k]

×

⎛
⎝ ∑

m∈Zd

ϕ
(x
T
−m

)
ϕ
(x
T
− k−m

)⎞⎠ ,

which is T -period because of the T -periodicity of the bracketed term on the
r.h.s. Then,∫

[0, T )d

E
{
|QT I{f}(x)|2

} dx
T d

=
∫

[0, T )d

∑
k∈Zd

(r ∗ (g + cn) ∗ r̄)[k] (B.7)

×

⎛
⎝ ∑

m∈Zd

ϕ
(x
T
−m

)
ϕ
(x
T
− k−m

)⎞⎠ dx
T d

.

As ϕ satisfies SR conditions and because {(r∗g∗r̄)[k]}, {(r∗cn∗r̄)[k]} ∈ �2(Zd),
we have (using |xy| ≤ 1

2 (x+ y)2)

∫
[0, T )d

∑
k∈Zd

|(r ∗ (g + c) ∗ r̄)[k]|

⎛
⎝ ∑

m∈Zd

∣∣ϕ ( x
T −m

)∣∣
×

∣∣ϕ ( x
T − k−m

)∣∣
⎞
⎠ dx
T d

≤
∫

[0, 1)d

∑
k∈Zd

(|(r ∗ g ∗ r̄)[k]|+ |(r ∗ cn ∗ r̄)[k]|)

×

⎛
⎝ ∑

m∈Zd

|ϕ(x−m)|
× |ϕ(x− k−m)|

⎞
⎠dx

≤ 1
2

∑
k∈Zd

(|(r ∗ g ∗ r̄)[k]|+ |(r ∗ cn ∗ r̄)[k]|)2

+
1
2

∫
[0, 1)d

∑
k∈Zd

⎛
⎝ ∑

m∈Zd

|ϕ(x−m)|
× |ϕ(x− k−m)|

⎞
⎠2

dx
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≤ 1
2
‖r ∗ g ∗ r̄‖2�2 +

1
2
‖r ∗ cn ∗ r̄‖2�2 +

∑
k∈Zd

|(r ∗ g ∗ r̄)[k]| |(r ∗ cn ∗ r̄)[k]|

+
1
2

∫
[0, 1)d

∑
m∈Z

d

n∈Z
d

|ϕ(x−m)ϕ(x− n)|

⎛
⎝∑

k∈Zd

|ϕ(x− k−m)|
× |ϕ(x− k− n)|

⎞
⎠dx

≤ ‖r ∗ g ∗ r̄‖2�2 + ‖r ∗ cn ∗ r̄‖2�2

+
1
2

∫
[0, 1)d

⎛
⎝ ∑

m∈Zd

|ϕ(x−m)|

⎞
⎠2 ⎛⎝∑

k∈Zd

|ϕ(x− k)|2
⎞
⎠ dx

≤ ‖r ∗ g ∗ r̄‖2�2 + ‖r ∗ cn ∗ r̄‖2�2 +
1
2

⎛
⎝ sup

x∈[0, 1)d

∑
m∈Zd

|ϕ(x−m)|

⎞
⎠4

<∞,

where we have used the following inequality in the last step:

∑
k∈Zd

|ϕ(x− k)|2 ≤

⎛
⎝∑

k∈Zd

|ϕ(x− k)|

⎞
⎠2

.

Therefore, the summation and integration can be exchanged in the r.h.s. of
(B.7) to yield

∫
[0, T )d

E
{
|QT I{f}(x)|2

} dx
T d

=
∑
k∈Zd

(r ∗ (g + cn) ∗ r̄)[k] aϕ[k]

= 〈(r ∗ g ∗ r̄), a〉�2 + 〈(r ∗ cn ∗ r̄), a〉�2 (B.8)

where

aϕ[k] =
∑

m∈Zd

∫
[0, T )d

ϕ
(x
T
−m

)
ϕ
(x
T
− k−m

) dx
T d

=
∫

Rd

ϕ(x)ϕ(x− k) dx.
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Using Parseval’s identity, we write1

〈r ∗ g ∗ r̄, a〉�2 =
T d

(2π)d

∫
[0, 2π

T )d

⎛
⎝ 1
T d

∑
k∈Zd

|ĥ(ωωωT + 2πk)|2 ĉf
(
ωωω +

2π
T

k
)⎞⎠

× |R(ejωωωT )|2
⎛
⎝∑

k∈Zd

|ϕ̂(ωωωT + 2πk)|2
⎞
⎠dωωω.

Simplifying the r.h.s. of the above equation, we obtain

〈r ∗ g ∗ r̄, a〉�2 =
1

(2π)d

∫
Rd

|ĥ(ωωωT )|2 ĉf (ωωω) |R(ejωωωT )|2Aϕ(ωωωT ) dωωω, (B.9)

where Aϕ(ωωω) =
∑
k∈Zd

|ϕ̂(ωωω + 2πk)|2. Using the same technique,1

〈(r ∗ cn ∗ r̄), a〉�2 =
1

(2π)d

∫
[0, 2π)d

Cn(ejωωω) |R(ejωωω)|2
∑
k∈Zd

|ϕ̂(ωωω + 2πk)|2 dωωω

=
1

(2π)d

∫
Rd

Cn(ejωωω) |R(ejωωω)|2 |ϕ̂(ωωω)|2 dωωω. (B.10)

We develop E {f(x)QT I{f}(x)} in a similar fashion to obtain

E {f(x)QT I{f}(x)} =
∑
k∈Zd

r[k]

⎛
⎝ ∑

m∈Zd

(
1
Tdh

(
− •
T

)
� cf

)
(x−mT )

×ϕ
(

x
T − k−m

)
⎞
⎠ ,

which is also T -periodic. Therefore,

∫
[0, T )d

E {f(x)QT I{f}(x)} dx
T d

=
∑
k∈Zd

r[k]
(

1
T d

h
(
− •
T

)
� cf �

1
T d

ϕ
(
− •
T

))
(kT ),

1We exchange the summation and the integral since the integrand is positive.
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which can be written in the Fourier domain using Parseval’s identity as2∫
[0, T )d

E {f(x)QT I{f}(x)} dx
T d

=
T d

(2π)d

∫
[0, 2π

T )d
R∗(ejωωωT )

⎛
⎝∑

k∈Zd

1
Td ĥ

∗(ωωωT + 2πk) ĉf
(
ωωω + 2π

T k
)

× ϕ̂∗(ωωωT + 2πk)

⎞
⎠dωωω,

=
1

(2π)d

∫
Rd

R∗(ejωωωT ) ĥ∗(ωωωT ) ĉf (ωωω) ϕ̂∗(ωωωT ) dωωω. (B.11)

The first term is nothing but

E
{
|f(x)|2

}
= cf (0) =

1
(2π)d

∫
Rd

ĉf (ωωω) dωωω. (B.12)

Therefore, combining (B.8) to (B.12), we obtain the desired result:

εf,noisy(T ) =
1
T d

∫
[0, T )d

E
{
|f(x)−QT I{f}(x)|2

}
dx

=
1

(2π)d

∫
Rd

[
Eh,ϕ(ωωωT ) ĉf (ωωω) + Cn(ejωωω) |R(ejωωω)|2 |ϕ̂(ωωω)|2

]
dωωω.

2The summation and the integration operations can be exchanged sinceZ
Rd
|R(ejωωωT )| |ĥ∗(ωωωT )| |ĉf (ωωω)| |ϕ̂∗(ωωωT )|dωωω ≤ ‖r‖	1 ‖h‖L1

1

2
(‖cf‖2L2

+ ‖ϕ‖2L2
) <∞.



Appendix C

Poisson-Likelihood-Based
Regularized Interpolation

Here, we present an algorithm for regularization interpolation when the data
fidelity is governed by the Poisson likelihood LPoisson. This always leads to a
non-linear scheme irrespective of whether the regularization is quadratic or not
(see Table 4.1 in Chapter 4). In the case of non-quadratic regularization, the
cost to be minimized is

JPLNQ{g, c} = −
∑
k∈Zd

g[k] log((c ∗ b)[k]) +
∑
k∈Zd

(c ∗ b)[k] + λΨNQ{c}. (C.1)

Since JPLNQ contains a term of the form log((c ∗ b)[k]), it is imperative that
(c ∗ b)[k] > 0, ∀ k ∈ Z

d. Therefore, whenever we use LPoisson, we restrict
ourselves to basis functions that satisfy b[k] = ϕ(k) ≥ 0 ∀ k ∈ Z

d (e.g., integer-
degree polynomial B-splines). Then, the above constraint simply boils down to
ensuring the positivity of {c[k]}.

Typically, such estimations based on Poisson likelihood are performed in
an expectation-maximization (EM) framework [97, 98, 101]. However, it was
demonstrated in [96] that every EM algorithm is a particular case of the MM
approach. Therefore, we propose to use the MM principle described by (4.32)
for minimizing JPLNQ .

To construct the auxiliary cost at the current estimate {ct}, we use the

191
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convexity of log
(

1
•
)

[96, Equation (10)]) to write

−
∑
k∈Zd

g[k] log((c ∗ b)[k]) ≤ −
∑

k,m∈Zd

g[k]
b[k−m] ct[m]

(ct ∗ b)[k]
log

(
(ct ∗ b)[k]

c[m]
ct[m]

)
.

Similarly, Equation (4.34) and the convexity of (•)2 [96, Equation (9)]) result
in

λΨNQ{c} ≤ λ
p

2

dL∑
m=1

∑
k,m∈Zd

|χt[k]|p−2α[k−m]

×
(
ηm[k−m]
α[k−m]

(c[m]− ct[m]) + (ct ∗ ηm)[k]
)2

+ Aχt
,

where {α[k]}k∈Zd are constants such that

α[k] = 0, if ηm[k] = 0,
α[k] > 0, if ηm[k] �= 0,

and ∑
k∈Zd

α[k] = 1.

After some algebraic manipulations, we obtain

JPLNQ{g, c} ≤
∑

m∈Z
d

JAUX{g, c|ct,m}, (C.2)

where JAUX{g, c|ct,m} is the decoupled auxiliary cost that depends only on
c[m]:

JAUX{g, c|ct,m} = − log(c[m]) (ct[m]A1m)

+ pλ c[m]
(
c[m]A2m

2
− ct[m]A2m +A3m +

Ab
pλ

)
+ A4m.

The quantity Ab =
∑
k∈Zd

b[k] > 0 is a constant independent of {ct[k]} while the
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{A•m}m∈Zd depend on {ct[k]} and are given by

A1m = (b̄ ∗ wt)[m], (C.3)

A2m =
dL∑
m=1

(μ̄m ∗ |χt|p−2)[m], (C.4)

A3m =
dL∑
m=1

∑
k∈Zd

|χt|p−2[k] (ct ∗ ηm)[k] ηm[m− k], (C.5)

A4m = −ct[m]
∑
k∈Zd

b[k−m]wt[k] log
(

(ct ∗ b)[k]
ct[m]

)
+Aχt

+ ct[m](ct[m]A2m −A3m) +A3m, (C.6)

where wt[k] =
g[k]

(ct ∗ b)[k]
and μm[k] =

η2
m[k]
α[k]

.

Then, minimizing JPLNQ{g, c} simply amounts to minimizing each of the
individual JAUX{g, c|ct,m} which is accomplished by setting their derivative
with respect to c[m] to zero. The solution is given by

c[m] =
1

2λ pA2m

(
−γ +

√
γ2 + 4λ p ct[m]A1mA2m

)
, (C.7)

where γ = λ p (A3m−ct[m]A2m)+Ab. Since, the sequences {b[k]} and {χ[k]} are
non-negative and because {g[k]} represents the data counts under the Poisson
noise model, we have that A1m > 0 and A2m > 0 whenever ct[m]|m∈Zd > 0.
Thus, the solution given by (C.7) is always positive. Based on (C.2)-(C.7), we
present Algorithm C.1 for the minimization of JPLNQ .

In the case of quadratic regularization, we have that

ΨQ{c} = 〈c, q ∗ c〉�2 =
dL∑
m=1

∥∥∥c ∗ qm 1
2

∥∥∥2

�2
, (C.8)

where qm 1
2

is specified via its Fourier transformQm 1
2
(ejωωω) =

√
Qm(ejωωω), wherein

Qm(ejωωω) is the Fourier transform of qm. Comparing (4.26), (C.1) and (C.8), we
see that Algorithm C.1 can be applied to this case too by setting p = 2 and
replacing {ηm[k]} by

{
qm 1

2
[k]

}
in (C.4) and (C.5).
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Algorithm C.1. MM algorithm for minimizing JPLNQ for a given λ and p

(1) Precompute Ab and {μm[k]}

(2) Initial estimate = {c0[k]}k∈Zd ; t = 0

Repeat Steps 3 to 5 until Stop Criterion is met

(3) Update constants {A1m}m∈Zd , {A2m}m∈Zd , {A3m}m∈Zd using (C.3)-
(C.5)

(4) Compute {ct+1[k]}k∈Zd using (C.7)

(5) Set t = t+ 1



Appendix D

Risk Estimation

D.1 Proof of Unbiasedness of SURE

Here, we present a proof of Theorem 5.1 in Chapter 5. We start from the l.h.s.
of (5.6) and expand it to get

Eb

{
1
N
‖x− fλλλ(y)‖2

}
= Eb

{
1
N
‖y − b− fλλλ(y)‖2

}

= Eb

{
1
N
‖y − fλλλ(y)‖2

}
− 2Eb

{
1
N

bT(y − fλλλ(y))
}

+Eb

{
1
N
‖b‖2

}

= Eb

{
1
N
‖y − fλλλ(y)‖2

}
+ 2Eb

{
1
N

bT fλλλ(y)
}
− σ2.

We now write the second term on the r.h.s. of the above equation explicitly as

Eb

{
bT fλλλ(y)

}
=
∫

RN

bT fλλλ(y)℘G(b) db,

where

℘G(b) =
(

1
2πσ2

)N
2

exp
(
− 1

2σ2
‖b‖2

)
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is the probability density function of the Gaussian random variable b. An
interesting property1 of ℘G(b) is that

b℘G(b) = −σ2∇b℘G(b), (D.1)

where ∇b℘G(b) is the gradient of ℘G(b) with respect to b. Therefore, we have

Eb

{
bT fλλλ(y)

}
= −σ2

∫
RN

(∇b℘G(b))T fλλλ(y) db.

Performing integration by parts for each component of the gradient, we get

−σ2

∫
RN

(∇b℘G(b))T fλλλ(y) db = σ2

∫
RN

℘G(b)) divb{fλλλ(y)}db,

where we have made use of the fact that lim
|bk|→∞

℘G(b) fλλλ(y) = 0 whenever

Eb

{∣∣∣∣∂fλλλk(y)
∂yk

∣∣∣∣
}
<∞, k = 1, 2, · · · , N [131,139].

Keeping in mind that divb{•} = divy{•} for the data model in (5.1), we
have

σ2

∫
RN

℘G(b)) divb{fλλλ(y)}db = σ2Eb{divb{fλλλ(y)}} = σ2Eb{divy{fλλλ(y)}.

Thus, we obtain

Eb

{
1
N

bT fλλλ(y)
}

=
σ2

N
Eb{divy{fλλλ(y)},

which completes the result.

D.2 Proof of Unbiasedness of the New URE

Here, we present a proof of Theorem 5.2. Again, we start from the MSE and
use the fact that fλλλ(y) = HTf̄λλλ(y) to get

Ey

{
1
N
‖x− fλλλ(y)‖2

}
=

1
N
‖x‖2 + Ey

{
1
N
‖fλλλ(y)‖2

}
− 2
N
Ey

{
xTHT f̄λλλ(y)

}
.

1This is exactly what we meant by exploiting the statistics of noise for risk estimation at
the beginning of Chapter 5. This property is the multidimensional version of the well-known
result in 1-D: For ℘G (b) = (

√
2πσ2)−1 exp(−(2σ2)−1 b2), we have b ℘G (b) = −σ2℘′

G
(b).
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We concentrate on the last term in the r.h.s. of the above equation:

Ey

{
xTHT f̄λλλ(y)

}
=

∫
RN

xTHT f̄λλλ(y)℘PG(y) dy

=
N∑
l=1

∫
RN

(Hx)l f̄λλλl(y)℘PG(y) dy, (D.2)

where ℘PG(y) is the (Poisson-Gaussian mixture2) probability density function
of y given by

℘PG(y) = (℘P � ℘G)(y),

where ℘P and ℘G are the probability densities corresponding to pure-Poisson
and pure-Gaussian components (in accordance with the data model in Equation
(5.14)), respectively:

℘P(•) =
∑

k∈Z
d
+

S{0}
exp(−α(Hx))

(αHx)k

k!︸ ︷︷ ︸
bP [k]

δ(• − αk),

℘G(•) =
(

1
2πσ2

)N
2

exp
(
− 1

2σ2
‖ • −μ1‖2

)
,

where Z
d
+ = {k ∈ Z

d : ki ≥ 1, i = 1, 2, . . . , d}, δ(•) is the Dirac-distribution,
1 is a column vector of 1’s and

exp(−α(Hx)) =
N∏
i=1

exp(−α(Hx)i),

(αHx)k =
N∏
i=1

(α)ki (Hx)ki
i ,

k! =
N∏
i=1

ki! ,

2In order to get ℘PG (y) we use the property that the probability density function of a sum
of two independent random variables is equal to the convolution of the individual probability
densities of the two random variables, respectively.
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where (Hx)i represents the i-th component of the vector Hx. Substituting for
℘PG(y) in (D.2), and manipulating the integrand, we have

(Hx)l f̄λλλl(y)℘PG(y)

=
exp(−(αHx))

α
f̄λλλl(y)

×

⎡
⎢⎣
⎛
⎜⎝ ∑

k∈Z
d
+

S{0}

N∏
i=1
i�=l

(αHx)ki
i

ki!
(αHx)kl+1

l

kl!
δ(• − αk)

⎞
⎟⎠ � ℘G

⎤
⎥⎦ (y)

=
1
α

f̄λλλl(y)

⎡
⎣
⎛
⎝ ∑

k∈Z
d
+

S{0}
kl bP [k] δ(• − αk + αel)

⎞
⎠ � ℘G

⎤
⎦ (y)

=
1
α

f̄λλλl(y)

⎡
⎣
⎛
⎝ ∑

k∈Z
d
+

S{0}
kl bP [k] δ(• − αk)

⎞
⎠ � ℘G

⎤
⎦ (y + αel),

where el is a column vector whose components are zero except for the l-th one
which is unity. Therefore, (D.2) becomes

Ey

{
xTHT f̄λλλ(y)

}
=

1
α

N∑
l=1

∫
RN

f̄λλλl(y)

⎡
⎣
⎛
⎝ ∑

k∈Z
d
+

S{0}
kl bP [k] δ(• − αk)

⎞
⎠ � ℘G

⎤
⎦ (y + αel) dy

=
1
α

N∑
l=1

∫
RN

ḡλλλl(y)

⎡
⎣
⎛
⎝ ∑

k∈Z
d
+

S{0}
kl bP [k] δ(• − αk)

⎞
⎠ � ℘G

⎤
⎦ (y) dy,

where ḡλλλ,l(y) = f̄λλλ,l(y−αel) corresponds to the Poisson contribution to the risk
estimate since we have primarily manipulated the Poisson part of the density
℘PG .

Adding and subtracting (yl − μ) inside the innermost brackets on the r.h.s.
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of the above equation, we get

Ey

{
xTHT f̄λλλ(y)

}
= − 1

α

N∑
l=1

∫
RN

ḡλλλl(y)

⎡
⎣
⎛
⎝ ∑

k∈Z
d
+

S{0}
(yl − kl − μ) bP [k] δ(• − αk)

⎞
⎠ � ℘G

⎤
⎦ (y) dy

+
1
α

N∑
l=1

∫
RN

ḡλλλl(y) (yl − μ)

⎡
⎢⎢⎢⎢⎢⎢⎣
⎛
⎝ ∑

k∈Z
d
+

S{0}
bP [k] δ(• − αk)

⎞
⎠

︸ ︷︷ ︸
℘P

�℘G

⎤
⎥⎥⎥⎥⎥⎥⎦ (y) dy

= +
σ2

α

N∑
l=1

∫
RN

ḡλλλl(y)
∂(℘P � ℘G)(y)

∂yl
dy +

1
α
Ey{(y − μ1)Tḡλλλ(y)}, (D.3)

where we have made use of the following equality that is based on differentia-
bility property of ℘G :

⎡
⎣
⎛
⎝ ∑

k∈Z
d
+

S{0}
(yl − kl − μ) bP [k] δ(• − αk)

⎞
⎠ � ℘G

⎤
⎦ (y)

=
∑

k∈Z
d
+

S{0}
(yl − kl − μ) bP [k]℘G(y − αk)

= −σ2
∑

k∈Z
d
+

S{0}
bP [k]

∂℘G(y − αk)
∂yl

(similar to (D.1))

= −σ2 ∂(℘P � ℘G)(y)
∂yl

.

Thus, in (D.3), the first term on the r.h.s. is the contribution of the Gaussian
part of ℘PG since we make use of the differentiability property of ℘G to obtain
it.

Performing, integration by parts and using the hypothesis

Ey

{∣∣∣∣∂ḡλλλk(y)
∂yk

∣∣∣∣
}

= Ey

{∣∣∣∣∂ f̄λλλk(y)
∂yk

∣∣∣∣
}
<∞,
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for k = 1, 2, · · · , N [131,139], the first term on the r.h.s. of (D.3) becomes

σ2

α

N∑
l=1

∫
RN

ḡλλλl(y)
∂(℘P � ℘G)(y)

∂yl
dy = −σ

2

α

N∑
l=1

∫
RN

∂ḡλλλl(y)
∂yl

(℘P � ℘G)(y) dy

= −σ
2

α
Ey{divy{ḡλλλ(y)}},

so that

Ey

{
xTHT f̄λλλ(y)

}
= −σ

2

α
Ey{divy{ḡλλλ(y)}}+

1
α
Ey{(y − μ1)Tḡλλλ(y)},

which completes the proof.



Appendix E

Differentiability and
Monte-Carlo Divergence
Estimation

Here, we elaborate on the solution to the differentiability issue associated with
the Monte-Carlo divergence estimation proposed (in Theorem 6.1) in Chapter
6. Firstly, we verify the validity of the Taylor expansion-based argumentation
of Theorem 6.1 for algorithms like total-variation denoising (TVD). Following
that, we give a proof of the second part of Theorem 6.1 which deals with a
weaker hypothesis (using tempered distributions) of the problem.

E.1 Verification of Taylor Expansion-Based Hy-
pothesis

In Chapter 6, we considered the discrete-domain formulation for total-variation
denoising (TVD) where we minimize the cost

JTV(u) = ‖y − u‖2 + λTV{u}, (E.1)

where TV{u} =
∑
k

√
(Dhu)[k]2 + (Dvu)[k]2 is the discrete 2D total variation

norm and Dh and Dv are matrices corresponding to the first order finite differ-
ence in the horizontal and vertical directions, respectively. We will concentrate
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only on the bounded-optimization (half-quadratic) algorithm developed in [158].
However, since a typical implementation of TVD will always involve finite dif-
ferences in place of continuous domain derivatives the analysis can be easily
extended to other algorithms including the variant in [158] and those based on
Euler-Lagrange equations. We show that the bounded-optimization algorithm
for TVD admits first and second order derivatives with respect to the data y and
therefore satisfies the stronger hypothesis (Taylor expansion-based) of Theorem
6.1.

The TVD algorithm is described by the following recursive equation [158]:
The signal estimate at iteration k + 1 denoted by the N × 1 vector fk+1

λλλ is
obtained by solving the linear system

Mkfk+1
λλλ = y, (E.2)

where Mk is the N ×N system matrix at iteration k given by

Mk = I + DT
hΛkDh + DT

v ΛkDv, (E.3)

and Λk = diag{wki ; i = 1, 2, . . . , N}, with

wki =
λ

2
[
(Dhfkλλλ )2i + (Dvfkλλλ )2i + κ

]− 1
2 , (E.4)

where (D∗fkλλλ )i is the i-th element of the vector D∗fkλλλ and κ > 0 is a small
constant that prevents the denominator of wki going to zero (or else the algorithm
fλλλ itself may become numerically unstable).

Differentiating (E.2) with respect to y, we obtain

∂Mk

∂y
fk+1
λλλ + Mk ∂f

k+1
λλλ

∂y︸ ︷︷ ︸
Jk+1
fλλλ

= I, (E.5)

where Jk+1
fλλλ

is the Jacobian matrix of fk+1
λλλ at iteration k+1. If Mk

mn represents
the mn-th element of Mk and ym and fkm represent the m-th elements of y and
fkλλλ , respectively, then using Einstein’s summation notation (repeated indices will
be summed over unless they appear on both sides of an equation) (E.5) can be
written as

∂Mk
mn

∂yp
fk+1
n +Mk

mn

∂fk+1
n

∂yp
= δmp, (E.6)
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where, for example, the index n is summer over in both the terms on the l.h.s.
of the above equation.

Differentiating (E.6) a second time, we obtain

∂2Mk
mn

∂yl∂yp
fk+1
n +

∂Mk
mn

∂yp

∂fk+1
n

∂yl
+
∂Mk

mn

∂yl

∂fk+1
n

∂yp
+Mk

mn

∂fk+1
n

∂yl∂yp
= 0. (E.7)

It is clear that the N ×N ×N tensor r =
{
∂fk+1

n

∂yl∂yp

}N
n,l,p=1

is the desired second

derivative in the Taylor expansion in Theorem 6.1. We will show that for a
given (l, p), all the terms in (E.7) are well-defined, so that the N × 1 vector
rlp = ∂fλλλ

k+1

∂yl∂yp
can be obtained by solving a linear system.

Firstly, we analyze ∂Mk
mn

∂yp
which is given by

∂Mk
mn

∂yp
=
(
Dhqm

Dhqn
+Dvqm

Dvqn

) ∂wkq
∂yp

, (E.8)

with

∂wkq
∂yp

= −
(

2
λ

)2

(wkq )
3
(
(Dhfkλλλ )qDhqi

+ (Dvfkλλλ )qDvqi

) ∂fki
∂yp

, (E.9)

where the index q is not summed over on the r.h.s. of the above equation.
Similarly,

∂2Mk
mn

∂yl∂yp
=
(
Dhqm

Dhqn
+Dvqm

Dvqn

) ∂2wkq
∂yl∂yp

, (E.10)

where

∂2wkq
∂yl∂yp

= −
(

2
λ

)2

(wkq )
3 (E.11)

×

⎡
⎢⎢⎣

1
3

(
λ
2

)2
(wkq )

−4 ∂wk
q

∂yl

∂wk
q

∂yp

−
(
(Dhfkλλλ )qDhqi

Dhqj
+ (Dvfkλλλ )qDvqi

Dvqj

) ∂fk
i

∂yl

∂fk
j

∂yp

−
(
(Dhfkλλλ )qDhqi

+ (Dvfkλλλ )qDvqi

) ∂2fk
i

∂yl∂yp

⎤
⎥⎥⎦ .

The analysis is then simply as follows:
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1. In principle, if we start with a well-defined initial estimate f0
λλλ, the algo-

rithm described by equations (E.2)-(E.4) is designed so that Mk and fk+1
λλλ

are well-defined for all k ≥ 1. Moreover, Mk is a full-rank matrix and
therefore has a stable inverse (Mk)−1.

2. It should be noted all the elements of Mk are differentiable because (E.4)
is a true function of y. Thus, all the derivatives involved in this analy-
sis are in the true sense of differentiation and not in the weak sense of
distributions.

3. Then, (E.8) and (E.9) ensure that ∂M
k
mn

∂yp
is well-defined ∀m,n, p = 1, 2, . . . , N ,

provided Λk is well-conditioned which is the case as long as wkq < +∞,
∀ q = 1, 2, . . . , N , and k ≥ 1. This can be ensured numerically. Therefore,

for a fixed p, a well-defined N × 1 vector ∂fk+1
λλλ

∂yp
is obtained from (E.6) as

∂fk+1
λλλ

∂yp
= (Mk)−1(ep − Skpf

k+1
λλλ ), (E.12)

where Skp is a N × N matrix such that (Skp)mn = ∂Mk
mn

∂yp
, ep is a N × 1

column vector whose elements are all zeros except the p-th one which is
unity.

4. While (E.10) and (E.11) ensure that ∂2Mk
mn

∂yl∂yp
is well-defined ∀ m,n, l, p =

1, 2, . . . , N , equations (E.8) and (E.12) ensure that the second and third
terms in the l.h.s. of (E.7) are well-defined. Thus, we see that for a given
(l, p) a well-defined N × 1 vector ∂fλλλ

k+1

∂yl∂yp
is obtained from (E.7) as

∂fλλλ
k+1

∂yl∂yp
= −(Mk)−1

(
Pk
lpf

k+1
λλλ + Skp

∂fk+1
λλλ

∂yp
+ Skl

∂fk+1
λλλ

∂yp

)
, (E.13)

where Pk
lp is a N ×N matrix such that (Pk

lp)mn = ∂2Mk
mn

∂yl∂yp
.

E.2 Divergence Estimation Under a Weaker Hy-
pothesis

We restate the second part of Theorem 6.1 in Chapter 6 which deals with the
Monte-Carlo divergence estimation under the weaker hypothesis of tempered
distributions and then give a formal proof of this result.
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Theorem E.1. Let b′ be a zero-mean unit variance i.i.d random vector. As-
sume that ∃ n0 > 1 and C0 > 0 such that

‖fλλλ(y)‖ ≤ C0(1 + ‖y‖n0), (E.14)

that is, fλλλ is tempered. Then,

divy{fλλλ(y)} = lim
ε→0

Eb′

{
b′T

(
fλλλ(y + εb′)− fλλλ(y)

ε

)}

in the weak-sense of tempered distributions.

Proof. Let ψ ∈ S be a rapidly decaying (test) function that is infinitely differ-
entiable. We have to show that

〈div{fλλλ(y)}, ψ(y)〉 = lim
ε→0

〈
Eb′

{
b′T

(
fλλλ(y + εb′)− fλλλ(y)

ε

)}
, ψ(y)

〉
. (E.15)

We note that the l.h.s. of (E.15) can be expressed as (from theory of distribu-
tions)

〈div{fλλλ(y)}, ψ(y)〉 = −〈fλλλ(y),∇ψ(y)〉. (E.16)

The r.h.s. of (E.15) involves the double integration

I1(ε) =
∫
y

dyψ(y)
∫
b′

b′T
(

fλλλ(y + εb′)− fλλλ(y)
ε

)
℘(b′) db′,

where ℘(b′) represents the probability density function of b′. The order of the
integration can be swapped as soon as (Fubini’s theorem)

I2(ε) =
∫
y

∫
b′
|ψ(y)|

∣∣∣∣b′T
(

fλλλ(y + εb′)− fλλλ(y)
ε

)∣∣∣∣℘(b′) db′ dy < +∞.

Using Triangle inequality, we bound I2(ε) as

I2(ε) ≤
J(ε) + J(0)

ε
,

where

J(ε) =
∫
y

∫
b′
|ψ(y)|

∣∣b′Tfλλλ(y + εb′)
∣∣℘(b′) db′ dy.
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Using Cauchy-Schwarz inequality and the fact that fλλλ is tempered (cf. Equation
(E.14)), we get

J(ε) ≤
∫
y

∫
b′
|ψ(y)| ‖b′‖C0(1 + ‖y + εb′‖n0)℘(b′) db′ dy.

Using the convexity property of the function (•)n0 for n0 > 1, we get

J(ε) ≤
∫
y

∫
b′
|ψ(y)| ‖b′‖C0(1 + 2n0−1‖y‖n0 + 2n0−1‖εb′‖n0)℘(b′) db′ dy

= C0

(∫
y

|ψ(y)| dy
)(∫

b′
‖b′‖℘(b′) db′

)

+C02n0−1

(∫
y

|ψ(y)| ‖y‖n0dy
)(∫

b′
‖b′‖℘(b′) db′

)

+C02n0−1εn0

(∫
y

|ψ(y)|dy
)(∫

b′
‖b′‖n0+1 ℘(b′) db′

)
< +∞,

under the hypothesis that Eb′{‖b′‖n0} < +∞, ∀ n0 ≥ 1. The ones involving
ψ are also finite because ψ is a rapidly decaying function with finite support.
Thus, J(ε) <∞, ∀ ε ≥ 0. Hence, we interchange the integrals (with appropriate
change of variables) to get

I1(ε) =
∫
b′
℘(b′) db′

∫
y

ψ(y)b′T
(

fλλλ(y + εb′)− fλλλ(y)
ε

)
dy

=
∫
b′
℘(b′) db′

∫
y

b′Tfλλλ(y)
(
ψ(y − εb′)− ψ(y)

ε

)
dy.

Since ψ is infinitely differentiable, we apply Taylor’s theorem [166] to ψ(y−εb′)
and obtain

ψ(y − εb′)− ψ(y)
ε

= −
∫ 1

0

b′T∇ψ(y − t εb′) dt.

Therefore,

I1(ε) = −
∫
b′
℘(b′)db′

∫
y

b′Tfλλλ(y)
∫ 1

0

b′T∇ψ(y − t εb′) dtdy.
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We want to let ε tend to 0 in the above expression. This is accomplished by the
application of Lebesgue’s dominated convergence theorem. But firstly, we must
bound the integrand

z(y,b′, t, ε) = −℘(b′) b′Tfλλλ(y) b′T∇ψ(y − t εb′) β0(t),

by an integrable function g(y,b′, t), where

β0(t) =
{

1, if t ∈ (0, 1)
0, otherwise .

To do that, we start with |z(y,b′, t, ε)| and apply Cauchy-Schwarz inequality to
obtain

0 ≤ |z(y,b′, t, ε)| ≤ ℘(b′) ‖b′‖2 ‖∇ψ(y − t εb′)‖β0(t)︸ ︷︷ ︸
def
= g0(y,b′,t,ε)

‖fλλλ(y)‖.

Now, by using convexity of (•)n1 for n1 ≥ 1, we have

1 + ‖y‖n1 = 1 + ‖y − εtb′ + εtb′‖n1

≤ 1 + 2n1−1‖y − εtb′‖n1 + 2n1−1‖εtb′‖n1 .

Then, for ε ≤ 1,

(1 + ‖y‖n1) g0(y,b′, t, ε) ≤ (1 + 2n1−1‖y − εtb′‖n1)
× ‖∇ψ(y − t εb′)‖℘(b′) ‖b′‖2β0(t)

+ 2n1−1‖∇ψ(y − t εb′)‖℘(b′) ‖b′‖n1+2 tn1β0(t)

≤ Cψ,1 ℘(b′) ‖b′‖2β0(t) + Cψ,2 ℘(b′) ‖b′‖n1+2 tn1β0(t)︸ ︷︷ ︸
def
= g1(b′,t)

,

where Cψ,1 = supy{(1+2n1−1‖y‖n1) ‖∇ψ(y)‖} and Cψ,2 = 2n1−1 supy{‖∇ψ(y)‖}.
Since Eb′{‖b′‖n1+2} < +∞, it is clear that∫

b′

∫
t

g1(b′, t) db′ dt < +∞. (E.17)
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Therefore, choosing n1 > n0 +N , where N is the dimension of y, and ∀ ε ≤ 1
we see that

|z(y,b′, t, ε)| ≤ g0(y,b′, t, ε) ‖fλλλ(y)‖

≤ g1(b′, t)
‖fλλλ(y)‖

1 + ‖y‖n1

≤ C0 g1(b′, t)
1 + ‖y‖n0

1 + ‖y‖n1︸ ︷︷ ︸
def
= g(y,b′,t)

. (E.18)

Then, we notice that

∫
y

1 + ‖y‖n0

1 + ‖y‖n1
dy =

∑
k∈ZN

∫
[0, 1)N

1 + ‖y + k‖n0

1 + ‖y + k‖n1
dy

=
∫

[0, 1)N

( ∑
k∈ZN

1 + ‖y + k‖n0

1 + ‖y + k‖n1

)
dy (Fubini)

≤
∑

k∈ZN

1 + ‖1 + k‖n0

1 + ‖k‖n1
(1 is a column vector of 1s)

≤
∑

k∈ZN

1 + 2n0−1N
n0
2 + 2n0−1‖k‖n0

1 + ‖k‖n1

(using convexity of (•)n0)

≤ (1 + 2n0−1N
n0
2 )

⎛
⎜⎜⎜⎜⎜⎝1 +

∑
k∈ZN\{0}

1
‖k‖n1︸ ︷︷ ︸

<+∞

⎞
⎟⎟⎟⎟⎟⎠

+ 2n0−1
∑

k∈ZN\{0}

1
‖k‖n1−n0︸ ︷︷ ︸

<+∞
< +∞, (E.19)
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whenever n1 > n0 +N . Finally, because of (E.17) and (E.19), we find∫
y

∫
b′

∫
t

g(y,b′, t) dy db′ dt =
(∫

b′

∫
t

g(y,b′, t) db′ dt
)

×
(∫

y

1 + ‖y‖n0

1 + ‖y‖n1
dy

)
< +∞. (E.20)

Therefore, z qualifies for both Fubini’s and Lebesgue’s Dominant Convergence
theorems (cf. Equations (E.18) and (E.20)). Hence, applying the limit with
appropriate change of integrals, we get the desired result:

lim
ε→0

I1(ε) = − lim
ε→0

∫
b′
℘(b′) db′

∫
y

b′Tfλλλ(y)
∫ 1

0

b′T∇ψ(y − t εb′) dtdy

= −
∫
b′
℘(b′) db′

∫
y

b′Tfλλλ(y)
∫ 1

0

lim
ε→0

b′T∇ψ(y − t εb′) dtdy

= −
∫
y

fT
λλλ (y)

(∫
b′
℘(b′)b′b′T db′

)
︸ ︷︷ ︸

=I

∇ψ(y) dy

= −〈fλλλ(y),∇ψ(y)〉 = 〈div{fλλλ(y)}, ψ(y)〉 (from (E.16)) .

�
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