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ABSTRACT

We present a new method for the atlas-free brain segmenta-
tion of proton-density-like 3D MRI images. We show how
steerable filters can be efficiently combined with parametric
spline surfaces to produce a fast and robust 3D brain segmen-
tation algorithm. The novelty lies in the computation of brain
edge maps through optimal steerable surface detectors which
provide efficient energies for the rapid optimization of snakes.
Our experimental results show the promising potential of the
method for fast and accurate brain extraction.

Index Terms— brain segmentation, steerable filter, spline
snake, atlas-free, active contours.

1. INTRODUCTION

Brain-segmentation algorithms are extensively used to exam-
ine disease-related structural and morphological changes that
occur in the brain. Such methods tend to be computationally
expensive because 3D volumes need to be processed. Most of
the algorithms rely on atlas-based registration methods, which
make the overall algorithm computationally expensive [1, 2].
Furthermore, they might bias the outcome if either the patient
scan or the registration algorithm do not match the template
image well [3].

Active contours and surfaces (a.k.a. snakes) provide an al-
ternative to atlas-based segmentation. They have been widely
used to segment simple biomedical structures in 2D [4, 5].
However, snakes often require user interaction, which makes
them less suitable for 3D medical imaging. We propose to
make use of a 3D parametric spline snake for the atlas-free
segmentation of the brain surface. Its parameterization allows
us to implement a fast algorithm that has been proven to be
competitive with the state of the art [6]. The segmentation is
formulated as an energy-minimization problem [7]. Defining
an efficient energy function is crucial for fast segmentation
because it determines the speed of the optimization process as
well as the accuracy of the result. In 3D, edge maps provide a
convenient way to compute energy terms because they allow
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one to bypass the expensive evaluation of volume integrals
at each iteration by replacing them by surface-based terms
[6]. We show how steerable filters [8] combined with Canny-
like criteria [9] can be used to compute edge maps through
the implementation of optimal 3D steerable surface detectors
[10, 11, 12]. We have tested the efficiency of our proposed
framework of steerable filters and parametric spline snakes
for brain segmentation on realistic brain phantoms [13] and
show its capability to be fast and robust.

2. FEATURE DETECTION WITH 3D STEERABLE
FILTERS

To compute the 3D edge maps we make use of steerable fil-
ters. They were first introduced in [8] as a family of filters
that can be efficiently rotated by representing them through
a linear combination of appropriate basis filters. Therefore,
steerable filters provide a convenient framework for rotation-
invariant feature detection. We use M th order steerable
derivative-based filters whose impulse response takes the
form

hpxq “
M
ÿ

m“1

m
ÿ

n“0

m´n
ÿ

p“0

αm,n,p
Bn

Bxn
Bp

Byp
Bm´n´p

Bzm´n´p
gpxq

looooooooooooomooooooooooooon

hm,n,ppxq

where g is an isotropic 3D Gaussian function and αm,n,p
are the weights of the basis functions. In this paper, we use x
to describe a point px, y, zq in 3D space.

Defining the rotation matrix Rθ,φ, a feature with a par-
ticular orientation located in 3D space can be detected by a
rotated version of the feature template hp´xq through esti-
mation of its Euler angles by

pθ˚pxq, φ˚pxqq “ argmax
θ,φ

pfpxq ˚ hpRθ,φxqq.

The response of the filter to an image f is given by

r˚pxq “ fpxq ˚ hpRθ˚,φ˚xq.
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Fig. 1. Isosurface representation of the optimal surface detec-
tor.

2.1. Designing the Optimal Surface Detector

The generalized optimality criterion to derive a feature de-
tector was originally proposed in 2D in [10] and extended to
3D in [11]. We use it to derive an optimal 2nd-order surface
detector. We choose f0pxq “ δpxq as our idealized surface
template, where δ denotes the Dirac delta. The response of
the filter to the surface template centered at the origin is given
by

S “ pf0 ˚ hqp0q “

ż

R3

f0pxqhp´xqdx.

The localization error (due to the presence of noise) in the
direction orthogonal to the surface is quantified by

Loc “ ´

ż

R3

f0pxq
B2

Bx2
hp´xqdx.

We maximize pS ¨ Locq using Lagrangian optimization,
while imposing unit energy on the filter as

ş

R3 |hpxq|
2dx “ 1.

This yields the optimal surface detector

hpxq “
σ

8π
?

3
p∆gp}x}q ´ 5gxxpxqq (1)

where ∆ denotes the Laplacian operator, σ is the standard
deviation of the Gaussian and gxx “ B

2g
Bx2 . An isosurface rep-

resentation of (1) is shown in Figure 1.

2.2. Surface Detection

To express the rotated version of (1), we make use of the
property D2

vf “ vTHfv, where Dv denotes the operator
describing the directional derivative, Hf is the 3D Hessian
matrix of f , and v “ pcos θ sinφ, sin θ sinφ, cosφq is a
unit vector specifying an arbitrary orientation in 3D. Thus,
hpRθ,φxq9∆gp}x}q ´ 5vTHgpxqv “ βgpxq and

pf ˚ hpRθ,φ¨qqpxq9v
Tβf˚gpxqv. (2)

Applying the constraint vTv “ 1 on the unit vector v
and maximizing (2), we obtain βf˚gv “ λv. The optimal
orientation is given by the eigenvector vmax corresponding
to the largest eigenvalue λmax of βf˚g , which also yields the
maximum response of the detector. The result of the surface
detection is shown in Figure 2 (top right).

Fig. 2. 2D sagittal cross section of the detected 3D surface.
Top row: Original proton-density image (left) and result of
steerable filtering (right). Bottom row: Result of NMS and
thresholding (left) and extracted largest component (right).

2.3. Surface Refinement

In order to better delineate the surface, a classical non-
maximum suppression (NMS) in the direction orthogonal
to the surface is applied followed by a thresholding step
in order to obtain a binary image (Figure 2, bottom right).
The direction orthogonal to the surface is given by vmax
described above. In Figure 2 (bottom left) we see that the
brain appears as the innermost surface and is almost closed.
To ensure additional robustness, we extract this inner surface
before segmenting it. For this purpose we roughly estimate
the center of the brain. Then, we iterate over all foreground
voxels, and keep only the ones closest to the center (in the di-
rection orthogonal to the surface). Among the retained voxels
we extract the largest component, whose 2D representation is
shown in Figure 2 (bottom right).

3. 3D PARAMETRIC SPLINE SNAKE

We use the continuously defined 3D spline snake proposed in
[6] to segment the extracted brain surface. It is a parametric
surface whose expression is

σpu, vq “
M1´1
ÿ

i“0

M2`1
ÿ

j“´1

cri, jsφ1,perpM1u´ iqφ2pM2v ´ jq

(3)
where φ1,perpuq “

ř8

n“´8 φ1pu ´M1nq,@u P R, and
cri, js P R3 are the control points in 3D. In (3), the basis
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functions φ are made of exponential B-splines and are defined
as
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Considering additional conditions on the poles of the sur-
face, a total ofM1pM2´1q`4 control points are necessary to
define the snake in a continuous way. Due to its spline-based
structure, the snake surface can adopt the shape of any kind
of closed surface with arbitrary precision.

3.1. Fast Optimization

The segmentation process is formulated as an energy-minimization
problem. The refined surface image (Figure 2, bottom right)
provides an ideal edge map to guide the snake towards the
desired boundary. We use it to calculate the gradient energy
proposed in [6], which is defined as

Egrad “ ´

£

S

∇f ¨ dS “ ´
£

S

ˆ

∇f ¨
n

}n}

˙

dS

“ ´

¡

V

divp∇fqdV “
¡

V

´∆fdV

“ ´

£

BV

p∆fqxdy ^ dz (4)

where p∆fqx “
şx

´8
∆fpτ, y, zqdτ and ^ denotes the

wedge product. In the last step of (4), Gauss’ theorem has
been used. The quantity p∆fqx can be precomputed and
stored in a look-up table to allow fast energy computation.
The optimization process is visualized in Figure 3.

3.2. Snake Initialization

We initialized the snake as an ellipsoid lying completely
within the brain surface (Figure 3, top row). Therefore, dur-
ing optimization, the snake will primarily expand rather than
shrink.

Fig. 3. Wireframe representation of the parametric surface.
The 3D spline snake is initialized as an ellipsoid (top row).
Through minimization of the energy term (4), it segments the
brain surface (middle row). The final segmentation result is
shown in the bottom row.

4. EXPERIMENTS

We have validated our algorithm on the BrainWeb PD phan-
tom [13], where the ground truth is known. Our method
was tested with the original bias- and noise-free image, as
well as with increasing radio-frequency (RF) intensity non-
uniformities of 20% and 40% and increasing additive white
Gaussian noise levels ranging from 1 to 9%. Measures of
overlap between the segmented brain masks and the gold
standard were calculated according to the Dice and Jaccard
similarity indices. Additionally, the inter-subject variability
was evaluated by computing similarity coefficients between
the corrupted images and the bias- and noise-free image. The
initial position of the surface snake was the same throughout
the experiments. We used M1 “ M2 “ 9 to evaluate (3).
Therefore, 76 control points were used. The experiments
were run without user interaction.

4.1. Robustness, Accuracy, and Computational Aspects

The results of the measures of similarity are given in Table 1
and illustrated in Figure 4. The high degree of overlap with
respect to the gold standard confirms the selectivity of the sur-
face detector. Its capacity to detect surface elements is not
hampered by bias or noise in the image. This is due to its
property of being an optimal ‘matched’ detector. The mea-
sures for inter-subject variability are even higher and show
additional robustness of the method with respect to different
scanning conditions. Worsening the image quality did not sig-
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Fig. 4. 2D sagittal cross section of 3D simulated Brainweb
data (top row) and the corresponding segmented images (bot-
tom row). Left column: noise and bias free images; mid-
dle: biased images (40% RF intensity non-uniformity); right:
noisy images (9% additive Gaussian white noise).

nificantly affect the final segmentation, which indicates the
reproducibility of the method. Besides, the algorithm was
also tested on 12 real subjects with a satisfying outcome (data
not shown). Furthermore, our algorithm is fast enough to be
run in a doctor-patient encounter. The implementation of our
algorithm executes in less than 70 seconds on average on a
standard computer (3.3 GHz, 16GB RAM).

gold standard inter subject
Dice 0.9522˘ 0.0011 0.9806˘ 0.0047

Jaccard 0.9087˘ 0.0020 0.9620˘ 0.0090

Table 1. Dice and Jaccard similarity coefficients.

5. CONCLUSIONS

We provide a new solution for fast brain segmentation in
3D MRI proton-density-like images. Our study shows how
3D parametric spline snakes can be used for this purpose.
Our method relies on 3D edge maps which allow fast snake
optimization through the computation of surface integrals,
thereby avoiding tedious integration of volumes. Based on
steerable filters, we show how an optimal surface detector
can be used to compute such edge maps. We have demon-
strated the robustness of the proposed method with respect to
radio-frequency-induced intensity inhomogeneities, as well
as noise. Our algorithm is fast and atlas-free. No user inter-
action is required. It therefore shows the potential to satisfy
the requirements needed to be run in clinical routine.
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