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ABSTRACT

The use of the wavelet transform to detect differences between
sequentially acquired functional magnetic resonance images
(fMRIs) is explored. A statistical data model is developed that
makes use of the orthogonality and regularity conditions of the
wavelets to achieve a signal decomposition into uncorrelated
components, enabling application of standard parametric tests of
significance on wavelet coefficients directly. This overcomes the
problems associated with high intervoxel correlations in the spa-
tial domain, and achieves economy in statistical testing by limit-
ing the search for significant signal components to a subspace
where the signal power is located. Thus, a smaller p-value ad-
justment for muitiple testing is required, resulting in a lower de-
tection threshold for a given overall level of statistical signifi-
cance. For the fMRIs investigated, a 10:1 reduction in the num-
ber of statistical tests was achieved, and about 1% of the wavelet
coefficients were significant (p<0.05 per volume), which then
served to resynthesize the difference images by inverse wavelet
transform.

1. INTRODUCTION

Functional neuroimaging is a fast evolving area aimed at
measuring brain activity during task performance. Functional
magnetic resonance imaging (fMRI) is only the most recently
developed modality [1], which distinguishes itself from earlier
methods (e.g. PET, SPECT) in that no exposure to ionizing radi-
ation is involved, better spatial and temporal resolution is
achieved, and a relatively straightforward co-registration to
anatomical MRIs acquired on the same machine can be attained.
The latter feature greatly facilitates the pursuit of one of the ma-
jor goals in neuroscience, the association of structure with func-
tion.

Functional imaging, as opposed to the more familiar static
or anatomical imaging used for mapping brain structure, pro-
vides information on physiological processes in the brain of
awake human beings while they are performing controlled per-
ceptual or cognitive tasks. Of interest is usually the detection of
differences in focal neuronal activation patterns, either between
different groups of subjects (e.g. normal versus diseased) or be-
tween controlled experimental conditions within the same sub-
ject (e.g. at rest versus solving a word puzzle). A shortcoming of
fMRI is that only the hemodynamic consequences of brain activ-
ity are assessed rather than a more proximate measure of neu-
ronal activity. The method is based on the fact that hemoglobin
becomes highly paramagnetic in its deoxygenated state, which
introduces local magnetic field inhomogeneities that extend well
into the extravascular space. These inhomogeneities result in a
local dephasing of the proton-spins that weakens the MR signal
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(T2* effect). Upon brain activation, the local hemodynamic
response overshoots the blood flow requirement for sustaining
the increased metabolic demand. This results in a net increase of
the venous blood oxygenation level, reducing the local field in-
homogeneities and thus, producing an increase in the MR signal.

The natural variability in the resulting 2-D or 3-D brain ac-
tivity maps is large and complex, requiring the support of statis-
tical methods for the detection of signal differences that range
typically from 2% to 8% on conventional 1.5 Tesla machines.
The problem of poor signal-to-noise ratio (SNR) conditions is
further exacerbated in that, for the spatial localization desired for
meaningful neurophysiological interpretation of the data, the
number of voxels investigators wish to examine, is typically very
large. In engineering terms: both the spatial location and the
spatial extent (or equivalently the spatial-frequency bandwidth)
of the signal to be detected are unknown.

Signal detection by statistical testing of individual voxels is
problematic without the use of a rigorous data model because of
the potentially large number of tests to be performed, and the
difficulty of assigning proper significance levels due to sub-
stantial intervoxel correlation. Some alleviation to these prob-
lems is proposed in this paper. We employ a discrete wavelet
transform to attain an orthogonal decomposition of the
functional images with respect to spatial location and resolution
bandwidth. The good localization properties of the wavelets in
both the spatial and the frequency domains can then be used to
take advantage of the better SNR conditions at lower image reso-
lutions, and to develop statistical models that enable the applica-
tion of standard parametric tests of significance on wavelet coef-
ficients directly. Due to orthogonality and regularity conditions
imposed on the wavelet basis, these tests are unhampered by the
intervoxel correlations existing in the spatial domain .

2. METHODS

2.1. Image Acquisition

Images were obtained using a clinical 1.5 Tesla scanner
(SIGNA, General Electric, Milwaukee) with standard quadrature
head coil. Both structural and functional images were acquired
from the same region of the brain. For anatomical detail, inver-
sion recovery images (TI/TR 800/3000 msec) were obtained that
matched the functional images in location, orientation (45° rela-
tive to the AC-PC line) and thickness (3 mm + 1 mm gap), yield-
ing a data matrix of 15 slices with 256x128 pixels over a field of
view (FOV) of 240 mm. For the functional scans, an Echo-
Shifted FLASH sequence was used (TE/TR 29.1/20 ms, flip an-
gle 11°, FOV 64 mm, data matrix 16 slices of 64x64 pixels) {2].
The entire volume was acquired within 20 s. Uniformity limita-
tions of the RF field excitation restricted the image analysis to
the 10 innermost slices, covering a 40 mm section with 4 mm



thick contiguous slices of nominal in-plane resolution of
3.75x3.75 mm. Pilot experiments determined that the extent of
local field inhomogeneity effects caused by the nasal cavity
(air/tissue susceptibility difference) was minimized at the chosen
slice orientation of 45°.

A multivalve olfactory stimulation system was built from
nonmagnetic material (teflon and brass) that permitted to con-
nect small vessels containing different odors (Coconut or
Muguet, International Flavors and Fragrances, Union Beach, NJ)
to a nasal cannula. An air pump located outside the scanner
room supplied a continuous stream of filtered air, which could
either be led directly to the nasal cannula (control condition) or
diverted first through one of the odor containers (olfactory
stimulation). A stimulation cycle consisted of 2 consecutive 20 s
functional scans, with a 7 s interval between the scans. Ol-
factory stimulation was switched on at the end of the first scan,
and off at the end of the second scan. For each subject 8 cycles
were acquired, spaced 3 minutes apart to allow for washing out
of the odors from the valve system and nasal cavity. To min-
imize motion artifacts, all subsequent fMRI scans were digitally
registered to the first scan (3-D translation and rotation) by a
procedure that minimized the squared gray-level difference over
all intracranial voxels. The Marquardt-Levenberg algorithm was
used in a coarse-to-fine strategy to estimate the optimal
transformation parameters from cubic-spline resolution pyramid
representations of the volumes to be registered [3].

2.2. Statistical Analysis

For the data analysis, registered slices obtained during ol-
factory stimulation were subtracted from the corresponding
baseline slices of each stimulation cycle, i, yielding N = 8
difference images, f(s,f). These images are assumed to be
represented by the population model

f(s,0) = tfs,)) + efs,r), i=1,..,N, 2.0

where LU(s,?) represents the underlying (deterministic) spatial pat-
tern to be detected, and e is a Gaussian random field with E[e] =
0 and He(s,p) e(s',1)] = & &s—s', ). To estimate L(s,t), av-

eraging over the N replications is performed, yielding

- 1 X
Als,D) =% X fsn 2.2
i=1
N
F(sp) = —1\71:1_51 [fs.0) - isof (2.3)
which satisfies
El(s.0)] = (s,p) , and Vafu(sp]=?/N . (2.4

~2
By pooling O (s.1) over all intracranial (IC) pixels, 1., an esti-

mate of O with a large number of degrees of freedom is ob-
tained, which is assumed to be fixed and a good approximation
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(2.5)

The orthogonal spline (or Battle-Lemari€) wavelets were
used as the bases for the wavelet transform. This family provides
symmetric wavelet functions, whose regularity can be conve-
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niently controlled by specifying the polynomial order of the
spline. We investigated, the suitability of splines of orders O
(Haar basis), 1, 3, and 5, and selected cubic splines for presenta-
tion of the results. The digital implementation of the wavelet
transform followed the filterbank algorithm of Mallat [4, 5], and
extension to two dimensions was achieved by the tensor product
representation

¥, (mn) = 2792 x - n) W27y -m)
Wimn) =279 (27x - n) @7y —m)
Y mn) =29 x - n) yQ@y-m) , mneZ

(2.6)

defining an orthonormal basis associated with the two-dimen-
sional scaling function

®mn)=270Q7x—n) Q7Y -m) , mpeZ . (2.7
Using these bases, the average difference image can be de-
composed as i

J 3
=X cfmm@fmn)+X X X dimn) ¥iemn),
mneZ j=lk=1 mneZ
2.8

where the coefficients ¢/(im,n) represent the approximation im-

age at resolution level J, and a;k (rm,n) are the wavelet coefficients
at resolution level j , providing horizontally, vertically and diago-
nally oriented image detail (k=1,2,3, respectively). The approx-
imation and wavelet coefficients are the projections (inner prod-
ucts) of (s onto the corresponding orthogonal resolution
spaces

cfmn) = (li(s), Rfmn)) , mneZ 2.9)
&onm = (i), ¥nm) , mneZ, j=1,...J,
k=1,23. (2.10)

Under the null hypothesis Hy: 1(s,f) = 0. Substituting (2.4)
into (2.9) and (2.10), and using the orthogonality of the bases, it
follows that

cfmmyioy ~ NO,1) | d(mn)a, ~ N©O,1) @.11)

T [chmnio] ~ %, , and
mnefC;
2
T [Gowia] ~ 2 10 123, @1y
m,nEle
where 0,2v =0%N | and n; =#IC, is the number of intracranial

pixels at resolution level j. Hence, (2.13) enables testing Hg by
3*J chi-square tests, examining whether all wavelet coefficients

(2.12)

d}-k in a particular channel (resolution j and orientation k) are
jointly zero.

By assigning to each of these chi-square tests a significance
level o = p/(3*J¥10) (Bonferroni correction for the 10 slices in
this experiment), the overall significance per volume was main-
tained at the specified level p=0.05. All coefficients in a channel
passing the chi-square tests were set to zero. Those in significant



channels were subjected individually to follow-up z-tests based
on (2.11), and retained only if significant at a level adjusted for
the total number of tests performed in these remaining channels.
Application of the inverse wavelet transform to this reduced set
of coefficients yielded the reconstruction of the desired signal
difference image.

3. RESULTS

Fig. 1 (a) shows one of the difference images for a center
slice of the sampled volume, and Fig. 1 (b) presents the result af-
ter averaging according to (2.2). The cubic spline wavelet coef-
ficients of this average image for J=4 levels are displayed in Fig.
1 (c). Statistical testing produced 12 significant coefficients
(overall p<0.05), displayed in Fig. 1 (d).

Fig.1 (a) fMRI difference image between olfactory stimulus on
and off; (b) average difference image of 8 stimulation
cycles; (c) wavelet decomposition with cubic splines;

(d) significant (p<0.05) wavelet coefficients.

Application of chi-square testing according to (2.13) to the
10 slices encompassing 7001 intracranial voxels, resulted in total
search space reductions of 88.2%, 88.2%, 90.0%, and 90.1%, for
spline wavelets of orders 0, 1, 3, and 5, respectively. Hence, the
p-level for individual tests (Bonferroni adjustment) was reduced
by about a factor of 10 compared to voxel-based testing, which
itself is difficult to interpret due to spatial correlation. The cor-
responding number of significant (p<0.05) wavelets determined
by the follow-up z-tests (2.11) were 95 (1.36%), 77 (1.10%), 76
(1.09%), and 68 (0.97%), respectively. The slightly larger num-
ber of significant coefficients for the lower-order splines is due
to their diminished capacity to suppress cross-correlation be-
tween different resolution channels [6].
Fig. 2 shows for the same slice the original difference image (a),
and the reconstructed difference images (b-d) obtained by
applying the inverse wavelet transform to the reduced set of sig-
nificant coefficients. Since most of the deleted coefficients were
located in higher resolution channels, a significant amount of
noise reduction was achieved, while the main features of the sig-
nal were retained. The reconstruction based on Haar wavelets
(Fig. 2 b) is perhaps too “blocky” to be of practical use, however,
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it does provide a valid, cursory abstraction of the main regions of
signal change. Both reconstructions employing higher-order
wavelets provide reasonable representations of the main focal
changes, and there is little visual difference between the results
based on first- (c) and third-order (d) wavelets.

Fig. 3 shows 6 contiguous anatomical MRI slices from one
subject (anteroposterior direction from top left to bottom right),
over which regions of significant functional signal change >1%
are superimposed (increase - white, decrease - black). Signal in-
creases are demonstrated over the posterior orbitofrontal and
pyriform cortices (anterior slices), and over the amygdaloid nu-
clei, all areas associated with the processing of olfactory stimuli.
The fMRI differences shown were synthesized by inverse

Fig. 2 (a) Average difference image; (b) - (d) resynthesis of (a)
from significant wavelet coefficients using zero, first and
third order splines.

wavelet transform of significant coefficients only, using cubic
spline wavelets.

4. DISCUSSION

The process of globally eliminating nonsignificant resolu-
tion channels by (2.13) is analogous to applying a filter to the
difference image, which due to the nature of the signal turns out
to be essentially a lowpass. However, the important difference
from standard lowpass filtering is that the cutoff frequency does
not have to be specified beforehand, but is rather determined by
statistical testing. This constitutes a flexibility inherent in the
method with considerable practical impact, in that it can readily
be applied to images acquired on scanners with ill-specified or
unknown point-spread functions. Similarly, the testing of the co-
efficients in significant channels (2.11) can be viewed as a spa-
tially adaptive filtering process, where a specific bandpass filter
(the wavelet) is applied at image locations providing significant
edge information, while “flat” image regions are smoothed to the
extent permitted by the next lower wavelet resolution level. Asa
result of these implicit filter operations, resynthesis of the differ-
ence images based on significant wavelet coefficients only re-
sults in smooth, relatively noise-free foci of functional change



Fig. 3 Contiguous coronal MRI slices (anteroposterior direction from top left to bottom right), tilted at an angle of 45° from postero-
superior to antero-inferior. Superimposed are significant functional signal differences >1% due to olfactory stimulation

(positive - white, negative - black).

that were not broken up into scattered single-pixel regions by the
thresholding employed for the anatomical overlay.

In conclusion, wavelet decomposition permits establishing
rigorous significance levels unencumbered by intervoxel corre-
lation. It exploits the higher SNR in low-resolution channels
arising from the predominantly lowpass nature of the difference
signal to achieve a 10:1 reduction in the number of statistical
tests. This results in a lower detection threshold for a given p-
level per volume, thereby increasing the sensitivity for localizing
biologically relevant signal changes as small as 1%.
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