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Abstract

We present a new, robust algorithm for tracking
fluorescent particles in dynamic image sequences
obtained by brightfield or confocal microscopy.
Specifically, we consider the problem of extracting the
movement of chromosomal telomeres within the nucleus
of a budding yeast cell. Our method has three
components. The first is an alignment module that
compensates for the movement of the biological structure
under investigation. In our application, the images are
aligned to the center of gravity of the nucleus which is
detected by thresholding and fitted with an ellipse. The
second step is a Mexican-hat filtering which we show to
be optimally tailored to the detection of a Gaussian-like
spot in fractal noise. The final component is a tracking
algorithm that uses dynamic programming to extract the
optimal (x,y,t) trajectory of a particle.

We have implemented the method as a Java Plugin for
the public-domain ImageJ software. We have applied it to
real data and have obtained results that are as good—if
not better—as manual tracings. Our new algorithm
reduces the analysis time of a 300 image sequence from
10 minutes, when it is done manually, to just a few
seconds and offers the benefit of reproducibility.

1. Introduction

During the past decade, two important technological
innovations have contributed to reshaping molecular
biology research. The first was the development of
fluorescent proteins that allow researchers to selectively
label single proteins or DNA loci in vivo. The second is
high resolution fluorescence imaging that is made
possible by the new generation of brightfield and confocal
microscopes. Thanks to these new tools biologists are
able to observe gene expression and to study molecular
dynamics within the living cell at sub-micron resolutions.
They can acquire static images in two (XY) or three
(XYZ) dimensions at one or several wavelengths

(multispectral imaging) to localize the labeled structures
of interest in a living specimen. They can also record
dynamic sequences (time-lapse series) to study molecular
transport or conformal changes within the cell and in the
extracellular matrix.

While these methods offer an enormous potential for
increasing our understanding of biology, they also
constitute a real challenge for researchers in the field who
have not yet devised efficient ways to exploit and
quantitatively interpret this unprecedented flow of data.
Currently, the large majority of data analysis and feature
extraction is done manually, which is very time
consuming. There are some commercial image analysis
tools available but their capabilities for automatic feature
extraction are rather limited. One of the difficulties is that
the data are typically extremely noisy due to the weakness
of the fluorescence signal and also because the
instrumentation is pushed to its limits.

In this work, we are proposing a new algorithmic
solution for the problem of tracking a fluorescent particle
on a very noisy background. This problem, which is
rather generic in fluorescence imaging, is motivated by an
interesting application which is study of the dynamics of
the chromosomes within the nucleus of the cells [1]. The
ultimate goal is to obtain a complete description of the
time trajectory of a particle. The results are then exploited
for statistical analyses, model fitting, and the comparison
of various conditions [2].

The algorithm that we propose has three primary
components: 1) the detection of the nucleus and extraction
of its center of gravity in order to provide a spatial
reference; 2) the preprocessing by matched filtering to
facilitate the detection of the particles, and 3) the search
for the optimal time-trajectory which is solved most
efficiently by dynamic programming. The system is
capable of a fully automatic analysis but can also accept
user-specified constraints. The operator can intervene by
moving points on the computed trajectory, which is then
updated accordingly by running the constrained
optimization again. The method is extremely robust



because the tracking is done globally; in other words, the
decision for a detection is based not only on the present
and the recent past (which is the approach taken by most
commercial software packages, such as Volocity 2 from
Improvision [3]), but on the future as well, taking the
whole data set into consideration.

2. Our motivation: study of the chromosome
dynamics

To study the chromosome dynamics, specific
chromosomal loci are labeled through the binding of a
fluorescent protein (Green Fluorescent Protein or GFP).
The behavior of this tagged locus can now be visualized
in vivo through excitation of the GFP molecule and
capture of its emission signal. Spatial information (XY)
or (XYZ) are acquired at different time intervals giving
rise to a dynamic analysis of a DNA molecule position
[2].

Once the data are acquired, careful measurements have
to be done in order to calculate biologically relevant
properties such as rate of motion, spatial confinement and
long-range interactions between independent particles. Our
goal is to replace the laborious manual by an automated
tracking that can handle the whole stack of images
simultaneously. Automation also permits a reproducible
analysis.

2.1. Biological background

The yeast Saccharomyces cerevisiae, known as the
baker's yeast or budding yeast, is a single-celled
organism. Although molecular processes are much
simpler in this small eukaryotic cell, most of the essential
biological pathways are conserved and knowledge gained
from genetic studies is generally directly applicable to
more complex organisms. This advantage and the
availability of the complete yeast genome make yeast a
very attractive biological model.

Figure 1. Image of a yeast cell expressing Nup49-GFP
(nuclear envelope) in which Tel VI-R has been tagged. This
cell is in a synthesis stage characterized  by a small bud.
Bar is 2µm.

Recently, increasing evidence suggests that the nucleus
is not simply a membrane-bound vesicle enclosing
massive amounts of nucleosomes-bound DNA, but that it
is highly organized into various sub-compartments,
probably to facilitate different nuclear functions [4]. The

diploid yeast genome is composed of 32 linear
chromosomes (64 telomeres).

Immunolocalization of telomeric proteins have shown
that telomeres adopt a non-random configuration in the
interphase nucleus, regrouping themselves into 8-10 foci
that are preferentially located at the periphery of the
nucleus near the envelope. This particular organization
creates high  local concentrations of silencing factors that
bind telomeres and promote transcriptional silencing.
These observations led to a growing number of questions
about the dynamics of telomeres that could not be
answered by classical immuno-microscopy of fixed cells.
We analyzed by live microscopy the dynamic behavior of
several specific telomeres in a dividing cell and their
location in relation to the periphery of the nucleus.

2.2. Features of the acquisition

Images of a single yeast nucleus were taken every 1.5
seconds during 3-5 minutes with a confocal microscope.
The capture rate is a compromise between scanning time,
resolution and GFP bleaching [5]. To minimize
bleaching, we do not take z-stacks over long periods of
time, but instead we capture XY images and try to
maintain the GFP spot in the focal plane by moving the
objective up and down within a range of about 1 mm.
This method allows a precise 2D + time analysis over
relatively long periods of time (300-500 seconds).

2.3. Manual measurements

A manual analysis of these images requires that, for
each frame, the biologist scores manually the coordinates
of the center of the nucleus and the coordinates of the
center of the GFP-tagged DNA spot by clicking on the
corresponding pixel. These coordinates are reported in a
spreadsheet for subsequent statistical analysis. It entails
the entry of at least 600 mouse clicks per time lapse.

3. Prepocessing steps

3.1. Nucleus alignment

Since one is interested in characterizing the movement
of the telomere inside the nucleus, the nuclear envelope
has also been labeled fluorescently so that this structure
remains visible.  The practical difficulty is that the
nucleus does not necessarily stay still during acquisition.
The first step of our analysis is therefore to compensate
for this movement. For this purpose, we smooth the
image and apply a global threshold to detect the
fluorescent structures which are predominantly located in
the nuclear membrane. We then fit the thresholded data
with an ellipse, using the least squares method of
Fitzgibbon which works well for scattered data [6]. A
typical result is shown in Figure 2.
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The images are then realigned with respect to the
center of these ellipses and also cropped to the largest
radius.

Figure 2. White overlay of the detected ellipse over the
image.

3.2. Spot enhancing filter

To a first approximation, a typical spot profile can be
represented by a two dimensional Gaussian function.
There are two practical difficulties with our detection task.
First, the spot does not only move laterally (x,y) but it
can also move up or down along the z-axis outside the
focal plan which tends to make it dimmer and more
spread out. Second, the data is extremely noisy because
we are operating at the detection limit to minimize the
destructive effect of photo-bleaching. If we now make the
assumption that the noise is fractal- like with a spectral
power density that decays like 

† 

O(w 2) where 

† 

w  is the
radial spatial frequency, we can show that the optimal
detector (whitened match filter) is given by the Laplacian
of a Gaussian (Mexican hat filter). Prefiltering the images
with this particular filter (bandpass) has the desirable
effect of enhancing the spots while at the same time
getting rid of some of the background structures. We
note, however, that our tracking algorithm is so robust
that this prefiltering is not always necessary.

4. Tracking using dynamic programming

The tracking conditions that are specific to our
problem are the following:
1)  There is one single spot to track over time; the

difficulty is that it may be dimmed or even absent in
some parts of the sequence.

2) There are as many as 300 to 500 images per sequence.
3) The structures of interest are small (about 30*30 pixels

for the nucleus) and very noisy.
4)  The fluorescence responses of the spot and of the

nuclear proteins are similar; there is no way to
distinguish them using the gray level information
alone.

5) The movement of the spot is limited to few pixels
from frame to frame.

6) The tracking can take place off line when the whole
data has been acquired.
The detection task is difficult but sufficiently

contrained to be formulated as a global optimization
problem. In particular, we should take advantage of the
strong dependency between the position of the spot in one
image and the next one (chaining property). Here, we

propose to solve the problem using dynamic
programming (DP).

While the use of DP appears to be new in the
biological context, it is a relatively standard technique for
detecting contours or segmentating objects in images
[7][8]. A few authors have also applied DP for target
tracking in aero-space and military applications [9][10].
However, one should emphasize that the constraints there
are different from ours: they must provide the best
detection at a given time t based on the past only (on-line
detection). In our case, we have the whole sequence
available at once and we want to recover the trajectory
from beginning to end. The key advantage of DP is that
tracking and detection are performed simultaneously,
which greatly improves the performance of the system.

4.1. Tracking problem specification

We are given a sequence 

† 

f (x, y,t)  of N preprocessed
images. The space (x,y) and time (t) indices take integer
values with   

† 

x = 0,L,Nx -1,  
  

† 

y = 0,L,Ny -1 and

  

† 

t = 0,L,N -1, respectively. The task is to find an
optimal time-trajectory 

  

† 

x t{ }t= 0,L,N-1
 that describes the

displacement of the particle.
A key constraint is that the maximum excursion from

one frame to the next is limited:

† 

x t - x t +1 < D

where D is a parameter of the algorithm.  Since we are
considering a discrete grid in space and time, it is
possible, at least in principle, to enumerate all possible
trajectories and to attempt to select the best possible one
based on some objective criterion.

The cost function   

† 

x(x0,x1,LxN-1)  must incorporate
as much problem specific information as possible. In
particular, we would like to:
1 )  favor positions where the intensity is bright or,

alternatively, where the response to the spot-enhancing
filter is strong;

2)  favor smooth trajectories; this can be achieved by
penalizing paths for which the average displacement
from one frame to the next is large;

3)  favor positions that are closer to the center of the
nucleus in order to differentiate the spot from the
nuclear membrane proteins that have a similar profile.

These various constraints can be incorporated by defining
the following cost function:

  

† 

x(x0,x1,LxN-1)

    = f (x t ,t) - l1 x t - x t-1 - l2 x t - x c( )
t=1

N-1

Â

where 

† 

l1  and 

† 

l2  are weighting factors to be specified by
the user and where 

† 

x c  is the center of the nucleus.



4.2 Dynamic programming algorithm

An important property of the above cost function is
that is satisfies the Bellman principle in that "an optimal
decision for each of the remaining states does not depend
on previously reached states or previously chosen
decisions" [11]. In other words, for each point on the path
at time t, there is only a cost contribution associated to
its position 

† 

x t  plus, eventually, a penalty due to the
transition from the previous state; e.g, 

† 

x t - x t-1 . The
implication is that the corresponding discrete
optimization problem can be solved most efficiently by
dynamic programming. The thrust of the algorithm is a
main loop for   

† 

t = 0,L,N -1 whereby all potential (x,y,t)
candidates are examined once only. At each position, the
algorithm applies an iterative update formula for
computing the optimal cost for reaching the current state.
At the end of the process, the optimal solution is
retrieved by back tracking. The algorithm is sufficient fast
to provide interactive feedback.

In its standard formulation, the DP approach requires
the specification of the starting point (

† 

x0) for the path.
The algorithm is then capable of computing the optimal
path to reach time 

† 

t = N -1 with or without specification
of the end point. It is also possible to consider the
specification of the end point only, by running the
algorithm backwards. Likewise, it is easy to introduce
arbitrary constraints on the path by subdividing it into
segments.

In our implementation we specify the first constraint
automatically by selecting the brightest pixel in sequence
which is very likely to belong to the particle of interest.

We also have the option of constraining the
optimization further by specifying additional nodes. In
this case, the optimal trajectory is recomputed only on the
segments adjacent to the new node. In our
implementation, the user can edit, move, add or delete
nodes and the tracking is updated automatically with a
response time that is typically less than a second. This
another advantages of the DP procedure: the biologist
expert can control the trajectory and work hand-in-hand
with the algorithm when the quality of data is poor.

5. Implementation and results

5.1. Implementation

The presented algorithm of DP was implemented is
Java as a plugin for ImageJ [12]. ImageJ is a public-
domain software package for image processing. It is
widely used by biologists and can process image
sequences (or stacks). In addition to the DP tracking, our
plugin contains the following features: 1) user interface,
2) nucleus alignment 3) preprocessing, 4) visualization of
the results.

5.2. User interface

The program has a graphical user-interface with the
following functionality: selection of the region of interest;
parameter setting for the DP tracking (D, l1 and l2); and
placement of the node positions by clicking on the 3D
sectioning views (cf. Figure 3.).

Figure 3. Three orthogonal sectioning views of the image
and the path. 1) Upper left: section xy 2) Upper right
section y(t) with a trajectory in white overlay 3) Lower left
section x(t).

5.3. Result

Presently, we have applied the algorithm to more than
20 sets of real data. The center of the nucleus envelope
was well located in all cases, and the detected trajectories
were judged to be satisfactory, even when the images were
extremely noisy (cf. Figure 4.). When the spot disappears
completely for a short period of time—e.g. when it is out
of focus—the algorithm is able to follow it nonetheless
using the displacement constraint. On the other hand, it
can fail when the spot disappears for too long a period. In
this case, the user can easily enter new node points to
further constrain the trajectory.

We found the algorithm to be reasonably fast in our
application where the images are small. For a sequence of
200 images (50*50 pixels), the alignment of the whole
sequence is done in 1.2 seconds on a Macintosh G4/800
MHz; the trajectory of the spot is tracked in 0.8 seconds
when D=1 (resp. 3.0 seconds when D=5). This time has
to be compared to the 10 minutes that are required for a
manual extraction. Even though dynamic programming is
a systematic approach that evaluates all allowable
trajectories, it gives the answer quite rapidly. The most
time-consuming part of the algorithm is the large number



of evaluations of the cost function for every transition.
This number is directly proportional to the image size,
the maximum gap D and the number of nodes.

We expect this program to be useful in practice.
Indeed, the biologists appreciate the fact of being able to
extract a complete and reproducible trajectory in just a few
clicks.

Figure 4. Result of a tracking over a sequence of 141
images (26*26 pixels). The upper image is the xy section
at t=32. The lower image is a x(t) section. The white
overlay is the trajectory of the spot in the x(t) section; the
black overlay is the envelope of the searching space.
Here, the maximum displacement is D=3.

6. Conclusion

We have presented a new algorithm for tracking the
movement of a particle in a sequence of noisy images.
The key feature that makes the method robust and
relatively full-proof is that the detection task is
formulated as a global optimization problem. The optimal
solution is computed most efficiently by dynamic

programming. The algorithm has been successfully
applied to the analysis of the movement of chromosomal
telomeres within the nucleus of a yeast cell. The results
obtained are quite satisfactory suggesting that the
dynamic programming approach has good potential for
similar biological imaging problems. While the particle
trajectories are usually extracted completely automatically,
the software can accept hints or corrections provided by
the biology expert. Its response time is sufficiently fast
for it to operate in a semi-interactive mode with the
priority given to the user input. In its present
configuration, the system can track a spot over a sequence
of 300-500 images in just a few seconds.

7. References

[1] S.M. Gasser, "Nuclear Architecture - Visualizing
Chromatin Dynamics in Interphase Nuclei," Science, vol. 296
(5572), pp. 1412-1416, 2002.

[2] P. Heun, T. Laroche, K. Shimada, P. Furrer, S.M. Gasser,
"Chromosome Dynamics in the Yeast Interphase Nucleus,"
Science, vol. 294 (5549), pp. 2181-2186, 2001.

[3] Web site of Volocity: http://www.improvision.com/

[4] S.M. Gasser, "Positions of Potential: Nuclear
Organization and Gene Expression," Cell, vol. 104, pp.
639–642, 2001.

[5] F. Hediger, Neumann F.R., Van Houwe G., Dubrana K., S.M.
Gasser, "Live Imaging of Telomeres: yKu and Sir Proteins
Define Redundant Telomere-Anchoring Pathways in Yeast,"
Current Biology, vol. 12 (24), pp. 2076-2089, 2002.

[6] A. Fitzgibbon, M. Pilu, R.B. Fisher, "Direct Least Square
Fitting of Ellipses," IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 21, pp. 476-480, 1999.

[7] D. Geiger, A. Gupta, L. A. Costa, and J. Vlontzos,
"Dynamic Programming for Detecting, Tracking, and
Matching Deformable Contours", IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 17, no. 3,
pp. 294-302, 1995.

[8] M. Unser, G. Pelle, P. Brun and M. Eden, "Automated
Extraction of Serial Myocardial Borders from M-Mode
Echocardiograms," IEEE Transactions on Medical Imaging,
vol. 8, no. 1, pp. 96-103, 1989.

[9] Y. Barniv, "Dynamic programming solution for detecting
dim moving targets," IEEE Transactions on Aerospace and
Electronic Systems, vol. 21, no. 1, pp. 144-156, 1985.

[10] S.M. Tonissen, R.J. Evans, "Peformance of dynamic
programming techniques for Track-Before-Detect," IEEE
Transactions on Aerospace and Electronic Systems, vol. 32,
no.  4 , pp. 1440 –1451, 1996.

[11] P. Lappas, J.N. Carter, R.I. Damper, "Robust Evidence-
based object tracking," Pattern Recognition Letters, 23 (1-3),
pp. 253-260, 2002.

[12] Web site of ImageJ: http://rsb.info.nih.gov/ij/

2 nodes
positions


