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ABSTRACT

We present a new formulation of a shape space containing all
continuously defined 2D spline curves up to a similarity trans-
form of a reference shape. We are able to measure a distance
between an arbitrary curve and the shape space itself. Our
contribution is an explicit formula for this distance measure
in the continuous domain. This allows us to define efficient
snake energies based on shape-dependent prior knowledge to
facilitate segmentation in bioimaging. The spline-based al-
gorithm that we propose allows us to implement continuous-
domain solutions with no additional computational cost com-
pared to the case where curves are described by a discrete set
of landmarks. The proposed implementation is freely avail-
able in the public domain.

Index Terms— shape space, splines, spline snakes, active
contours, similarity.

1. INTRODUCTION

The geometric transform called ”similarity” is defined as the
combination of translation, rotation, and isotropic scaling. It
is particularly useful whenever one wants to segment known
structures (e.g., cells, bacteria) but does not know beforehand
their orientation and location in an image, a task which is of-
ten encountered in natural scenes (see Figure 1). It represents
an important class of transformations if we want to character-
ize structures of interest [1]. In this paper, we present a formu-
lation of the space that contains precisely all the shapes that
are described by such a transformation of a reference shape.
Our formulation facilitates segmentation tasks because it al-
lows us to formulate energy terms that combine a data term
with the distance between a given curve and the closest sim-
ilarity transform of the reference shape that defines the shape
space.

The classical approach to define shape spaces is to con-
sider I shapes that are described by an ordered set ofN points
or landmarks in R2 [2]. Each shape is itself represented as
one large vector xi P R2N , where i P I . It is geometrically
normalized by aligning it to a common reference in order to
remove some effects of rigid transformations. Considering
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Fig. 1. Similarity occuring in nature. Top row (macroscopic
world): Nautilus shell (left) and fractal-like trees (middle and
right); Bottom row (microscopic world): rod-shaped (left)
and oval (right) yeast cells which are all similar to each other.

a reference shape x such an alignment is achieved by com-
puting the normalized shapes as yi “ min

A,b
}x ´Axi ´ b}2,

where A is a transformation matrix and b a translation vector.
Using the normalized shapes, modes of variation of the shape
collection can be computed to construct a shape space.

Aside from only operating with discrete data, the classical
approach has a second drawback which is the geometric nor-
malization. By normalizing, a bias is introduced in the model
because computing distances between normalized shapes
usually does not yield the same result as for non-normalized
shapes.

Our alternative proposal is to define a continuous-domain
shape space that contains all possible similarity transforms of
some reference shape. Then, searching for the minimum dis-
tance between an arbitrary shape and the shape space defined
by some reference shape requires one to find the reference
shape up to a similarity transform that is closest to the arbi-
trary shape. This idea is illustrated in Figure 2. The advan-
tages of our method compared to the traditional approach are
three-fold: 1) no normalization step is required prior to the
definition of the shape space. Hence, no bias due to normal-
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ization is introduced when comparing shapes; 2) our metric
takes the continuous nature of curves into account and allows
us to find closed-form solutions in the continuous domain; 3)
we propose an exact discrete spline-based implementation of
the model that can be solved with no additional computational
cost compared to the standard approach.

rref

S

rp

r

Fig. 2. Minimum distance between an arbitrary curve and a
shape space. The plane denoted by S represents the shape
space defined by the reference shape rref (small red triangle).
S represents a shape space that contains all curves rref up to a
similarity (i.e., rotations, scaling, and translations of rref). The
minimum distance between an arbitrary curve r (green curve)
and S is equivalent to the distance between the rotated, scaled,
and translated triangle rref (the large red triangle denoted as
rp,) that is “closest” to r w.r.t. a given distance measure.

2. PARAMETRIC SPLINE CURVES

In this section, we introduce the spline formalism that is nec-
essary to characterize spline curves and to formulate the cor-
responding snake energies [3] for spline snakes [4, 5] making
use of shape priors. For simplicity, we focus on 2D closed
(i.e., periodic) curves because such models have a wide range
of applications such as the segmentation of blob-like, ellip-
tical, or any other kind of closed structure. The extension
to open curves and higher-dimensional curves is straightfor-
ward.

2.1. Parametric Closed Planar Curves

Let r : D Ñ R2 be a parametric curve such that rptq “
prxptq, ryptqq. We further assume that rx and ry are parame-
terized by linear combinations of suitable basis functions as

rptq “
8
ÿ

k“´8

crksϕpt´ kq,

where ϕ is a compactly supported generating function based
on splines and tcrks “ pcxrks, cyrksqukPZ is a sequence of
control points. The fact that r is closed can be expressed as the
periodic condition rptq “ rpt`1q; hence, D can be restricted

to r0, 1q. The one-dimensional functions rx and ry are also
normalized to be 1-periodic. Then, we can rewrite r using a
finite summation involving periodized basis functions as

rptq “
M´1
ÿ

k“0

crksϕM pMt´ kq,

where

ϕM ptq “
8
ÿ

n“´8

ϕpMpt´ nq ´ kq

is the M -periodization of the basis function ϕ and the se-
quence of control points tcrksukPr0,M´1s,kPZ is M -periodic,
where M coincides with the number of control points.

2.2. Inner Product Between Curves

By making use of the periodized basis function we derive the
following inner product between the two parametric closed
curves r1, r2 P L2pr0, 1s,R2q that have the same number M
of control points:

xr1, r2y “

ż 1

0

r1ptq
T r2ptqdt

“

M
ÿ

k“0

M
ÿ

l“0

c1rks
T c2rls

ż 1

0

ϕM pMt´ kqϕM pMt´ lqdt.

(1)

By collecting the control points of each curve in the vector

c̃i “

»

—

—

—

—

—

—

—

—

–

cixr0s
...

cixrMi ´ 1s
ciyr0s

...
ciyrMi ´ 1s

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

the inner product (1) can be expressed as

xr1, r2y “ c̃T1 Bc̃2 “ xc̃1, c̃2yB,

where

B “

„

A 0
0 A



(2)

and A contains the terms related to the integrals, with Ai,j “
ş1

0
ϕM pMt ´ iqϕM pMt ´ jqdt. Hence, the continuous-

domain inner product can be efficiently computed using
discrete matrix-vector operations. Therefore, }r}2 “ }c̃}B ,
which allows us to work with spline control points.
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3. SPLINE-BASED SHAPE SPACE FOR SIMILARITY

In this section we show how a shape space can be constructed
that contains all shapes that are obtained by a similarity trans-
form of an arbitrarily chosen reference spline curve. We im-
plicitly describe the space by the continuous-domain distance
between an arbitrary curve and the shape space.

3.1. Similarity Transform

Applying a similarity transformation (translation, rotation
and scaling) to a parametric reference curve rref results in a
new curve rs “ aRθr

ref ` b, where a is the scaling factor,
Rθ the rotation matrix and b the translation vector. The next
propositions state the two main results on which this paper is
based. Their proof will be presented elsewhere.

Proposition 1: The curve rs is a spline curve whose con-
trol points can be expressed as

"

csrks “

ˆ

apcospθqcref
x rks ´ sinpθqcref

y rksq ` bx
apsinpθqcref

x rks ` cospθqcref
y rksq ` by

˙*

kPr0,M´1s

if and only if the basis function ϕ satisfies the partition of
unity condition

ř

kPZ ϕpt´ kq “ 1.

Proposition 2: The minimum L2-distance between an ar-
bitrary curve r and rref up to a similarity transformation and
a translation is given by

arg min
a,θ,b

}c̃´ aRθc̃
ref ´ b}2B

“ c̃TSc̃,
(3)

where

S “ B

ˆ

I´CpCTBCq´1CTBCpCTBCq´1CTB

˙

,

I is the identity matrix, c̃ the vector of control points corre-
sponding to r, B is given by (2), and

C “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

cref
x r0s ´cref

y r0s 1 0
...

...
...

...
cref
x rM ´ 1s ´cref

y rM ´ 1s 1 0
cref
y r0s cref

x r0s 0 1
...

...
...

...
cref
y rM ´ 1s cref

x rM ´ 1s 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

The matrix S implicitly characterizes the shape space of
all similarity transformations of rref because (3) always yields
the minimum (continuous-domain) distance of an arbitrary
curve r onto that space. Note that the matrix S does not de-
pend on r and can be precomputed based on rref, which allows
for a fast implementation of the algorithm.

4. SNAKE ENERGY INCLUDING SHAPE PRIORS

In this section, we describe the main use of the proposed
method. It is the construction of a new snake energy that takes
into account the prior knowledge formulated by the construc-
tion of the shape space of a reference curve.

4.1. Generic Energy Formulation

The segmentation process is formulated as an energy-
minimization problem. The use of the energy term is to guide
the snake towards the boundary of interest. It should ensure
robustness as well as enable fast optimization. The snake
energy depends on three terms: 1) the data-dependent im-
age energy Eimage; 2) the internal energy Eint which favors
smoothness of the boundary and other topological aspects
(e.g., prevents self-intersections); and 3) the constraint en-
ergy Ec which takes user interactions into account. The
overall snake energy is given by

EsnakepΩq “ EimagepΩq ` EintpΩq ` EcpΩq,

where Ω stands for the snake representation through parame-
ters (e.g. control points). The snake optimization consists in
finding

Ω˚ “ arg min
Ω

EsnakepΩq.

4.1.1. Internal Energy Considering Shape Priors

We propose to add a shape-prior-dependent energy term to
the internal energy. Such a term forces the snake to remain
close to the shape space by penalizing results that differ from
a similarity transform of the reference curve. Using (3), it is
given by

Eint,prior “ γc̃TSc̃,

where we control the contribution of the proposed energy
term by a tuning parameter γ. The proposed energy term is
specific to spline curves. It only depends on the control points
of the reference curve. Hence, there is no need to explicitly
match a new curve to it. The distance measure is continuous
although it can be described using matrix expressions, which
is due to the spline-based nature of the formulation.

5. EXPERIMENTS

We have simulated a culture of nineteen rod-shaped cells, as
shown in Figure 3. To objectively validate the quality of the
proposed energy term, the cells have different sizes, intensi-
ties, and orientation. We have also simulated cell clumps to
make the segmentation more challenging as can be the case
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in real settings. The snakes have been initialized with dif-
ferent amounts of overlap with the cells, as well as with dif-
ferent sizes and orientations. They were optimized with and
without the prior energy term. In an additional experiment,
the segmentation was repeated on an image corrupted by ad-
ditive Gaussian white noise (stdd “ 25, SNR “ 0.44dB).
The results shown in Figure 3 clearly indicate the advantage
of using the proposed shape prior for constructing snake en-
ergies. Most cells were correctly segmented using our ap-
proach, whereas without the prior energy term more than 70%
of the segmentations need to be corrected. Testing the energy
term on noisy data yielded satisfactory results too, even when
the initialization only corresponded to a rough overlap with
the cell target. The experiments were executed on a 3 GHZ,
32 GB RAM Mac Pro. On average, the segmentation of one
cell took less than 0.2 s.

6. IMPLEMENTATION

The proposed framework has been implemented as a user-
friendly open-source plugin available for the bioimaging
platform Icy [6]. Reference curves can be drawn as spline
curves in a user-interactive way, as well as saved and reloaded
at runtime. The parameter describing the contribution of the
energy term can be adjusted by the user, as well as the con-
tribution of region- and contour-based terms. In the proposed
implementation the user can manually correct inaccurate
results. We minimize EsnakepΩq using a Powell-like line-
search method. The gradient of the energy w.r.t. the control
points can be easily computed analytically, which acceler-
ates the optimization process and improves accuracy. The
plugin is freely available for Windows / Linux / Mac at
http://bigwww.epfl.ch/algorithms.html.

7. CONCLUSION

We propose a new solution for the characterization of a shape
space that contains all similarity transforms of a reference
shape. We give a closed form solution in the continuous do-
main for the distance between an arbitrary curve and the shape
space. Equations for an exact spline-based implementation of
the framework are provided and we show how a new snake
energy term can be constructed based on prior knowledge us-
ing the notation of shape space. Our preliminary results on
synthetic images simulating realistic conditions are promising
and need to be confirmed on real data. An implementation of
the proposed framework is freely available as an open-source
plugin for Icy.
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N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Panka-
jakshan, T. Lecomte, Y. Le Montagner, T. Lagache,
A. Dufour, and J.-C. Olivo-Marin, “Icy: An open bioim-
age informatics platform for extended reproducible re-
search,” Nature Methods, vol. 9, no. 7, pp. 690–696, July
2012.

1219


	MAIN MENU
	Help
	Search
	Print
	Author Index
	Keyword Index
	Program in Chronological Order


 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
     Shift: move up by 18.00 points
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20150304153030
       792.0000
       US Letter
       Blank
       612.0000
          

     Tall
     1
     0
     No
     675
     320
     Fixed
     Up
     18.0000
     0.0000
            
                
         Both
         1
         AllDoc
         1
              

       PDDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     4
     3
     4
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     322
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

      
       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     4
     0
     1
      

   1
  

 HistoryList_V1
 qi2base



