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A B S T R A C T

In applications that involve interactive curve and surface modeling, the intuitive manipulation of shapes is
crucial. For instance, user interaction is facilitated if a geometrical object can be manipulated through control
points that interpolate the shape itself. Additionally, models for shape representation often need to provide local
shape control and they need to be able to reproduce common shape primitives such as ellipsoids, spheres,
cylinders, or tori. We present a general framework to construct families of compactly-supported interpolators
that are piecewise-exponential polynomial. They can be designed to satisfy regularity constraints of any order
and they enable one to build parametric deformable shape models by suitable linear combinations of inter-
polators. They allow to change the resolution of shapes based on the refinability of B-splines. We illustrate their
use on examples to construct shape models that involve curves and surfaces with applications to interactive
modeling and character design.

1. Introduction

The interactive modeling of curves and surfaces is desirable in ap-
plications that involve the visualization of shapes. Related domains
include computer graphics [1–6], image analysis in biomedical imaging
[7–11], industrial shape design [12–14] or the modeling of animated
surfaces [15]. Shape-modeling frameworks that allow for user interac-
tion can usually be categorized in either discrete or continuous-domain
models. Discrete models are typically based on interpolating polygon
meshes or subdivision [16–21] and they easily allow to locally refine a
shape. Subdivision models are also considered as hybrids between
discrete and continuous-domain models because they iteratively define
continuous functions in the limit. However, the limit functions do not
always have a closed-form expression [22]. Continuous-domain models
allow for organic shape modeling and consist of Bézier shapes or spline-
based models such as NURBS [23–25]. They allow one to control shapes
locally due to their compactly supported basis functions. However,
NURBS generally cannot be smooth and interpolating at the same time,
which leads to a non-intuitive manipulation of shapes because NURBS
control points do not lie on the boundary of the object.

1.1. Motivation and contribution

Our motivation is the practical need for interpolating functions to be

used in user-interactive applications1 (see Figs. 1 and 2). In this article,
we present a general framework that combines the best of the discrete
and continuous world: smooth and compactly supported basis functions,
which are defined in the continuous domain satisfying the interpolation
condition and allowing to vary the resolution of a constructed shape. In
interactive shape modeling, these properties allow for the following key
attributes:

• Organic shape modeling: smoothness enables a continuously-de-
fined tangent plane and Gaussian curvature at any point on the
surface, which facilitates realistic texturing and rendering of shapes;

• Local shape control: compact support combined with the inter-
polation property of the basis functions guarantees precise and di-
rect shape interaction and an intuitive modeling process.

• Detailed surfacing: few parameters are required at the initial stage
of modeling, while varying the resolution of the shape allows the
user to increase the number of control points when more details are
to be modeled.

Our framework consists of a new family of compactly supported
interpolators that are linear combinations of shifted exponential B-
splines on the half-integer grid. This allows us to harness useful prop-
erties of B-splines which are then transferred to the interpolators. We
first derive general results and define the construction problem together
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Fig. 1. Interactive shape modeling for
character design. Remodeling of the foot of
the “T-rex” is shown. A bone of the middle
toe of the right foot is modeled; first, an
initial design is achieved with few control
points that interpolate the shape (bottom,
right). Then, the resolution is increased by
applying three refinement iterations in
order to have more flexibility to add details
to the bone (bottom, middle). Due to con-
vergence of our modified refinement
scheme, after three iterations it behaves
interpolatory-like. The “T-rex” has been
remodeled after the character designed by
Joel Anderson, source: http://joel3d.com/.

Fig. 2. Parametric surfaces constructed with the proposed family of
interpolators. If the parameterization of a shape is known, we provide
the formulae to construct the corresponding interpolator in order to
represent the shape as detailed in Section 5. The interpolation prop-
erty ensures that the control points (blue points) interpolate the sur-
face. This property is particularly useful in user-interactive applica-
tions, where a surface is modified by dragging control points (e.g. as
previously demonstrated in [26,27]). (For interpretation of the re-
ferences to color in this figure legend, the reader is referred to the web
version of this article.)
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with necessary constraints and conditions. We then establish relevant
reproduction properties and show that, under suitable conditions, the
integer shifts of the generators form a Riesz basis, which guarantees a
unique and stable representation of the parametric shapes used in
practice. The generators are compactly supported. Their degree of
regularity can be increased at will. Based on extensive experimenta-
tions, we conjecture that the proposed construction always yields bona
fide interpolators.

We further propose an algorithm to change the resolution of the
generators which, in turn, allows us to change the resolution of the
shapes. This demands that the generators be expressed as a linear
combination of finer-resolution basis functions. For this purpose, we
propose a refinement scheme associated to our generators by introdu-
cing a “pre-refinement” step such that the resulting refinement con-
verges to the interpolator itself. In particular, we illustrate our theory
by characterizing a family of symmetric and smooth interpolators that
are at least in 1C and have compact support.

Finally, we present examples of applications that involve character
design (Fig. 1) as well as the design of idealized parametric shapes
(Fig. 2).

More specifically, Sections 3 and 4 are the main technical con-
tributions, whereas in Section 5 we present practical applications which
motivate this article.

1.2. Related work

Recently, a method to build piecewise-polynomial interpolators has
been presented in [28,29] and its bivariate generalization was proposed
in [30]. The present work is the continuation of our previous efforts to,
first, generalize the popular Catmull-Rom [31] and Keys [32,33] in-
terpolators for practical applications [26,27,34,35] and, next, to go one
step further and construct families of interpolators that allow varying
the resolution of a shape [36,37]. Here, the novelty w.r.t. Schmitter
et al. [35] is that the presented framework allows one to vary the re-
solution of shapes which facilitates shape design in practice, as illu-
strated in Section 5.2.1.

2. Review of exponential B-Splines

We briefly review the link between exponential B-splines and dif-
ferential operators. This is crucial to understand the properties of the
proposed family of splines. For a more in-depth characterization of
exponential B-splines, we refer the reader to Unser and Blu [38].

2.1. Notation

We describe the list of roots associated to an exponential B-spline as
= ⋯α α α( , , )n1 0 . Likewise, we write αn∈ α to signify that one of the

components of α is αn. The symbol nd refers to the number of distinct
roots of α, which are denoted by ⋯α α, , n(1) ( )d with the multiplicity of
α(m) being n(m) and ∑ == n nm

n
m1 ( ) 0

d . The identity and derivative opera-

tors are denoted by I and =D ,t
d
d respectively. We denote by f(·) a

continuously defined function where the dot in parantheses represents
the variable and by �= ∈a a n( [ ])n a discrete sequence. The imaginary
complex unit i satisfies = −i 1,2 while the Fourier integral of a function f
is denoted by

�
∫= −f ω f t t( ) ( )e dωti . Finally, the continuous convolu-

tions between two functions f and g is defined by

�
∫= −f g t f t u g u u( * )( ) ( ) ( )d , and the discrete convolution between two

sequences a and b, is defined by = ∑ −=−∞
+∞a b k a k n b n( * )[ ] [ ] [ ],n re-

spectively. Furthermore, we use bold font to denote parametric shapes
such as for example a 2D curve =r t r t r t( ) ( ( ), ( ))x y .

2.2. Exponential B-spline and the reproduction of exponential polynomials

The exponential B-spline with parameter α is defined in the Fourier

domain as

∏= −
−

+

=

−
β ω

ω α
( ) 1 e

i
.α

n

n α ω

n1

in0


(1)

The function +βα is compactly supported with support [0, n0] [38,
Section III-A].

We denote by βα the corresponding centered (hence, non-causal)
exponential B-spline, whose support is −n n[ /2, /2]0 0 . We have therefore

= ++β t β t n( ) ( /2),α α 0 (2)

with +βα the causal B-spline defined in (1). The reason for introducing
centered B-splines is that we shall define interpolators that are sym-
metric around the origin and, hence, centered.

It is well known that the exponential B-spline βα is intimately linked
to the differential operator

= − … −α αL (D I) (D I),α n1 0 (3)

which implies that βα is able to reproduce the functions p0 in the null
space of Lα defined as =pL 0α 0 . As a consequence, exponential B-splines
can reproduce exponential polynomials that live in the space [38,
Section III-C-2]

−
= ⋯ = ⋯{ }tspan e .n α t

m n n n
1

1, , ; 1, ,m
d m

( )
( ) (4)

3. General characterization of the interpolator

We consider generators that are constructed as a sum of half-integer
shifted versions of a given exponential B-spline βα.

Definition 1. For a sequence �∈λ ℓ ( )1 and α a vector of roots, we
define

�

∑= ⎛
⎝

− ⎞
⎠∈

ϕ t λ n β t n( ): [ ]
2

.α αλ
n

,
(5)

In the frequency domain, we then have

�

̂ ∑= ⎛

⎝
⎜

⎞

⎠
⎟

∈

−ϕ ω λ n β ω( ) [ ]e ( ).α αλ
n

ωn
,

i /2 
(6)

In what follows, we state the desired mathematical properties that
the generator ϕλ, α should satisfy.

I The generator ϕλ, α is interpolatory in the sense that, for any func-
tion

�
∈ − ∈f ϕ kspan{ (· )} ,αλ k, we have

�
= ∑ −∈f t f k ϕ t k( ) [ ] ( )αk λ, .

This is equivalent to the interpolation condition

= = ⎧
⎨⎩

=

=

ϕ t δ k k( ) [ ] 1 if 0
0 , otherwise,αλ

t k
,

(7)

where δ[k] represents the Kronecker delta.
II The generator ϕλ, α is compactly supported, which implies that the

sequence λ has a finite number of non-zero values.
III The function ϕλ, α is smooth with at least a continuous derivative.
IV The family of the integer shifts of the generator

�
− ∈ϕ k{ (· )}αλ k, forms

a Riesz basis.
V The generator ϕλ, α preserves the reproduction properties of the

associated exponential B-spline βα in the sense that it is capable of
reproducing the exponential polynomials in the null-space of the
operator Lα defined in (3).

VI The generator ϕλ, α allows one to represent shapes at various re-
solutions.

We choose equispaced half-integer shifts of the exponential B-
splines in Definition 1. The reason is that our problem has no solution
using only integer shifts under Conditions (I), (II), and (III): There is no
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smooth and compactly supported interpolator of the form

�
∑ −∈ λ k β t k[ ] ( )αk . This can easily be verified; for example, by plug-
ging any polynomial B-spline into Definition 1 and using integer shifts
while imposing the interpolation conditions: It turns out that there are
not enough degrees of freedom to solve the problem due to the compact
support of the B-splines as well as the smoothness condition, which
forces the degree of the B-spline to be greater than 1. Furthermore, by
using half-integer shifts, we guarantee that our solution lives in the
spline space of the next finer resolution; a property that can be
exploited in practice, as detailed in Section 3.4.

3.1. Riesz basis

We consider the space

�

�

∑= ⎧
⎨⎩

− ∈ ⎫
⎬⎭∈

V ϕ c n ϕ n c( ) [ ] (· ), ℓ ( )α αλ
n

λ, , 2
(8)

of functions that is generated by the integer shifts of ϕλ, α. Our re-
quirement is that the family of functions

�
− ∈ϕ n{ (· )}αλ n, forms a Riesz

basis of V(ϕλ, α), which ensures that the representation of a function in
V(ϕλ, α) is stable and unique. We show in this section that this is the
case if

�
− ∈β n{ (· )}α n is itself a Riesz basis and if ϕλ, α is interpolatory.

Definition 2. The family �∈φ{ }n n of functions forms a Riesz basis if

�

�
�

�∑≤ ≤
∈

A c c n φ B c[ ]
n

n

L

ℓ ( )

( )

ℓ ( )2

2

2

(9)

for some constants A, B>0 and any sequence ��= ∈∈c c n( [ ]) ℓ ( )n 2 .

When = −φ φ n(· ),n (9) is equivalent to the Fourier-domain condi-
tion

�

̂∑≤ − ≤
∈

A φ ω kπ B( 2 )
k

2 2 2

(10)

for any �∈ω [39]. The family
�

− ∈β n{ (· )}α n is a Riesz basis when α is
such that − ≠α α kπ2 i,n m �∈k , for any pair of distinct purely ima-
ginary roots αm, αn∈ α [38, Theorem 1].

Proposition 1. Let α be such that − ≠α α kπ2 i,n m �∈k , for any pair of
distinct purely imaginary roots αm, αn∈ α. For any sequence �∈λ ℓ ( ),1 if
the basis function ϕλ, α is interpolatory, then the family

�
− ∈ϕ n{ (· )}αλ n, is a

Riesz basis.

The proof is given in Appendix A as well as an estimate of the Riesz
Bounds.

3.2. Reproduction properties

Proposition 2. Let α be a vector of roots. We assume that �∈λ ℓ ( )1
satisfies the conditions

�

∑ < ∞
∈

−λ n[ ] e ,
n

αn/2

(11)

�

∑ ≠
∈

−λ n[ ]e 0
n

αn/2

(12)

for every α∈ α. Then, the basis function ϕλ, α has the same reproduction
properties as the corresponding exponential B-spline βα. In particular, it
reproduces the exponential polynomials

−t en α t1 m( ) (13)

for = ⋯m n1, , d and = ⋯n n1, , ,m( ) with the notations of Section 2.1.

Note that (11) is always satisfied as soon as ϕλ, α is compactly
supported. The proof of Proposition 2 is given in Appendix B.

3.3. Regularity

From Definition 1, it immediately follows that ϕλ, α has the same
regularity as the exponential B-spline βα if λ≠ 0. Hence, ϕλ, α belongs
to −n 20C [38, Section III-A].

3.4. Varying the resolution of the generator

The causal exponential B-spline +βα is refinable, in the sense that its
dilation by an integer m can be expressed as a linear combination of

−+β k(· )α m/ . This is what we refer to as the resolution of the basis function.
We shall see how this property translates to the function ϕλ, α. For this
purpose, we first revisit the m-scale relation for exponential B-splines.
For convenience, we express the corresponding terms with respect to
causal (non-centered) B-splines. In practice, we always consider sym-
metric interpolators ϕλ, α with support − − −n n[ ( 1), 1]0 0 (see
Section 4). Therefore, we define the shifted and causal version of the
interpolator as

= − −+ϕ t ϕ t n( ) ( ( 1)).α αλ λ, , 0 (14)

Every causal formula is easily adapted to the centered case by applying
a shift similar to (14). We follow the notations of Unser and Blu [38],
where an in-depth discussion on the refinability of exponential B-
splines can be found.

As shown in [38, Section IV-D], the dilation by an integer �∈ ∖m {0}
of an exponential B-spline is expressed in the space domain as

�

∑⎛
⎝

⎞
⎠

= −+

∈

+β t
m

h k β t k[ ] ( ),α
α

k
m m, α

m (15)

where the refinement filter hα, m is specified by its Fourier transform as

∏ ⎛
⎝

∑ ⎞
⎠

= −
= =

−
−H

m
(e ) 1 e e .α m

ω
n

n

n

k

m
α k kω

,
i

1
1 0

1
in

0

0

(16)

As we shall see, it is impossible to establish a similar relation for the
interpolator +ϕ αλ, . However, we can exploit the refinability of the cor-
responding spline +βα to express the dilation of +ϕ αλ, .

For α a vector of roots, �∈λ ℓ ( ),1 and m0 an even integer, we define
the digital pre-filter g αλ m, , 0 by its Fourier transform

�

⎛
⎝

∑ ⎞
⎠

= − −

∈

−G λ n H(e ) e [ ]e (e ).α αλ m
ω ωm n

n

ωnm
m m

ω
, ,

i i ( /2 1) i /2
,

i
0

0 0 0
0 0

(17)

The term − −e ωm ni ( /2 1)0 0 is due to the fact that βα and ϕλ, α do not have the
same support in general. The pre-filter allows us to express +ϕ αλ, dilated
by m0 as a linear combination of the refined shifted B-splines −+β k(· )α

m0
.

Note that G αλ m, , 0 is a valid Fourier transform of a digital filter (i.e., a
function of eiω) only for even m0.

Proposition 3. Let α be a vector of roots, �∈λ ℓ ( ),1 and m0 be an even
integer. Then, we have

�

∑⎜ ⎟
⎛
⎝

⎞
⎠

= −+

∈

+ϕ t
m

g k β t k[ ] ( ).α αλ
k

λ m m,
0

, , α
m0 0 0 (18)

The proof is given in Appendix C.

3.4.1. Modified refinement scheme based on exponential B-splines
Using Proposition 3, we are able to express a function which is

constructed with the interpolator +ϕ αλ, in an exponential B-spline basis.
Starting with the samples �= = ∈c k f t[ ] ( ) t k of a continuously defined
function f(·) that can be perfectly reconstructed, i.e.,

�
∈ −+

∈
f ϕ kspan{ (· )} ,αλ k, we have
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� �

� �
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∑ ∑

∑

= −

= − −

= − −

= −

∈

+

∈ ∈

+

∈ ∈

+

∈

+

f t c k ϕ t k

c k g l β m t k l

c k g l β m t m k l

c l β m t l

( ) [ ] ( )

[ ] [ ] ( ( ) )

[ ] [ ] ( )

[ ] ( )

α

α

α

k
λ

k l
λ m m

k l
λ m m

l

,

, , 0

, , 0 0

0 0

α

α

α

m

m

m

0 0 0

0 0 0

0 (19)

with

= ↑( )c l c g l[ ] * [ ],αm λ m m0 , ,0 0 0 (20)

where ↑m0 denotes upsampling by a factor m0 defined as

= ⎧
⎨⎩

=
↑c k

c n k m n
[ ]

[ ],
0, otherwise.

0
m0 (21)

Eq. (19) shows that a function that is originally expressed in the
basis generated by +ϕ αλ, can be expressed in a corresponding exponential
B-spline basis with respect to a finer grid. This suggests that, after
having performed the change of basis described by (19), the resolution
of f can be further refined by applying the standard iterative B-spline
refinement rules. At this point, it is interesting to take a deeper look into
the relation between the interpolated function f and the sequence c of
samples as we iteratively refine it. As will become apparent in the ap-
plication-oriented Section 5, a parametric shape is described by co-
ordinate functions whose samples build 2D or 3D vectors of control
points. Repositioning of these control points allows us to locally modify
the shape, while the iterative refinement of the control points allows us
to iteratively increase the local control over the shape. Hence, for
practical purposes, it is convenient to study the convergence of the
refinement process as the number of iterations becomes large.
Proposition 4 describes the refinement scheme and provides the cor-
responding convergence result.

Proposition 4. Let α be a vector of roots and �∈λ ℓ ( )1 . For a continuous
function f with samples � == ∈f t c k( ) [ ]t k and the integers m, m0, with m0

being even, we consider the iterative scheme specified by

1. pre-filter step: = ↑( )c k g c k[ ] * [ ]λ m m0 , ,α
m0 0 0 ;

2. iterative steps: for n≥ 1, = − ↑( )c k h c k[ ] *( ) [ ],n m n m, 1α
m mn0

where ↑m denotes upsampling by a factor m as defined in (21). Then, the
iterative scheme is convergent, in the sense that

�

∑ − =
→∞ ∈

c k δ m m t k f tlim [ ] ( ) ( ),
n k

n
n

0
(22)

where δ is the Dirac distribution.

The proof is given in Appendix D.

3.4.2. Example
We illustrate how to refine the resolution of a circular pattern by

applying Proposition 4. To efficiently take advantage of the interpola-
tion property, we apply the “pre-refinement” step (20) at the first
iteration. For the subsequent iterations, we apply the standard refine-
ment given by (16) as described by Proposition 4. By doing so, we see
that the iterative scheme converges towards the circle

� �
= ∑ − = ∑ −∈

+
∈

+r c rt l β m t l k ϕ t k( ) [ ] ( ) [ ] ( )αl k0 0α
m0

. The result of the
algorithm is shown in Fig. 3. In Appendix E, we provide the details on
how to reconstruct the circle with our framework.

4. Construction of a family of compactly supported interpolators
in practice

It is known that there exists no exponential B-spline βα that is

interpolatory and smooth (i.e., at least in 1C ) at the same time. Our goal
here is to construct a compactly supported generator function that has
the same smoothness and reproduction properties as βα, while also
being interpolatory. In order to meet the smoothness constraints, we
require the number of elements of α to be n0≥ 3 in accordance with the
construction detailed in Section 3.3. Furthermore, we want the inter-
polator to be real-valued and symmetric, which implies that the ele-
ments of α are either zero or come in complex conjugate pairs [38].
Using Definition 1 and the conditions described in Section 3, we are
looking for the interpolator with minimal support.

4.1. Introductory example: the quadratic B-spline

We illustrate the concept with a simple example that uses quadratic
polynomial B-splines, which are constructed with = =α α (0, 0, 0)0 in
(1) and whose support is of size 3. The interpolation constraint com-
bined with the half-integer shifts demand that λ contains at least three
non-zero values to have enough degrees of freedom. This also implies
that the compactly-supported interpolator is constructed with no more
than three non-zero elements of λ. Moreover, since the solution that
fulfills the conditions stated in Section 3 is unique, the interpolator is of
minimal support. To satisfy the symmetry constraints, we center the
shifted B-splines around the origin and enforce = −λ λ[1] [ 1]. Hence,
our generator must take the form

= ⎛
⎝

− ⎞
⎠

+ + − ⎛
⎝

+ ⎞
⎠

= + ⎛
⎝

⎛
⎝

− ⎞
⎠

+ ⎛
⎝

+ ⎞
⎠

⎞
⎠

ϕ t λ β t λ β t λ β t

λ β t λ β t β t

( ) [1] 1
2

[0] ( ) [ 1] 1
2

[0] ( ) [1] 1
2

1
2

.

λ α α α α

α α α

, 0 0 0 0

0 0 0 (23)

Since α0 has =n 30 elements, the support of the interpolator is
= − =N n2( 1) 40 . The interpolator itself is supported in

− − − = −n n[ ( 1), ( 1)] [ 2, 2]0 0 . The interpolation condition is ex-

pressed as ⎧
⎨⎩

=

=

ϕ

ϕ

(0) 1

(1) 0
0

0

λ

λ

α

α

,

,
. We define the matrix

⎛
⎝

⎞
⎠

=
− +

− + +
=

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

β β β
β β β

A
(0) ( 1/2) (1/2)
(1) (1 1/2) (1 1/2)

1
α

α α α

α α α

3
4

1
8

1
2

0 0 0

0 0 0
0

and rewrite the interpolation constraint as =λ λ( [0], [1])
= −− ( )A (1, 0) 1,α

1 1
20 . The resulting interpolator is shown in Fig. 4.

4.2. The general case

In what follows, we only consider vectors of poles α for which
− ≠α α kπ2 i,n m �∈k for all pairs of distinct, purely imaginary roots

αm, αn∈ α (Riesz Basis property). We generalize the above example to
construct symmetric and compactly supported interpolators of any
order and that are of the form

∑= + − + +
=

−

ϕ t λ β t λ n β t n β t n( ): [0] ( ) [ ]( ( /2) ( /2)),α α α αλ
n

n

,
1

20

(24)

whose support is included2 in − = − − −N N n n[ /2, /2] [ ( 1), 1]0 0 . We
easily pass from the general representation (5) to (24), adapted to the
symmetric and compactly supported case, by setting =λ n[ ] 0 when

≥ −n n 10 (support condition) and − =λ n λ n[ ] [ ] for every n (sym-
metry condition).

The function ϕλ, α is interpolatory if and only if

= = ⋯= − =ϕ ϕ ϕ n(0) 1 and (1) ( 2) 0.α α αλ λ λ, , , 0 (25)

This defines a linear system with −n( 1)0 unknown non-zero elements
of λ, … −λ λ n{ [0], , [ 2]},0 and −n( 1)0 equations. The system (25) has a

2 The support is exactly −N N[ /2, /2] when λ[n] is non-zero for = … −n n0, , ( 2),0
which is always the case in the examples we have considered.
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solution if the matrix defined for = … −k l n, 0, , ( 2)0 by

= ⎧
⎨⎩

=
− + ++ +

β k l
β k l β k l

A[ ]
( ) if 0

( /2) ( /2) elseα
α

α α
k l1, 1

(26)

is invertible. In this case, we have

= … − = …−λ λ λ n A( [0], , [ 2]) (1, 0, ,0).α0
1 (27)

Knowing α, we can easily check if the matrix Aα is invertible, which
is the case for all the examples that we tested (we have already seen
that it is true for =α (0, 0, 0) is Section 4.1). From (27), we see that λ is
completely determined by α. This motivates Definition 3.

Definition 3. Let α be a vector of roots whose elements are either zero
or come in pairs with opposite signs. If the matrix Aα defined in (26) is
invertible, then the interpolatory basis function ϕα is defined as

=ϕ ϕ: ,α αλ, (28)

with λ defined by (27).

We conjecture that the matrix Aα is always invertible, and that we
always can define an interpolator ϕα for any list of roots α. In the re-
maining of this article, we assume that Aα is invertible and, therefore,
that ϕα is well-defined. Under this assumption, the unicity of the vector
λ ensures that the interpolator ϕα in Definition 3 has minimal support
among the interpolators of the form (5).

In practice, the type of interpolator that needs to be constructed
depends on the parametric shape that is represented. For instance, for a
rectangular surface, a polynomial interpolator is required and the
vector α of roots will have to consist of zeros. If instead we aim at
representing circles, spheres, or ellipsoids (see Section 5), whose co-
ordinate functions are trigonometric, we need to construct interpolators

Fig. 3. Refined circle. The parametric circle is first constructed using the proposed interpolator and ⎜ ⎟= ⎛
⎝

− ⎞
⎠

α 0, ,π π2i
3

2i
3

(top left). At the first iteration, the “pre-refinement”mask is applied

to the initial control points according to (20) (top right), whereas at the subsequent iterations the standard refinement mask for exponential B-splines (16) is applied (bottom, from left to
right). In the bottom right, we see how the iterative process converges towards the continuously defined circle.
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that preserve sinusoids. Therefore, α will contain pairs of purely ima-
ginary roots with opposite signs. Similarly, we can reproduce hyper-
bolic shapes by picking an α that contains pairs of real roots with op-
posite signs. If an interpolator is required to reproduce both
trigonometric and polynomial shapes, e.g., to construct a cylinder, then
the corresponding polynomial and trigonometric root vectors are con-
catenated to construct α. Examples of different interpolators are shown
in Fig. 4.

We now summarize the properties of the generator ϕα for α a vector
of roots of size n0≥ 3 such that − ≠α α kπ2 i,n m �∈k , for any pair of
distinct purely imaginary roots αm, αn∈ α. These properties are in ac-
cordance with Conditions I to VI in Section 3.

• The function ϕα is interpolatory.

• The function ϕα is compactly supported in − − −n n[ ( 1), 1]0 0 .

• The function ϕα has the minimal support among the interpolators
that are linear combinations of shifted exponential B-splines on the
half-integer grid.

• The function ϕα is in −n 20C and therefore, at least in 1C .

• The family
�

− ∈ϕ n{ (· )}α n is a Riesz basis.

• The family
�

− ∈ϕ n{ (· )}α n reproduces the exponential polynomials
given by (4).

• The function ϕα is refinable in the sense explained in Section 3.4.

Remark. The presented interpolators are not (entirely) positive (see
Fig. 4) and thus, do not satisfy the convex-hull-property. However, the
popularity of the Catmull-Rom splines [31] in computer graphics shows
that in interactive shape modeling, one prefers to use interpolators at
the expense of the convex-hull property.

5. Applications

In this section, we show how parametric curves and surfaces are
constructed using the proposed spline bases. Such shapes can be con-
structed independently of the number of control points. This makes
them particularly useful for deformable models where, starting from an
initial configuration, one aims at approximating a target shape with
arbitrary precision [39].

5.1. Reproduction of idealized shapes

We consider curves and surfaces that are described by the co-
ordinate functions rx(t), ry(t), and rz(t), with �∈t . The coordinate
functions are expressed by a linear combination of weighted integer
shifts of the generator ϕα. Due to the interpolation property of the
generator, the weights simply correspond to the samples of the co-
ordinate functions. Such a parametric curve is expressed as

�

∑=
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= −
∈

r rt
r t
r t
r t

k ϕ t k( )
( )
( )
( )

[ ] ( ),α

x

y

z k (29)

where the coefficients =r k r k r k r k[ ] ( [ ], [ ], [ ])x y z with �∈k are the
control points. The curve (29) can be locally modified by changing the
position of a single control point. The shapes that r can adopt (e.g.,
polynomial, circular, elliptic) depend on the properties of the generator.

One can also extend the curve model (29) to represent separable
tensor-product surfaces. In this case, a surface σ is parameterized by

�∈u v, as

� �

� �

∑ ∑

∑ ∑

=
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

=
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= − × −

= × − −
∈ ∈

∈ ∈

σ
σ
σ
σ

r r

r r

u v
u v
u v
u v

r u r v
r u r v
r u r v

k ϕ u k l ϕ v l

k l ϕ u k ϕ v l

( , )
( , )
( , )
( , )

( )· ( )
( )· ( )
( )· ( )

[ ] ( ) [ ] ( )

[ ] [ ] ( ) ( ),

α α

σ

α α

x

y

z

x x

y y

z z

k l

k l k l

1, 2,

1, 2,

1, 2,

1 2

1 2

[ , ]

1 2

1 2  
(30)

where “× ” denotes the element-wise multiplication of two vectors.
Finally, one generalizes (30) to represent surfaces with a non-separable
parameterization as

� �

∑ ∑= − −
∈ ∈

σ σu v k l ϕ u k ϕ v l( , ) [ , ] ( ) ( ).α α
k l

1 2
(31)

We use different families of interpolators to perfectly reproduce
curves and surfaces with known parameterizations. In Section 5.1.1, we
detail the construction of the Roman surface. Additional examples are
provided in the appendices such as the reproduction of ellipses
(Appendix E) and of the hyperbolic paraboloid (Appendix F). The four
surfaces in Fig. 2 were obtained from their classical parameterization
following the same principle.

5.1.1. Reproduction of the roman surface
An illustrative example is the Roman surface whose parametrization

is

=

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

σ u v

r πu πv

r πu πv

r πu πu πv

( , )

1
2

cos(2 )sin(4 )

1
2

sin(2 )sin(4 )

cos(2 )sin(2 )cos (2 )

2

2

2 2
(32)

�=

⎛

⎝

⎜
⎜
⎜
⎜
⎜ +

⎞

⎠

⎟
⎟
⎟
⎟
⎟

∈

r πu πv

r πu πv

r πu πv

u v

1
2

cos(2 )sin(4 )

1
2

sin(2 )sin(4 )

1
4

sin(4 )(1 cos(4 )

, ( , ) .

2

2

2

2

(33)

We parameterize (32) as a tensor-product surface of the form (30)
and denote by M1 and M2 the number of control points related to ϕα1
and ϕα2. The surface is trigonometric in u and v. Hence, we choose to

Fig. 4. Different types of interpolators: polynomial interpolator (black, solid curve) with
=α (0, 0, 0). The number of poles is equal to 3. Trigonometric interpolator (red, dashed

curve): the non-zero poles are purely imaginary and come in pairs with opposite signs

(e.g., ⎜ ⎟= ⎛
⎝

− ⎞
⎠

α 0, 0, ,π πi2
3

i2
3

). Hyperbolic interpolator (blue, dot-dashed curve): the non-

zero poles are real and come in pairs with opposite signs (e.g., ⎜ ⎟= ⎛
⎝

− ⎞
⎠

α 0, ,π π2
3

2
3

).
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construct the interpolators ϕα1 and ϕα2 with = − −( )α , , ,π
M

π
M

π
M

π
M1

2i 2i 4i 4i
1 1 1 1

and

= −( )α 0, ,π
M

π
M2

4i 4i
2 2

to express (32) as

� �

∑ ∑= − −
∈ ∈

σ σu v k l ϕ M u k ϕ M v l( , ) [ , ] ( ) ( ).α α
k l

1 21 2
(34)

In order to satisfy the relation − ≠α α kπ2 i,n m �∈k for all pairs of
distinct, purely imaginary roots, we choose = =M M 51 2 . To construct
ϕ ,α1 we see that =n 40 and = − =N n2( 1) 60 . Hence, the support of ϕα1
is of size 6. Following (24), the interpolator is expressed as

= + ⎛
⎝

⎛
⎝

− ⎞
⎠

+ ⎛
⎝

+ ⎞
⎠

⎞
⎠

+ − + +

ϕ t λ β t λ β t β t

λ β t β t

( ) [0] ( ) [1] 1
2

1
2

[2]( ( 1) ( 1)).

α α α α

α α

1 1 1 1

1 1

By solving the corresponding system of Eq. (25) for the non-zero
entries of λ, we find =λ [0] 18.118, = −λ [1] 10.128, and =λ [2] 1.730.
For the construction of ϕ ,α2 we have that =n 30 and = − =N n2( 1) 40 .
The support of ϕα2 is therefore equal to 4 and the interpolator is ex-
pressed as

= + ⎛
⎝

⎛
⎝

− ⎞
⎠

+ ⎛
⎝

+ ⎞
⎠

⎞
⎠

ϕ t λ β t λ β t β t( ) [0] ( ) [1] 1
2

1
2

.α α α α2 2 2 2

By solving (25), we find that =λ [0] 7.396 and = −λ [1] 2.825.
Since the generator is an interpolator, the control points of the

surface are given by its samples, specified by

=

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

= =

( ) ( )
( ) ( )

( ) ( ) ( )
σ u v

r

r

r

( , )

cos sin

sin sin

cos sin cos

.

u k v l

πk
M

πl
M

πk
M

πl
M

πk
M

πk
M

πl
M

,

1
2

2 2 4

1
2

2 2 4

2 2 2 2 2

1 2

1 2

1 1 2

We choose (u, v)∈ [0, 1]2 and =r 3. Then, the sums in (30) are
finite due to the compact support of the generators. The para-
meterization of the surface is given by

= ∑ ∑ − −=−
+

=−
+σ σu v k l ϕ M u k ϕ M v l( , ) [ , ] ( ) ( ).α αk

M
l
M

2
2

1
1

1 2
1 2

1 2 The Roman
surface is illustrated in Fig. 5.

5.2. Interactive shape modeling

The presented interpolators are well suited to be implemented in an
interactive shape modeling framework; for instance, for CAD design.

The key properties in such a context are

• Interpolation property: it allows to easily interact with the surface by
displacing control points with a computer mouse;

• Varying resolution: once the “rough” outline of the shape is designed,
the details are modeled by increasing the resolution at specific lo-
cations.

5.2.1. Example: character design
The interpolation property is convenient to design complex shapes

as shown in Fig. 1 in order to obtain a low resolution model. To increase
the level of detail of the shape, we increase the resolution of the surface
by first applying the pre-refinement step (20) and then the standard
refinement mask for (exponential) B-splines (16). These two steps in-
crease the number of control points, however, at the expense of being
interpolatory. This increase in the number of control points allows one
to have more flexibility in the modeling process. Furthermore, after few
iterations, the convergence of the proposed modified refinement
scheme allows for an interpolatory-like behavior (see Fig. 1).

6. Discussion and conclusion

We have presented a general framework to construct interpolators
as linear combinations of exponential B-splines of the same order n0.
The interpolators are compactly supported and their integer shifts form
a Riesz basis whenever the corresponding B-spline does. Since the un-
derlying building blocks are exponential B-splines, we can exploit the
refinability property of the B-splines to resample the model. Based on
these general properties, we have constructed a new family of inter-
polators to represent parametric shapes. The new interpolators are
smooth and they can be designed to perfectly reproduce polynomial,
trigonometric, and hyperbolic shapes. We provide explicit examples of
such generators and show in detail how idealized parametric curves and
surfaces are constructed. The reconstructed shapes have the property
that the control points directly lie on their boundary. This enables an
intuitive manipulation of shapes by changing the location of a control
point. Since the interpolators have compact support, this displacement
of control points allows one to locally control the deformation of a
shape3. In a next step, we plan to further investigate the refinability

Fig. 5. Roman surface. The interpolators ϕα1 (blue) and ϕα2 (yellow) are shown as well as the reconstructed surface (right). The interpolatory control points are shown as blue dots on the

surface. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3 Demo videos illustrating an implementation of our framework are found at http://
bigwww.epfl.ch/demo/varying-resolution-interpolator/.
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properties for practical applications such as real-time rendering or
zooming of images.
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Appendix A. Proof of Proposition 1

Proof. We split the proof into two parts: the existence of an upper bound, relying on the one for the corresponding exponential B-spline, and the
lower bound, based on the fact that the function is interpolatory.

Upper Bound. We first show that one can find Bα<∞ such that, for every �∈ω ,

�

∑ − ≤
∈

β ω kπ B( 2 ) .α α
k

2 2
(A.1)

This result is well-known (see for instance [38, Theorem 1]); we prove it for the sake of completeness. A more precise estimation of Bα is given in [38,
Proposition 3]. The function ∨β β* ,α α where = −∨β t β t( ) ( ),α α is continuous and compactly supported. Therefore, the sequence

� �
= =∈

∨
∈c c n β β n( [ ]) ( * ( ))α αn n of its samples is in �ℓ ( )1 . Since the Fourier transform of ∨β β t* ( )α α is β ω( ) ,α

2 we have that

� �

�∑ ∑− = ≤ = < ∞
∈ ∈

−β ω kπ c k c B( 2 ) [ ]e : .α α
k k

ωk2 i
ℓ ( )

2
1


(A.2)

Using (6), we moreover have that

� � �

̂∑ ∑ ∑− = ⎛

⎝
⎜

⎞

⎠
⎟ −

∈ ∈ ∈

− −ϕ ω kπ λ n β ω kπ( 2 ) [ ]e ( 2 ) .α α
k

λ
k n

ω kπ n
,

2 i( 2 ) /2
2

2
(A.3)

By splitting the sum with respect to k odd or even and since = −− − −e (( 1) ) e ,ω kπ n k n ωni( 2 ) /2 i /2 we have that

�

̂∑ ∑ ∑− = − + −
∈

ϕ ω kπ G ω β ω kπ G ω β ω kπ( 2 ) ( ) ( 2 ) ( ) ( 2 )α α α
k

λ
k k

,
2

0
2

even

2
1

2

odd

2 
(A.4)

with
� �

= ∑ = ∑ −∈
−

∈
−G ω λ n G ω λ n( ) [ ]e and ( ) ( 1) [ ]e .n

ωn
n

n ωn
0

i /2
1

i /2 Clearly, for =i 0, 1,
� �≤ ∑ =∈G ω λ n λ( ) [ ]i n ℓ ( )1 and thus,

�

�

�

�

�

̂∑ ∑ ∑

∑

− ≤ ⎛

⎝
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⎠
⎟
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∈

∈
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ℓ ( )
2 2
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1

1

 



so that the constant �= < ∞B λ Bα αλ, ℓ ( )1 acts as an upper bound in (10).
Lower Bound. The function ϕλ, α is assumed to be interpolatory; in the frequency domain, this condition is expressed as

�

�

̂∑ − = ∈
∈

ϕ ω kπ ω( 2 ) 1 for all .α
k

λ,
(A.5)

Moreover, the functions
�

↦ ∑ −∈ω β ω kπ( 2 ) ,αk
2 G0, and G1 above are also continuous and periodic (for G0 and G1, this comes from �∈λ ℓ ( )1 ).

Therefore, the function
�

̂↦ ∑ −∈ω ϕ ω kπ( 2 )αk λ,
2 is also continuous and periodic. As such, it reaches its minimum at some frequency ω0∈ [0, 2π].

Further, the inequality
�

̂= ∑ − ≥∈A ϕ ω kπ: ( 2 ) 0α αλ k λ,
2

, 0
2 holds. Assume now that =A 0,αλ, then we have ̂ − =ϕ ω kπ( 2 ) 0α 0 for every �∈k , and

therefore,
�

̂∑ − =∈ ϕ ω kπ( 2 ) 0,αk λ, 0 which contradicts (A.5). Hence, Aλ, α>0 acts as a lower bound in (10). □

Remark. Based on (A.4), we deduce the following estimates for the Riesz constants Aλ, α and Bλ, α associated to ϕλ, α:

̂=A A λmin (e ) ,α αλ
π

ω
,

[0,2 ]
i

(A.6)

̂=B B λmax (e ) ,α αλ
π

ω
,

[0,2 ]
i

(A.7)

where Aα and Bα are the constants for the Riesz basis condition for βα (given in Propositions 4 and 3 in [38]), and
�

̂ = ∑ ∈
−λ λ n(e ) [ ]eω

n
ωni i /2 is the

discrete Fourier transform of λ.

Appendix B. Proof of Proposition 2

Proof. The result follows from Proposition 2 in [38] which states that reproduction properties are preserved through convolution. More precisely, if f
is such that ∫ ≠−∞

+∞ −f t t( )e d 0αt for all α∈ α, then f*βα inherits the reproduction properties of βα. In our case, we have =ϕ t f β t( ) ( * )( )α αλ, with

�
= ∑ −∈f t λ n δ t n( ) [ ] ( /2)n . Then, for every α∈ α,

�

∫ ∑=
−∞

+∞ −

∈

−f t t λ n( )e d [ ]e ,αt

n

αn/2

(B.1)

which is bounded and non-zero by assumption. □

D. Schmitter et al. Graphical Models 94 (2017) 52–64

60



Appendix C. Proof of Proposition 3

Proof. For the causal generator, we use (2) and (14) to express (6) as
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Then, we have

�

�

̂ ⎛
⎝

∑ ⎞
⎠

⎛
⎝

∑ ⎞
⎠

=

=

=

+ − −

∈

− +

− −

∈

− +

+

m ϕ m ω λ n m β m ω

λ n H β ω

G β ω

( ) e [ ]e ( )

e [ ]e (e ) ( )

(e ) ( ),

α α

α α

α α

λ
ωm n

n

m ωn

ωm n

n

m ωn
m m

ω
m

λ m m
ω

m

0 , 0
i ( /2 1) i /2

0 0

i ( /2 1) i /2
,

i

, ,
i

0 0 0

0 0 0
0 0

0

0 0
0






(C.2)

where we used the relation (15) expressed in the frequency domain. Finally, we take the inverse Fourier transform of (C.2) and obtain (18) in the
time domain. □

Appendix D. Proof of Proposition 4

Proof. Eq. (22) is equivalent to the frequency domain relation
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where = ∑ =−∞
+∞ −C z c k z( ) [ ]n k n

k is the z-transform of the discrete sequence �= ∈c c k( [ ])n n k . The iterative step between cn and −cn 1 in the frequency
domain becomes
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Iterating this relation, we obtain
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By expressing (15) iteratively in the frequency domain and replacing α by α/m0, we see that
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where in the last line we have used the well-known convergence result from spline theory [18,40,41]
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Expressing (19) in the frequency domain, we finally have
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(D.6)

where we have used (D.5) and (D.3) for the second and third equalities, respectively. □

Appendix E. Reproduction of Ellipses

We now explicitly show how ellipses can be reproduced using our proposed interpolatory basis functions. To construct the ellipses as a function of
the number of control points M, we choose = −( )α 0, ,π

M
π

M
2i 2i and, hence, =n 30 . The interpolator is obtained by Definition 3 and by solving the

corresponding system of Eq. (25). The non-zero values of the sequence λ are
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To reproduce ( )cos · ,π
M
2 we take advantage of the interpolation property, which yields
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(E.1)

where the coefficients are the integer samples of the curve. Normalizing the period of the cosine and using the M-periodized basis functions

�

∑= −
∈

ϕ t ϕ t Mk( ): ( ),α αM
k

,
(E.2)

we express the cosine as
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−
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−
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M
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(E.3)

In a similar way we obtain

∑= ⎛
⎝

⎞
⎠

−
=

−

πt πk
M

ϕ Mt ksin(2 ) sin 2 ( ).α
k

M

M
0

1

,
(E.4)

Plots of the trigonometric functions are shown in Fig. E.6 as well as the circle obtained through the parametric equation =r t πt πt( ) (cos(2 ), sin(2 )).
Ellipses can be constructed by simply applying an affine transformation to the circle r. In order to guarantee a representation that does not depend on
the location and orientation of the curve, it must be affine invariant. This is ensured if the interpolator satisfies the partition of unity

�
∑ − =∈ ϕ k(· ) 1,αk M, which implies that it must reproduce zero-degree polynomials (i.e., the constants). Hence, we need that 0∈ α.

Fig. E.6. Top row: reproduction of the cosine (left) and sine (right) for =M 3. The weighted and shifted basis functions are represented by dashed lines. The reconstructed parametric
circle is shown in the bottom row (black) with the interpolatory control points (shown in red on the boundary of the circle). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Appendix F. Reproduction of a Hyperbolic Paraboloid

A parameterization of a hyperbolic paraboloid is given by

�=
⎛

⎝
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⎞

⎠
⎟⎟

∈σ u v
au v
bu v

hu
u v( , )

cosh( )
sinh( ) , ( , ) ,

2

2

(F.1)

where a, b, and h are constants. The paraboloid (F.1) is polynomial in u and hyperbolic in v. Hence, we choose =α (0, 0, 0)1 and = −( )α 0, ,M M2
1 1

2 2
when expressing (F.1) as the tensor-product surface

� �
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∈ ∈

σ σu v k l ϕ M u k ϕ M v l( , ) [ , ] ( ) ( ).α α
k l

1 21 2

To construct ϕ ,α1 we have that =n 30 and its support is equal to = − =N n2( 1) 40 . The interpolator is expressed as
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Solving (25), we obtain =λ [0] 2 and = −λ [1] 1
2 .

For the construction of ϕ ,α2 we see that =n 3,0 = − =N n2( 1) 4,0 and its support is also of size 4. The interpolator is given by
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Solving (25) yields =λ [0] 1.968 and = −λ [1] 0.489. As in the previous example, the control points are obtained by sampling the surface, which leads
to

=
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We choose ∈ −u v( , ) [ 1, 1] ,2 = =M M 3,1 2 = =a b 4 and =h 8. The corresponding parameterization is
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The hyperbolic paraboloid is illustrated in Fig. F.7.
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