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Abstract—Generalized Linear Models (GLMs), where a ran-
dom vector x is observed through a noisy, possibly nonlinear,
function of a linear transform z = Ax arise in a range of applica-
tions in nonlinear filtering and regression. Approximate Message
Passing (AMP) methods, based on loopy belief propagation, are a
promising class of approaches for approximate inference in these
models. AMP methods are computationally simple, general, and
admit precise analyses with testable conditions for optimality
for large i.i.d. transforms A. However, the algorithms can easily
diverge for general transforms. This paper presents a convergent
approach to the generalized AMP (GAMP) algorithm based
on direct minimization of a large-system limit approximation
of the Bethe Free Energy (LSL-BFE). The proposed method
uses a double-loop procedure, where the outer loop successively
linearizes the LSL-BFE and the inner loop minimizes the
linearized LSL-BFE using the Alternating Direction Method
of Multipliers (ADMM). The proposed method, called ADMM-
GAMP, is similar in structure to the original GAMP method, but
with an additional least-squares minimization. It is shown that for
strictly convex, smooth penalties, ADMM-GAMP is guaranteed
to converge to a local minima of the LSL-BFE, thus providing a
convergent alternative to GAMP that is stable under arbitrary
transforms. Simulations are also presented that demonstrate the
robustness of the method for non-convex penalties as well.

Index Terms—Belief propagation, ADMM, variational opti-
mization, message passing, generalized linear models.

I. INTRODUCTION

Consider the problem of estimating a random vector x € R”
from observations y € R™ as shown in Fig. 1. The un-
known vector is assumed to have a prior density of the form
p(x) = e /=% and the observations y € R™ are described
by a likelihood function of the form p(y|Ax) = e~/=(4%) for
some known transform A € R™*". In statistics, this model
is a special case of a generalized linear model (GLM) and
arises in a range of applications including statistical regression,
filtering, inverse problems, and nonlinear forms of compressed
sensing. The posterior density of x given y in the GLM model
is given by

Py (X¥) = 5 exp [ fa00) — f(AX)], (D)

where Z is a normalization constant. In this work, we consider
the inference problem of estimating the posterior marginal
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Fig. 1. Generalized Linear Model (GLM) where an unknown random vector
x is observed via a linear transform followed by componentwise likelihood
to yield a measurement vector y.

distributions, p, |, (2;|y). From these posterior marginals, one
can compute the posterior means and variances

zj e E(zly), 7o, £ var(z;|y). 2)

We study this inference problem in the case where the func-
tions f, and f, are separable, in that they are of the form

fw(x) :Z.fx](xj)a fz(z) :Zfz,,(zi)v 3)

for some scalar functions f,; and f,.

In recent years, Bayesian forms of approximate message
passing (AMP) have been considered for approximate infer-
ence in GLMs [1]-[4]. AMP methods are based on Gaussian
and quadratic approximations to loopy belief propagation
(loopy BP) in graphical models and are both computationally
simple and applicable to arbitrary separable penalty functions
fr and f,. In addition, for certain large i.i.d. transforms A,
they have the benefit that the behavior of the algorithm can
be exactly predicted by a state evolution analysis, which then
provides testable conditions for Bayes optimality [4]-[6].

Unfortunately, for general A, AMP methods may diverge
[7], [8] — a situation that is not surprising given that AMP is
based on loopy BP, which also may diverge. Several recent
modifications have been proposed to improve the stability
of AMP, including damping [7], sequential updating [9], and
adaptive damping [10], some of which have been instrumental
in applications such as [11]-[13]. However, while these meth-
ods appear to perform empirically well, little has been proven
rigorously about their convergence.
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The main goal of this paper is to provide a provably
convergent approach to AMP. We focus on the generalized
AMP (GAMP) method of [4], which allows arbitrary separable
functions for both f, and f,. Our approach to stabilizing
GAMP is based on reconsidering the inference problem as
a type of free-energy minimization. Specifically, it is known
that GAMP can be considered as an iterative procedure that
attempts to minimize a large-system-limit approximation of
the so-called Bethe Free Energy (BFE) [14], [15], which we
abbreviate as “LSL-BFE” in the sequel.

To minimize the LSL-BFE, we propose a double-loop algo-
rithm, similar to the well-known Convex Concave Procedure
(CCCP) [16]. Our main theoretical result shows that, for
strictly convex penalties, the proposed algorithm is guaranteed
to converge to at least a local minima of the LSL-BFE. In this
way, we obtain a variant of the GAMP method with a provable
convergence guarantee for arbitrary transforms A.

II. ADMM GAMP

A. Bethe Free Energy Minimization

Loopy belief propagation (loopy BP) in graphical mod-
els provides a generic method for approximately computing
marginals p(z;|y) of a potentially high-dimensional density
p(x]y) by minimizing an energy function called the Bethe
Free Energy (BFE) [17]. Unfortunately, for the GLM model
in the previous section, the computations in loopy BP may
be difficult for dense matrices A. The sum-product GAMP
algorithm from [4] can be interpreted as a method for min-
imizing an approximation of the BFE that applies to certain
large, dense A [14], [15]. Specifically, the sum-product GAMP
algorithm finds estimates b, (x) and b, (z) of the posterior
densities p(x|y) and p(z|y) via the minimization,

(by,bs) 2 argmin J(by, b.) such that (4a)
by ,b.
E(Zlbz) = AE(X|bz) (4b)

where b, and b, are product densities, i.e.,

H z) =[] b-.(z0), 5)
j=1 i=1

and the objective function J(b,,b,) is given by

z; (x5), ba(

J(by,b2) £ Diballe™) + D(b. | 27 )
+ H (var(x|b,), var(z|b.)) (6)
m T n
H(Tzv Tz) £ - l: = +1In <27T Si TIJ):| @)
Z Z SZ]TEJ ; !
T, & (ngl,. T ) o, = var(z;]bs,) (8)
T2 (Tayy e 7o, ), 7o, 2 var(zibs,) )

Sij = 8], £ AL}

Y vij, (10)
where D(-||-) denotes KL divergence, Z, £ [;,, e~7=(®) dz is
the scale factor that makes Z, 'e~/=(#) a valid density over
z € R™, and H(7,,T,) is an upper bound on the entropy of

b, that is tight for Gaussian b, with 7, = ST,.. The objective

function of the optimization in (6) can be interpreted as an
approximation of the BFE for the GLM from Section I in
a certain large-system limit, where m,n — oo and A has
i.i.d. components [15]. We thus call this approximate BFE the
large-system limit Bethe Free Energy or LSL-BFE.

B. Outer Loop Minimization via Iterative Linearization

While the fixed points of the sum-product GAMP algorithm
correspond to local minima of the LSL-BFE minimization
in (4), the sum-product GAMP algorithm may not always
converge (see, e.g., the negative results in [7], [8], [10]). We
thus consider an alternative minimization strategy based on a
generalization of the classic double-loop method known as the
concave convex procedure (CCCP) [16].

The proposed algorithm for the GLM problem is shown in
Algorithm 1, and can be briefly explained as follows (see the
full paper [18] for a complete discussion). First, as shown in
[18], the 7F and ?’; computed in lines 9-11 of Algorithm 1 are
the inverse gradients of the Gaussian entropy term H (Tx, T2)

in (7) at the current estimates of the variances 7%, T

x? 'z
1 OH(TF, 7F) 1 OH(TF, 7F)

= , 11

o7k Oty 27r o, (n
The 7, and 7" computed in lines 15 and 16 of Algorithm 1
are “damped” versions of T Tp and 7%, controlled by damping
parameter 6*. The belief estimates (b’;, b*) are then computed
by minimizing the functional

D(bg|le™*) + D(b.|| 2 te™ <) (12)

1\’ 1"
+(27_T) var(x|b,) + (H) var(z|b. ),

subject to the linear constraints (b,,b,) € B where
B = {(bzvbz) ‘ E(z|bz) = AE(X|bz)} . (13)

The functional (12) is a modified form of the LSL-BFE in (6)
where the Gaussian entropy term H (7, T,) is replaced by a
first-order approximation based on the approximate gradients
(1/27,,1/27,). Hence, Algorithm 1 can be interpreted as a
method that iteratively minimizes a partial linearization of the
LSL-BFE, with a damped update on the gradient term in the
linear approximation.

This approach is closely related to the CCCP method
from [16], which also iteratively minimizes a partial linear
approximation of the BFE. (A complete discussion can be
found in our full paper [18].) Similar to the CCCP method,
Algorithm 1 can be considered as a “double loop” method,
since each iteration involves a minimization in line 5 that itself
is typically solved iteratively.

J(b.’li7 bza T’I‘7 Tp) é

C. Inner-Loop Minimization via ADMM
Algorithm 1, requires that, in each iteration of the outer
loop, we solve the constrained optimization

(bs,b,) = argmin J(b,, b,, 77, Tp) s.t. E(2z|b,)

z,0z

= AE(x|b,).
(14)
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Algorithm 1 Minimizing LSL-BFE via Iterative Linearization

Algorithm 2 ADMM-GAMP

Require: LSL-BFE objective function (6) with a matrix A.
I k<« 0
2: Select initial linearization 7,
3: repeat

{Minimize the linearized LSL-BFE}

(bk, b5 < arg ming, 4 yep J(bss bz, Tk )

0 0
s Tpe

V2 p

{Compute the gradient terms}

Ty < var(x[b}), 75+ var(z[b%)
?ﬁ — Stff

10: TF+(1- Tf/?’;)/?];

S

1: 7 1/(8Trk)

13:  {Update the linearization}
14:  Select a damping parameter 6% € (0, 1]
150 1/7F 0k /FE 4 (1 - 0F) )1k

16: 1/‘1}’,chl <—9’“/?§+(1—0k)/7';f
17: until Terminated

This optimization can be performed by the Alternating Direc-
tion Method of Multipliers (ADMM) [19] as follows. First,
we replace the constraint E(z|b,) = AE(x|b,) with two
constraints: E(z|b,) = Av and E(x|b,,) =v. Variable splittings
of this form are commonly used in the context of monotropic
programming [20]. With this splitting, the augmented La-
grangian for the linearized LSL-BFE (14) becomes

L(b2:7bZ7qu7 V; Tp77-'l‘)
2 J(bg, by Tr, Tp) + qT(E(x|bz) —v)+ ST(E(Z|bz) — Av)

1 1
+ SIEGb:) = VII7, + SIE(zb:) - AVIZ,  (5)

where s and q represent the dual variables. From [19], the
standard ADMM recursion for this problem is
(bt+1 bt+1

xr 7z

) = argmin L(by, b,s", q", v 7, 7) (16a)

be,b,
s =s' + (1/7,) (E(z[bf) — Av') (16b)
™ =q" + (1/7) (Ex[pE) — v) (16¢)
¢ b bt st gt v Tp, Tr). (16d)

x Y7z 0

v = argmin L(
v

The full paper [18] details all of the minimizations in (16). It
shows, e.g., that the belief estimates in (16a) are given by

Vi (x) ocexp (— fo(x) — 3lIx—1'[2)  (17a)
b (z) cexp (— f2(2) — 3z —P'IZ),  (17b)

where the vectors r’ and p? are computed in Algorithm 2, and
that (16d) reduces to the least-squares problem

1

vt = arg min ||z + 7,8 — AVHE_P
v

2 (18)

T

+ ||Xt+l + TTqH-l v

Due to the separable nature of b, and b, (recall (5)), the
posterior means in (16b)-(16¢) can be evaluated one compo-
nent at a time, and for many problems the resulting scalar

Require: Matrix A, estimation functions g, and g..
1: S + |A|? (componentwise magnitude squared)
2: Initialize 7, > 0,7, > 0, v°
33:9° < 0,8« 0
4: t+0
5: repeat
6: {ADMM inner iteration}

7. rt vt —T1lqt
8 p'— Av'—Tls!
9:  x™ =g (r', 7)), 2™ g.(p', 7))

10: gt gt + (1/7H) (- v
1 st st 4 (1/7) (2" — AvY)

122 Compute v*! from (18)

14:  {Compute the gradient terms}

5 T e g, T e gl (ot )
16: T« ST

17 T (1 - th“/??'l)/??'l

18 7o 1/(STrH)

20:  {Update the linearization}

21:  Select a damping parameter 6% € [0, 1]
22 1/7H 0t /F 4 (1 -0t /7t

3 1/7 49t/7f,+1 +(1-06")/7}

24: until Terminated

integral can be computed in closed form. These computations
are written in line 9 of Algorithm 2 as

(19a)

X = g, (e, 7)) £ E(x[pi)
£ (19b)

E(zb),
where we call g, and g, the MMSE estimation functions.
The general “g,,g,” notation is useful because, with slightly
different definitions of g, and g, the algorithm can also be
used for MAP estimation, as discussed in the full paper [18].

We note that Algorithm 2 is written in a “parallel” form
that allows the computation of one ADMM inner-loop update
per outer-loop update. However, as discussed in [18], the
update schedule can be controlled by the damping parameter
0*. In particular, by setting §° = 0 for a specified number of
iterations ¢, many inner-loop updates can be exectured with
fixed value of the outer-loop linearization parameters 7., T,.

Interestingly, Algorithm 2 has close similarities to the origi-
nal GAMP algorithm from [4]. For example, most of the steps
in Algorithm 2 can also be found in the GAMP algorithm, and
the definitions of the estimation functions ¢, and g, remain
the same. We thus call Algorithm 2 “ADMM-GAMP.” The
main differences between GAMP and ADMM-GAMP is that
the latter 1) incorporates a least-squares minimization (18), ii)
adds damping to the updates of 7,/ and 7, and iii) uses 75"
rather than ‘rg in the update of 7. A complete discussion of
the differences can be found in [18].
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III. CONVERGENCE ANALYSIS FOR STRICTLY CONVEX
PENALTIES

A. Convergence of the ADMM Inner Loop

It is shown in the full paper that the fixed points of
ADMM-GAMP with the MMSE estimation functions (19)
correspond to local minima of the LSL-BFE optimization (6).
To understand the convergence of the algorithm to a fixed
point, we first establish convergence of the inner loop. For
this, we make the following assumptions.

Assumption 1: The functions f, and f, are strictly convex,
separable functions, in that they are of the form (3), where the
components have continuous second derivatives such that

A< [l () <BVay, A< fl(z)<BVz, (20)

for some 0 < A < B < 0.

Under this assumption, we have the following convergence
result. A slightly more general result that applies to a larger
class of estimation functions g, and g, is given in the full
paper [18].

Theorem 1: Consider Algorithm 2 with only ADMM up-
dates (i.e., 8' = 0 for all ¢), so that the linearization terms
remain constant, (i.e., T; = 7,7} = 7, for all ¢ for some
vectors T, and 7). Then, under Assumption 1, the algorithm
with the MMSE estimation functions (19) converges to a

unique fixed point at a linear rate of convergence.

B. Outer Loop Convergence

We next consider the convergence of the outer loop, Algo-
rithm 1, assuming that the inner minimization (i.e., line 5 of
Algorithm 1) is computed exactly.

Theorem 2: Suppose that the functions f, and f, satisfy
Assumption 1 and the matrix S has positive components (i.e.,
Sij = |Ai|® > 0 Vij). Then, there exists a 0 such that, if
0F < 0, the sequence of belief estimates (b¥, b*) generated by
Algorithm 1 yields a monotonically non-increasing LSL-BFE,
ie., J(BFH b)Y < J(bF, bF).

Together, Theorems 1 and 2 demonstrate that ADMM-
GAMP will converge under sufficient damping. Specifically,
suppose that iterations t; < t2 < are infinitely far
apart. Then, for all ¢ between each ¢; and ¢p4, set 9t =0
so that the ADMM inner-loop is run to completion and, at
each t = ty, select ' to be a sufficiently small positive
value. It is of course impossible to use an infinite number
of inner-loop iterations in practice. Fortunately, our numerical
experiments in Section I'V suggest that a fixed number of inner-
loop iterations is sufficient.

IV. NUMERICAL EXPERIMENTS

We illustrate the performance of ADMM-GAMP by con-
sidering three numerical experiments. While our theoretical
results assumed strictly convex penalties, we numerically
demonstrate the stability of ADMM-GAMP for the non-
convex penalty corresponding to a Bernoulli-Gaussian prior
on X, i.e.,

e Jrilwi) = (1= p)o(z;) + pN(z4;0,1), 21

_40k [—+—genie -~ E - LASSO - % - GAMP —©— ADMM-GAMP|
‘

0.3

Measurement ratio (m/n)

Fig. 2. Average NMSE versus measurement rate m/n when recovering
a length n = 1000 Bernoulli-Gaussian signal x from AWGN-corrupted
measurements y = Ax + e under i.i.d. A.

[ [ genie - - LASSO - % - GAMP
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Peak-to-average ratio (k)

Fig. 3. Average NMSE versus peak-to-average squared-singular-value ratio
k(A) when recovering a length n = 1000 Bernoulli-Gaussian signal x
from m = 600 AWGN-corrupted measurements y = Ax + e. Note the
superior performance of ADMM-GAMP relative to both the original GAMP
and SWAMP, and the proximity of ADMM-GAMP to the support-aware genie.

where p € (0,1] is the sparsity ratio and ¢ is the Dirac
delta distribution. In our experiments, we fix the parameters
to n = 1000 and p = 0.2, and we numerically compare the
normalized MSE

NI
NMSE (dB) 2 101log, (w)
115
of ADMM-GAMP to four other recovery schemes: the original
GAMP method [4]; de-biased LASSO [21]; swept AMP
(SwWAMP) [9]; and the support-aware MMSE estimator, la-
beled “genie” — see [18] for details.

The first experiment considers recovering sparse x from
y = Ax + e, where e is AWGN with variance set to
achieve an SNR of 30 dB, and where the measurement matrix
A is drawn with ii.d. N(0,1/m) entries. Figure 2 shows
the NMSE performance of the algorithms under test after
averaging the results of 100 Monte Carlo trials. The case of
ii.d. A is the “ideal” scenario for both AMP and GAMP,
where the convergence can be rigorously guaranteed [4]-[6]
as m,n — oo. In Figure 2, since m and n are sufficiently
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Fig. 4. Average NMSE versus peak-to-average squared-singular-value ratio
k(A) when recovering a length n = 1000 Bernoulli-Gaussian signal x from
m = 2000 noiseless 1-bit measurements y = sgn(Ax). Note the superior
performance of ADMM-GAMP relative to the original GAMP and SWAMP.

large, it is not surprising to see that GAMP performs well
over all measurement ratios m/n.

The benefits of ADMM-GAMP become apparent in our

second experiment, which uses non-i.i.d. matrices A. We first
recall that [7] established that the convergence of GAMP
can be predicted by the peak-to-average ratio of the squared
singular values,
__ oA
Ym0 (A) /1
where » = min{m,n} and o;(A) is the i-th largest sin-
gular value of A. When this ratio x is sufficiently large,
the algorithm will diverge. Thus, to test the robustness of
ADMM-GAMP, we constructed a sequence of matrices A
with varying « — see [18] for details. As a function of «, the
NMSE performance of the various algorithms under test is
illustrated in Figure 3 for the case of m = 600 measurements.
There it can be seen that, for larger values of x, the NMSE
performance of the original GAMP algorithm deteriorated,
which was a result of the algorithm diverging. The ADMM-
GAMP method, however, converged over the entire range of
 values, achieving NMSE performance relatively close to the
support-aware genie. Fig. 4 repeats the experiment for a “one-
bit” measurement output y = sgn(Ax), where sgn is the sign
function, as considered in, e.g., [22] and [23] — again, see [18]
for details. We again see that ADMM-GAMP being stable over
a wide range of values of k.

k(A) 2 (22)

CONCLUSIONS

A major stumbling block to more widespread use of AMP
methods is their convergence and numerical stability. While
several methods have been proposed to improve the conver-
gence, this paper provides a method with provable guarantees
under arbitrary transforms. Nevertheless, there is still much
work to be done. Most obviously, the proposed ADMM-
GAMP method comes with higher computational cost and
our simulations indicate that other methods can be equally

effective. One line of future work would thus be see to whether
the proof techniques in this paper can be extended to these
methods as well as other variants of GAMP.
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