
EASY JAVA PROGRAMMING FOR TEACHING IMAGE- PROCESSING

Daniel Sage and Michael Unser
Swiss Federal Institute of Technology, Lausanne EPFL, Switzerland

Biomedical Imaging Group, daniel.sage@epfl.ch, michael.unser@epfl.ch

ABSTRACT

We have designed a series of computer sessions build
around ImageJ (a public-domain software for image
analysis), as a practical complement to a two-semester
course in image processing. The students are challenged
with simple practical imaging problems as they acquire
hands-on practice by experimenting with image-processing
operators. In the process, they also learn how to program
standard image-processing algorithms in Java. This is
made possible thanks to a programmer-friendly
environment and a software interface that greatly facilitates
the developments of plugins for ImageJ. Since our
students have generally not acquired programming skills
yet (they typically do not even know Java), we use a
learning-by-example teaching strategy, with good success.

1. INTRODUCTION

The basic course in image processing (IP), as taught at the
Swiss Federal Institute of Technology Lausanne (EPFL),
tends to be perceived as rather theoretical. It is indeed a
subject that lends itself quite naturally to a rigorous,
mathematical treatment. The mathematics are not difficult
but the notation can be intimidating because of the
multiple sums and indices. On the other hand, image
processing is also a very practical discipline; it is
extremely motivating for students to see that the formulas
are easily translated into algorithms, often with dramatic
visual effects.

Since engineering students are often more interested in
applications than in pure theory, there was a strong
incentive for us to introduce computer laboratories as a
complement to the basic lectures in image processing
(semester 7 and 8 in micro-engineering at EPFL). Similar
efforts in other universities have demonstrated that
students gain a lot in their understanding and intuition of
the theory if they can experiment with algorithms and
visualize the results [1, 2, 3].

More than just applying operators to images, we took
the challenge further so that we would have the students
write their own image-processing code down to the pixel
level. Of course, we also wanted to give them the benefit
of a user friendly interface and of a software platform that
they could extend to perform sophisticated image
processing tasks. Even though a rudimentary knowledge

of the Java syntax is required, we should emphasize that
this knowledge comes at essentially no effort from the
part of the student and that the laboratories require little
programming skills. Rather, the students are invited to
understand some example code, which they then modify
to achieve their goals.

2. HANDS-ON IMAGE PROCESSING

Even when the lectures include visual demonstrations of
image-processing algorithms, the students are often
passive. The learning of the mathematical concepts can be
facilitated with hands-on experimentation. The first level
of involvement is to apply the algorithms to real images
and to see the results. The second is to take part in the
programming itself and to truly experience how formulas
translate into algorithms.

2.1 Image processing at the system level

The usual way to get the students involved is to provide a
convivial computer environment that allows them to try
out different algorithms and to visualize the results [1, 2,
4]. The key points here are the following:
1) Basic manipulations to illustrate and reinforce the

theoretical concepts seen in the course. Visual
experimentation with different sets of parameters.

2) Use of practical examples to demonstrate image-
processing applications. Chaining of simple modules.

3) Need for a user-friendly interface to facilitate
interaction with the computer. Production of results
that are appealing visually.

Such experimentation can be achieved easily by using
standard image-processing software (Khoros or ImageJ).

2.2 Programming image-processing algorithms

Once the students are accustomed to manipulating images,
the challenge is to have them to program simple image-
processing algorithms. To the best of our knowledge, this
kind of classroom experiment in image processing has not
been reported on before. The key requirements here are as
follows:
4) The best way to understand an algorithm is obviously

to code it and to test it. Students should get the
opportunity to implement the most representative
algorithms.

2980-7803-6725-1/01/$10.00 ©2001 IEEE

5) The exercises should be accessible to inexperienced
programmers (very basic knowledge in one language,
e.g., C). The assignment should concentrate on IP
issues alone.

6) The students should not have to worry about data
types. The code should be as generic as possible.

7) The programming should be simple and robust. The
graphical user interface and input/output task should
be provided to avoid spending time on what is non-
essential to our purpose (teaching IP).

8) The edition-compilation-execution programming
cycle should be short to see immediate effects on the
images when modifying the code.

3. THE PROPOSED APPROACH

In accordance with the list of goals above, we have chosen
to base our system on an existing software package,
ImageJ [5], and we have selected Java as programming
language. The two keys concepts that are specific to our
approach are: 1) the principle of “learning by example”,
and 2) the use of a “programmer-friendly” software layer
that provides the interface with ImageJ.

3.1. Java

There are previous examples of image-processing
laboratories based on Matlab, Khoros or C/C++. For our
part, we have chosen Java. Some papers claim that Java is
a natural language for interactive teaching [6] and that it is
ready for image processing [7]. Our main arguments are
1) Java is robust with a good handling of errors and

garbage collection; this eliminates the main source of
bugs and crashes.

2) Java is syntactically close to C and easy to learn if we
provide examples and templates for the methods.

3) Java is reasonably fast: a 3*3 convolution filter takes
approximatively 150 ms on a 512*512 pixels image;
this means that the students get almost immediate
feedback.

Another argument not to be neglected is the “hype”
factor; students are attracted by Java, a modern and
fashionable language which plays a major role on the
Web.

3.2. Learning by example

The students who take the IP laboratories do not
necessarily know Java. Hence, we always provide them
with an example of a Java method that does an operation
that is very similar to the assignment. In particular, we
make sure that the example uses the same type of syntax
(loops, assignments, mathematical functions) as required
for the solution. In addition, we do structure their code by
providing empty templates that need to be filled in. This
means that a good portion of the assignment can usually
be implemented by simple modifications of the example.

3.3. ImageJ and plugins

Our IP system is based on a public-domain software:
ImageJ. ImageJ is a general-purpose image-processing
program; it is the Java offspring of the well-known
NIH Image software. As a result, it can run on any
platform with a Java Virtual Machine (Mac, Windows,
Linux, etc…). The application and the source are freely
available. The author, Wayne Rasband, is with the
National Institutes of Health, Bethesda, Maryland, USA.

ImageJ has an open architecture that allows
extensibility by addition of Java plugins [8]; these can be
compiled and loaded dynamically. We take advantage of
this functionality for adding our educational plugins.

Since the programming of ImageJ plugins was not
originally meant for novice programmers, we have made
this process much more transparent and robust for the
student. In particular, we provide under the “Plugins”
menu the function templates and their corresponding
commands. They typically take the form of a dialog box,
enabling the user to change the parameters of his
algorithm. The other key component is our “programmer-
friendly” software layer (cf. below) which handles the
access to the pixel values.

4. INTERFACE LAYER

We have developed a class, named ImageAccess, that
provides a high-level and foolproof way of accessing the
pixels of an image in ImageJ. The access is independent
of the image type. The data retrieved by the methods of
the ImageAccess class are always in “double” format.
Hence, the image-processing code is written once only in
double (best precision); the type conversion is handled
automatically.

The typical way to program is to retrieve an image
block by using a method that begins with get...(). The
block is processed and the result is written in the image
using a put...() method. The block can be a single pixel, a
row, a column, a 3*3 or a 5*5 neighborhood window.

For locations outside the image, the methods of the
ImageAccess class return pixel values by applying mirror
boundary conditions. For example, when a student wants
to retrieve a 3*3 block of an image centered on (0,0), the
interface layer provides the block with mirror conditions.
This frees the programmer from having to worry about
what happens at the boundaries. It produces simpler code
and results in more pleasant results (no frame or border
artifacts on the output).

Conceptually, there is a clear advantage in separating
the image-processing code (algorithm) from the access of
the pixels, since the latter is a technical part that depends
on the language, the platform, or the frame grabber.
However this is not the approach taken in ImageJ because
is has a computational cost associated with it. As a result,
the typical image-processing routines in ImageJ are faster
than ours but also significantly more complicated. Our
method of access leads to an overhead as documented in

299

Table 1 and Table 2. We consider this as an acceptable
price to pay for substantial simplifications in algorithm
transcription. Thanks to this layer, an algorithm can be
translated into Java almost literally, not to mention that
the code is independent of the data type. This is in
contrast with ImageJ’s own operators which need to be
implemented for each data type (e.g., byte, 32 bits).

Total Algorithm Access Overhead
1) ImageJ
routine

35 ms - - -

2) Separable 97 ms 24 ms 72 ms 1 ms
3) Non-
separable

597 ms 43 ms 498 ms 56 ms

Table 1. Comparison of the computation time for a 3*3
averaging filter on a 512*512 pixels image (byte) with
three implementations: 1) using the standard ImageJ
routine, 2) using the ImageAccess class and a separable
implementation of the filter and 3) using the ImageAccess
class and a non-separable implementation of the filter.
The access time includes data conversion, the copy of
pixel values and the implementation of the boundary
conditions.

Algorithm Access
Separable 3*3 averaging 24 ms 72 ms
Separable 5*5 averaging 48 ms 72 ms
Separable 7*7 averaging 54 ms 72 ms

Table 2. Cost of the overhead of the ImageAccess for a
3*3, 5*5, and 7*7 averaging filter on a 512*512 pixels
image, compared to the cost of the image-processing
algorithm itself.

While designing our interface, we have also considered
the possibility of creating stand-alone applets that can be
posted and run through the Web. Thus, we have written
two versions of the ImageAccess class, one for ImageJ and
one for the applets. The second gives access to the pixels
of an image within an applet. In this way, we can easily
generate image processing demonstration applets at very
low development cost. The same image-processing code
can therefore be included in a plugin or in an applet. Note
that such applets are also used to provide on-line
examples for the students.

5. EXAMPLES

In this section, we present two examples that illustrate the
ease with which image-processing algorithms can be
programmed using our access interface. The code is
relatively straightforward; it is essentially a literal
translation of the textbook versions of the algorithm.

5.1. Digital filter

We compare two implementations of a digital filter using
a non-separable (cf. Listing 1) and a separable algorithm
(cf. Listing 2).

Listing 1. Example of a non-separable filtering template
(vertical edge detector) given to the students.

void filter2D(ImageAccess img) {

int nx = img.getWidth();
int ny = img.getHeight();
int type = img.getType();

ImageAccess out;
out = new ImageAccess(nx, ny, type);
double block[][];
double p = 0.0;

for (int x=0; x<nx; x++) {
for (int y=0; y<ny; y++) {

block = img.getNeighborhood3x3(x, y);
p = (block[2][0] - block[0][0] +

 block[2][1] - block[0][1] +
 block[2][2] - block[0][2]) / 6.0;
out.putPixel(x, y, p);

}
}
img.copyPixels(out);

}

Listing 2. Example of a separable filtering template
(vertical edge detector) given to the students.

void filter2D_Separable(ImageAccess img) {

int nx = img.getWidth();
int ny = img.getHeight();

// Row processing
double rowin[] = new double[nx];
double rowout[] = new double[nx];
for (int y=0; y<ny; y++) {

img.getRow(y, rowin);
difference3(rowin, rowout);
img.putRow(y, rowout);

}

// Column processing
double colin[] = new double[ny];
double colout[] = new double[ny];
for (int x=0; x<nx; x++) {

img.getColumn(x, colin);
average3(colin, colout);
img.putColumn(x, colout);

}
}

The separable implementation offers many advantages
in terms of computation time and modularity. The code,
which is essentially generic, clearly shows the two loops,
the first one scanning the rows and the second one
scanning the columns. The only specific parts are the 1D
routines difference3 and average3 which can be easily
modified to yield other separable filters.

In practice, we give these two templates as examples to
the students and ask them to program other digital filters
such as a horizontal edge detector and a 5*5 moving-
average filter (non-separable and separable
implementation). By mastering those examples, they get a
rather complete exposure to the topic of linear filtering.

300

5.2. Wavelet transforms

Another interesting example is the implementation of a
separable wavelet transform in 2D. The students have 2
hours to program the transform and to apply it to various
image-processing tasks (simple coding by zeroing out
non-significant coefficients, and noise reduction by soft-
thresholding). To simplify their task, we give the
templates of separable routines for the analysis part and
we only ask them to code the Haar transform and to write
the synthesis part from scratch.

As far as the students are concerned, this is perhaps
one of the most impressive session they go through. The
great majority of them are capable of completing the full
assignment (the 1D routines split and merge for the
Haar transform are rather easy—2 liners—and the wavelet
synthesis is the same as the analysis, but the other way
around).

6. CLASSROOM

A laboratory session, which is two-hours long, is
typically devoted to one chapter of the course. The
assignment is given one week in advance; it contains a
programming part and an experimental part (where the
desired results are processed images). The sessions take
place in 2 computer rooms with 30 Windows NT
machines in each. There are typically 4 teaching assistants
per room for technical assistance. At the end of the
session, the students submit their results (source code +
processed images) on the Web. There is also a make-up
session for those who run out of time, but this is an
option that is rarely used. The images are checked
automatically and the source code is proofread by the
assistants. The students get back their corrected
assignments the next week.

Our current sessions are
1) Introduction—Applications of the Fourier transform.
2) Filtering and applications.
3) Morphological operators and applications.
4) Edge detection and applications.
5) Recursive filtering and interpolation.
6) Wavelet transforms.
7) Tomographic reconstruction (in progress).
8) Image analysis, segmentation (in progress).

Some subjects of sessions are available on the web:
http://bigwww.epfl.ch/teaching/iplabsite/.

Before the introduction of the laboratories, our
optional image-processing course normally attracted 20-25
students. With the second edition of the laboratories (term
2000/2001), the number of students went up to 40-55
which is a good indication of success. The feedback from
the students has also been extremely positive.

The students value the fact that that our software tools
are freely available on the Internet. They can download
ImageJ and a Java compiler, and they are ready to work at
home.

7. DISCUSSION

The proposed computer laboratories are a perfect
complement to a theoretical course on image processing.
They provide students with hands-on experience. They
also teach them to implement image processing
algorithms. Students like to interact with images and
become much more interested in the course as soon as
they see some practical relevance. The programming
experience also raises their curiosity. Their overall reaction
has been very positive.

As designers of the laboratories, we are still astonished
by the robustness of Java and ImageJ. The system is quite
stable and appears to be immune to the student’
programming errors—much more so than any other
language or system that we have tested before. We have
not yet experienced a significant crash.

The laboratory is entirely based on ImageJ which is a
professional-level image-processing software. The good
news is that the software is freely available on the Web,
and is still evolving. Hence, the students can walk away
from the course with an image-processing system that is
fully operational; they are also given the tools to develop
their own plugins.

8. REFERENCES

[1] J.A. Robinson, “A software system for laboratory
experiments in image processing,” IEEE Transactions on
Education, vol. 43, no 4, pp. 455-459, November 2000.

[2] L. Balmelli, S. Ayer, Y. Cheneval, M. Vetterli, “A
framework for interactive courses and virtual laboratories,”
IEEE Second Workshop on Multimedia Signal Processing,
pp. 501-506, 1998.

[3] M. Sonka, E.L. Dove, S.M. Collins, “Image systems
engineering education in an electronic classroom,” IEEE
Transactions on Education, vol. 41, no. 4, pp. 263-272,
November 1998.

[4] M. Lindenbaum, Y.Y. Zeevi, “Education in image sciences
and engineering at the Technion,” Proceedings of the 1996
IEEE International Conference on Image Processing
(ICIP'96), Lausanne, Switzerland, vol. 1, pp. 447-448, 1996.

[5] W. Rasband, ImageJ Web site, http://rsb.info.nih.gov/ij/.

[6] Y. Cheneval, L. Balmelli, P. Prandoni, J. Kovacevic, M.
Vetterli, “Interactive DSP education using Java,” Proceedings
of the IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP’98), Seattle, WA, USA, vol. 3,
pp. 1905-1908, May 1998.

[7] D.A. Lyon, Image processing in Java, Prentice Hall PTR,
Upper Saddle River, NJ, USA, 1999.

[8] W. Bailer, “Writing ImageJ plugins—A tutorial,”
http://rsb.info.nih.gov/ij/docs/index.html, November 2000.

301

