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Statistical Analysis of Functional MRI Data
In the Wavelet Domain
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Abstract—The use of the wavelet transform is explored for reconstruction [6], [7], and in the design of new acquisition
the detection of differences between brain functional magnetic schemes for magnetic resonance imaging (MRI) [8]-[11].

resonance images (fMRI's) acquired under two different exper- ; ; ;
imental conditions. The method benefits from the fact that a Wavelet representations are also well suited for a variety

smooth and spatially localized signal can be represented by a Of data processing tasks. For example, one of the earlier
small set of localized wavelet coefficients, while the power of papers presented a simple threshold-based denoising method
white noise is uniformly spread throughout the wavelet space. for MRI images [12], which was the precursor of Donoho’s
Hence, a statistical procedure is developed that uses the imposedygyelet shrinkage method [13]. Perhaps most of the efforts

decomposition orthogonality to locate wavelet-space partitions . . : .
with large signal-to-noise ratio (SNR), and subsequently restricts in this area have been directed toward applying wavelets to

the testing for significant wavelet coefficients to these partitions. digital mammography, for both image enhancement [14] and
This results in a higher SNR and a smaller number of sta- the detection of microcalcifications [15]-[17]. In Section II, a

tistical tests, yielding a lower detection threshold compared to prief review of the basic concepts of the wavelet transform
spatial-domain testing and, thus, a higher detection sensitivity is presented, with emphasis given to the selection of basis

without increasing type | errors. The multiresolution approach of functi d to impl tati . di ltiol
the wavelet method is particularly suited to applications where unctions, and to impiementation Issues regarding muitiple

the signal bandwidth and/or the characteristics of an imaging dimensions and discrete realizations.
modality cannot be well specified. The proposed method was The present application of wavelets to the analysis of
applied to compare two different fMRI acquisition modalities.  fynctional MRI (fMRI) data was inspired by our earlier work

Differences of the respective useful signal bandwidths could be |, . ; . : . o
clearly demonstrated; the estimated signal, due to the smoothnessW'th functional image data obtained by positron emission

of the wavelet representation, yielded more compact regions of tomography [18]. In functional imaging, the information of

neuroactivity than standard spatial-domain testing. clinical interest is usually the difference between images
Index Terms—Functional magnetic resonance imaging, mul- of two dlfferent act|vat|or? states of the brgm controlled by
tiresolution analysis, statistical models, wavelet transform. some experimental paradigm. Because the images have a poor

signal-to-noise ratio (SNR), arising from intrinsic biological
heterogeneity and scanner-induced noise, averaging over sev-
eral experimental trials (or subjects) is usually performed,
VER the past few years, there have been numerous yelding a mean difference image and its associated sample
ports on the use of wavelets in medical imaging [1], [2ktandard deviation (SD) image. The direct statistical analysis
One of the more traditional applications is data compressiofi these data in the spatial domain is problematic because
of image sequences and/or image volumes [3]-[5]. Waveleib a poor SNR, the large number of pixels (i.e., test vari-
have also been found to be useful for tomographic imagles) that need to be investigated, and the often unknown
and strong spatial correlation among the pixels. In order to
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the reduced number of statistical tests, both contributing touabiased estimates of the effective bandwidth are obtained as
higher detection sensitivity without increasing type | errors.a byproduct of the statistical analysis in the wavelet domain.
The paper is organized as follows. Section Il introduces a

few basic concepts of wavelet transforms, presents extensions
Functional Magnetic Resonance Imaging (fMRI) to multiple dimensions, and provides important detail for

Functional MRI is a fast-developing technique for studyingeir digital implementation. In Section Il we introduce the
physiological processes in the brains of conscious human sgkatistical model and develop inferential testing procedures
jects_ It measures blood oxygenation-|eve| dependent (BOLM the detection of activation signals. Section IV details
signal changes caused by regional hemodynamic adjustmdM&I acquisition procedures and experimental neuroactivation
in response to changes in neuronal activity [19]. The currep@radigms. As an application of the developed methods, the
understanding is that an increase in local brain activity leaggrformance of two particular fMRI acquisition techniques,
to hyperoxemia (decreased level of deoxyhemoglobin), whielRESTO [30] and EPI [31] are compared in Section V, and
is due to an overcompensation of the local tissue perfusiefnclusions are drawn in Section VI.
in response to the increased energy demand in the acti-
vated neurons [20]. However, the exact mechanisms of these Il. THE WAVELET TRANSFORM

regulatory processes are not fully known. In particular, the The ysefulness of orthogonal transformations, such as the
interpretation for BOLD signal decreases is not yet establishgthrier or orthogonal wavelet transforms, is that they project
Nonetheless, BOLD methods offer considerable advantagesiignal onto a set of basis functions without altering the
over other functional imaging modalities, in that they can b§gnal itself. If a key feature of a signal is well represented
performed on widely available clinical scanners, do notrequigg a few basis functions in the set, while all other basis
exogenous contrast agents or exposure to ionizing radiati@ihctions are orthogonal, then the presence of that feature can
provide excellent spatial resolution, and can be registered WEB easily detected by projecting the signal onto this orthogonal
anatomical images acquired on the same machine. basis. However, in many applications, such as fMRI, the
Although the first reports of imaging in humans based qgby signal features are not well known and the optimal
BOLD effects appeared in 1992 [21]-[23], important issuasasis functions cannot be specified in advance. For such
regarding sensitivity, reproducibility, and the nature of artihppiications, the multiresolution analysis made possible by the
facts are still unsettled. Neuronal activity changes induced Qyvelet transform offers the benefit that signal features not
various experimental stimuli typically result in signal intensitgnown beforehand can be detected and extracted over many
changes of 1%-5% in 1.5-T scanners, which are close to tgles. A fusion of the extracted features at different scales

scan-to-scan variability. While the SNR can often be improvgflen permits a succinct signal representation with emphasis
by stimulus repetition with subsequent scan averaging, theji§ key signal properties.

is a practical limit to the number of scans that can be collected

in a single human subject. Changes in physiological procesges\yltiresolution and Wavelet Decomposition
as a result of habituation, learning or fatigue, subject motiogs 5 One-Dimensional (1-D) Signal

and machine calibration drift, impose time constraints on theF imolicity of th ition. the 1-D . idered
duration of an experiment. Consequently, scan acquisition ti etOr SAF“E icity Ob N e>_<|p03| tlon(,j det ) Cﬁ.sel |sdc_:on5| ere
is an important factor. A major problem of BOLD method Irst, which can be easily extended fo mutliple dimensions.

is the presence of artifacts associated with head and/or veéoé'él Qrthogonal \{vavelet trgnsform IS characterlged by two

motion [24], as well as vascular inflow [25], [26] and drainaggommU.OUSIy'de.ﬂm(j functions: 1) treealing functiong(x),

effects [27]. Most detrimental is that these artifacts are qui d2)its as.souated.aveletz/;(a:') :.ﬁEkEZ g(k)$(2x—k), .

often correlated with the signal of interest, and thus resistanto ¢ © g(k)_ IS a 5“"?b'e weighting sequence. The scaling

simple image averaging. Hence, in attempts to overcome Sopdgctlon ¢ is the solution of a two-scale equation

of these technical difficulties, new image acquisition schemes P(z) = \/52 R(k)p(2z — k). 1)

are rapidly evolving where, unfortunately, formal performance ke

comparisons are often missing (abstracts for the 1995 Annl‘ﬁlle sequencen(k) is the so-calledrefinementfilter. The

Meeting of the Society for Magnetic Resonance yielded g let basis functions are constructed by d adic dilation

list of 76 acronyms for different MRI acquisition technique%lyave ¢ : : y ay

28)). index j) and translation (index) of the mother wavelet
Considering the rate at which new fMRI acquisition tech- i =272 p(x)270 — k). (2)

nigues emerge, the availability of objective, automated im-

age comparison methods should be of great interest. T Qie sequencea and g—or, equwalently¢ andj—can be
N3 ected such thayy; x }(;,x)cz= constitutes an orthonormal

wavelet decomposition approach is eminently suited for Sugh .o of Ly, the space of finite energy functions [32], [33].

comparison tasks because it can be applied “blindly” . . : -
images acquired by different techniques, where knowledg)é1IS orthogonality permits the wavelet coefficientg/:) and

of possible signal bandwidth limitations may not have be rpproximation coefficients; (k) of any function f(z) € L

e . . Eio be obtained by inner product with the corresponding basis
sufficiently well established [29]. In particular, no mEthOdfunctions
specific preprocessing is needed, and instead of requiring

assumptions regarding signal bandwidth limitations, crude, yet d;i(k) = (f,vjn), (k) ={(f djx) (3)
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Fig. 1. Fast implementation of the wavelet transform. (a) Basic principle of

the algorithm is the repetitive split of the sequences; (k) into two halves

using the low and high operators. (b) Implementation of the low (low-pass)

and high (high-pass) operators using filtering and decimation by a factor of

two. L2167

¢, ,:()’)

where (f,g) = [ f(z)g(x)dz is the conventionalL,-inner (b)

product. In practice, the decomposition is only carried owlg. 2. (a) One iteration of the separable wavelet transform in 2-D. First, the
over a finite number of scales. The wavelet transform with basic 1-D algorithm is applied in the-direction, which splits the columns
- : of the data into two halves. Second, it is applied in thdirection with (a)
a depthJ is then given by as input, splitting the rows into two halves. (b) The basis functions for each
quadrant are obtained from the product of the corresponding basis functions

J
in z andy. The procedure is then iterated on the upper left quadrant in (b).
F@ =33 ditin+ > csBpse @ "7
j=lkez kez
where d, (k) and ¢; (k) are defined in (3) QMF filterbank in Fig. 1(b). The iterative definition o
J J :

. . ables implementation of (5) and (6) for a signal vector
Although the synthesis and expansion formulas (4) and g ; 5 .
are usually given for continuous signals [32], [33], equivale ?Iength No by O(No) operations, rather tha@(Ny). This

expressions also exist for a purely discrete framework [Sgﬁailé;itﬂlﬁacnomgltjt;‘tl%neosft;%z\;vr?jvlillf'f'tr\?/ziscfﬁrhmazlggriy Ir::()i:e
In the discrete formulation, which is the appropriate one her ' plexity

these formulas can be rewritten in the following matrix form(:)f O(Nolog No).

f=w7"d (5) B. Extension to Multiple Dimensions

d = Wf (6) The decomposition (3) is easily extended to two-
wheref = (.-, f(k),--) is the (infinite dimensional) signal ;jmensmnzll §2b-D). cf)r t:\.ree-dln;](_anhsmnal (ts_ltj) byl .usmt?]
(or image) vector,W the orthogonal wavelet transforma--cN=0r Product basis iunctions, which amounts 1o applying the
. . _ 1-D decomposition algorithm [Fig. 1(b)] successively along
tion matrix, andd = (---,di(k),---,ds(k),---cs(k),---) e di . f the data. The effect of terati
the wavelet coefficient vector. The wavelet transform (6) f?e separate dimensions ot the data. The eliect of one iteration

therefore an orthonormal transformation of the signal vect8F this spllt_tmg Process 1S |Ilustrate_d in Fig. 2 for the 2.'D
£ case. In this way, one generatgs different types of basis

functions in¢ dimensions. The corresponding) separable

Rather th fini h f licitl
ather than defining the transform matW explicitly, &qaling functions withx = (1, - -,a,) are given by

it is much easier to describe the underlying decompositi
algorithm, which uses the two complementary filtérsand q
g. In the orthogonal case, the low-pass filfersatisfies the bik(x) = Hd)j:’%‘ (z;) (10)
so-called quadrature mirror filter (QMF) conditions i=1

H(z)H(z ')+ H(-z)H(—z ') =2 (7)  where we use the vector integer index= (ki,-- -, k,). The
H(l) = V2 e H(-1)=0 (8) other2? — 1 types of wavelet basis functions are obtained in
a similar fashion by replacing one or several factors in (10)
where H(z) is the transfer functionztransform) ofh. The py 3 wavelet term of the form; . (;). Letb = {by,---,b,}
high-pass filterg is the modulated version df given by a binary vector withb; = .1 it ¢; 1 is replaced by, s,
G(z) =z - H(—2"Y). @) otherwiseb; = 0. By defining
The wavelet decomposition is implemented iteratively as in Oix, = {%’,ku if b, = _1 (11)
Fig. 1(a), by successive filtering and decimation using the ’ bjn, Otherwise



RUTTIMANN et al: STATISTICAL ANALYSIS OF fMRI DATA IN WAVELET DOMAIN 145

the mixed tensor product wavelets then are implementation of higher order wavelet filters. Note, since the
a modulated sinc-wavelet is the limiting case, the spatial decay
W (x) = H%,kz (z;) m=1,---,29—1 (12) rate of the filter coefflc.lents for low-order spline Wavelets is
i} always better than /z (i.e., powers ofl/z). In practice, the

extent of channel decorrelation must be balanced against a loss

with of spatial localization, and the issue of selecting the degree of
q ‘ the spline depends on the assumed smoothness of the signal

m = Zbﬂ“l. (13) to be detected and is essentially a matter of compromise.

i=1 Fortunately, the assumption of signal smoothness is not very

Since¢ is low pass and» high pass, the mixed tensor producEeStr'Ct'Ve_ be(,‘:ause Sf.“°°t_h wayelet bases are (asym_ptotlcally)
near-optimal” for estimating signals that may contain some

wavelets will typically have a preferential spatial orientation . o .
along one (or several if > 2) of the spatial directions. In points of discontinuity, but are otherwise largely smooth

this view, m assumes the role of a spatial direction indicatoL.sg]’ t[40t] H|gher ord(fer wavietsl W'Hl yu;ld hlghel; ?ettlacnon_”
For the 2-D case illustrated abovey?, for m = 1,2,3 sensitivity in areas of smooth signal changes, but also wi

correspond to wavelets oriented along7 the vertical, horizontglye rise to “ringing” artifacts near discontinuities when the

and diagonal directions. Note that by extending the definiti nal is reconstructed from a reduged number .Of coefﬂqgnts,
of (12) tom = 0, it includes (L0); i.e.¢b; 1(x) = w? ,(x) though much less than a suppression of Fourier coefficients
=0, s ieupyr(x) = wi (%)

The corresponding multidimensional coefficients would cause in a Fourier-base representat?on of the same §i_gnal
[41]. Conversely, the representation of signal discontinuities
with a reduced number of zero-order wavelets will be more
c;i(k)={f,Pjx) (14) faithful, at a loss of sensitivity in detecting smooth signal
d}"(k) = <f7 wlfi, (15) changes. Since the fMRI volumes in our application were
spatially coregistered employing tricubic spline interpolation

) S ] ) ) ] (Section IV-C), orthogonal cubic-spline wavelets were used
are in the digital implementation obtained iteratively by suGy, the statistical analyses.

cessive filtering and down-sampling by a factor of two as

illustrated in Fig. 2 for the 2-D case. D. Periodic Implementations

A simplified form for the transfer function of the low-pass

refinement filter (Fig. 1) for an orthogonal spline of degree
Spline wavelets have many desirable properties [35]. For odr (cf. [42])

application, orthogonal spline (or Battle—-Len&griwavelets

[32], [36], [37] were selected for the following reasons: 1) H' (%) = \/icos"“(w/2)

orthogonality is required in the subsequent statistical analysis

(Section 1ll); 2) the resulting family of transforms has the dls ey i ) _

advantage of using symmetrical basis functions; and 3) splifé8€re 3~ (¢’~) is the Fourier transform of the discrete B-

provide a simple way of reducing spectral overlap betwe<§‘:92|'ne1 of degreezn + 1. Recursive formulas for computing

resolution channels by increasing the degree of the spline 3™ (%) can t;e found in [43]. For example, for piecewise

Symmetric basis functions do not introduce phase distortioffa€ar SplinesB(¢’) o 2 +- cos(w) and for piecewise cubic

and thus maintain a more faithful signal localization in th&PliNes B”(¢™) o 1208 + 1191 cos(w) + 120 cos(2w) +

wavelet domain; in particular, the location of strong wavel&es(3w). An expeghgnt way to obtain these filter coefficients

coefficients due to a signal transition does not depend on {fel® Samplefi™(¢’) at the frequenciesy = 27k/M. k =

direction the signal is swept. ,--.-,M -1, anq perform anM—pomt. mvgrsc_e FF_T wher_e
Small spectral overlap results in good data decorrelatidff 'S chosen sufficiently large to avoid aliasing in the time

[18], which is important to achieve a high detection sensitivityomain. This yields symmetric low-pass filter coefficients

The excellent decorrelation property of orthogonal splirfé(k)* which are then truncated th € —N,---,+N, with

wavelets derives from the fact that splines with degree ¥ < M, to yield finite impulse response filters of length

provide L = n + 1 vanishing moments. A Taylor series2N + 1. The gssomated h|gh-pas_s filter response is obtained

expansion of the wavelet transform shows that the correlatif@™ (9) by simply applying a shift of one to the low-pass

of the coefficients between scalgsand;» decays proportional fIter coefficients and alternating the sign

to »(L+3/2) wherer is the ratio of the scales= 20271 < 1 g(k) = (=1)*R(1 — k). (17)

[18], [29]. Hence, the correlation across scale can be controlled ) o ) )

by choosing a sufficiently high polynomial order. In the limit, 1he function f(z) is in practice a discrete sequence of

as L increases indefinitely, the spline wavelets tend to tHiite IengthNo, {f(k)}rery,, wherely, ={0,---, No —1}.

modulated sinc-wavelet, and the correlation approaches z&R§$ inner products in (3) then take the form of circular

[38]. However, as another ramification of the uncertainfgenvolutions; i.e.,

principle, correlation suppression comes at the expense of N

a loss of spatial localization in terms of the decay rate of d(k) = > g(n)fp(k —n)

the filter coefficients, requiring larger spatial support for the n=-N

C. Selection of Basis Functions

B2n—|—l(ejw)

V=T (16)
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and applied [44], or the effective DOF’s for the residual variance
in a general linear model incorporating the hemodynamic
N response function needed to be estimated [45].
c(k) = Z h(n) fp(k —n) (18) Since ¢; is homogeneous by assumption, an improved
n=—N variance estimate can be obtained by poolifgn) over all

. intracranial (C) pixels, n,x = #IC, yielding an approxima-
where f,(k) = f(kmod Ny) supplies the samples at thetion of o2 W(ith)vpery Iargle DOF [46])/ g PP
boundaries whenevelk — n) ¢ In,. )
0% = $2(n). (24)
Ill. STATISTICAL ANALYSIS Mpix [ cTe

Typically, statistical analysis of brain fMR images com- The recovery procedure of(n) is then cast within the
pares data from one subject acquired under two differeirhmework of hypothesis testing, a well established practice in
experimental conditions, where the experiment has been repie life sciences. The null hypothedig postulatesf(n) = 0;
cated N times. In our particular application, each subjedte., there is no systematic difference between the images
performed/N = 8 on/off blocks of a finger tapping paradigmacquired under the two different experimental conditions. If
(Section IV-B). Eight block difference images were calculategthe hypothesis is refuted by the data, then the inference is that
by subtracting the means of the images acquired within a fingle signal is nonzero at certain spatial locations. In that case,
tapping “on” block,ggl)(n), from the means of the imagesit is of particular interest to the neuroscientist to obtain both a
acquired within the preceding “off’ block@,fo)(n), yielding good estimate of the spatial locations and shape of the signal

at these locations.
gi(n) = ggl)(n) - gEO)(n), t=1,---,N (19) An attractive method to apply this statistical framework is
_ o . ) to assume that the images in question can be approximated
wheren € Z? is the equidistant sampling grid on For fMR by a continuous random field, where the pixel values are
images, the number of dimensionss typically two or three. ., qigered to be the realizations of a random field sampled

The difference images are assumed to be characterized by jh&y, equally spaced lattiae[46]. The relevant test statistics

population model are then evaluated at each pixel and searched for local extrema

gi(n) = f(n) + ¢;(n) (20) that' m.ight indicate the presence of an activation signal. Formal

statistical methods have been developed by Worgewl.

where f(n) is the unknown deterministic signal common t¢46] to guard against false positive detections, who provided
all replications, which we would like to recover, amgdis a explicit expressions for the probability of excursion sets of
homogeneous random field of identically and independentBaussiant-, x%-, and F-fields. While elegant, potential draw-
distributed Gaussian noiséid ~ N(0,a%). Averaging over backs of the random field methods are that (a) a smoothness
N uncorrelated replications improves the SNR and yields garameter, usually the full-width—half-maximum (FWHM) of

estimate of the signal the pointspread function of the imaging method, is required
N to be either known or imposed upon by filtering, and (b) the

f(n) _ 1 Zgi(n) 1) images be sufficiently finely sampled (FWHM/pixel size,
N P see Section IV-A). Unfortunately, condition (b) does not hold

o _ _ ) for currently produced fMR images, and with regard to (a), the
which is asymptoticall(N' — oc) unbiased and consistent;sproper” amount of further smoothing to be applied is often

ie., inextricably related to the research question itself, as is the case
ElIf _ Varl f — o2/N. 29 !n our application. Since rando.m field methods cannot be_ used

@] = fn), arlf(n)] = o7/ (22) in our context (at least not without prior image smoothing),
The estimated sample variance at each pixel location the results of the wavelet-based analysis developed below will

be compared to results obtained by a spatial-domain analysis,
&2 1 2 \12 where the false positive detection rate (i.e., the significance
¥ )= N-1 Z[gi(n) — f(m)] (23) level) is controlled by the Bonferroni correction. While this
= correction is somewhat conservative in the presence of spatial
has(NV — 1) degrees of freedom (DOF’s). The use of (22) andoise correlations (which are presumed to be relatively small
(23) requires the assumption of uncorrelated replications of thee to the undersampling existing in present fMRI’s), the
random field, which was sufficiently well satisfied for the meamethod is certainly valid and, like the wavelet method, requires
block imageSggl)(n) and gfo)(n), because of the relatively no presmoothing.
long duration of the block cycle (Section IV-B). This assump- The multiresolution strategy offered by the wavelet de-
tion would definitely be violated if the volumetric images atomposition contrasts from the random field methods, or
each time point in the acquisition series were considered @ber “traditional” signal analysis methods, in the way the
replications, due to their high temporal correlation. If a timeguestion of “appropriate” image smoothing is approached.
series variance were to be used for statistical inference in ffleese methods consider the shape and/or size of the brain
spatial domain, either specific time-series analysis methaatsivation regions as known and typically apply low-pass
that properly adjust for temporal correlation needed to bitering to the images, in an attempt to maximize the SNR.

N
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The question then remains, what is the “best” smoothing filtenith o obtained from (24), yields for each of the directional
to use? If the activations are highly focal, then only a littlehannels at the resolution levgl

smoothing would be best. Conversely, if they are diffuse, more
extensive smoothing would be appropriate. The problem is
further compounded by the possibility that a particular brai
stimulation task may elicit both types of activation patterns
concurrently. Hence, a monoresolution strategy for these kind (&;”(k)/aN)Q ~ iid x?. 27)

of applications is likely to be suboptimal. In an attempt to

pick the “optimal” filter for each possible activation pattern, a Properties (26) and (27), in conjunction with the orthogo-
proposal has been made to apply sequentially a set of spati&ifity of the decomposition permit a two-stage approach to the
invariant and isotropic Gaussian |ow-pass filters with Succ@Stimation Off, which reduces the overall number of statistical
sively larger kernel widths, and then extend the search fsts that need to be performed. The first stage addresses the
activations over the 3-D location space as well as the 1-D filtg¢€stion as to whether there is significant signal power in
scale space [47]. However, the decomposition into a set 3ty of the(2? — 1)J direction-oriented resolution channels.
low-pass-filtered images is both redundant and nonorthogonHe approximation coefficients; represent the extreme low-
Consequently, the number of statistical tests required to locR@ss and dc information in the images and, as is common
activations is increased (search in four-dimensional (4-yactice [13], are routinely left unprocessed for inclusion
rather than 3-D space), and a higher detection threshold mifisthe subsequent signal estimation by the inverse wavelet
be selected to protect the significance level, incurring a lossteansform. In the second stage, only channels with significant
detection sensitivity [48]. Although the idea of a scale-spa&égnal power are further examined to determine the spatial
search is also pursued in the wavelet-based estimation metHggation of the signal. Hence, based on (27), the sum of the
this search is statistically and computationally more efficiegfluared, standardized coefficients in each channel is under the
due to the lack of redundancy of the wavelet decompositiofyPothesisH, a chi-square variate with DOF equal to the

In contrast to traditional, monoresolution signal detectiofumber of summation terms. This provides the rationale for the
techniques, wavelet detection is spatially adaptive and thudifst-stage test procedure, which jointly tests in each resolution
able to deal in a direct and straightforward manner with signat§annel the significance of the coefficients. Channels where
that may have spatially heterogeneous smoothness propertfés is accepted are discarded as carrying only noise, yielding
as well as a finite number of discontinuities. Hence, tH&e reduced coefficient set, shown in (28) at the bottom of the
question regarding the “best” smoothing need not be answef&ge, where
beforehand. In fact, answering that question is an integral part

of the wavelet-based multiresolution strategy, and the answer

may be complex in that different amounts of smoothing i he threshold at resolutio obtained from the(1 — «)

different spatial neighborhoods may be required. It has beﬁlrbbability cutoff of the chi-square distribution with DOF

shown that if nothl_ng Is known regardlng the “smoothn_ess (ghual to the number of intracranial wavelet coefficients at level
lack thereof) of a signal, wavelets constitute a “near-universal” ., _ #IC;. If each of the(27— 1).J tests is performed at a
= ;.

orthogopal basis [49]; i.e., (tjhey are, as;;rzgftoncally, for iw' gnificance level ofv = p/(27—1)J (Bonferroni adjustment),
range OfL,-error norms and a variety of different sSmoothne€sgs el significance per volumetric image is maintained

classes, nearly optimal for recovering a signal buried in whilg o specifiegh-level. To facilitate the follow-up testing in

n0|Tse._ | h let-based d . q tLj\le second stage, the index paitg,m’) of channels with
O implement the wavelet-Dased detection procedure, nificant power are entered into a look-up tafllg.

average difference image (21) is subjected to a multiresolutio he second stage procedure follows from (26) as a two-

decomposition according to (14) and (15). At each levelye . test of only the coefficients in the channels determined
J» the wavelet coefficients/]*(k) are computed by (15), to carry significant power

with f replaced byf, and wherew?’ are theg¢D tensor . L

product wavelets (12) along the directioms= 1, ---,27 — 1. a7(k) = {d}"(k)’ if [d7 (k)| > (Gym)€Ta  (30)
Under the null hypothesig;(n) = ¢;(n), andw}}, perform ! 0, otherwise

orthonormal linear transformations on the meansNofiid
Gaussian variates with varianeg, resulting from (22) in the
distribution ofd” (k) asiid N (0,02 /N). Hence, standardizing = ONZu (31)
the wavelet coefficients by the standard error

d7(k)/on ~ iid N(0,1) (26)

where

is the threshold for the standardized normal variate with the
significance levek’ adjusted for the total number of follow-
oN = a/\/ﬁ (25) up tests performed in the wavelet search space, i.e., the total

J

Arn s s 1 Arn’ 2
5 _Jark) forj=4 and m=mn', if Yyge, [d) (k)] >6; (28)
0, otherwise j=1,---,J, m=1,---,21 -1
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number of intracranial coefficients contained in the channél®R = 24 ms, with TE ranging from 29.6 to 40.4 ms for five

considered for follow-up testing consecutive gradient echoes, and a flip angle 6f This pro-
duced susceptibilityl; -weighted) images, captured in a data
o =p Z n. (32) matrix of 64x 50x 24 pixels in transverse orientation. The

field of view (FOV) was 240« 187.5x 90 mm, which, after
reconstruction resulted in isotropic pixels with dimension 3.75
Equation (32) constitutes the Bonferroni adjustment for multinm, and an isotropic resolution of 4.5-mm FWHM. Because
ple testing, requiring an elevation ofrelative to the single-test of the limitations of the gradient field homogeneity, only the
threshold. The associated penalty in terms of loss of statistigaiddle 14 contiguous slices of the imaged volume were used
power (increased rate of signal misses) is ameliorated to g analysis. This provided a sampled volume with a total
extent thatz(j,meTa) ny' < Npix. axial width of 5.25 cm that included the primary sensorimotor
The final step in this signal recovery procedure consist #ibrtex as the area of primary interest, and extended from the
applying the inverse discrete wavelet transform (5) to thep of the brain to the middle segment of the lateral gyrus.

J,m€T,

surviving coefficients, i.e., Gradient-echo EPI scanning was performed with a com-
. 3 bined radio-frequency (RF) and gradient insert coil capable
7 =w"d. (33) of generating 20 mT/m with a rise time of 100 ms (Medi-

Hence, the estimatg* is obtained as the sum of wavelet$dl Advances, Milwaukee, WI). Fifty-six sagittal (3.75-mm-
with coefficients that exceeded a statistically determined noit?éCk) |.nterlea\./ed sections were ficquwed (TR/EES 500/60
threshold. This process can be viewed as a kind of adaptf\')é” with a fllp angle of 99, with a FOV .Of 240x 240 .
noise filtering, where the filter passband is determined m [31]. This prqwded fuII-heqd coverage in a data matrix
the SNR levels in the various resolution channels. Frequen 64X. 64x 56 with 3.75-mm ISQtI’OpIC pixel size and an
bands of the dyadic resolution channels are combined into {R tropic FWHM after reconstruction of 4.5 mm.

overall signal bandpass definition, depending on whether the

estimated power level in a channel exceeds the noise threshgldsypjects and Tasks

This results in a crude estimate of the effective bandwidth of

the activation signalf*. It is obtained from the first testing
stage a2~7" times the sampling rate, withi* the smallest
J (highest resolution level) where at least one of #ie- 1
directional channels carries significant signal power.

Data are presented from seven healthy (mean age 30 yr),
strongly right-handed volunteers, who gave informed consent
to submit to MRI scanning by both the PRESTO and the EPI
technique. The research protocol was approved by the National
H]stitute of Mental Health Human Studies Review Board.

. . uring scan acquisition, the subjects had their eyes closed
olding as described above does not depend on the useaglg performed a finger tapping task with their right hand.

threshold's based on parametric stapstlcal distributions. Noﬂm tapping was self-paced (about 2 Hz) and consisted of
parametric thresholds may alternatively, and perhaps mare

validly, be derived from the corresponding empirical nuIouching the thumb sequentially with each one of the digits,

distributions generated by randomization procedures appIiecg eartm? Vt\t"f s]??lusvncde Jorg:;:% S: fEf'i?]ht f‘lttem‘?r:'ngsti’)l(OE\IZEIOf
the original images [50]. Such procedures could be generalize s rest were lollowed by S ot finger tapping.

to establish spatially variant thresholds for the detection gyans were acquired during each block to yield a total of 96

o . . . . Images. The first and last image in each block of six scans
activation signals in the presence of spatially inhomoge-

neous eise (. iferent sample SD's at difrent T Gt afer Eenciusin of e expermert o ot
locations). While randomization methods provide “exagt” Y P

values, nothing is known regarding the statistical power of t peuroactivity changes, which is in the order of a 4-6 s [22],

corresponding tests, and they impose a heavy computatio %?1]. The remaining four images in each block were considered

burden to accumulate the null distributions. For these reaso?'l_tse,ady state representations, and averaged within each block to

o : (1) g
randomization procedures are mainly relegated, at least c/f€'d mea(g) on” block imagesy, (n), and mean “off” block
rently, to validate existing parametric methods, particularfnages,g; “(n), @ = 1,---,8, used in (19).
if there is doubt regarding the tenability of some of the

underlying assumptions. C. Image Preprocessing

In an attempt to reduce artifacts due to small involuntary
head motion, all images of each subject were registered off-line
to the first image of the data set such that the squared gray-
level difference summed over all brain pixels was minimized.

All studies were performed on a clinical 1.5-T scannefhis was achieved by applying a modified version of the
(SIGNA, General Electric Medical Systems, Milwaukee, WI)Marquardt—Levenberg algorithm to a cubic-spline resolution
The PRESTO method used a GE quadratic head coil apgramid representation of the respective volumes [51]. Since
standard shielded gradients with a maximum amplitude of b@ly intrasubject registration was required, the transformation
mT/m and maximum slew rate of 17 T/m/s. As previously dgsarameters to achieve registration were restricted to 3-D
scribed [30], the pulse sequence had the following parametexgtations and translations.

IV. IMAGE ACQUISITION AND EXPERIMENTAL PROCEDURES

A. Imaging Parameters
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A binary brain mask image, encompassing all intracranial
pixels, was created by applying an intensity threshold to
the average image computed from all registered volumes
for a subject.Z5-weighted images display usually very little
tissue contrast [30], [52], rendering their intensity histograms
strongly bimodal (background or tissues). Hence, the thresh-
old was selected as the intensity level corresponding to the
“valley-point” separating the two modes in the histogram.
The resulting masks were trimmed subsequently to ensure
homogeneity of variance as stipulated in the model (20).
For that purpose, the mean “on” block imagg(é)(n) were
subtracted from adjacent mean “off” block imagg@)(n),
and the resulting mean and sample variance computed at each
pixel within the mask. As in previous analyses [30], [52], a chi-
square test withv = 8 DOF’s (nominal Bonferroni corrected
significance levelp = 0.01 per 2-D slice) was applied to
eliminate pixels not satisfying the homogeneity assumption,
resulting in a trimmed intracranial mask (IC). Only data from
pixel locations within this mask were tested subsequently
for the presence of activation signals. Pixels eliminated this
way constituted<5% of the brain volume and were located
mainly along the brain boundary (subarachnoidal cerebrospinal
fluid, sagittal sinuses). High variance at these locations was
most likely due to motion and/or gradient artifacts, as well
as classification errors in the initial generation of the brain
mask due to partial volume effects. Mean and sample variance _ '
of the difference images were then recomputed based on filsf 25, BECY €0 O T T e ance mages,
trimmed intracranial maskC, because this mask defines thed) wavelet coefficients for four-level transform, (e) significant = 0.05)
region of homogenous variance, and pixel locations outsiqy_evelet coefficients, and (f) inverse wavelet transform of significant coeffi-
this region should not contribute to the estimates (5) and ®&§™s
of the random field parameter®.

and all images

V. RESULTS 1 N

= _ (1) (0)
g= SN Z Z g;’(n)+g; ' (n). (34)

i=1 n€lC

Most currently applied fMRI acquisition methods are based
on echo planar imaging (EPI), which involves the repeti-
tive scanning of a series of 2-D slices throughout the bralote, the smaller this index, the better the image quality.
[21]-[23]. Direct 3-D scanning methods of contiguous volFor the seven subjects the index value ranged from 0.74%
umes would have the potential of yielding less ambiguous 1.19% for the PRESTO method, and between 0.81% and
registrations to anatomical MRI's, because the time skeiw28% for the EPI method. This index was statistically not
inherent in sequential slice acquisitions is eliminated. Alsdjfferent between the two modalities, and its range was similar
3-D scans are less susceptible to inflow effects [53] thao that in a previous study (0.8%-1.2%) [30].
sequential 2-D methods. However, conventional 3-D gradient-Examples of the wavelet-based signal detection procedure
echo methods require prohibitively long acquisition timeapplied to a PRESTO and an EPI brain slice are shown in
because of the restriction that PRE, while TE must be Figs. 3 and 4. The PRESTO method yields a transversely
long for sufficient susceptibilityZ’y ) weighting. To overcome oriented volume from which a set of transaxial slices, 3.75-
this restriction, echo shifting methods have been developetn-thick, were selected that included the area of the primary
in which the echoes are shifted beyond the next RF pulsensorimotor cortex (23 mm from the top of the brain). These
[53], [54], permitting TR>TE and resulting in much shorterare presented in Fig. 3 with the front of the brain oriented
scanning times. The specific 3-D method to be compared withward the right. The EPI method provided sagittal slices,
EPI combines echo shifting with the acquisition of multipl&.75-mm-thick, located 38 mm to the left (ipsilateral to the
gradient echoes per RF excitation [30], [55] and carries tlagtive hand) of the midsagittal plane, with the front of the
acronym PRESTO (principles of echo shifting with a train drain oriented toward the right (Fig. 4). In Fig 4(a) the average
observations). fMRI's before subtraction are shown, and illustrate the very

The quality of the PRESTO and EPI images were comparkmv tissue-contrastZy ) that is typically obtained in functional
by a previously used index [30], defined agg, wheres is imaging. In Fig 4(b) and (c) the respective sample SD images
the pooled SD of the difference images (24), apds the (square root 0052(n) in (23), for n within the brain mask)
average MR signal intensity, pooled over all brain pixels. and the mean difference images (21) are shown. The display
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TABLE |
STATISTICAL TEST RESULTS FORIMAGES IN FIGS. 3 AND 4

PRESTO EPI
Channel* VR® VR, n* VR VR, n
v 0.45 0 5.53 9
1 H 075 136 0 588 142 14
D 0.24 0 1.52 1
v 1.55 0 24.69
2 H 239 1.80 0 13.53 194
D 1.36 0 5.31
v 6.02 1 28.10 4
3 H 974 275 2 15.83  3.09
D 4.55 1 16.22 4
\ 6.75 0 13.98
4 H © 3272 812 1 1593 895
D 7.39 0 8.99 2

2 V: vertical; H: horizontal; D: diagonal resolution channels.

® variance ratio: Vagd7*(k)/on ).

¢ Threshold value of VR for overall significance per volumecot= 0.05, V Ry, =
Xom o /0T

Fig. 4. EPI modality. (a) Average of all fMRI's, (b) sample SD of on/offd Number of coefficients remaining significant after follow-up test (30).

difference images, (c) sample average of on/off difference images, (d) wavelet

coefficients for four-level transform, (e) significafitx = 0.05) wavelet

coefficients, and (f) inverse wavelet transform of significant coefficients. TABLE I

PERCENTAGE OFWAVELET CHANNELS WITH POWER SIGNIFICANTLY ABOVE NOISE

has been scaled to the highest positive (white) gray level.

Shown in Fig. 4(d) are the 2-D wavelet coefficients before PRESTO EPI
thresholding and in Fig. 4(e) after thresholding (30), for an  resolution

overall significance level per volume ef = o' = 0.05. level mean%  range % mean%  range %
The resolution channels are organized in the usual pyramid

representation, as illustrated in Fig. 2 for the first resolution

level. The results for the PRESTO images are typical in that 1 0 0-0 714 52.4-90.5
they had in general only a few significant coefficients, with 2 257  9.5-38.1 72.4  47.6-90.5
none of them at the finest resolution level. Resyntheses of the 3 543  38.1-76.2 557  19.0-76.2
difference images by inverse wavelet transform of only signif- 4 38.1 4.8-57.1 49.5  19.0-85.7

icant coefficients are shown in Fig. 4(f). For both modalities, a
large amount of noise suppression was attained because most
of the coefficients deleted were from high-resolution channelgp testing byz-tests, or 8.36% of the total number of 658
However, since generally a larger number of coefficients fropixels in the brain mask.
the high-resolution channels were suppressed in PRESTOrable Il summarizes the accumulated results from all seven
images, the resulting bandwidth reduction was more sevesgbjects regarding the test for significant channel power (28)
for this modality than for EPI. and (29). At the highest resolution level, none of the channels
Table | summarizes the results of the statistical proceduresthe PRESTO images were significant, while 71.4% of these
applied to the particular images shown in Figs. 3 and dhannels carried significant power in ERby < 0.0001).
For PRESTO, none of the variance ratios (i.e., total chanr&lso at the second resolution level were the proportion of
power/noise power) at the two highest resolution levels ewseful channels higher in EPI than in PREST0< 0.0001),
ceeded the critical threshold (28). In particular, only five ownd only at the third level were the percentages for the two
of the total of 12 channels [see Fig. 3(e)] carried significamodalities comparablép = 0.769). At the lowest resolution
power and required follow-up testing bytests (30), (31). level, there was a slightly larger proportion of channels with
This resulted in five significant coefficients, or 0.55% of theignificant power in EPI than in PRESTQ = 0.018). These
total number of 904 pixels in the brain mask. In contrast, alésults show that, viewed from a multiresolution perspective,
channels for the EPI slice [see Fig. 4(e)] exceeded the noEEBI scans contained signal features at a finer resolution than
threshold, resulting in 55 significant coefficients after followWPRESTO scans. Consequently, the bandwidth limitations im-
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domain signal estimates was established #igsts on the ratio

of the average difference image (21) to the pooled standard
error (25). The Bonferroni adjustment was applied to maintain
the overall significance level per volumeat= 0.05; i.e., the
p-level for the pixelwise tests was setjie= 0.05/npix, npix =
#IC. Rows (C) show in black, superposed over the wavelet-

based signal estimates, the pixels found to be significant by
(b) thesez-tests. The signal estimates shown in rows (A) were
at these pixel locations significantly different from zero. The

| wavelet-reconstructed signal estimates reflect the smoothness

of the selected wavelets, resulting in regions of estimated

neuroactivity that are generally larger than the discontinuous

© 5 regions obtained by significance testing and thresholding in
’ the spatial domain. This is most evident for PRESTO images.

At certain locations, only one pixel exceeded the threshold

for significance in the spatial-domain testing, whereas the
Fig. 5. Four contiguous PRESTO slices. Row (a) sample average of on/é®rresponding signals reconstructed from significant wavelets

difference images, row (b) signal response estimated by wavelet detectigigicated more diffuse areas of increased activity.
and row (c) regions of significant signal resporfse = 0.05) detected by

spatial-domain analysis (in black), superposed over wavelet detection resultsln comparison to PRESTO, the SNRiin Images generated by

EPI (Fig. 6) was sulfficiently high in the regions of the primary
sensorimotor cortex, resulting in the inclusion of wavelet coef-

ficients at the highest resolution level (see also Table Il). This
@) yielded signal estimates with the smallest amount of smoothing
imposed by the wavelet representation. Therefore, the signal
extent estimated from the wavelet representation overlapped
largely with the signal extent derived by pixelwise statistical
testing of the original (not additionally smoothed) image.
) However, this was only true in regions of the sensorimotor
cortex where brain activation was expected to occur. Outside
’ ....
are “true” or technical artifacts is beyond the scope of this
Fig. 6. Four contiguous EPI slices. Row (a) sample average of on/(WOI’k. If we assume them to be artlfa‘_CtS’ then some local
difference images, row (b) signal response estimated by wavelet detectisi00thing of the EPI data, as automatically implemented by

these regions, the spatial detection method found additional

significant responses, which were mainly of single-pixel extent
and row (c) regions of significant signal resporise= 0.05) detected by the retention of only significant wavelet channels, is indeed
spatial-domain analysis (in black), superposed over wavelet detection restﬂt.%i cated

and most often did not coincide with wavelet resynthesized
responses. The local SNR in these outlying areas was not
sufficient to yield wavelet coefficients of significant strength at
the highest resolution level. Whether these outlying responses

In order to further differentiate the signal estimates obtained

posed implicitly by resynthesizing activation images from onlpy wavelet reconstruction and by spatial significance testing, a
significant wavelet coefficients are less severe for EPI th&fD region of interest (ROI) was defined that included the left-
for PRESTO. Since the finger tapping tasks were identida¢mispheric primary sensorimotor cortex in both modalities.
for both imaging modalities, one can reasonably assume fRais ROl contained 1125 pixels (59.3 &mn of which four
spatial smoothness of the respective activation areas to demsecutive 2-D sections for the same slices shown in Figs. 5
very similar. Hence, the smoother appearance of the estimatei 6 are displayed in rows (a) of Fig. 7. In rows (b), the
activation signals for PRESTO relative to EPI [Figs. 3(f) andiavelet-derived signals were thresholded at a 0.5% of the
4(f)] is for the largest part due to the lower SNR conditiongaverage image intensity (27). With this threshold setting
in the difference images formed from the PRESTO scans. slightly below the best observed scan-to-scan stability (0.74%),

Figs. 5 and 6 compare the signal estimates derived byost of the activation signal (maximum about 5% in BOLD
wavelet analysis in a sequence of contiguous slices (column®thods [20]) was captured. Rows (c) show pixels (white)
to the results of direct significance testing in the spatiathere significant activity was detected by spatial thresholding
domain. For the spatial domain analysis, the model as defifedrresponding to black pixels of Figs. 5 and 6 (c)]. A qualita-
in (20) with independent, white noise at the pixel level wave comparison shows that in PRESTO images the thresholded
assumed. Rows (A) present the signal estimates (21) obtaisgghal estimates derived from significant wavelet coefficients
by averaging, and rows (B) show the signal estimates resultipgpduced larger clusters than spatial thresholding of the mean
from the wavelet analysis (33). The significance of the spatialifference images, while for EPI the two results were similar.
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PRESTO *
EPI

) --|r 404

ﬂﬂ-ﬂ
Ry

Percent

H wavelet

O spatial

10

Cluster Size

Fig. 9. Cluster-size distributions within ROI for EPI. Filled bars, regions de-
tected by wavelet analysis and subsequent thresholding at 0.5% of the average
fMRI intensities. Open bars, significant regions detected by spatial-domain

analysis.
TABLE I
Fig. 7. Four contiguous slices from ROI of left primary sensorimotor com- DETECTION THRESHOLDS FOR WAVELET AND
plex for (top) PRESTO and (bottom) EPI modality (corresponding to Figs. 5 Space DoMAIN ANALYSIS WITHIN AN ROI
and 6). Rows (a) sample averages of on/off difference images, rows (b}
wavelet-detected responses, thresholded at 0.5% of the average fMRI intensi-
ties, and rows (c) regions of significant response detected by spatial-domain PRESTO EPT
analysis.
mean SD mean SD
70
60 PRESTO % of channels requiring follow-up ~ 5.32 3.04 38.93 5.33
% of coefficients tested 1.83 1.59 60.27 7.39
. standardized wavelet threshold 322 0.09 387 0.03
E . standardized spatial threshold 4.59 0 4.59 0
(2]
pr
o 304 H wavelet 2 Standardized with respect to the standard error (25), overall significance per ROI of
= [A— =
[0 spatial o =a =005
20
© responding cluster-size distribution analysis for EPI (Fig. 9)
indicated a similar tendency, although less pronounced, for the
0 . . spatial detection method to yield disproportionately smaller

cluster sizes. The median (maximum) cluster sizes for the
Cluster Size spatial method was 2 (32), as compared to three (34) for the

Fig. 8. Cluster-size distributions within ROl for PRESTO. Filled barswavelet method, and the Kolmogorov—Smirnov test formally

regions detected by wavelet analysis and subsequent thresholding at Ofefacted distribution equalitYp < 0_02)_ Hence. the results

of the average fMRI intensities. Open bars, significant regions detected b th lust . | . ,d ith th

spatial-domain analysis. of these cluster-size analyses are in concordance wi e

rankings of image smoothness for the various approaches.

The spatial method applied no smoothing in addition to
For a quantitative comparison of the wavelet based anghe one imposed by the volume coregistration procedure

ysis to the spatial detection method, cluster-size dlStI’IbutIQgect'on IV-C), while the smoothing implemented by the

analyses were applied to the thresholded signal representatigigelet method was dependent on the inherent local SNR
derived by either method. The results are summarized d@nditions, and was typically minor for EPI and quite extensive
Figs. 8 and 9 for cluster sizes of up to ten pixels. For PRESTigr PRESTO images.

(Fig. 8), the proportions of clusters with one or two pixels Table Ill compares for the selected 3-D ROI the statisti-

obtained by the spatial detection method greatly exceededl efficiency of the wavelet-based analysis to that of the
those obtained by the wavelet detection method. Equality Bbnferroni-adjusted spatial thresholding. The first row shows
the two distributions was clearly rejectégd < 0.001) by the for the two modality images the space reduction attained by
Kolmogorov—Smirnov test [56], with median cluster sizes famplementing the first step of the wavelet-based procedure
the spatial and wavelet methods of one and six, and maximuinat tests for significant channel power (28), (29). There

detected cluster sizes of seven and 28, respectively. A carere 120 wavelet channels (10 sliced resolution levels 3
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orientations) to be tested in this ROI, of which, on averagknowledge was taken into account in the choice of cubic-
about 6 (5.32%) for PRESTO and about 47 (38.39%) for EBpline wavelets for an efficient signal representation. Since
were found to carry significant power and to require follow-upoth PRESTO and EPI scans were represented in the same
testing. The second row expresses the resultant search speaeelet basis, the relative comparison of the two acquisition
reduction in terms of the number of coefficients that needeéechniques was not biased by this choice.
to be tested in the second stage (30). Out of the total of 1 125The two-stage signal detection approach as implemented
coefficients (equal to the number of pixels in the ROI) onliiere, answered one or two heuristic questions asked in se-
about 20 (1.83%) required follow-up testing for PRESTO amguience: 1) Are there any activation signals with a certain
about 678 (60.27%) for EPI. The large difference between tepatial extent present in the image? If affirmative, then: 2)
two modalities arises from the fact that for PRESTO nearly alVhere are they located? This sequence achieves economy in
channels with significant power were at low resolution leveltatistical testing by limiting the search for spatial localizations
(Table II), containing progressively smaller number of waveléd orthogonal signal-space partitions (i.e., resolution scales)
coefficients, while for EPI significant power was distributeavith favorable SNR’s. Hence, wavelet-based procedures have
into high-resolution channels that carry many coefficienta.potential advantage over spatial detection methods in that the
This difference in the number of follow-up tests effecte@NR’s prevalent in a limited number of statistically selected
the respective Bonferroni adjustments (24) and resulted riesolution channels typically exceed a monoresolution SNR,
standardized thresholds of 3.22 and 3.87 for PRESTO aadd that this selective resolution limitation results in a lower
EPI, respectively. Hence, compared to the standardized spatiainber of statistical tests and thus, a lower detection threshold
threshold of 4.59 (1125 tests), the search space reductiémsa given overall significance level. These advantages were
achieved by the wavelet method yielded for both modalitieshown to be practically realizable in direct comparisons to
a substantial threshold reduction. The lowest standardizesbnoresolution spatial-domain detection for both PRESTO
threshold forp = 0.05 is attained if only a single:-test and EPI scans. Although both scans were acquired with equiv-
were required, yielding a value of 1.96. The standardizedent nominal image resolutions, the wavelet based analysis
thresholds for PRESTO and EPI were about at 48% and 73étearly showed that, compared to EPI, current PRESTO tech-
respectively, of the difference between the standardized spatigjues yielded generally a lower SNR in the difference images
threshold and this lower limit. between baseline and task performance, and a lower resolution
bandwidth by one to two octaves of the estimated activation
signal. Clearly, this comparison of the two acquisition methods
VI. CONCLUSION was only with respect to performance indexes characterizing

In applications where no realistic assumptions regardi@nal detection, and both methods are still evolving and being
the shape, smoothness and location of the signals to iB@wroved.
detected can be made, wavelet-based multiresolution methods
are eminently suitable. Such applications arise when new REFERENCES
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