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Regularized Interpolation for Noisy Images
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Abstract—Interpolation is the means by which a continuously
defined model is fit to discrete data samples. When the data samples
are exempt of noise, it seems desirable to build the model by fitting
them exactly. In medical imaging, where quality is of paramount
importance, this ideal situation unfortunately does not occur. In
this paper, we propose a scheme that improves on the quality by
specifying a tradeoff between fidelity to the data and robustness to
the noise. We resort to variational principles, which allow us to im-
pose smoothness constraints on the model for tackling noisy data.
Based on shift-, rotation-, and scale-invariant requirements on the
model, we show that the L ,-norm of an appropriate vector deriva-
tive is the most suitable choice of regularization for this purpose. In
addition to Tikhonov-like quadratic regularization, this includes
edge-preserving total-variation-like (TV) regularization. We give
algorithms to recover the continuously defined model from noisy
samples and also provide a data-driven scheme to determine the
optimal amount of regularization. We validate our method with
numerical examples where we demonstrate its superiority over an
exact fit as well as the benefit of TV-like nonquadratic regulariza-
tion over Tikhonov-like quadratic regularization.

Index Terms—Interpolation, regularization, regularization pa-
rameter, splines, Tikhonov functional, total-variation functional.

I. INTRODUCTION

NTERPOLATION is an integral part of many image-pro-
I cessing and biomedical algorithms [1]-[6]. It is employed
in registration for performing geometric transformation (e.g.,
subpixel translation and rotation) of discrete data [7]—[9]. In vol-
umetric imaging, it is used for rescaling 3-D volumes [10]. Fit-
ting 3-D data on geometric shapes is also best done by taking the
interpolation model into consideration [11]. Other applications
where it plays a vital role include volume rendering for visual-
ization of scalar fields [12]-[14], evaluation of image gradients
[15], [16], and texture mapping where a 2-D image is painted on
a 3-D surface [17], [18]. Recently, it has also been used for mod-
eling diffusion tensors in magnetic resonance imaging (MRI)
[19].
Interpolation can be stated as the problem of fitting discrete
data samples with a continuously defined model that is usu-

Manuscript received September 18, 2009; revised November 24, 2009; ac-
cepted December 02, 2009. Current version published February 03, 2010. This
work was supported by the Swiss National Science Foundation under Grant
200020-109415 and in part under Fellowship PBELP2-125446. Asterisk indi-
cates corresponding author.

*S. Ramani is with the Department of Electrical Engineering and Com-
puter Science, University of Michigan, Ann Arbor, MI 48109 USA (e-mail:
sramani @umich.edu).

P. Thévenaz and M. Unser are with the Biomedical Imaging Group, Ecole
polytechnique fédérale de Lausanne, CH-1015 Lausanne, Switzerland (e-mail:
philippe.thevenaz @epfl.ch, michael.unser @epfl.ch).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMI1.2009.2038576

ally represented as a weighted sum of shifted basis functions
[4], [5]. The standard approach is to specify the model so as
to fit the data exactly [6]. When the basis functions take a unit
value at the origin and are zero at all other integer locations,
the weights are given by the data themselves. Otherwise, they
are determined by imposing an exact-fitting requirement [20].
In biomedical imaging applications, interpolation is most often
carried out by an exact fit to the data. Although, this is mean-
ingful for a noise-free scenario, it is less appropriate when data
samples are corrupted by noise since the model is forced to fit
noise also.

To tackle noisy data, a desirable alternative is to enforce
“smoothness” properties on the continuous-domain solution
by means of regularization. Various authors have formulated
interpolation as a variational problem to accommodate reg-
ularization constraints [21]-[29]. The resulting scheme is
often termed regularized interpolation where the objective
is to obtain the solution by minimizing a cost criterion that
jointly measures the data-fitting error and the regularity of the
solution. Regularized interpolation techniques can be broadly
classified into digital-domain or analog-domain approaches.
The former refers to the case where the solution is a discrete
entity defined on a grid that is finer than that of the data—these
methods specifically cater to the image-upsampling problem
[21]-[23]. In the latter case, a continuously defined solution—a
smoothing-spline—is obtained by minimizing the Ls-norm
of some scalar derivative of the solution—Tikhonov-like
quadratic regularization—subject to certain data-fitting require-
ments [24]-[29].

In this paper, we concentrate on analog-domain regularized
interpolation and propose to extend smoothing-spline-like ap-
proaches [24]-[29] by considering the use of nonquadratic reg-
ularization—the motivation is to overcome the shortcoming of
Tikhonov-like quadratic regularization which tends to smear im-
portant signal features (e.g., edges in images). We also want
the solution to be invariant to translation, rotation and scaling
of the coordinates. Our first contribution toward these ends is a
theoretical result that states that the L,-norm of an appropriate
vector derivative is the most suitable choice of regularization
with respect to these invariances. This includes edge-preserving
total-variation (TV)-like regularization (p = 1), which we pro-
pose to use as an alternative to quadratic regularization. We con-
sider a shift-invariant signal model and obtain the interpolation
weights by minimizing the L,-norm subject to a data-domain
constraint that measures the statistical infidelity of the solution
to the given data (in terms of a negative log-likelihood function).
We propose to handle the problem in a numerical optimization
framework. We design algorithms based on the majorize—mini-
mize (MM) strategy [30] for performing the corresponding min-
imization, which constitutes our second contribution. Finally,
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we also provide a practical scheme for determining an appro-
priate balance between data-fitting and regularization. We vali-
date our method by carrying out experiments on noisy medical
images and illustrate the superior performance of our method
over standard interpolation. We also numerically justify that the
use of TV-like nonquadratic regularization brings about further
improvement over quadratic regularization.

The paper is organized as follows. In Section II, we briefly
review the standard interpolation technique [20], following
which we present a numerical example in Section II-A to
demonstrate its poor performance when applied to noisy data.
In Section III, we elaborate the proposed regularized interpola-
tion scheme. We first specify the problem mathematically and
provide hypotheses related to the data-fidelity and regulariza-
tion terms. In Section IV, we present algorithms to carry out
the corresponding optimization. We then focus our attention
on spline-based interpolation in Section V. Section VI is dedi-
cated to experimental results where we numerically verify the
superiority of the proposed approach over other methods in the
literature. In Section VII, we provide evidence that the proposed
scheme achieves a reasonable tradeoff between computational
cost and performance improvement and also discuss issues
related to the selection of the regularization parameter. Finally,
we draw our conclusions in Section VIII.

II. STANDARD INTERPOLATION

Standard interpolation is the process of computing a con-
tinuously defined function f;,; which exactly fits an unknown
analog signal fi. at the given sample points! fi,.0(k), k =
(k1,ko, ..., ka) € 7. Typically, fin is constructed for x =

(:1,’1,3927 ... 737(1) € R? as
fint(¥) = Y frrue(K)ine(x — k) ()
keZzZ4

where ;¢ is an interpolating function such that ¢, (0) = 1
and @ine (X)|x=kez4\ {03 = 0. Popular examples of ¢jy are the
linear B-spline [31] and the sinc function which perform linear
and bandlimited interpolation, respectively.

An equivalent formulation of (1) has been provided in [20]
for an arbitrary noninterpolating function ¢ by considering the
integer-shift-invariant model

fune(x) = Y clalp(x —q) ©)

q€eZd

where the coefficients ¢ are determined by solving the set of
linear equations: Vk € Z%, fine(X)|x=x = > qezaclal vk —
q) = firue(k), which ensures perfect fitting of the given sam-
ples. In this paper, we propose to use the shift-invariant model
(2) for our regularized interpolation scheme, but instead of a per-
fect-fit requirement, we are going to specify ¢ based on certain
regularization requirements (see Section III) on the interpola-
tion model in addition to the data-fitting constraint.

'We concentrate on the case of uniformly-spaced samples. Moreover, we use
unit-length sampling step for simplicity.

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 29, NO. 2, FEBRUARY 2010

T T T T T
38H — Rect (Nearest-neighbour)
|| = = - Linear B
36 Cubic

SNR OUT (dB)

A L L L L 1 L L I L I
12 16 20 24 28 32 36 40 44
SNR IN (dB)

1 I
48 52 56 60

Fig. 1. Rotation experiment in the presence of noise: Piecewise-linear inter-
polation performs better than cubic splines at high noise levels (input SNR
< 24 dB), in contradiction with the expected behavior. We show in the inset
the central region of the image which was used for computing SNR.

A. Standard Interpolation in the Presence of Noise

While standard interpolation (exact fitting) is desirable in the
noise-free scenario, it can lead to unfavorable results when ap-
plied on noise-corrupted data. To demonstrate this, we consider
the following experiment: First, we rotate some noise-free input
image by a random angle using an interpolator that provides
high-quality rotation in the noise-free scenario. Then, we add
zero-mean white Gaussian noise of variance o to enforce a
prescribed signal-to-noise ratio (SNR). Finally, we rotate back
the noisy image with nearest-neighbor (using the rect function),
linear, and cubic B-spline based interpolation. We repeat this
for a fixed number of realizations and average the SNR of the
output image over all realizations. We show in Fig. 1 the plot
of the (averaged) SNR of the output image for a range of input
SNRs. We observe that piecewise linear interpolation outper-
forms cubic splines at high noise levels, which contradicts the
noise-free behavior reported in [20].

This can be qualitatively explained as follows: Let gint be
the interpolant constructed from the noise-corrupted samples g.
Since standard interpolation is a linear operation and because
noise is zero-mean and uncorrelated with the image, the mean-
squared error (MSE) between fi 4. and g;,¢ can be expressed
as €2, = €2 + €. Here, €2 is the squared-norm error
between firue and fine Which is completely characterized by
the approximation order L [32], i.e., the ability of the model
to reproduce polynomials of degree n € [0, L — 1]. It is known
from approximation theory [32] that the higher the value of L,
the lower the e?m error. Since Lcoubic > LiLinear > LRect, We
have

2

2
intcubic

INtLinear

<é (3)

€ intrect *

<€
The quantity €2 . is the energy of the continuous-domain
signal that interpolates only the noise component in g (absence
of signal); it can be shown to be proportional to v? = [|in||7,, -
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Computing 12 for the rect (V3. = 1), linear (V7 ... = 2/3),
and cubic B-spline (12, & 0.874), we find that

2

EHOISeLinonr

< 6r210isec“b;c < 6?miseRod : (4)
Therefore, in Fig. 1, at high noise levels (input SNRs in the
range 0-24 dB) where the effect of €2 ;__ is dominant, piecewise
linear interpolation does better than cubic splines because of
(4). At low noise levels (input SNR > 24 dB), €2, becomes
effective and the cubic splines take the lead due to (3). Nearest-
neighbor interpolation has the poorest performance at all noise
levels since both €2, and €2, . are higher for the rect function

noise

than for linear and cubic B-splines.
III. REGULARIZED INTERPOLATION

A. Problem Formulation

When the input data samples are noisy, it is meaningful to
adopt a variational approach to enforce regularity constraints on
the interpolation model to counterbalance the effect of noise. We
develop our method in a penalized-likelihood setting in the spirit
of [33]-[35], where the solution is obtained by minimizing a
cost functional composed of a negative log-likelihood term (also
called the data-fidelity term) £{g, f} and a continuous-space
regularization functional ¥{f}. The log-likelihood measures
in a statistical sense the goodness-of-fit between the samples
{g9k]}xeza and {f(k)}xecza while the regularization penalizes
heavy oscillations in the solution. Mathematically, this is written
as

= argmfiDEA{%f} )

where E is the cost functional given by Ex{g, f} = L{g, f}+
AU{f}, and where A > 0 is the regularization parameter that
governs the tradeoff between goodness-of-fit and smoothness of
. We shall address the problem of selecting an appropriate A in
Section VII-D, and propose a practical scheme that minimizes
the mean-squared error within the given class of solutions.

Before moving on, we argue that the present formulation,
which addresses the signal reconstruction problem globally, is
preferable conceptually to denoising the data first and then per-
forming a standard interpolation, although the latter strategy
may produce competitive results depending on the choice of
the denoising algorithm. The primary argument is statistical: It
can be proved that the minimization of a proper version of (5)
will yield the minimum-mean-squared-error reconstruction of
the signal (under the assumption that the signal is a stationary
Gaussian process), provided that the basis functions are matched
to the regularization operator [27], [29]. More generally, we may
adopt a Bayesian point of view and use (5) to specify the max-
imum a posteriori estimator of the unknown signal, which is
continuously defined. The proposed framework is fairly general
and readily extendable to more complicated situations, where
the data is nonuniformly sampled (and conventional denoising
is not directly applicable). Finally, the proposed signal estima-
tors can be designed to be invariant to scaling and rotation of
the coordinate system, which is obviously only possible if we
formulate the problem in the continuous domain.
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1) Data-Fidelity Term: In the penalized-likelihood frame-
work, we have that £{g, f} = —log(q(g| f)), where ¢ is the
probability density of {g[Kk] }xez« given { f(k)}xecza, or, equiv-
alently, the probability density of the noise in the data. Here,
L{g, f}is always a discrete-domain entity since it measures the
statistical infidelity of the samples of f to the data. We assume
that the noise is statistically independent at different sample lo-
cations. Then, the joint-probability density can be written as
q(g91f) = Ik ax(glk]| f(k)), where gi is the marginal den-
sity, so that L{g, f} = — 32y log(ax(g[K] | f(k))).

In this paper, we deal with two specific instances of
L{g, f}. The first is independent identically distributed (i.i.d.)
zero-mean additive white Gaussian noise (AWGN), where
a(gK] | f(k)) o e F@kl=F&)D* This Jeads to the nega-
tive log-likelihood Lq{g, f} = Y, (g9lk] — f(k))?. From
a signal-processing perspective, the AWGN model is often
preferred for mathematical ease as the quadratic nature of Lq
simplifies the optimization process.

Next, we consider the signal-dependent Poisson model
(as an instance of nonquadratic data-fidelity) that is ap-
propriate for imaging applications such as fluorescence
microscopy [36] and emission tomography [37]. Here,
the sample g[k] represents the detector counts at the kth
pixel and qic(gkl | f(k)) = (g[k]) e T0I(f(k))7IH.
The corresponding negative log-likelihood is given by
Lpoisson{g: f} = Peza(—glkllog(f(k)) + f(k)), where
we have neglected the additive constant log(g[k]!), which is
irrelevant for optimization purposes.

2) Regularization: Most regularization functionals describe
the continuous-space “smoothness” in terms of some derivative
of the solution. For our purpose, we consider a class of multi-
variate regularization functionals that can be written in the form

W)= [ S ix ©

where L is a vector composed of s linear differen-
tial operators L,,,,» = 1,...,s, which measures the
“smoothness” of f at x in terms of the vector-norm
IL{fF}) = V/>on— 1 (L {f}(x))% and where @ is called
the potential function that characterizes the penalty associated
with ||L{f}||. Due to the nonnegativity of ||L{f}||, ® need
only be specified on the set of nonnegative real numbers.

Definition 1: The one-sided potential function ® is said to be
appropriate for the purpose of regularization if it is nonnegative,
strictly increasing and differentiable. ]

This definition is consistent with the minimization in (5) since
we wish to increase the penalty whenever ||L{f}| increases.
In order for (6) to be beneficial for the interpolation problem,
we additionally require that ¥{f} be invariant to translation,
rotation, and dilation. Then, it is guaranteed that the solution
is invariant to such transformations of the given data, thereby
becoming independent of the data-grid. Mathematically, the in-
variance requirements are prescribed as follows: We want the
value of U{ f} to remain unchanged (up to a multiplicative con-
stant) when f is

1) shifted by xq € R? (translation-invariance)

U{f(-=%0)} = ¥{f}; @)
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2) rotated about the origin by an arbitrary angle 6 (rotation-
invariance)

U{f(Re-)} = U{f}; ®

3) dilated by 7 > 0 (scale-invariance)
v {f(2)}=cnuis ©)

where ((7) > 0 is an appropriate scalar that is differen-

tiable with respect to T; its role is to balance the regular-

ization against a change of scale at which it is calculated.
Since W{f} is specified via the vector-norm ||L{f}||, (7)-(9)
necessitates that |L{f}|| be preserved under translation, rota-
tion, and dilation of f, up to the Lebesgue measure in the in-
tegral (6). This curtails the choice of L to those that are shift-,
rotation-, and scale-invariant in nature.

Definition 2: The vector-differential operator L is said

to be a shift-, rotation-, and scale-invariant operator if
Vx € R?, ||L{f}(x)|| commutes with translation

IL{f(- = x0)} ()| = [L{f}(x = %0)[| Vxo €R? (10)
with rotation
IL{f(Ro-) }(x)|| = IL{f}(Rex)|| VO €0, 2m) (11

and with dilation

o @l = fun ()] w0

where p(-) > 0 is a differentiable function that captures the
response of L to a scaling operation. |

Interestingly, common multivariate differential opera-
tors such as the gradient (L = V) and the Laplacian
(L = A) turn out to be shift-, rotation-, and scale-in-
variant in nature. In the case of the gradient operator, we
have L, = (9)/(0xm), m = 1,2,...,d. Obviously, the
relation (9/(x/7))/(@) = 7= OF(x))/ (D) e/~
implies that the response of V to the dilation operation
is p(r) = 7! Similarly, for the case of the Laplacian
L=A=YX"%_(0%/(0x2) (scalar operator), we see that
p(t) = 772 in (12).

Going back to (6), it may seem that ® can be arbitrarily
chosen. This is true with respect to translation and rotation in-
variance of U{f} since (10) and (11) ensure that without the
need for specifying an explicit functional form for ®. However,
invariance of W{f} to dilation calls for special attention as it
couples the scale invariance of L and the effect of dilation on
the potential function ®. In fact, this connection together with
(9) narrows down the choice of ® as shown in the following.

Theorem I: Let L be a linear, scale-, rotation-, and shift-
invariant differential operator and the potential function ® be
as defined in Definition 1. Then, U{ f} is invariant to scaling of
the coordinates if and only if ®(z) = v 2P Vo > 0, where p > 0
and + is an arbitrary constant.
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Proof: Writing down (9) explicitly in terms of integrals
yields

Joe (s ()} oof) ax
=) [ e 13

‘We start from the left-hand side of (13) and use the fact that LL
is scale-invariant (12) to obtain

Lo (leds Gy eol]) o
- L2 6o llin G o

=t [ sGpmiLneha ad
Rd

Then, comparing the right-hand side of (13) and (14), we infer
that & must necessarily satisfy

O(p(r)x) =9 (r)P(z) VzeR (15)
where (1) = 7=% (7). Differentiating (15) with respect to T
and setting 7 = 1, we get

z®'(z) = p®(x) (16)

where we have used the fact that p(1) = 1 (there is no scaling
forr = 1in(12))andp = (¢#'(1))/(p’(1)) is areal number. The
general solution to (16) is of the form2 ®(z) = yz! + k(—z),
where v and « are arbitrary constants, and

P zPlif x>0
+ 7 1 0, otherwise.

Using the hypothesis that @ is defined only for x > 0 and is
nonnegative and strictly increasing, we see from (16) thatp > 0,
which leads to the desired result: ®(z) = vazP,Vo > 0 with
p > 0. Conversely, it is verified that ®(z) = ya? ensures scale
invariance of ¥{f}. |

As a direct consequence of Theorem 1, we see that the fol-
lowing L,-norm is the only choice of regularization with respect
to (9): Ignoring the multiplicative constant y and substituting
®(x) = 2P in (6), we get

wif) = [ LI i (7)

In this paper, we shall focus on the convex class of regulariza-
tion functionals in (17) which precludes p < 1. Therefore, the
practical range of interest of the p-valuesis 1 < p < 2. Some
popular instances of convex W{ f} in (17) that can be found in
regularization or spline literature are as follows.
1) total-variation regularization [39]-[41] where p = 1, L =
V,and ((7) = 7471,

2The general solution may contain distributions for negative integer values of
p [38]. However, in the present context, we would like the solution to be a true
function of «, which leads to the given form for ®.
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2) Quadratic regularization: Set p = 2 .
a) Laplacian seminorm [42] with L = A and {(7) =
=4,
b) Duchon’s semi-norm of order M [43] where L is a
vector composed of every possible Mth order partial
derivative operator and ((7) = 7472M,

B. Discretization of the Problem

As we are dealing with an interpolation problem, we seek a
solution of the form

Mx) = (18)

Y alkle(x -k

kez?

for our regularized scheme. Then, the original problem (5) can
be posed as the discrete-domain optimization problem

¢y = arg min Jy{g,c} (19)
with
Ix{g,ct = Ex{g, f} = L{g,(cxb)}
2\ %
- /\/ S DS ekLm{e}(x k) dx
R\ m=1 \kez¢
(20)

where f is now given by (18) so that

fk)= Y clm]bk —m]=

mezZ4

(cxb)[K]

with b[k] = ¢(k)|keza in the data-fidelity term. Thus, while
we consider the same continuous-domain model in (2) and (18),
standard and regularized schemes differ in the way the coeffi-
cients are obtained. However, when A = 0 in (20), the regular-
ized scheme (19) reduces to the standard case (2) since we only
minimize £{g, (¢ * b)} which leads to close-fitting of data; at
the other extreme, as A — oo, (19) results in a maximum-like-
lihood estimate within the null-space of L,,,, m = 1,...,s.

1) Quadratic Regularization (QOR): When p = 2 the inte-
grand in the right-hand side of (20) is a quadratic term. Up to
technical details related to p and L,,,, m = 1,..., s, [27]-[29],
the second term in the right-hand system of (20) can be explic-
itly evaluated by interchanging the summation (with respect to
k) and the integral to yield

pYMpS

2

c[K] L {@}(x = k) | dx =" (c*r)[K] c[K]
=(c*r,c)e,
=Yoic

where (-, )¢, represents the £5 inner-product of two discrete se-
quences and where 7 is the discrete sequence whose kth com-
ponent is given by

S

rkl =" rm[k]

=> /Rd Lo {¢}(x) L {o}(x —k)dx. (21)
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Thus, in the quadratic case (p = 2), the discretization of ¥{f}
implicitly follows from (21) and leads to a quadratic function
Uq{c} of the coefficients.

2) Nonquadratic Regularization: In this case, the problem
(19) can be handled only in a numerical optimization frame-
work. For the purpose of numerical tractability, we replace the
integral in (20) by a Riemann sum which leads to the discrete
nonquadratic regularization

Unofe} =)

keze

(22)

(Z (e nm>[k1>2> ‘

m=1

where 7, [k] = L,, {¢} (k) represents the discretized version of
the differential operator L,,. The use of Unq{c} for regularized
interpolation distinguishes this work from those in [24]-[29]
which primarily deal with quadratic regularization. An impor-
tant characteristic of U is that the discretized derivatives 7,
are obtained by sampling the corresponding continuous-domain
derivatives L, {¢}, m = 1,2,. .., s. We illustrate this connec-
tion in Section V, where we present 7,,,, m = 1, ..., s, for the
case of the gradient operator and polynomial B-splines.

IV. OPTIMIZATION ALGORITHMS

Setting p = 2 under the Gaussian likelihood model leads
to a .Jy that is quadratic in ¢ in (20). The corresponding opti-
mization can be performed analytically and leads to an explicit
closed-form solution that is related to g in a linear fashion. How-
ever, .J, becomes nonquadratic as soon as p # 2 in the regular-
ization or when the data-fidelity is dictated by a non-Gaussian
likelihood (irrespective of whether p = 2 or not). For non-
quadratic .Jy, the optimization has to be performed numerically
and the corresponding solution depends on g in a nonlinear
fashion. This discussion is summarized in Table I where we
present the characteristics of different regularized interpolation
schemes. We first describe the optimization of quadratic cost
(first row of Table I). Then, we give a detailed exposition of
the minimization procedure that we adopt for some specific in-
stances of nonquadratic costs involving Gaussian and Poisson
likelihoods (second and third rows emphasized by bold-face
font in Table I).

A. Quadratic Cost: Gaussian Likelihood With Quadratic
Regularization (GLQ)

The cost to be minimized is composed of Lq and ¥, i.e.,

Trcralgsch = Y (glk] = (exD)K])? + A(exr,c)e,.

kezZ4

As Ji . is quadratic, setting its derivative with respect to c[k]
to zero yields the system of linear equations ¥ k € Z¢, (¢ x b *
b+ Ar * c)[k] = (g * b)[K], where b[k] = b[—K]. This system
can be solved in the discrete-space Fourier domain to obtain

Ox(&) e = HA () G()
()
(Bl + AR (e)

where C'y, G, B, and R are the z-transforms of the solution cj,
the data g, and the sequences b and , respectively. Substituting

) G(e?) (23)
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TABLE I

CHARACTERISTICS OF DIFFERENT PENALIZED-LIKELIHOOD INTERPOLATION SCHEMES

Scheme Cost Likelihood | Regularization | Optimization Solution Type of Algorithm
GL . . . . Explicit, Linear, One-St
Q Quadratic Gaussian Quadratic Analytical xpier thear, Lne-Step
(Section IV-A) Closed-Form (Algorithm 1)
GLN Non-Li [terati
Q Non-quadratic Gaussian Non-quadratic | Numerical Numerical on-Lanear, ferative
(Section 1V-B2) (Algorithm 2)
PLQ, PLNQ .| Non-Gaussian Quadratic, . . Non-Linear, Iterative
Non-quadratic Numerical Numerical
(Section 1V-B3) (Poisson) Non-quadratic (Algorithm 3)

for ¢y in (18) from (23) results in a smoothing-spline-type solu-
tion that has already been investigated in [26]-[29] where condi-
tions necessary for the existence and stability of (23) are derived
in a rigorous fashion.

Equation (23) amounts to writing ¢y = h) *g, where h) is the
digital-correction filter whose z-transform is H. The solution
is therefore linear, in the sense that f) is related to g in a linear
fashion. The implementation of (23) is straightforward and can
be done via fast Fourier transforms (FFTs) (see Algorithm 1 in
Appendix). We also note that Hy(e/*) — (1)/(B(e’*)) for
A — 0, in which case f) performs the standard interpolation
of g [20]. However, while B can be separable, this is never the
case for Hy when A > 0.

B. Nongquadratic Costs

When J) is a nonquadratic, nonconvex function of the co-
efficients, conventional techniques such as the nonlinear con-
jugate gradient and BFGS methods [44] may be used for de-
termining its local minima. However, when J) is convex, sev-
eral methodologies such as the majorize-minimize (MM) ap-
proach [30] (or, equivalently, bounded-optimization) and the
half-quadratic method [45]-[47] can be adopted for developing
elegant minimization algorithms that ensure a steady decrease of
J. Moreover, it is well known that the minimization of a convex
J always leads to a solution (which need not necessarily be
unique) for which J achieves its global-minimum value.

In this paper, we resort to the MM approach [30] as it is easy
to comprehend: The idea, as described in [30], is to replace the
original difficult task by several easy-to-optimize problems that
will guarantee a monotonic decrease of the original cost. We
briefly review from [30] the mathematical details underlying the
MM philosophy in Section IV-B.1 and then apply it to the fol-
lowing two instances of convex nonquadratic cost3.

1) Jx gung that combines Wy with the Gaussian likelihood

L (second row of Table I)

Tncxalsret = D (glk] = (e D)[K])® + Anq{c).
kezd
3For the p-values considered, ¥ and ¥y are convex as they are derived

from (17). Therefore, Jx, 1 no @aNd Jx prng (O JNPLQ) are convex as well
because of the convexity of associated data-fidelity terms.

2) Jx,ping that combines Unq (or Jy ., , that uses ¥q) with
the Poisson likelihood Lpoisson

Taeinaloscl == D glkllog((c* b)[k])

kezd

+ Z (cxb)[k] + AUnq{c}

kez?

where we have considered Lpoisson as a prototypical ex-
ample of a non-Gaussian likelihood model (third row of
Table I) that yields a convex nonquadratic data term.
1) MM Philosophy: In the MM setting, we construct an aux-
iliary cost function Jaux{g,c|c:} at the current estimate c;
such that

(24)
(25)

In{g, et} = Javx{yg, ce | ci}
JA{g"/c} < JAUX{g7C|Ct}7 c ;é Ct.

Then, the idea is to find the estimate c;4; at the next iteration
such that

Jaux{g,ci+1 |t} < Jaux{g,ct|ei} (26)

which leads to a definite decrease of .J, as shown in the
following:

JA{Q; Ct+1} = JAUX{Q-, Ct+1 | Ct}
+i]>\{97 cey1} — Javx{y ce1 | Ct}/
<0 u;:lg(zs)
< Jaux{g,cel et} = Ia{g, i}

using (26)

The whole philosophy relies on finding a suitable
Jaux{yg,c|c} that satisfies (24) and (25) and which is also
easy to minimize. In what follows, we make explicit the steps
necessary for finding Jaux{g,c|c:} for the two instances
J/\,GLNQ and J>\,I’LNQ (or J/\,PLQ)'

2) Gaussian Likelihood With Nonquadratic Regularization
(GLNQ): In this case, we need to apply the MM principle only
on Wxq since the data term in J , , is already quadratic.
Our construction of the auxiliary cost J5ux is based on the in-
equality

2 —
2P < Tp|x0|P + gz2|z0|f’*2./ 1<p<2 Q@7
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for some zg # 0 [30], where the equality holds only when p = 2
or x = xo. The inequality is preserved under summation and
multiplication by A > 0 which leads to

S

Xnafe} SAT D7 halklP 2 D (e ma)[K])? + A,
kezd m=1

(28)

where x;[k] = /35,1 ((ct % nm)[k])? and Ay, = (2 -
1)/(2)) > weza |xe[K][P is a constant independent of c. Thus,
we obtain

Jaux{g,clet = Z (9[k] = (c*b)[K])?

kez4
+ A5 DT PalklP ™ D (e ) K])?
kezd m=1
+ Ay, (29)

which satisfies (24) and (25). The details associated with the
minimization of the above J,yx and the algorithm (Algorithm
2) that results therefrom are provided in Appendix.

3) Poisson Likelihood With Nonquadratic Regular-
ization (PLNQ): Since Jy . ., contains a term of the
form log((c * b)[k]), it is imperative that (¢ * b)k] > 0
YV k € Z¢. Therefore, whenever we use the Poisson likelihood#
Lpoisson, We restrict ourselves to basis functions that satisfy
bk] = p(k) > 0V k € 7% (e.g., integer-degree polynomial
B-splines). Then, the above constraint simply boils down to
ensuring the positivity of c.

To construct the auxiliary cost at the current estimate c;, we
use the convexity of log(1/-) [30, eq. (10)] to write

=3 olk]tor(c < k)
kezd
] Wededd | (0 dd
< 2 M o (e )

Similarly, (27) and the convexity of ( - )2 [30, eq. (9)] result in

AUnq{c}
p N[k — q] ,
B afke—q) 9 )k
S )\2 kzezd < Ol[k_ q] (C[Q] Ct[(ﬂ) + (ct * 1) )[ ]>
<P ok -
+ A,,
where as are constants such that a[k] = 0, if 7,[k] = 0,

alk] > 0 if ,[k] # 0,and ), ;. a[k] = 1. After some
algebraic manipulations, we obtain

e {g:¢} <Y Javx{g.clena} (30)
q€ezd
“The development for Jx,,, o (Tq With Lroison) follows from that of

J MpLng 45 We shall see in Appendix.
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TABLE II
z-TRANSFORMS B AND B(!) CORRESPONDING TO
VARIOUS SPLINE DEGREES

n B(z) BW(z)

1 1 %(2_1 —z)

2 24+3(z"1+2) 1z"1-2%)

3 s +2) 3(z71 —2)

o BRe e | Be -
+ 557272 +2%) + 5272 = 2%

s|| BracET+a) 21 -2)
+ ﬁ 2—2 +22) 4 2_14(2—2 722)

where Jaux{g, ¢| ct, q} is the decoupled auxiliary cost that de-
pends only on c[q]

Jauxig, ¢l e, q} = —ci[q]Aiqlog(clq])

+ pAcld] (—c[q]A2q -

2
+ Asq.

A
cola)Azg + Asq + p—i’)

€1y

The quantity Ay = >y .z« b[k] > 0 is a constant independent
of ¢; and

Arq = (b*wy)[q] (32)
Asg =Y (im * [xeP72)[q] (33)
m=1
Asq =3 S Ixel 2 (K] (e # 1) [K]n [ — K]
m=1kez?
(34)

where w, k] = (g[k])/((ce = b)[K]), pum[k] = (n7,[K])/(e[K]).
and Ayq in (31) is an additive constant which is irrelevant for
the minimization of Jaux{g, ¢|¢t,q}. The corresponding op-
timization procedure and the algorithm (Algorithm 3) are de-
scribed in the Appendix.

V. SPLINE-BASED REGULARIZED INTERPOLATION

Here, we make explicit the link between the sequences 7,,,,
rm, m = 1,...,s, and ¢ and L for spline-based interpolation
which is well-suited for imaging problems [20], [31]. We con-
sider a separable basis given by

p(x) = p(z1) p(22) ... @(7a) 35)
where ¢(z) is the univariate basis function. For L, we select the
gradient operator V. Then, the proposed regularization is related
to the total-variation functional (for p = 1) which is of particular
interest to us because of its edge-preserving characteristics.

The separable nature of ¢ in (35) leads to the separability of
the corresponding discrete sequences b, 9y, and 7, , i.e., b[k] =
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TABLE III
z-TRANSFORM A (?) CORRESPONDING TO VARIOUS SPLINE DEGREES

n AP ()
1 2— (27t +2)
1/,—1 1/,-2 2
2 1—-3("1+2) - 5("2+2%)
2 1/,—1 1/.,—-2 2 1 -3 3
3 55T +2) - 5T+ 2%) - (7% +29)
35 _ 11 (,—1 _ 17,2 2y _ 59 (-3 3y _ _1 -4 4
4 72 73607 T2 —gu(BT 20 = g (BT 4 27) - g (B0 20
809 1/,-1 _ .81 (-2 2y _ 907 (.3 3y _ _25 —4 4y _ 1 -5 5

5| 2160 a7 +2) — 1 (7T +2%) — 5es (270 4+ 2%) — mm (BT +27) — s (270 +27)
40 T I T T I T T T T 48 I I I T T T T T T
38H — Nearest-neighbour 46—~ Nearest-neighbour P!
3" - Standard-Linear 44 - - — Standard-Linear q

| Standard-Cubic 42 Standard-Cubic b

34 Keys-Cubic 40 — Keys—Cubic B
321 —e— QR-Cubic 381 —e— QR-Cubic 1
30 —=— NQR-Cubic e m e A 36| —=— NQR-Cubic —

I L L I I L L | N L L N
12 16 20 24 28 32 36 40 44 48 52 56
Input SNR (dB)

(@)

60

g I I L L I | L L | I L L I
12 16 20 24 28 32 36 40 44 48 52 56
Input SNR (dB)

(b)

Fig. 2. Comparison of performance of nonregularized and regularized interpolation: Rotation experiments on noisy versions of (a) slice of a CT image and (b)

MRI slices.

b[k1]blka] . . . b[k4], where blk] =
have s = d, which yields for

(2)|z=k- For L = V, we

S

[T alkl a® k]

l=11#m

where alk] = (¢ * ¢)(2)]a=k, §(z) = ¢(~2), and a®[k] =
(@' *¢")(@)|a=k-

We list out the sequences b, bV, and a(® (in terms of their
transfer functions B, B!, and A®), respectively) in Tables II
and III, for ¢ = ", which is the symmetric polynomial
B-spline of degree n > 1. We see that, for splines of suffi-
ciently high degree, b") and a(? are very different from the
simple finite-difference filters (e.g., first row of both Tables II
and III) that are typically used in the literature for TV-based
image restoration.

VI. EXPERIMENTS

We validate the proposed regularized interpolation scheme by
carrying out 2-D rotation experiments in the presence of noise.

We adopt the separable polynomial B-spline model in Section V
for all implementations and use L = V. Standard interpolation
is performed as described in [20]. In the regularized case, we im-
plement quadratic regularized (QR) interpolation—Algorithm
1 corresponding to GLQ in Table I—using FFTs. The various
steps of NQR interpolation—Algorithms 2 and 3 corresponding
to GLNQ and PLNQ), respectively, in Table [—are executed via
discrete convolutions. Periodic boundary conditions were ap-
plied whenever necessary. In all experiments, we set p = 1
in (22) for NQR interpolation. The stopping criterion for Al-
gorithms 2 and 3 is ||c;41 — ¢]|> < 1074(||g||)/(N), where N
is the size of g. The performance of all methods is quantified by

ZkGQ ft2rue(k)
ZkeQ(.ftrue(k) — fA(k))2> (36)

which is a function of the regularization parameter A and where
{ftrue(K) }eze and { fa(k)}xeza are the values of the contin-
uous-domain noise-free signal and regularized interpolant, re-
spectively, sampled on the grid of data. The SNR is evaluated in-
side a circular region (2 concentric with the image so as to avoid
boundary effects. Our main aim in this section is to characterize
the best-possible performance of the proposed regularized inter-
polation methods. For this purpose, we conduct oracle-based ex-
periments, i.e., we set A so as to obtain f) that yields the highest
SNR for a given realization of the noisy data g. In Section VII-D,
we introduce a data-driven scheme for obtaining MSE-optimal
A directly from g.

SNR(X) = 101logy, <
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Fig. 3. Visual Comparison for the rotation experiment; a cubic B-spline interpolation model was used for all schemes: (a) noise-free image; (b) noisy data (rotated
by —60°, 0 = 17.54); (c) nonregularized (standard) result (SNR = 17.12 dB); (d) quadratic regularized (QR) result (Algorithm 1 with optimal A\, SNR =

19.49 dB); (e) NQR result (Algorithm 2 with optimal A, SNR = 21.04 dB).

A. Regularized Versus Standard Interpolation—Rotation
Experiment

We compare the proposed regularized scheme against stan-
dard interpolation by carrying out two sets of 2-D rotation
experiments where the setup is exactly similar to that described
in Section II-A. For the first experiment, we use a 512 x 512
image of a CT slice. For the second, we consider a stack of
clean MRI images [48] where we use different slices picked
randomly from the MRI stack for different realizations. We
perform exact-fitting interpolation (nonregularized) using
nearest-neighbor, linear B-spline, cubic B-spline and cubic
Keys basis [20], [49], while, for regularized methods, we
consider quadratic regularized (QR) cubic B-spline (Algorithm
1) and NQR cubic B-spline (Algorithm 2), respectively.

1) SNR Comparison: We plot the output SNR for each of
these methods in Fig. 2(a) and (b) corresponding to the CT slice
and the MRI stack, respectively. In both figures, we observe that
the nonregularized methods exhibit the same trend as depicted
in Fig. 1. The observation that is most relevant to us is that both
regularized interpolation methods (QR and NQR) perform far
better than the nonregularized ones at high noise levels. The con-
sistently superior trend exhibited by regularized interpolation
in both figures clearly illustrate its robustness against noise. Fi-
nally, the output SNR of the two regularized methods (for cubic
B-spline) converges to that of the nonregularized cubic B-spline
for relatively high input SNRs since the effect of regularization
becomes negligible under very low noise.

2) Visual Comparison: We present in Fig. 3 output images
for one realization of the experiment in Section VI-A (with MRI
stack). Since standard cubic B-spline interpolation is not regu-
larized, the corresponding output [Fig. 3(c)] is still noisy. On
the contrary, regularized methods lead to significant noise re-
duction as seen in Fig. 3(d) and (e) corresponding to QR-cubic
and NQR-cubic outputs, respectively.

B. Regularized Versus Standard Interpolation—Image
Zooming

We also compare standard and regularized (QR—AIlgorithm
1 and NQR—AIgorithm 2) cubic B-spline-based interpolation
in a scaling experiment: Here, the objective is to zoom into a
noisy MRIimage by an irrational factor 7 = 7. For the proposed
regularized interpolation schemes, we select A = {(m)Aopt,
where (( - ) is the scaling constant in (9) and A,p; is that value

which maximizes the SNR (36) for data given on the original
(unzoomed) grid. The above choice of A is justified by (5) and
(9) which indicate that the regularization parameter must be
suitably compensated whenever the continuous-domain output
£ is dilated. This compensation is easily computed since The-
orem 1 gives us an explicit expression for (- ) for the chosen
regularization operator L = V. Substituting for L in (9) and
(17) and manipulating the L,-norm, it is seen that {qr(7) = 1
and (nqr(7) = 7 for QR (p = 2) and NQR (p = 1) interpola-
tion schemes, respectively.

We portray in Fig. 4 the output images corresponding to non-
regularized-cubic [Fig. 4(c)], QR-cubic [Fig. 4(d)] and NQR-
cubic [Fig. 4(e)] methods, respectively. It is clearly seen that
both regularized methods exhibit superior performance com-
pared to the standard scheme in terms of noise reduction. While
they also seem to suppress some subtle components of the un-
derlying noise-free image (which is an inevitable by-product of
noise-filtering), the key point is that in performing noise reduc-
tion NQR [Fig. 4(e)] preserves prominent image features, i.e.,
edges, better than QR [Fig. 4(d)].

C. Regularized Interpolation: Varying Spline Degree

To study the effect of the basis function ¢ on the discretization
of the nonquadratic regularization (NQR) in (22), we repeat the
experiment in Section VI-A (for MRI images) with B-splines
of integer degree varying from 1 to 5 and concentrate on NQR
interpolation (Algorithm 2). We show in Fig. 5 the performance
of the NQR interpolation based on linear (n = 1), quadratic
(n = 2), cubic (n = 3), quartic (n = 4), and pentic (n = 5)
B-splines, respectively.

In terms of quality, higher-degree B-splines yield better per-
formance with NQR interpolation as the output SNR consis-
tently increases with the degree of the B-spline over the entire
range of input SNRs in Fig. 5. Particularly, there is a notable im-
provement going from linear to a higher-degree B-spline. This
is probably because, for the linear B-spline, the discretization
does not adequately capture the features of the corresponding
continuous-domain model, while the situation improves when
n > 2. For higher-degree B-splines (n > 4), we only observe
marginal increments in the output SNR that tends to saturate.
This is to be expected since the cardinal splines (corresponding
to these B-splines) rapidly converge to the sinc function with
increasing n [31].
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(®)

Fig. 4. Visual Comparison for the scaling experiment; a cubic B-spline interpolation model was used for all schemes: (a) noise-free image indicating the portion
that is zoomed; (b) noise-free image zoomed-in by nonregularized (standard) method; (c) noisy data zoomed-in by nonregularized method; (d) noisy data zoomed-in

by QR method; (e) noisy data zoomed-in by NQR method.

48 T T T T T T T T T T T T T T
sl NQR-Linear
—— NQR-Quadratic
441 —s— NQR-Cubic
42H - = = NQR-Quartic

|| —— NQR-Pentic

Output SNR (dB)

| \ | . | . . . . | . | . |
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
Input SNR (dB)

Fig. 5. Nonquadratic regularized interpolation for varying spline-degree.

In terms of computation, since the number of filter-taps in b
and {7, } (see Section V) increases linearly with n, the cost of
implementing the convolutions in Algorithm 2 also increases
linearly with n. Therefore, in practice, it is important to choose
a B-spline (¢, in general) that strikes a good balance between
computation load and quality. Based on our observations from
Figs. 2 to 5, we find cubic B-spline to provide satisfactory
results.

D. Experiments With Poisson Noise

Until now, we have presented results that demonstrate the
superior performance of regularized interpolation (using Algo-
rithms 1 and 2) for data corrupted by additive Gaussian noise. In
this section, we investigate the proposed approach using Algo-
rithm 3 (in Appendix) by performing rotations in the presence of
signal-dependent Poisson noise. As the outcome was very sim-
ilar to that exhibited in Fig. 2(a) and (b), in the interest of space
we do not show the results here but summarize our findings by
stating again that the proposed regularized interpolation scheme
outperforms standard methods by a wide margin.

Our concern in this section is rather to investigate whether
or not the choice of the data-fidelity term based on the like-
lihood model is crucial for regularized interpolation. Specifi-
cally, we propose to study the performance of quadratic data
fidelity Lo (which corresponds to a Gaussian likelihood) when
applied to signal-dependent Poisson noise and compare it with

(dB)
T
N (4] 0 n

-
=]
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w a o o ©
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Fig. 6. Comparison of the effect of likelihood on NQR interpolation: Plot of
output SNR of Lpo;isson-based method (PLNQ) relative to £q-based method
(GLNQ) as a function of dynamic range 10g;,((fmax)/(fmin)). A positive
value in the graph indicates that L£pisson provides better performance than £q
for data corrupted by Poisson noise.

Lpoisson Which is statistically the most appropriate data-fidelity
term for this type of noise. For this purpose, we repeat the rota-
tion experiment described in Section VI-A with the noise-free
phantom shown in Fig. 7(a), but we now consider data corrupted
by signal-dependent Poisson noise. An important property of a
Poisson random variable is that its variance is equal (or pro-
portional, if there is a multiplicative gain factor) to its mean.
Moreover, since the intensity value of the noise-free phantom at
a given pixel characterizes the signal-dependent Poisson noise
at that pixel (mean of the Poisson random variable), the overall
variance of the Poisson noise is controlled by the mean of the
phantom. Therefore, we keep the mean of the phantom con-
stant but vary its dynamic range (ratio of the maximum to the
minimum intensity value) which we believe provides a suit-
able handle to inspect how well the two likelihood models cap-
ture image details in a varied range of intensity levels for the
same amount of input Poisson noise. We perform NQR-cubic
interpolation using Algorithm 2 (L data-fidelity) and Algo-
rithm 3 (Lpoisson data-fidelity), respectively. We compute the
output SNR of the latter relative to the former (SNRpoisson —
SNRGauss) and plot it in Fig. 6 as a function of the dynamic
range (in log;,-scale).
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2

7

(@

Fig. 7. Visual comparison of the effect of likelihood on NQR interpolation: (a) noise-free image, dynamic range of 102-%; (b) data corrupted by signal-dependent
Poisson noise; (c) result based on £q data-fidelity (Algorithm 2 optimized for best output SNR); (d) result based on £ data-fidelity (Algorithm 2 with slight
over-regularization); (e) result based on Lpoisson data-fidelity (Algorithm 3 optimized for best output SNR).

For the entire extent of abscissa in Fig. 6, we see that Algo-
rithm 3 yields substantial improvement (>1 dB) over Algorithm
2 pointing to the superiority of the Poisson likelihood model in
adapting to image details in a large range of intensity levels. This
is also clearly illustrated in Fig. 7 where we show the output im-
ages corresponding to one realization of this experiment: The
output of Algorithm 2 [Fig. 7(c)] retains the innermost circles,
but is still noisy. Increasing the regularization strength reduces
the noise significantly [Fig. 7(d)] but at the cost of loosing the
smaller circles. However, the output of Algorithm 3 [Fig. 7(e)]
is less noisy and preserves the smaller circles as well.

VII. DISCUSSION

A. Quadratic Versus Nonquadratic Regularization

Among the regularized schemes investigated in this work,
NQR interpolation (based on TV-like regularization) performs
significantly better than QR interpolation both in terms of visual
quality and SNR: In Figs. 3 and 4, the NQR result [Figs. 3(e)
and 4(e)] is sharper and less noisy than the QR result [Figs. 3(d)
and 4(d)], while in Fig. 2(a) and (b) we see that NQR brings
about a consistent SNR improvement over QR interpolation for
arange of input SNRs. We also observed a similar trend in SNR
improvement of NQR over QR in a pure denoising scenario
(where we repeated the experiments in Section VI-A without
applying rotations). These results are a direct consequence of
the fact that TV-like NQRs have a good ability to preserve edges
while Tikhonov-like QRs tend to blur them thus compromising
the quality. Therefore, from a performance point of view, it is
better to employ TV-like NQR for regularized interpolation.

B. Influence of the Likelihood Model

We were able to present an example in Section VI-D to il-
lustrate a case where the likelihood term plays a significant role
in variational problems. There, the Poisson likelihood Lpoisson
outperforms the Gaussian likelihood Lq since Lpoisson Pro-
vides intensity-dependent regularization that adapts to the non-
stationary nature of Poisson noise. This is unlike £Lg which
leads to a uniform regularization that either washes out low-in-
tensity details [Fig. 7(d)] or retains them at the cost of per-
forming poorly in high-intensity regions [Fig. 7(c)]. However,
it must be noted that we had to tailor the circular phantom in
Fig. 7(a) to demonstrate the advantage of using Lpoisson for

Poisson noise, by enforcing the presence of dominant peaks at
high intensities in the histogram.

This is to be contrasted with the many experiments we per-
formed with real-world autofluorescence images, where we ob-
served that there was no significant difference in the perfor-
mances of Lpgisson and Lg. Our understanding of this behavior
is that, in those situations, the regularization had a stronger ef-
fect on the solution than the likelihood. Therefore, when the
data-fidelity term is less important than the regularization, algo-
rithms can be designed to reduce the amount of computations.
For instance, since Algorithm 2 uses L for the data fidelity, it
only requires the linearization of the regularization—the corre-
sponding optimization is simple as it only amounts to solving a
set of linear equations. This is difficult to accomplish under the
Poisson-likelihood model—the logarithm in Lp,isson requires
careful handling of the problem as positivity of the solution
often becomes a harsh constraint.

C. Computational Cost

In our analysis so far, we ranked the various regularized in-
terpolation algorithms purely based on performance gain. How-
ever, we must also consider the computation cost associated
with these algorithms. The authors of [20] performed a thor-
ough cost-performance analysis for standard interpolation; for
a given quality measure, their emphasis was on reducing the cost
of evaluating ¢(x — k) for many arguments (x — k). In the con-
text of regularized interpolation, since we are concerned with
obtaining the coefficients ¢, we only consider the cost of com-
puting ¢ for a given ¢.

For standard interpolation, c is computed by linear filtering
of the data [20] which can be achieved with O(NN') complexity.
In the context of regularized interpolation, Algorithm 1 is easily
implemented in the Fourier domain (via FFTs%)—it requires
about O(N log(N)) operations. Thus, with only a slightly
larger computation load (an extra log(NN) factor), Algorithm
1 yields significant improvement in quality and is generally
preferable to standard interpolation.

Algorithms 2 and 3 are nonlinear and iterative in nature: The
CG-solver forms the predominant step in Algorithm 2 (see Ap-
pendix), while in Algorithm 3, the major workload is in the com-
putation of the constants Aiq, A2q, and Az (see Appendix).

5In this paper, the Radix-2 Cooley-Tukey method was used, which required
the data to be zero-padded to a size that is a power of 2. Correspondingly, the
time taken for Algorithm 1 is the same for the last three rows in Table IV.
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TABLE IV
TIME TAKEN (IN SECONDS) BY VARIOUS SCHEMES FOR
COMPUTING COEFFICIENTS

Algorithm
Standard Regularized
Image Size Algorithm 1 Algorithm 2 Algorithm 3
256 X 256 0.071 0.04 10.57 21.90
340 x 340 0.073 0.17 20.22 39.79
420 x 420 0.077 0.17 32.97 62.30
512 x 512 0.096 0.17 51.04 95.32

These operations require the evaluation of several convolutions
with the estimate ¢; which are in turn repeated for each iteration.
It is, therefore, clear that these algorithms are computationally
more demanding than Algorithm 1.

We present in Table IV the execution times of standard
(that of [20]) and regularized schemes (Algorithms 1-3) on a
2.66 GHz Intel Macintosh for rotation experiments with the
circular phantom [shown in Fig. 7(a)] of varying sizes. The
cubic B-spline model was used in all algorithms. Algorithms
2 and 3 were executed until they satisfied the convergence
criterion specified at the beginning of Section VI. The durations
reported in each row of Table IV have been averaged over ten
realizations.

As expected, Algorithm 1 is much faster than Algorithms 2
and 3, while Algorithm 2 seems to have a considerable lead over
Algorithm 3. The latter observation is in tune with our discus-
sion at the end of Section VII-B. However, from a quality point
of view, Fig. 2(a) and (b) indicate that Algorithm 2 is preferable
to Algorithm 1 for strong Gaussian noise. Therefore, Algorithm
2 is best-suited to carry out regularized interpolation in a general
setting. However, at low noise levels, the effect of regularization
becomes negligible (the output SNR curves in Fig. 2(a) and (b)
eventually meet); then, it may be desirable to use Algorithm 1
as it has the lowest computational complexity.

D. Selection of the Regularization Parameter

Since the regularization parameter A\ balances regularization
against fidelity to the data, choosing an appropriate A is crucial
for obtaining meaningful results. While our experiments used
oracle-based tuning of A\, we now propose a data-driven means
of selecting an appropriate value for this parameter to minimize
the MSE given by the averaged-value of the denominator of (36)

MSE()) = NLQ Y (Firue(k) = fr(k))?

keQ

(37

where N, is the cardinality of the set (2.

Generalized cross validation (GCV), which does not require
the knowledge of the noise variance, is often advocated for de-
termining A as it yields asymptotically optimal performance
[26] (under certain hypotheses [50, Proposition 3.1)], i.e., Agcv
minimizes (37) as Ng — oco. However, its applicability is lim-
ited to linear algorithms (e.g., Algorithm 1 in this paper).

Our goal here is to minimize (37) directly. To circumvent
the dependence of MSE(\) on the unknown noise-free samples
{ ftrue(K) }eza, we propose the use of Stein’s unbiased risk es-
timate (SURE) [51], which provides a means for unbiased esti-
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Fig. 8. Plot of GCV(A), SURE(A), and MSE(X) versus A for one realiza-
tion (at O dB input SNR) of a rotation experiment in the presence of noise. We
see that Asyrg = 4.23 is very near the optimum value Aoracie = 4.10, un-
like Agcv = 3.04. Correspondingly, the index MSE(/\SURE) = 386.91 is
lower than MSE(Agcv) = 400.72 and is very close to the oracle minimum
MSE(Aoracie) = 386.65, indicating that SURE-based selection leads to a
better result.

mation of MSE() from the data g. Unlike GCV, SURE requires
the knowledge of the noise variance. But, as it directly relates
to MSE()), SURE is more robust than GCV and yields optimal
performance even in the nonasymptotic case.

In the context of variational problems, SURE has been
put to use under one form or another for tuning A in
smoothing-spline-like linear algorithms [26], [52]. For the
nonlinear case, we recently developed a Monte-Carlo scheme
in [53]—Monte-Carlo SURE (MCSURE)—whose numerical
evaluation requires twice the cost of the original algorithm
but is applicable to iterative as well as noniterative denoising
methods with arbitrary nonlinearities. Since MSE() measures
the error in the data domain, MCSURE is applicable in the
present scenario. So, we adopt the analytical SURE formula
proposed in [50, Th. 1.1] for regularized interpolation based on
a linear algorithm and propose the use of MCSURE for those
based on a nonlinear algorithm, respectively. In the sequel, we
demonstrate that SURE(A) and MCSURE(A) not only mimic
the behavior of MSE(A) very closely, but also yield a good
estimate of the optimal A that minimizes MSE(\).

We repeat now the experiment described in Section VI-A
(with MRI stack) where, for each noisy realization, we com-
pute GCV(A) [26, eq. (1.9)] and SURE()A) [26, eq. (1.8)]
for QR-cubic and MCSURE()) [53, eq. (6)] for NQR-cubic
regularized interpolation schemes along with MSE(\) corre-
sponding to each of these methods. The noise variance was
assumed to be known in all the experiments for computing
SURE(A) and MCSURE(A) (in practice, an estimate can
be used). We plot GCV(A) and SURE(A) in Fig. 8 and
MCSURE()) in Fig. 9, respectively, in comparison with the
individual MSE()) for one realization of this experiment at
0 dB input SNR (test image shown in the inset). It is clearly seen
that the SURE curves capture the trend of the corresponding
MSE curves. Moreover, they also yield very close estimates of
the optimal A in both cases, while GCV fails to achieve this.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 09,2010 at 09:15:43 EST from IEEE Xplore. Restrictions apply.



RAMANI et al.: REGULARIZED INTERPOLATION FOR NOISY IMAGES

TABLE V
OUTPUT SNR OBTAINED BY MSE-BASED (ORACLE) AND SURE-BASED TUNING OF A

Output SNR (dB)
Input SNR (dB) QR-Cubic NQR-Cubic
MSE-based  SURE-based  GCV-based | MSE-based = MCSURE-based

0 13.95 13.95 13.82 14.13 14.11

15.75 15.75 15.43 16.10 16.10
8 17.66 17.66 16.94 18.22 18.22
12 19.71 19.71 18.28 20.45 20.44
16 21.95 21.95 19.67 22.85 22.85
20 24.40 24.40 21.39 25.44 2543
24 27.09 27.09 25.20 28.25 28.24
28 30.03 30.03 29.09 31.19 31.19
32 33.19 33.19 32.86 34.23 3422
36 36.39 36.39 36.39 37.20 37.19
40 39.35 39.35 39.23 39.86 39.85
44 41.78 41.78 41.88 42.02 42.02
48 43.43 43.42 43.40 43.51 43.51
52 44.38 44.38 44.37 44.38 44.38
56 44.83 44.82 44.80 44.83 44.83
60 45.04 45.04 44.99 45.02 45.02
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Fig. 9. MCSURE(A) captures the trend of MSE(A) for NQR-cubic interpo-
lation scheme at 0 dB input SNR.

This indicates that a SURE-based tuning procedure is more re-
liable than GCV even at such low levels of input SNR.

We further quantify the performance of GCV, SURE, and
MCSURE in Table V where we list out the output SNR (av-
eraged over all the realizations corresponding to an input SNR)
obtained by minimizing GCV and SURE for the QR-cubic and
MCSURE for the NQR-cubic interpolation algorithm, respec-
tively. Also provided are the oracle values of the output SNR
(obtained by minimizing the corresponding MSEs). We see that
the GCV-based result is far from the oracle for low input SNRs
(<28 dB). This may be because the hypotheses ([50], Propo-
sition 3.1) required for the optimality of GCV are probably
not fulfilled for the QR-cubic method. However, SURE-based
tuning consistently yields SNR values very close to the oracle
for both QR and NQR methods indicating that it can be reliably
employed for data-driven adjustment of .

VIII. SUMMARY AND CONCLUSION

Standard interpolation performs exact fitting of the given
data. In the presence of noise, we have shown that this can
have a detrimental influence on the interpolation quality.
To interpolate noisy data, we have developed a regularized
scheme that counterbalances the effect of noise by imposing
smoothness constraints on the resulting continuous-domain
solution. We have adopted an integer shift-invariant signal
model for interpolation where the model parameters (coeffi-
cients of the integer-shift-invariant expansion) are obtained
by minimizing the statistical infidelity of the solution to the
given data (negative log-likelihood data term) subject to a
regularization constraint prescribed as the L,-norm of a general
vector derivative of the solution. In addition to Tikhonov-like
quadratic functional (which leads to smoothing-spline-like
interpolants), the formulation includes nonquadratic ones in the
spirit of edge-preserving total-variation regularization. We have
presented algorithms based on the MM (majorize-minimize)
strategy to perform the optimization of the coefficients for
nonquadratic cost criteria.

‘We have carried out 2-D rotation experiments in the presence
of noise and numerically quantified the performance of standard
(nonregularized) and regularized interpolation. We observe that
regularized interpolation always yields a significant improve-
ment in quality over standard interpolation. Furthermore, among
the regularized methods, we could note that, in the presence of
noise, NQR interpolation consistently outperforms the QR one;
we associate this phenomenon to the fact that NQR interpola-
tion preserves edges and achieves better noise reduction than
QR interpolation. We also illustrated that SURE can be reliably
employed for data-driven selection of the regularization param-
eter for performing optimally regularized (QR and NQR) inter-
polation. We conclude from these observations that regularized
interpolation, specifically, NQR interpolation, can be of poten-
tial interest in medical-imaging applications.
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APPENDIX
ALGORITHMS FOR REGULARIZED INTERPOLATION

A. Minimization of Jx o, q

for a

Algorithm 1: Algorithm for minimizing J3 .,

given A\

Step 1: Precompute and store B(e/*), R(e/*), and
G(el%)

Step 2: Construct H) (/%) using (23) for the given \
and compute Cly (/%)

Step 3: Perform inverse Fourier transform of C to
obtain c)

B. Minimization of Jx ¢ xq

From (29), we note that Jaux{g, ¢| ¢} is quadratic in c. We
minimize it by setting its derivative to zero which results in the
following system of linear equations:

(cx b DI +AE S Paldll” (e o) almmla — K

qczd

=(g*b)k], Yk e 7? (38)
where b[k] = b[—k]. The presence of y; in (38) prohibits
the use of Fourier-domain techniques such as those used in
Section IV-A. Nevertheless, the MM technique requires only
a decrease of Jaux; there is no need to minimize it com-
pletely. Therefore, efficient numerical schemes such as the
conjugate-gradient (CG) method can be utilized to solve (38)
partially. For p < 2, the factor |x;[-]|P~2 can pose a problem
whenever x; = 0. An ad hoc modification is to saturate y;
to a small positive value € (i.e., x; < max(e, x¢)) to avoid
instabilities in (38). In our implementation, we chose the initial
estimate cg to be the given data g slightly perturbed by additive
noise. This ensured that x; # 0 at all iterations.
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B!, and R,,, denote toeplitz matrices corresponding to the se-
quences {b[k] }eza, {67 [k]}ieze, and {1 [k]}iez e, respec-
tively. Then, rewriting (38) in terms of matrices, we obtain

(BTB+R'YT;R)c=B'g 39
where ¢ and g are column vectors containing sequences
{c[k]}xezd, and {g[k]}xeza, respectively, and R =
[RTRY...RY]T, and Y; = A(p/2)diag{Ys,..., Y}, with

—————
s times

T, a diagonal matrix containing entries {|x[k][?~2}xcz«. Per-
forming manipulations on (39) using matrix inversion lemma,
we get

c=B7'g- (B"B)"'R'z
(¥;'+R(BTB)"'RT)z=RB™'g.

(40)
(41)

Rewriting (40) and (41) in terms of convolutions, we obtain

S

k= (07 xg)k] = D (07w b w2 ) (K] (42)

m=1
where b71[k] b~[-k], f.[k] = n[-k], and
{zm[Kkl};,—1 keza is the solution of the following linear
systems of equations: Yk € Z¢ andm=1,...,s,
2
)\_p|Xt[k]|2_pZm[k]
S b b e ) K]
1=1
= (Nm * b~ % g)[K]. (43)

Thus, at iteration ¢, we employ the CG method to partially solve
for a set of temporary variables {z,,}? _; using (43) which is
then used to update c in (42). The linear system corresponding to
{zm }5,—1 now involves |x;[-]|*~? rather than |x;[-][P~2 which
does not explode when y; = 0 for p < 2. Based on (40)—(43),
we provide the following alternative to Algorithm 2 for mini-
mizing Jx ;nq "

Algorithm 2: MM algorithm for minimizing J»
for a given A\ and p

»GLNQ

Step 1: Precompute the sequences b * b and g * b

Step 2: Initial estimate = ¢o; ¢ =0

Repeat Step 3 to 5 until Stop Criterion is met
Compute the sequence x; using c;

Apply CG iterations to partially solve for c; 41
in (38)

Sett =t4+1

(O8]

Step
Step 4:

Step 5:

While we used Algorithm 2 in all our experiments, it may be
beneficial to consider the following alternative which provides
a mathematically rigorous means of tackling the instability of
(38). This procedure applies for minimizing Jy.,y, and re-
quires the assumption that the kernel b has a stable convolution
inverse b=! such that (b=1 * b)[k] = §[k]. Specifically, let B,

Algorithm 2a: MM algorithm for minimizing Jx
for a given A and p

sGLNQ

Step 1: Precompute b= g, 0y, %b ™ kg, b~ kb7 %7,
and 9, * b~ x b g, Lbm=1,2,...,s
Initial estimate = cg; ¢t = 0
Repeat Steps 3 to 6 until Stop Criterion is met
Step 3: Compute the sequence x; using c;
Step 4: Apply CG iterations to partially solve for

{#Zm t}5,=1 in (43)
: Compute c;41 in (42) using {2+ }5, -1
Sett =t+1

Step 2:

W

9,1

Step
Step 6:

C. Minimization of Jx , xq

From (30) and (31), we see that minimizing Jx ..o {9, ¢}
simply amounts to minimizing each of the individual
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Jaux{g,c|et,q} which is accomplished by setting their
derivative with respect to ¢[q] to zero. The solution is given by

(—’Y + \/'y? + 4)\pct[Q]A1qA2q) (44)

_ 1

C[q] - 2 )\p A2q
where v = Ap(Asq — ¢t[q]A2q) + As. Since, the sequences b
and yx are nonnegative and because g represents the data counts
under the Poisson noise model, we have that A;; > 0 and
Asq > 0 whenever c¢;[q] > 0Vq € Z%. Thus, the solution
given by (44) is always positive. Based on (30)—(34) and (44),
we present Algorithm 3 for the minimization of J -

In the case of quadratic regularization, we have that

Toleh = (erec, = Y Z ((c*rm%)[k])z 45)

kezd m=1

where 7,172y i8  specified via its  z-transform
Ri1/2)(2)]z=eiv = R,,(e®) wherein R,, is the
z-transform of the sequence 7, in (21). Comparing (22) and
(45), we see that Algorithm 3 can be applied to minimize
Jx,pLq DY setting p = 2 and replacing 7, by 7p,(1/2) in (33)
and (34).

Algorithm 3: MM algorithm for minimizing J
for a given A\ and p

' PLNQ

Step 1: Precompute A; and the sequence (i, in (33)
Step 2: Initial estimate = ¢p; ¢t =0

Repeat Steps 3 to 5 until Stop Criterion is met
Update constants A1q, Aaq, Azq using
(32)-(34) Vq € 7¢

Compute c;4; using (44)

Sett =t+1

Step 3:

Step 4:
Step 5:
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