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ABSTRACT

We propose a new formulation of the active surface model in
3D. Instead of aligning a shape dictionary through the sim-
ilarity transform, we consider more flexible affine transfor-
mations and introduce an alignment method that is unbiased
in the sense that it implicitly constructs a common reference
shape. Our formulation is expressed in the continuous do-
main and we provide an algorithm to exactly implement the
framework using spline-based parametric surfaces. We test
our model on real 3D MRI data. A comparison with the clas-
sical active shape model shows that our method allows us to
capture shape variability in a dictionary in a more precise way.

Index Terms— Active surface model, 3D, parametric sur-
faces, splines, continuous domain

Fig. 1. Real data set consisting of 14 3D MRI scans. The red
meshes outline the segmented descending thoracic aorta.

1. INTRODUCTION

The classical active shape model (ASM) [1, 2] is a popular
method to align discrete 2D curves given by an ordered set
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of points. It is typically used to characterize shape variabil-
ity and to construct shape dictionaries. Thereby, the curves
of the dictionary {r

i

} are first aligned to a reference shape r
by optimally rotating and translating each r

i

w.r.t. r, which
amounts to removing a similarity transform. Afterwards, a
principal component analysis (PCA) is computed with the
aligned curves in order to statistically analyze the data set.
The computation of the reference shape is done iteratively:
first, all the shapes are aligned to the first shape of the data
set, then the mean shape is computed, and, in a third step, all
the aligned shapes are realigned again with the mean shape.
This process is repeated until convergence. Variants exist to
compute the reference shape, the main challenge being to re-
duce the bias of the model that is caused by the choice of an
initial reference. A shape in the dictionary is then approx-
imated as r

i

⇡ Vw, where V is the matrix containing a
subset of eigenvectors computed through the PCA and w is
a corresponding vector of weights.

The same methodology is also applicable to the analysis of
3D shapes [3, 4]. Such active shape models are widely used
to characterize structures in medical images [5] as well as for
biomedical image segmentation [6]. There exist also variants
of the technique that make use of non-linear algorithms [7].

In this paper, we propose a novel 3D active surface model
as an extension of the classical ASM. Instead of applying
a similarity transform to normalize the data, we consider a
more general and flexible affine transformation while formu-
lating the surface registration problem in the continuous do-
main. Our method is unbiased because it does not require to
”choose” a reference shape to start the alignment process. We
further propose an implementation using spline surfaces; this
has the advantage that a shape is fully specified in the con-
tinuous domain by a discrete set of control points. Hence, no
discretization of the surfaces is needed. We then express the
PCA in the continuous domain as a functional surface PCA
and use splines to derive a closed-form solution, which lends
itself to a direct implementation. We have applied our method
to real data in order to charactherize a set of segmented de-
scending thoracic aortas in 3D MRI (Figure 1). The experi-
mental comparison with the classical ASM suggests that our
model captures shape variability more accurately.
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2. UNBIASED ALIGNMENT

Prior to performing the functional surface PCA, the surfaces
need to be aligned. This corresponds to the centering of the
data vectors in the classical (discrete) PCA. To guarantee an
unbiased alignment of the surfaces, we first specify the sub-
space S

i

that is spanned by all the affine transformations (in-
cluding translation) of any given surface �

i

within our ini-
tial shape dictionary {�

i

} (Figure 2). Then we compute the
surface �ref which is closest to all subspaces S

i

and project
it back onto S

i

to obtain the dictionary which contains the
aligned surfaces {˜�

i

} (Figure 3). Instead of explicitly charac-
terizing the space of affine transformations as the collection
of all parametric surfaces � 2 R3, {�|A�(u, v) + b, u, v 2
R,A 2 R3⇥3, b 2 R3}, we implicitly characterize the affine
spaces by the orthogonal projection onto them. A basis to
construct a projector onto an affine shape space of a surface
� is given by
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(1)

The orthogonal projection of � onto S
i

is expressed as

P
i

�(u, v) =

KX

k=1

e
k

(u, v)h ˜e
k

, �i, (2)

where { ˜e
k

} is the dual basis of {e
k

} such that he
k

, ˜e
l

i =

�
k�l

, where �
k�l

denotes the Kronecker Delta. Hence, the
projector P

i

in (2) orthogonally projects an arbitrary query
shape � onto the affine space given by a surface �

i

(Figure 3).

2.1. Aligned Shape Dictionary

To the shape dictionary {�
i

} we can associate the dictionary
{P

i

�}, where � is an arbitrary query surface and whose ele-
ments are the best fitting affine transformations of the �

i

.

Definition 1 We define the data array X 2 L2(R2,R3
)⇥RI

which takes a query surface � and outputs I projections as

X = [P1�(u, v) · · · P
I

�(u, v)]

= [

˜�1(u, v) · · · ˜�
I

(u, v)],

where P
i

is the projector onto the subspace S
i

, � is a para-
metric surface and ˜�

i

= P
i

�.

Next, we define �ref , which is closest to all subspaces S
i

.

Fig. 2. 3D Renderings of the segmented surfaces shown in
Figure 1. The orange surfaces correspond to the dictionary
{�

i

}.

Definition 2 The optimal surface �ref that is closest to all
subspaces S

i

in the L2-sense is obtained by maximizing the
Frobenius norm of X subject to k�k = 1, i.e.,

arg min

Ai,bi,�ref

P
I

i=1 k�ref �A
i

�
i

� b
i

k2
L2

= arg max

�ref

P
I

i=1 kPi

�refk2
L2

subject to k�refk = 1.

The exact computation of �ref is specified by Proposition 1.

Proposition 1 The optimal surface �ref in the sense of Defi-
nition 2 is given as the solution of the eigenequation

IX

i=1

P
i

�ref = ��ref , (3)

where � 2 R is the largest eigenvalue of the eigenequa-
tion (3).

3. APPLICATION: FUNCTIONAL SURFACE PCA

We compute the aligned data array X specified by Defini-
tion 1, where we chose � := �ref as illustrated in Figures 3
and 4. Since we consider surfaces that are described in
the continuous domain, we apply a functional (instead of
a discrete) PCA to X. For this purpose, we define X⇤

:

L2(R2,R3
) ! RI , which satisfies h�,Xvi = hX⇤�, vi,

where v 2 RI . The eigensurfaces �
i

2 L2(R2,R3
) of the

scatter operator XX⇤
: L2(R2,R3

) ! L2(R2,R3
) are then

specified by
XX⇤{�

i

} = �
i

�
i

,

where the �
i

are the non-zero eigenvalues of X⇤X. The
derivation of these results will be presented elsewhere.
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Fig. 3. Unbiased shape alignment. For each surface �
i

(green) in the dictionary {�
i

}, the space S
i

containing all its
affine transformations is defined. The surface �ref (blue) that
is closest to all spaces S

i

is computed and projected back onto
the S

i

to obtain the dictionary of aligned shapes {˜�
i

} (red).

4. SPLINE-BASED IMPLEMENTATION

We consider surfaces of the form

�(u, v) =

X

k

X

l

c[k, l]'(u � k) (v � l), (4)

where the sums in (4) are finite and the total number, M , of
control points, c[k, l] = (c

x

[k, l], c
y

[k, l], c
z

[k, l]) 2 R3 is
finite, and ' and  are spline basis functions that satisfy the
Riesz basis condition [8]. For the explicit expressions of '
and  to construct a cylindrical surface, we refer the reader
to [9]. Expression (4) allows us to fully represent a surface in
the continuous domain with only few control points. Further,
we can express the projector (2) w.r.t. to the spline control
points as specified by Proposition 2.

Proposition 2 The matrix P 2 (R3M ⇥ R3M
) : R3M 7!

R3M is a (3M ⇥ 3M) projection matrix defined as P =

CG�1CT�, where C is a matrix containing the control
points of a spline surface (4), G is the Gram matrix w.r.t.
the basis (1) describing the affine shape space of a surface
�, and � is a sparse matrix containing the autocorrelation
integrals of the integer-shifted basis functions ' and  [10].

It can be shown that if all the control points of an arbitrary
surface � are arranged in a vector �, then the control points
of the projected surface are computed as ˜�

i

= P
i

� = P
i

�.
A direct consequence of Proposition 2 is that the continous-
domain pricipal shapes can be computed through an exact
but simple matrix-vector mulitiplication as given by Propo-
sition 3.

Fig. 4. Aligned shape dictionary {˜�
i

}. The pink surface
in the bottom right corresponds to the reference shape, �ref ,
computed with Proposition 1.

Proposition 3 The matrix that contains the control points of
the principal shapes is computed by

CZ = CV, (5)

where V contains the eigenvectors of X⇤X = CT�C.

5. RESULTS AND CONCLUSION

Since V is orthogonal, any shape in the dictionary can be ap-
proximated as C ⇡ CZ

˜V, where ˜V only contains a subset
of eigenvectors. We compare our method with the classical
ASM, where the shapes in the dictionary are approximated
as �

i

⇡ ˜VASMw and computed with the iterative algorithm
described in the introduction, where a similarity transform is
removed from the original surfaces and ˜VASM is the subset
of eigenvectors computed with the corresponding PCA. Our
data set consists of 14 MRI scans where the descending tho-
racic aorta has been segmented (Figure 1). We measure the
L2-error between the aligned shapes and the first principal
shape �1, for both the classical ASM and our method. The
results in Table 1 show that our method captures shape vari-
ability with a higher accuracy than the classical method which
is due to the fact that only removing a similarity in 3D is too
restrictive to align the shapes in a precise way. In Figure 5, we
show a comparison of the first five principal surfaces. In the
case of the ASM, the higher modes do not capture the shape
variability in an intuitive way and make it difficult to interpret
their physical meaning. Furthermore, our method is formu-
lated in the continuous domain, which allows us to describe
the shapes in an exact way; thereby the spline-based imple-
mentation keeps the computational cost low compared to a
prior discretization of the shapes as is the case for the classi-
cal ASM. As a next step, we will use the presented results to
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Fig. 5. Principal surfaces computed with our proposed
method (top) and the classical ASM model (bottom). The
�
i

are the normalized eigenvalues. They describe the amount
of information that the corresponding �

i

carries.

include prior knowledge into 3D segmentation algorithms in
order to increase robustness and speed in interactive settings.
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