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ABSTRACT

We review the normal-based interpolating subdivision scheme pro-
posed in [1]. We show that it allows the user to exactly represent
circles/spheres whenever suitable initial data are provided, and we
also prove that it enjoys the property of similarity invariance. In sum-
mary, we show that it satisfies all the requirements for the construc-
tion of a deformable model to be used in the delineation of biome-
dical images. We then also present experimental examples dealing
with the delineation of 2D and 3D biological structures.

Index Terms— Subdivision; circle/sphere reproduction; simila-
rity invariance; deformable model; delineation; biomedical imaging.

1. INTRODUCTION

A subdivision scheme consists in a refinement process that is re-
cursively applied to an initial coarse polyline/polygonal mesh [2,
3]. Once infinitely refined, it provides a continuously-defined cur-
ve/surface. Subdivision has become one of the basic geometric tools
in computer graphics for representation and modeling [4, 5]. In re-
cent years, a new trend in subdivision has been the use of geometric
information, such as normal vectors, to have additional control over
the curve/surface shape. A normal-based interpolating subdivision
scheme allows one to conveniently generate normal-continuous cur-
ves/surfaces starting from a given coarse polyline/triangular mesh
having assigned unit normal vectors at all its vertices [1, 6-9]. In
the surface case, normal-based subdivision schemes provide an al-
ternative approach to the use of parametric models based on joining
triangular surface patches [10]. Their advantage is that, in case of a
triangular mesh of arbitrary topology, any surface of arbitrary genus
can be effectively represented, and its normal-continuity is automa-
tically guaranteed.

Deformable models are efficient tools for the segmentation of
biomedical images [11-13]. They consist in flexible curves/surfaces
that are deformed from an initial user-provided configuration toward
the boundary of the object to delineate. The deformation can be dri-
ven manually, by interactively modifying the parameters of the mo-
del, or automatically, by applying suitable energies [14, 15]. Sub-
division schemes are ideal methods to describe the curve/surface
of a deformable model. In fact, the set of the initial vertices, alt-
hough discrete, is sufficient to fully describe the continuous limit
curve/surface. The deformable model is thus encoded by few para-
meters. Examples of subdivision schemes for use in the delineation
of biological structures can be found in [16-20]. They all deal with
scalar subdivision (i.e., iterative methods for the refinement of scalar
data) for either curve or surface representation. To the best of our
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knowledge, there are no proposals of vector subdivision schemes for
the geometric representation of deformable models. Overall, the in-
corporation of normal control in deformable models was actually
barely exploited and was recently pioneered by [21] for 2D para-
metric deformable models. We are not aware of any corresponding
work in 3D. Yet, the introduction of adjustable normals in a deforma-
ble model has several advantages: first, it provides additional control
over the shape, which facilitates the reproduction of sharp corners
or circonvolutions, for instance; second, it allows for the design of
directional energy functionals.

The goal of this paper is to describe the curve/surface of a defor-
mable model by the normal-continuous limit curve/surface obtained
with a normal-based interpolating subdivision scheme. Our approach
relies on the univariate/bivariate subdivision scheme in [1] (Secti-
ons 2,3). Although it uses only the positions and normals at the ver-
tices of each edge/triangle (exactly like local parametric triangular
curved shape C° methods [22]), it is capable of ensuring smooth li-
mits. We illustrate its capability of reproducing the unit circle/sphere
by means of very few control points and associated unit normal vec-
tors, as well as of obtaining blob-like shapes if applied to an arbitra-
ry convex polygon/polyhedron (Subsections 2.2, 3.1). We prove that
it is invariant to similarity transformations, which is a crucial pro-
perty for a deformable model (Subsection 2.3). Finally, we provide
experimental examples dealing with the delineation of 2D and 3D
biological structures (Section 4).

2. THE NORMAL-BASED INTERPOLATING CURVE
SUBDIVISION SCHEME

Subdivision schemes with the capability of reproducing circles/spheres
may be either linear [23,24] or non-linear [1, 6, 8, 25]. For the first
class of schemes, the refinement rules are simply given by linear
combinations of vector data (i.e., vectors containing function and
derivative values, or points and associated normals) from the pre-
vious level, while for the second class they are of non-linear type
and usually provided by a geometric construction. However, both
kinds of methods are designed such that the initial set of vector data
is interpolated. The present proposal relies on the non-linear vector
subdivision scheme proposed in [1]. It provides normal-continuous
limits and has the advantage to use the same refinement rules (her-
einafter summarized) for both curve and surface generation. For
this reason we privilege this scheme among the various existing
proposals.

2.1. Refinement Rules

We denote by {p;-)7 n?}; the set of vector data, made of points and
associated unit normal vectors. The refinement rules of the normal-
based interpolating subdivision scheme from [1] for generating
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The graphical interpretation of the refinement rules in (1) is illustra-
ted in Fig. 1.

Fig. 1. Graphical illustration of the k-th step of the normal-based
interpolating subdivision scheme.

2.2. Reproduction of the Unit Circle

A key property of the subdivision scheme described by (1) is that it
reproduces circles. To reproduce the unit circle, we have to start from
the inscribed regular n-sided polygon (n > 3) and its unit normal
vectors, i.e., the input data are

. NN
p?:ngz (cos (@),Sin (22)) , 3=0,..
n n

In Fig. 2 we show the unit circle obtained as limit curve of the
normal-based interpolating subdivision scheme when n = 3,4. If
we start the refinement with an arbitrary n-sided polygon and so-
me associated unit normal vectors, we get a normal-continuous limit
curve with a blob-like shape (see Fig. 3).

,n—1.

2.3. Similarity Invariance

An important requirement for the construction of a deformable mo-
del is that the representation model be invariant under similarity
transformations. In fact, we are interested in outlining shapes irre-
spective of their position and orientation. In Proposition 2.1 we show
that the normal-based interpolating subdivision scheme in (1) is in-
deed similarity invariant.
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Fig. 2. Unit circles, generated via the normal-based interpolating
subdivision scheme, and vertices {pf}l obtained in levels k = 1,2
when starting from the 3- and 4-sided inscribed regular polygon.

Fig. 3. Blob-like shapes, generated via the normal-based interpo-
lating subdivision scheme, and vertices {p}}; obtained in levels
k = 1,2 when starting from an arbitrary 3- and 4-sided polygon.

Proposition 2.1. The normal-based interpolating subdivision sche-
me in (1) is invariant under translation, isotropic (or uniform) sca-
ling and rotation. More generally, it is invariant under any simila-
rity transformation identified by a matrix M € R3*3 that verifies
M™M = {/(det(M))2I with T the identity matrix of size 3. Note
that,

e if M is a rotation, then det(M) = £1 and M™M =1;

e if M is an isotropic scaling, then M = ml and thus

det(M) = m® and M™M = m’L

The proof of Proposition 2.1 is given in Appendix 6.

3. THE NORMAL-BASED INTERPOLATING SURFACE
SUBDIVISION SCHEME

The curve subdivision scheme (1) can be extended for surface gene-
ration. The idea is to refine each triangle of a given triangular mesh
into four subtriangles. By applying recursively this strategy, we ge-
nerate the limit surface. During the subdivision process, the splitting
of each triangle is achieved by applying the curve scheme (1) on each
edge of the coarse triangle. We thus ensure that the original triangle
vertices and their unit normal vectors are kept, while a new vertex
and the associated unit normal vector are defined in correspondence
to the midpoint of each triangle edge. By joining together the new
vertices, we obtain the refined triangular mesh. The advantage of this
method is that the refinement strategy turns out to be very efficient
and easy to implement since it uses only local information. Moreo-
ver, since all triangles sharing a vertex have the same unit normal
vector, normal-continuity of the limit surface comes for free and no
proof is needed. Furthermore, if suitable initial data are considered
(see Subsection 3.1) the unit sphere can be reproduced.



k+1
Py e

Fig. 4. Graphical illustration of the k-th step of the normal-based
interpolating subdivision scheme on a triangular mesh.

3.1. Reproduction of the Unit Sphere

To generate the unit sphere (see Fig. 5), as k& approaches infinity, we
apply the described subdivision scheme to the tetrahedron of vertices
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On the other hand, if we start the refinement with an arbitra-
ry tetrahedron and some associated unit normal vectors, we get a
normal-continuous limit surface with a blob-like shape (see Fig. 6).

4. APPLICATION: DELINEATION OF BIOLOGICAL
STRUCTURES

We exploit the normal-based interpolating subdivision scheme to ef-
ficiently construct 2D and 3D deformable models. Such delineation
methods offer the following advantages: i) easy and localized inter-
actions can be achieved by simply modifying the vertices of the in-
itial coarse polyline/triangular mesh; ii) an accurate control over the
shape is possible through the normal vectors; iii) directional energy
functionals can be designed; iv) the discrete nature of the scheme
leads to an easy implementation; v) in the 3D case, the model can
handle surfaces of arbitrary topological type.

4.1. Deformable Models

We describe the deformable model by the limit curve/surface of the
subdivision scheme. Its shape is entirely encoded by the vertices
{p?}; of the initial coarse polyline/triangular mesh, so called control
points, and by the associated unit normal vectors {n?};. The para-
meters of the model are thus the control points and the unit normal
vectors. To attract the curve/surface towards the structure of interest
in the image, we locally adjust the control points. This can be do-
ne either manually or automatically by minimizing a suitable energy
functional [21].
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Fig. 5. Vertices generated via the normal-based interpolating subdi-
vision scheme in levels £ = 2,3,7 (b,c,d) when starting from the
regular tetrahedron with associated unit normal vectors (a).

A good 2D/3D deformable model must fulfill two main requi-
rements. First, to efficiently detect blob-like objects, it must repro-
duce circles/spheres. Second, it must depend on a small number of
parameters to limit the complexity of the deformation and improve
robustness. This is especially true in 3D: in order to have few con-
trol points to manipulate, and as the number of vertices increases
geometrically at each subdivision step, we want a simple shape as
initial coarse triangular mesh. Since we focus our attention on the
construction of deformable models for the characterization of closed
biomedical structures, we choose as initial mesh a 2-manifold tri-
angular mesh with genus 0. In particular, among the Platonic solids
having triangular faces and the lowest possible number of vertices,
we choose the tetrahedron as initial coarse mesh for the bivariate
subdivision scheme.

4.2. Experimental Results

We illustrate the use of this deformable model on four bioimages
(see Fig. 7). For those examples the deformation was performed ma-
nually. The model is able to delineate structures with blob-like shape
(sphere-like shape, respectively) (see Fig. 7 (b) and (d)), as well as
more complex shapes with circonvolutions or rapid changes of ori-
entation (see Fig. 7 (a) and (c)). In fact, the additional information
and control of the normals make the model more robust to circon-
volutions than the traditional deformable models [26]. The average
time to manually delineate each structure was less than 30 seconds,
starting from an initialization close to the object to segment.

5. CONCLUSION

We have shown that the normal-based interpolating subdivision
scheme in [1] possesses all the requirements to provide a compu-
tationally efficient representation of curves and surfaces to be used
in the construction of 2D and 3D deformable models. We have il-
lustrated the benefits of a deformable model with normal control in
the delineation of biological structures with circonvolutions or rapid
changes of orientation.
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Fig. 6. Vertices generated via the normal-based interpolating subdi-
vision scheme in levels £ = 2,3,7 (b,c,d) when starting from an
arbitrary tetrahedron and some associated unit normal vectors (a).

6. APPENDIX: PROOF OF PROPOSITION 2.1

We first prove the invariance by translation. Let s € R® be a trans-
lation vector applied to the kth level set of points, namely let p¥ =
p¥ + s for all 4. The normal vectors n¥ are not affected by this trans-
formation, i.e., ¥ = n? for all 4. In the following we show that the

refinement rules (1) yield the refined set of points f)f+1 = pf s

and the associated normals nf ™! = n*T!,

First of all, we easily show that &° = f)fﬂ —pF = e* As
£/ and t¥ only depend on n¥ and e* for all i, we deduce that they
remain unchanged by translation. The same applies to £*, & and 4.

We can thus show that
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which correspond to the condition of translation invariance.

To show invariance under isotropic (or uniform) scaling and
rotation, we first recall the following results. Let a,b € R® and
M € R3*3 such that MM = {/(det(M))2I. Then, we have that

(Ma) - (Mb) = {/(det(M))? (a - b) @)

and

(Ma) x (Mb) = {/det(M) M (a x b). 3)

(b) Sickle cell (2D).

®;

(c) C. elegans (2D). (d) Nuclei (3D).

Fig. 7. Delineation of biomedical structures in 2D-3D microscopy
images. (a) Oenothera fruticosa, pollen, in a 2D image, source: Loui-
sa Howard (2012), doi:10.7295/W9CIL40334; (b) Sickle cell in a 2D
image; (c) C. elegans in a 2D image; (d) Nuclei in a volume. The blue
dots are the control points of the 3D deformable model.

In the case of isotropic (or uniform) scaling and rotation, the refi-
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Hence, cos(a®) is not altered by the transformation M, and thus
neither 4§ nor v¥ are. At the (k + 1)th level we thus get
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Note that HMnQ#j 2 = ¥/ det(M)HnQ#ng = {/det(M), for
7 =0,1. Then ﬁl;#j, 7 = 0,1, are still unit normal vectors, which
concludes the proof.
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