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et acceptée sur proposition du jury

Prof. Dimitri Van De Ville, président
Prof. Michael Unser, directeur de thèse
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Abstract

In this thesis, we present a novel generic and unifying framework for data-adaptive
shape modeling. Our work is motivated by the raising need for powerful geometric
modeling kernels that are required for shape characterization in biomedical imag-
ing. The ongoing development of faster and more precise hardware in biomedicine
creates new demands regarding the characterization, processing, and analysis of
shapes in medical and biological data such as MRI, CT or microscopy. We de-
velop a novel mathematical framework to construct a geometric kernel that is ca-
pable to represent deformable shapes in the contexts of segmentation, visualization,
and deformation, while also enabling user-interaction, fast optimization as well as
the construction of shape dictionaries for shape encoding. Our approach relies on
spline-based concepts for shape representation in computer graphics combined with
spline-theoretical fundamentals from signal and image processing.

This thesis is organized in two main parts. In the first part, our main contri-
bution is the development of a novel generic framework to encode shapes, learn
dictionaries and construct shape projectors onto functional vector spaces defined
by spline shapes. Our construction is formulated in the continuous domain and
we propose solutions based on L2-methods as well as sparsity-promoting `1-based
methods. Our contribution is generic in the sense that it is applicable to any
spline-based generator that forms a Riesz Basis. We apply our solution to classify
shapes in medical ultrasound images, to learn dictionaries of brain structures and
to construct robust shape priors for segmentation algorithms.

In the second part of this thesis, our contribution is a novel data-adaptive
framework to construct deformable shapes with different kinds of topology that
are used in a broad spectrum of applications such as the semi-automatic segmenta-
tion of biomedical structures, user-interactive shape modeling, shape deformation
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and morphing, shape reconstruction from samples as well as the visualization and
animation of shapes. We construct novel families of spline-generators that facili-
tate intuitive user-interaction, shape modeling, and shape characterization, and we
provide specific examples and validations of the use of our framework in practice.

The two parts of this thesis together build a unifying theory for the construction
of a novel flexible geometric modeling kernel with a wide range of use and applica-
tions as we illustrate throughout this thesis with a vast amount of experiments.

Keywords: Shape characterization, shape modeling, splines, interpolation, shape
deformation, tensor product surfaces, dictionary learning, sparsity, sparse coding,
continuous domain, vector space, shape projectors, geometric kernel, computer-
aided design.



Zusammenfassung

Diese Doktorarbeit befasst sich mit der Erarbeitung eines neuartigen mathemati-
schen und geometrischen Kernels zur flexiblen sowie daten-spezifischen Modellie-
rung, Charakterisierung, Analyse sowie Darstellung von Kurven und Flächen, die
in biomedizinischen bildgebenden Verfahren generiert und benötigt werden. Die
Motivation für die Erarbeitung dieser Doktorarbeit ist die Notwendigkeit neuer
geometrischer Kernel, um die geometrischen Formen in den heutzutage generierten
Bilddaten in der Biomedizin analysieren und charakterisieren zu können. Die dies-
bezügliche rasante Entwicklung neuer bildgebender Verfahren erfordert neue Me-
thoden und Algorithmen, um die damit verbundenen daten-spezifischen Herausfor-
derungen bewältigen zu können wie zum Beispiel die geometrische Formanalyse von
Organen in grossen Datenmengen mit hoher Auflösung oder die halb-automatische
und interaktive 3-dimensionale Formmodelierung zur Segmentierung von Zellen in
mikroskopischen Bildern. Unser Ansatz zur Konstruktion eines neuen geometrischen
Kernels basiert auf Konzepten der Spline-theorie, welche sowohl in der Computer-
graphik als auch in der Signal-und Bildverarbeitung angewandt wird.

Diese Doktorarbeit ist aufgeteilt in einen generischen Teil und einen daten-
spezifischen Teil. Im ersten Teil erarbeiten wir generische Konzepte zur Konstruk-
tion von Formlexika, Formkodierung und Formanalyse sowie mathematische Pro-
jektoren auf Vektorräume, die durch parametrische Kurven und Flächen in Hil-
berträumen definiert sind. Dieser Teil ist unabhängig von einer spezifischen Spline-
funktion unter der Bedingung, dass die Splinefunktion eine Riesz-basis generiert.
Wir validieren unser mathematisches Modell mittels Klassifizierung von anatomi-
schen Strukturen in Ultraschall-Bildern, der Erstellung von Formlexika von Ge-
hirnstrukturen, die durch MRI generiert worden sind sowie mittels Segmentierung
von biologischen Zellstrukturen in der Mikroskopie.
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Im zweiten Teil präsentieren wir neue mathematiche Konstruktionen zur Dars-
tellung von deformierbaren Kurven und Flächen. Wir leiten neue Splinefunktionen
her, die nach spezifischen topologischen Anforderungen konstruiert werden können.
Wir testen und validieren unsere geometrischen Modelle in verschiedenen Anwen-
dungen, wie zum Beispiel der halb-automatischen Segmentierung von 3D Gehirn-
und Aortastrukturen, der computer-gestützten interaktiven Formmodelierung so-
wie der Deformierung von Flächen, der Flächenrekonstuktion durch Interpollieren
oder der Visualisierung und Animierung von geometrischen Formen.

Zusammen bilden die beiden Teile dieser Doktorarbeit ein einheitliches mathe-
matisches Konzept zur Konstruktion eines neuen geometrischen Modellierungsker-
nels.

Stichworte : Formcharakterisierung, Formmodellierung, Splines, Interpollieren, Form-
deformierung, Tensorprodukt Flächen, Erlernte Formlexika, Stetigkeit, Vektorraum,
Mathematische Projektion, Geometrischer Kernel, Computer-gestützte Modellie-
rung.
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Chapter 1

Introduction

Today’s research in biomedical imaging is highly dependent on computer-generated
representations of shapes. Curves and surfaces need to be studied and analyzed,
which results in an increasing demand for digital geometric models. Hence, today’s
shape-analysis workflows depend more and more on software for shape representa-
tion and modeling.

Shape deformation, interaction, segmentation, morphology, quantification or
registration require an accurate representation of an underlying shape structure.
Each shape-modeling software has an integrated geometric kernel, which imple-
ments the underlying mathematics that are used to represent the geometry of a
digital shape model. The geometric kernel determines how the user interacts with
digital objects, how they are drawn or manipulated, and computed. Overall, the
kernel defines the range of possible functionality that can be deployed for digital
shape representation, and as a consequence, it also sets the limitations. The in-
creasing demand for cutting-edge software tools directly translates into a rising
need for powerful geometric modeling kernels.

In biomedical imaging, the ongoing development of modern imaging devices
with high resolution and precision leads to new demands in terms of shape anal-
ysis [1, 2, 3, 4, 5]. Simultaneously, the availability of faster and more performant
computers, tablets, and workstations allows for the implementation of more com-
plex and computation-intensive models [6, 7, 8, 9]. Finally, it also enables to process
large amounts of data at reasonable time scales [10, 11, 12, 13].
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2 Introduction

The common aspect in many of the shape analysis workflows in the field of
biomedical imaging [14, 15] is the need for a specific, yet flexible, shape formulation.
When adapted to a specific application, the challenge of obtaining a reliable shape
description comes along with the requirement of accurate detection, fast optimiza-
tion schemes, and user-interactivity. The underlying digital shape representation
defines the limitations of implementational feasibility of application-dependent al-
gorithms, such as high-throughput or single structure shape analysis, which also
depend on the type of data used such as 2D or 3D.

A typical workflow for shape characterization and analysis in biomedical imaging
consists in the following steps: First the data is fed into the pipeline. It can be 2D,
3D or higher dimensional and the structures of interest can have different topologies
such as circular, spherical or cylindrical. The next step is the segmentation. It
might involve manual or (semi-)automatic outlining and detection of shapes with
or without user-interaction including the possible use of shape priors. The last step
is the analysis and characterization of the shapes, where measurements, statistical
quantities, shape encoding, and learning methods might be applied. These results
can be re-used to include prior knowledge in the segmentation step. A schematic
representation of such a workflow is given in Figure 1.1.

The execution of a complete shape-characterization pipeline is usually time-
consuming and costly. The primary limitations of existing solutions are:

1. Incompatibilities of sub-modules of the pipeline: Format conversions between
geometry-representations of the different software can be difficult, error-prone
as well as compromise accuracy of the shape description. For example, there
exist software that might segment 3D data conveniently, whereas another
program might visualize it better. Similarly, a tool might be suitable to
integrate shape priors in the segmentation process, but unsuitable to perform
shape learning and encoding on a whole training set. Also some software
might offer fast automatic segmentation but only limited functionality for
subsequent user-interaction with a surface object.

2. Specificity of the type of shape characterization: Often the underlying research
question that is studied requires a very specific functionality when character-
izing a shape. For example, if vascular structures in medical images need to
be automatically segmented, including the possibility to subsequently mod-
ify the result interactively, then a deformable model is needed. It must be
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suitable to outline tubular structures, have few parameters to simplify the
optimization process and finally be manually editable. It is likely that no im-
plementation of a geometrical model exists that exactly solves this required
shape-analysis task. However, there might exist a software which solves a
similar problem but for a different topology, for instance, the segmentation
of roundish cells in 3D microscopy. A typical development may then involve
adapting an existing solution by customizing it and adding new functionality
or by implementation of a specific plugin to an existing software platform.

3. Requirement of profound expertise of the software: Several software require
programming skills or libraries that need to be compiled and installed prior
to the proper functioning of the tools. Such circumstances restrict the ap-
plicability and interoperability of existing solutions. Not every research unit
might have the in-house expertise to run such a software or it might be time-
consuming to guarantee its proper functioning.

Data!
!
- 2D, 3D 
- Data-specific topology

Segmentation!
!
-  Shape priors 
- Fast optimization 
- Automatic / semi-automatic 
- User-interaction

Analysis & 
Characterization!
!
-  Measurements 
- Statistics 
- Learning, shape encoding

Figure 1.1: Workflow for shape analysis in biomedical imaging.

Existing digital geometric models are most commonly based on splines [16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28], subdivision [29, 30, 31, 32, 33, 34, 35,
36, 37, 38], polygon meshes [39, 40, 41, 42, 43] or level sets [44, 45, 46, 47, 48, 49]
and intrinsically, except for the latter, they can all be traced back to spline theory.
While ’pure’ spline-based methods involve continuously-defined models, polygon
meshes are discrete. Subdivision is viewed as a hybrid; it is described by an it-
erative process where operators are applied to a discrete set of points leading to



4 Introduction

a continuous formulation in the limit. While polygon models are non-parametric
and allow for more topological flexibility, continuous parametric models facilitate
smooth, ’organic’ or free-form modeling, as well as the exact evaluation of differ-
ential geometric quantities such as derivatives, normals, tangents and curvature or
surface and volume computations.

1.1 Unifying Generic Model for Data-adaptive Shape
Characterization

At the core of each implementation used to describe a shape is the geometric kernel.
It is the fundament of any shape analysis pipeline and any kind of restriction or
limitation at this stage will necessarily have implications in some of the three aspects
listed above.

In this thesis, we attempt to address the general problem of characterizing
shapes from a geometrical point of view while also focusing on an efficient software
implementation. From the typical workflow described in Figure 1.1, we infer the
necessary conditions and requirements that have to be directly imposed on a math-
ematical shape model in order to construct a unifying generic geometric framework
for data-adaptive shape characterization. These requirements are categorized as

• Intuitive user-interaction

• Data-specific topology and its deformation

• Fast shape optimization in the context of deformation

• Shape priors and integrable shape knowledge.

The range of applications that a unifying geometric model needs to cover is
categorized as

• Interactive shape modeling and manual segmentation

• (Semi-) automatic segmentation

• Shape characterization through measurements and statistical inference

• Dictionary learning and shape encoding.



1.1 Unifying Generic Model for Data-adaptive Shape Characterization5

The two categorizations above can be seen as input and output, respectively, of a
data-adaptive generic shape formulation as depicted in Figure 1.2. The goal of this
thesis is to construct a complete mathematical framework for data-adaptive generic
shape modeling and its application, and in the broadest possible sense, to provide
the mathematical basis for an efficient digital implementation of the shape model.

 Data-adaptive generic!
shape model

Intuitive  
user-interaction

Data-specific  
topology 

& deformation
Fast (online) optimization Shape priors

Interactive  
shape modeling 
& segmentation

(Semi-) automatic 
segmentation

Shape characterization 
(statistics, measurements)

Dictionary learning & 
shape encoding

Model Requirements

Applications

Figure 1.2: Unifying generic geometric model for data-adaptive shape
characterization.
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1.1.1 Spline-based Formulation in the Continuous Domain

We formulate our framework in the continuous domain, which allows us to exactly
describe a shape in theory. Such a model is also suitable in a discrete pipeline since
any continuously-defined shape can always be resampled with arbitrary precision.
Furthermore, we choose a parametric shape description which simplifies the evalua-
tion of geometric quantities such as surface- or volume-integrals and lends itself well
to iterative optimization. Moreover, we describe shapes from a signal-processing
perspective. It allows us to deploy the theory of signal and image processing which
links discrete measurements to an underyling continuous-domain signal and gives
us access to the vast theory related to Hilbert spaces and Fourier analysis [50]. In
this regard, we formulate our framework in its most general way using spline-based
basis functions [51, 52, 53, 54, 55] and thereby, exploit the best of two worlds: the
spline-related theory for shape modeling [56, 57] combined with the spline-theoretic
fundamentals used in signal and image processing [58, 59, 60, 61, 62, 63, 64, 65].

1.2 Contribution

This thesis is divided into two main parts; a generic and a data-adapive part.

I Generic shape modeling
We first propose a general construction of (functional) vector spaces for para-
metric shapes. We then deploy their Hilbert-space structure to derive shape
projection operators which we use to build the generic aspect of our frame-
work. It includes a novel characterization of shape priors, shape alignment,
dictionary learning, and sparse shape encoding. The primary contributions of
this part are as follows:

(a) A new characterization and implementation of shape projectors and reg-
istration. Given a generic reference shape, we define vector spaces that
allow the reference to deform only according to a subclass of geometric
transformations that belongs to the affine family. We derive a closed-form
solution that is applicable to any particular type of transformation of the
affine family [66]. We use our results to construct shape priors that can be
used in segmentation problems and we also show how to register shapes
using our shape projectors [67, 68]. Our framework covers the classical
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case described in procrustean analysis [69, 70, 71, 72, 73] with the differ-
ence that we are able to retrieve the sought-after similarity transformation
in one step.

(b) A novel framework for dictionary learning and continuous-domain sparse
shape coding. Given a training set of shapes, we construct a theory for
shape encoding and dictionary learning in the continuous domain [74, 75].
We first present an unbiased method for data alignment and derive a
functional shape principal-component analysis based on L2-minimization.
Then, we propose an `1-based framework for sparse dictionary learning of
shapes which is robust w.r.t. imbalanced data as well as to outliers. More-
over, we present a formula for a spline-based L2−`2 norm equality, which
we use to provide an exact implementation of the continuous-domain so-
lution at no additional cost compared to the discrete case.

The parametric description of shapes that we propose is independent of the
specific choice of basis functions as long as the underlying spline-based genera-
tor function satisfies certain criteria. The only constraint is that the generator
should be compactly supported and that its integer shifts should form a Riesz
basis in order to guarantee a unique and stable representation of a shape.

II Data-adaptive shape modeling
In this part, we present and derive data-specific theoretical aspects of our
framework and propose solutions for implementations. The contributions are

(a) The construction of new interpolating spline-based generators for applied
problems. We construct novel families of interpolators and derive general
results that guarantee stability and certain shape reproduction proper-
ties [76, 77, 78]. The construction follows a systematic approach taking
into account practical considerations related to shape modeling such as
smoothness, user-interaction, geometry or shape resolution. Then, we
show how specific interpolators are constructed according to shape topol-
ogy and geometric requirements of the curves or surfaces that want to be
represented.

(b) Novel formulation and implementation of deformable shapes in practice.
In this part, we present the power of our framework with a broad spectrum
of applications. It includes automatic shape segmentation in biomedical
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imaging [79] including subsequent user-interaction [80], interactive shape
modeling in computer graphics, shape design, surface reconstruction from
point clouds as well as the animation and morphing of textured shapes [27,
28].

1.3 Organization of the Thesis

This thesis follows the organization depicted in Figure 1.3. In Chapter 2, we in-
troduce fundamental aspects of spline-theory related to shape representation. We
review the general formulation of parametric spline curves and surfaces whose coor-
dinate functions can be interpreted as uniformly sampled one-dimensional signals.
We formulate the corresponding Hilbert-space structure and state the fundamental
properties that spline-based basis functions need to fulfill. Moreover, we provide for-
mulas for an efficient computation and implementation of inner-products between
spline shapes; a frequently used operation in continuous-domain spline-shape pro-
cessing. In Chapter 3, we present the construction of projection operators onto
functional vector spaces that are defined by spline shapes. We further show how
shape priors are constructed. In Chapter 4, we present a complete theory for
continuous-domain dictionary learning and shape encoding, which covers the L2-
and `1-based cases for spline curves. In Chapter 5, we present an extension of our
shape-encoding framework to 3D surfaces. In Chapter 6, we construct families of
interpolating spline-based generators that can be adapted to application-specific
criteria. Finally, in Chapter 7, we present a panorama of applications of our frame-
work including shape characterization in biomedical imaging, computer graphics,
and shape modeling.
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Deformable Shape!
 Representation!

!
Chapter 2: “Parametric 

Shapes in a Hilbert Space”

Shape Projectors!
!

Chapter 3: “Projection Operators 
for Parametric Shapes”

Dictionary Learning!
& Shape Encoding!

!
Chapter 4: “Shape Encoding and 

Sparse Dictionary Learning 
in the Continuous Domain” !

Chapter 5: Closed-Form Alignment 
of Active Surface Models using  

Splines

Topology-specific !
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!
Chapter 6: “Characterization of  

Interpolators for Shape Modeling”

Applications!
!
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Shapes in Practice”

Part I: Generic shape modeling

Part II: Data-adaptive shape modeling

Figure 1.3: Organization of the thesis. Part I consists in the fundamentals
to construct a generic shape modeling framework. In Part II, we derive the
data-adaptive aspects of the model and related applications.
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Chapter 2

Parametric Spline Shapes in
a Hilbert Space

We consider a shape as a parametric vector-valued function whose coordinates are
continuous-domain signals sampled on the (regular) integer grid. The signal is then
expressed as a weighted sum of shifted basis functions, which are versions of a single
generator [81]. In this chapter, we review the general construction of parametric
shapes using cardinal basis functions and show how related inner products are
efficiently computed and implemented [82].

2.1 Parametric Curves and Surfaces

2.1.1 Notation

Throughout this thesis we largely adopt the notation from the signal processing
community. We describe a vector v using bold font. The imaginary complex unit j
satisfies j2 = −1, while the Fourier transform of a function f is denoted by f̂ . The
convolution between two functions f and g is specified by f ∗ g.

11
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2.1.2 Spline Curves

We consider 2D and 3D parametric curves r(t) = (x(t), y(t), z(t)) that are described
by the coordinate functions x(t), y(t), and z(t), with t ∈ R. If only a 2D (i.e.,
planar) curve representation is required, then the z-coordinate can be set to a
constant and hence, is ignored. The coordinate functions are parameterized by a
suitable linear combination of integer-shifted basis functions that are derived from
a spline-based generator ϕ [83]. Using this model, a parametric curve is described
by

r(t) =

x(t)
y(t)
z(t)

 =
∑
k∈Z

c[k]ϕ(t− k), (2.1)

where the coefficients c[k] = (cx[k], cy[k], cz[k]) with k ∈ Z are called control
points [20, 76]. In applications, ϕ is usually chosen such that it is compactly (i.e.,
finitely) supported. This implies that the curve can be modified locally by changing
the position of a single control point. The shapes that r can adopt (e.g., polynomial,
circular, elliptic) depend on the properties of the generator [84, 85]. In practice,
we consider the sum in (2.1) to be finite and the support of ϕ to be integer [86].
It follows that we express (2.1) for t ∈ [0,M ], where M is a positive integer. In
certain contexts it is convenient to normalize the domain of r such that t lies in
the unit interval. Then, the curve (2.1) is expressed as

r(t) =

x(t)
y(t)
z(t)

 =
∑
k∈Z

c[k]ϕ(Mt− k), (2.2)

where t ∈ [0, 1]. Throughout this thesis, we might also use the more general notation

r(t) =
∑
k∈Z

c[k]ϕk(t) (2.3)

with ϕk(t) = ϕ(t− k) in the cardinal setting.

2.1.3 Tensor-Product Spline Surfaces

The curve model (2.1) is extended to 3D in order to construct surfaces that can
be represented by a separable parameterization [77]. In this case, a surface σ is
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parameterized by (u, v) ∈ R2 as

σ(u, v) =

x(u, v)
y(u, v)
z(u, v)

 =

x1(u) · x2(v)
y1(u) · y2(v)
z1(u) · z2(v)


=
∑
k∈Z

c1[k]ϕ1(u− k)×
∑
l∈Z

c2[l]ϕ2(v − l)

=
∑
k∈Z

∑
l∈Z

c1[k]× c2[l]︸ ︷︷ ︸
c[k,l]

ϕ1(u− k)ϕ2(v − l),

(2.4)

where “×” denotes the element-wise multiplication of two vectors and c[k, l] =
(cx[k, l], cy[k, l], cz[k, l]) with (k, l) ∈ Z2. The expression developed in (2.4) can
then be used to generally express surfaces with non-separable parameterizations as

σ(u, v) =
∑
k∈Z

∑
l∈Z

c[k, l]ϕ1(u− k)ϕ2(v − l). (2.5)

2.2 Properties of the Generator ϕ

It is crucial that the model (2.1) be independent from the location and orientation
of the curve r [87]. Therefore, (2.1) needs to be affine invariant, which implies
that the generator ϕ needs to be capable of reproducing constants as specified by
Proposition 1.

Proposition 1. For any A ∈ R3×3, b ∈ R3 and a curve r as defined in (2.3),

1 ∈ span{ϕk} ⇔ A r(t) + b ∈ span{ϕk}

holds.

The proof follows immediately by noticing that for any constant b ∈ R the
relation 1 ∈ span{ϕk} ⇔ b ∈ span{ϕk} holds. Hence, any translation vector
b ∈ R3 can be represented by (2.3) while the linearity of the model also ensures
that Ar(t) ∈ span{ϕk}.
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2.2.1 Affine Invariance

Definition 1. For A ∈ R3×3 and b ∈ R3, the curve representation (2.3) is affine
invariant if

A r(t) + b =
∑
k∈Z

(A c[k] + b) ϕk(t).

Similarly, the surface representation (2.4) is affine invariant if

Aσ(u, v) + b =
∑
k∈Z

∑
l∈Z

(Ac[k, l] + b)ϕk(u)ϕl(v). (2.6)

It is easy to show that affine invariance is guaranteed if and only if ϕ satisfies the
partition of unity condition

∑
k∈Z ϕk(t) = 1 for all t ∈ R [88]. Note that in the

literature affine invariance is sometimes referred to as affine covariance.

2.2.2 Riesz Basis

We consider the space

V (ϕ) =

{∑
k∈Z

c[k]ϕk, c ∈ `2(Z)

}
(2.7)

of functions that is generated by the shifts of ϕ. The Riesz basis property ensures
that the representation of a function in V (ϕ) is stable and unique [81].

Definition 2. The set {ϕk}k∈Z forms a Riesz basis if

A‖c‖`2(Z) ≤
∥∥∥∥∥∑
n∈Z

c[n]ϕn

∥∥∥∥∥
L2(R)

≤ B‖c‖`2(Z) (2.8)

for some constants A,B > 0 and any sequence c = (c[k])k∈Z ∈ `2(Z).

When ϕk = ϕ(· − k), (2.8) is equivalent to the Fourier-domain condition

A2 ≤
∑
k∈Z
|ϕ̂(ω − 2kπ)|2 ≤ B2 (2.9)

for any ω ∈ R [81].
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2.3 The Hilbert Space H Containing All Paramet-
ric Shapes

2.3.1 Curves

For parametric curves r(t) = (x(t), y(t), z(t)), we denote by H : L2(R,R3) the
Hilbert space associated with the L2-inner product 〈rk, rl〉 :=

´
R r

T
k (t)rl(t)dt that

contains all parametric curves. The corresponding norm is defined as ‖r‖L2
:=√

〈r, r〉. If the domain of r is normalized we denote H : L2([0, 1],R3).

2.3.2 Surfaces

For parametric surfaces σ(u, v) = (x(u, v), y(u, v), z(u, v)), we denote byH : L2(R2,R3)
the Hilbert space associated with the L2-inner product 〈σk,σl〉 :=

´
R2 σ

T
k (u, v)σl(u, v)dudv

that contains all parametric surfaces. The corresponding norm is defined as ‖σ‖L2
:=√

〈σ,σ〉. If the domain of r is normalized we denote H : L2([0, 1] × [0, 1],R3) or
H : L2([0, 1]2,R3).

2.3.3 Inner Product of Spline-Based Shapes

We use a powerful expression to compute the L2-inner product 〈r1, r2〉 between
spline-based shapes. We first compute it for the 1D case and then generalize it to
higher dimensions.

1D Inner Product

We consider spline-based (coordinate) functions of the form x(t) =
K∑
k=0

cx[k]ϕk(t).

For t ∈ [0, 1], the L2-inner product is then expressed as

〈x1, x2〉 =

ˆ 1

0

x1(t)x2(t)dt

=
K∑
k=0

K∑
l=0

c1x[k]c2x[l]

ˆ 1

0

ϕk(t)ϕl(t)dt.

(2.10)
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We collect all the coefficients of the function xi in the vector of length K, cix =
(cix[0], . . . , cix[K]) with i = 1 or 2. We then define

[Φ]k,l :=

ˆ 1

0

ϕk(t)ϕl(t)dt. (2.11)

Next, (2.10) is expressed as 〈x1, x2〉 = cT1xΦc2x, where Φ is the (K×K) correlation
matrix of ϕk. For an implementation (2.11) can be crucial. The entries of the matrix
Φ can be pre-computed. Hence, the evaluation of the integrals (2.11) associated
with the inner product (2.10) boils down to a matrix-vector multiplication, which
reduces the computational time considerably.

2D and 3D Inner Product for Curves

Similarly, we simplify the 2D inner product, first, for planar curves, i.e., for r(t) =
(x(t), y(t)). By expressing ciy the same way as we have expressed cix above, for a
2D curve ri(t) = (rix(t), riy(t)) we define

ci = (cix, ciy), (2.12)

which is a vector of length 2N . The corresponding inner product is now expressed
as

〈r1, r2〉 = cT1 Ψc2 = 〈c1, c2〉Ψ, (2.13)

where

Ψ =

[
Φ 0
0 Φ

]
(2.14)

and 0 is a zero matrix with the same dimensions as Φ defined by (2.11). Observe
that we use regular bold font to describe the c in (2.13) as opposed to italic bold font
to describe the different object c in (2.1). We show in [82] how (2.11) is computed
for the case where the curves r are periodic [89]. The extension of (2.13) to 3D
(i.e., non-planar) curves is straightforward.
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2.3.4 Inner Product of Spline Surfaces

We consider parametric surfaces of the form (2.4) with K control points. Then, the
inner product between two surfaces σ1 and σ2 is expressed as

〈σ1,σ2〉 =
K∑

{k,l,p,q}=0

cT1 [k, l]c2[p, q]

ˆ
ϕ1(u− k)ϕ2(u− p)du︸ ︷︷ ︸

α
(1)
k,p

ˆ
ϕ1(v − l)ϕ2(v − q)dv︸ ︷︷ ︸

α
(2)
l,q

.

(2.15)

Next, we define

γ(l) =



cx[0, l]
cx[1, l]

...
cx[K, l]
cy[0, l]

...
cy[K, l]
cz[0, l]

...
cz[K, l]



(2.16)

and

Γ =

γ
(0)

...
γK

 . (2.17)
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We define the autocorrelation matrix

A(1) =


α

(1)
0,0 . . . α

(1)
0,K

α
(1)
1,0 . . . α

(1)
1,K

... . . .
...

α
(1)
K,0 . . . α

(1)
K,K

 (2.18)

and

B(1) =

A(1) 0 0
0 A(1) 0
0 0 A(1)

 (2.19)

and

β =


α

(2)
0,0B

(1) . . . α
(2)
0,KB(1)

... . . .
...

α
(2)
K,0B

(1) . . . α
(2)
K,KB(1)

 . (2.20)

Now the inner product (2.15) is expressed as

〈σ1,σ2〉 = ΓT
1βΓ2. (2.21)

Note that in (2.19), 0 corresponds to a null-matrix of size (K ×K).

2.4 Summary

In this chapter, we have presented the fundamental properties and aspects that
we use in this thesis to represent shapes. The presented concepts as well as the
formulas to compute inner products are generic and independent from the specific
generator ϕ that is used. Depending on the particular application and generator
that is used to construct shapes in practice, the presented formulas might be even
further simplified by exploiting spline-related properties of the basis functions.



Chapter 3

Projection Operators for
Parametric Shapes

Overview

In this chapter 1, we present a generic method to construct orthogonal projection
operators for landmark-based parametric spline shapes. We construct vector spaces
by a given transformation that belongs to the affine family (e.g., affine, similarity,
uniform scaling) and that is applied to a reference curve. These vector spaces
contain all parametric curves up to the chosen transformation. We define the
vector spaces implicitly through an orthogonal projection operator and present a
theorem that characterizes the projector for landmark-based spline curves which
are popular for the user-interactive analysis of biomedical images. Finally, we show
how shape priors are constructed with the spline projector and provide examples
of applications for the segmentation of microscopy images in biology.

3.1 Introduction

We propose a generic solution to solve the simple but widely studied problem

1The chapter is based on our publications [66, 67, 68]

19
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min
A,b
‖Arref − b− r‖2L2

,

where the (2 × 2) matrix A and b ∈ R2 define some linear transformation of the
known 2D parametric reference curve rref and r is a query shape. This problem
arises in image segmentation settings [90, 45, 72, 91] when prior knowledge is in-
tegrated [46, 92, 93] such that the solution should be close to a given shape up
to a linear transformation [71, 73]. For specific transformations, where a partic-
ular structure is enforced on A and b (e.g., similarity, affine), several algorithms
have been proposed [94, 95, 68, 67]. In this paper, we provide a generic solution by
defining a finite-dimensional vector space that contains all possible shapes obtained
by a given linear transformation of a reference shape. The presented framework is
formulated in the continuous domain and is valid for any kind of linear transfor-
mation. The idea is to generically characterize a vector space as a subspace that
contains all shapes that are related to a reference shape by a specific transforma-
tion. The vector space itself is implicitly characterized by its orthogonal projector.
This allows us to compute the “best match” among curves defined by a subspace
w.r.t. an arbitrary shape. Intuitively speaking, projecting a query shape onto the
subspace defined by the reference shape amounts to “choosing” the reference up to
a specific transformation that is closest to the input shape. We consider 2D para-
metric curves as reference shapes and propose solutions for continuously defined
spline-based curves which are popular for user-interactive applications.

3.2 Vector Spaces Defining Affine Shape Spaces

3.2.1 Vector Spaces as Subspaces of H
We define a subspace as the space that contains all allowable geometric transfor-
mations of a reference curve rref . Such a subspace can be defined as a finite-
dimensional vector space Sref of dimension I, whose basis consists of elements
{eref
i }i=1,...,I , which themselves are curves that depend on rref . Hence, every el-

ement (i.e., curve) living in Sref can be expressed as a linear combination of the
basis elements. Thus,

Sref =
{ I∑
i=1

uie
ref
i (·) : ui ∈ R

}
(3.1)
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is a subspace of the Hilbert space H.

Example - Affine Vector Space

An affine transformation (without translation) of a 2D curve can be expressed as

Ar, where A =

(
a1 a2

a3 a4

)
is a (2× 2) matrix with elements ai ∈ R. By explicitly

evaluating the matrix-vector product, we obtain

Ar(t) = a1

(
rx(t)

0

)
+ a2

(
ry(t)

0

)
+ a3

(
0

rx(t)

)
+ a4

(
0

ry(t)

)
.

Therefore, the affine shape space associated to the 2D reference curve rref is a
four-dimensional vector space (i.e., I = 4) whose basis is given by

{eref
i }i∈[1,...,4] =

{(
rref
x

0

)
,

(
rref
y

0

)
,

(
0
rref
x

)
,

(
0
rref
y

)}
,

where we have omitted the continuous parameter t to simplify the notation. Note
that the choice of the basis is not unique. However, different bases w.r.t. to a given
transformation describe the same space.

3.2.2 Construction of Vector Spaces

The vector spaces that appear to be the most useful for applications are summa-
rized in Table 7.2, where we present examples of bases {ei}i=1,...,I that can be used
to construct a vector space Sref for specific 2D transformations. Taking a refer-
ence curve rref = (rref

x , rref
y ) and choosing a transformation given in Table 3.1, the

corresponding vector space is given by the indicated basis.
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3.2.3 Orthogonal Projectors

We now consider a projection operator Pref : H → Sref that projects an arbitrary
curve inH onto the vector space Sref such that r 7→ Prefr. This implies that a vector
space can either be explicitly defined by Sref or implicitly by Pref. A projection
operator that projects a curve r fromH onto a vector space S with basis {ei}i=1,...,I

and dimension I is expressed in its most general way as Pr(t) =
I∑
i=1

ei(t)〈ẽi, r〉,
where {ẽi}i=1,...,I ∈ S is the unique dual basis with respect to {ei}i=1,...,I such
that 〈ei, ẽj〉 = δi−j with δi−j being the Kronecker delta.

Orthogonal projectors are of special interest to us because they minimize the
distance between the query curve r ∈ H and its projection Pr onto S w.r.t. the
norm induced by the L2-inner product (see Figure 3.1). Proposition 2 provides a
mean to directly compute the orthogonal projector P given a basis {ei}i=1,...,I of
the vector space S.

Proposition 2. The orthogonal projector Pref : H → Sref that minimizes the
distance between the curve r ∈ H and the I-dimensional vector space Sref is specified
by

Prefr(t) = 〈KPref (t, ·), r〉,

where KPref (t, s) =
∑I
i=1 e

ref
i (t) ⊗ ẽref

i (s) is the kernel of the operator Pref and

{ẽiref}i=1,...,I the dual basis of {eref
i }i=1,...,I . It is given by

ẽi
ref = Gref

i,1

−1
eref

1 + · · ·+ Gref
i,I

−1
eref
I ,

where Gref is the Gram matrix of the basis {eref
i }i=1,...,I . Here, ⊗ denotes the

tensor product between two vectors and is defined as ei(t)⊗ ej(s) = ei(t)e
T
i (s).

The derivation of Proposition 2 is provided in Appendix 3.7.1. We say that Pref

projects r ∈ H onto the I-dimensional invariant subspace Sref . In particular, we

have that for any rS
ref ∈ Sref ⇒ rS

ref

= PrefrS
ref

.
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rref

Sref

r

Prefr

Figure 3.1: Illustration of an orthogonal projection onto a vector space.
The plane denoted by Sref represents the subspace defined by the reference
shape rref. Sref represents a subspace that contains all curves rref up to a
class of transformations (e.g., rotations, scaling, and translations of rref).
Projecting a query curve r (green curve) orthogonally onto Sref amounts
to identify the rotated, scaled, and translated quadrilateral rref that is
“closest” to r w.r.t. a chosen distance measure. The curve obtained by the
orthogonal projection is denoted as Prefr.

3.3 Spline-based Implementation

3.3.1 Construction of Vector Spaces Using Spline Curves

Example - Affine Transformation Combined with Translation

If we include a translation b ∈ R2 in the transformation described in Section 3.2.1,
then we obtain Ar+b, where A is defined as in Section 3.2.1 and b = (b1, b2). The
transformation has six degrees of freedom and it is easy to see that a basis for the
affine shape space of the reference curve rref is given by

{eref
i }i∈[1,...,6] =

{(
rref
x

0

)
,

(
rref
y

0

)
,

(
0
rref
x

)
,

(
0
rref
y

)
,

(
1
0

)
,

(
0
1

)}
,
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which corresponds to

{cerefi }i∈[1,...,6] =

{(
cx
0

)
,

(
cy
0

)
,

(
0
cx

)
,

(
0
cy

)
,

(
1
0

)
,

(
0
1

)}
,

where 0 and 1 correspond to the vectors of size N (which is the size of cx or cy)
and whose elements are all 0 or 1, respectively. Here, cx and cy are the vectors
that contain the coordinates of the control points. (This notation has been defined
in Chapter 2.)
Using the simplified expression (2.13) to compute inner products of spline curves, we
can now specify the projection operator. A fundamental aspect of our construction
is not only that the curve r that is being projected is a spline curve, but also that the
basis {eref

i } of the subspace Sref consists of spline curves of the form given by (2.1).
Hence, each of these curves r ∈ H is uniquely determined by its corresponding
vector of control points c ∈ R2N .

In this chapter, we provide the expression for 2D curves, noting that the exten-
sion to 3D is straightforward. We first define the matrix

Cref = [ceref1
· · · cerefI ]. (3.2)

It has the dimension (2N × I) and contains the control points of the curves
{eref
i }i=1,...,I that define a basis of Sref . To simplify the notation, we collect all

basis functions in the vector

ϕ(t) := (ϕ0(t), . . . , ϕN−1(t)). (3.3)

The corresponding (orthogonal) spline projector Pref : H → Sref that minimizes
the distance between the curve r ∈ H and the I-dimensional vector space Sref is
specified by Theorem 1.

Theorem 1. Let r(t) = ϕ(t)Tc. Then,

Prefr(t) =

(
ϕ(t) 0

0 ϕ(t)

)T

Prefc,

where Pref ∈ (R2N×R2N ) : R2N → R2N is the (2N×2N) projection matrix defined
as

Pref = Cref(CrefTΨCref)−1CrefTΨ.
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The proof is provided in Appendix 3.7.2. Theorem 1 provides a direct method
to compute the control points of the projected curve. Note that the projection of
the vector c of control points is itself not orthogonal. However, it corresponds to the
orthogonal projection of r(t) in the L2-sense. Therefore, we have (Pref)2 = Pref and

PrefT 6= Pref . Hence, Theorem 1 shows that Pref is an oblique projector from R2N

onto the I-dimensional invariant subspace of R2N defined by the basis {ceref1
}i=1,...,I .

This means that Pref : H → Sref , which is the orthogonal projector in the L2-sense,
is efficiently implemented via the oblique projector Pref ∈ (R2N × R2N ) : R2N →
R2N .

3.3.2 Construction of Spline Projectors

We provide examples which illustrate how the projectors that correspond to the
vector spaces listed in Table 3.1 are implemented using splines, in accordance with
Theorem 1.

Scaling Projector (without translation)

The scaling projector can be expressed by solving min
a
‖arref − r‖2L2

such that

Prefr(t) = arref, where a ∈ R and rref is the reference curve that defines the

vector space. Its well known solution is a = 〈rref,r〉
〈rref,rref〉 . Using (2.13), the corre-

sponding spline projector is specified by Pref = cref crefTΨ
〈cref,cref〉Ψ , which corresponds

to the solution obtained by the direct application of Theorem 1.

Similarity

The similarity transform is defined scaling of a curve r by a factor a combined with
a rotation described by the rotation matrix Rθ (applied to rref) and a translation
given by b = (b1, b2). It is expressed as

aRθr
ref + b =

(
a cos θrref

x − a sin θrref
y + b1

a sin θrref
x + a cos θrref

y + b2

)
= α

(
rref
x

rref
y

)
+ β

(
−rref

y

rref
x

)
+ b1

(
1
0

)
+ b2

(
0
1

)
,
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where a ∈ R, α = a cos θ and β = a sin θ. To construct the corresponding projector,
we choose eref

1 = (rref
x , rref

y ), eref
2 = (−rref

y , rref
x ), eref

3 = (1, 0) and eref
4 = (0, 1) which

corresponds to the basis ceref1
= (cref

x , cref
y ), ceref2

= (−cref
y , cref

x ), ceref3
= (1,0) and

ceref4
= (0,1).

3.3.3 Example

We compare the affine space with the space defined by the similarity transform. We
construct the two corresponding projectors w.r.t. the reference spline curve that
represents the white matter structure of the brain, as shown in the left of Figure 3.2.

rref r

Figure 3.2: Left: representation of a ”white matter” segment of a brain.
Right: contour of a corpus callosum (brain structure). The blue contour is
represented as a spline curve and the red dots are its landmarks (i.e., the
2D spline coefficients given by {c[k]}k∈Z).

We then project the curve shown in the right of Figure 3.2 (the corpus callosum)
separately onto the affine, as well as onto the vector space defined by the similar-
ity transform. Among all shapes enclosed by the given subspace defined by the
reference shape (i.e., white matter), the projector “chooses” the one closest to the
corpus callosum (see Figure 3.3).

3.4 Application: Shape Priors for Segmentation

In segmentation algorithms, it is advantageous if prior knowledge about shapes can
be integrated [46, 92, 96], for instance in active contour models [90, 94, 49, 1, 22].
Our proposed formulation of a projector allows us to compute the distance between



28 Projection Operators for Parametric Shapes
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Figure 3.3: Affine vs. similarity: The corpus callosum (blue) is registered
onto the white matter (green). The orange curve is the “closest” affine
transform of the white matter (green) w.r.t. the corpus callosum (blue).
The red curve is the “closest” deformed white matter (green) w.r.t. the
corpus callosum (blue) using a similarity transform.

a shape and the vector space given by a reference shape. Hence, we can penalize the
cases where a shape is distant from the given vector space defined by the reference
shape rref . To illustrate this concept, we consider the example of spline-based
snakes [83]. We denote by E(Ω) the standard energy term that usually needs to be
minimized w.r.t. the snake-defining parameters described by Ω. The minimization
of E(Ω) attracts the contour of the snake towards the boundary of the object of
interest. We propose to add a prior term to E. We define it as

Eprior = γ‖r − Prefr‖2L2
, (3.4)

where γ ∈ R controls the contribution of the prior energy term. We develop Eprior

as

‖r − Prefr‖2L2
= ‖(I − Pref)r‖2L2

= 〈(I − Pref)r, (I − Pref)r〉L2

= 〈r, (I − Pref)∗(I − Pref)r〉L2

= 〈r, (I − Pref)2r〉L2

= 〈r, (I − Pref)r〉L2
,

(3.5)
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where I denotes the identity operator and where we have used the fact that, since
Pref is orthogonal and hence, self-adjoint, then (I − Pref) is also an orthogonal
projector. We use (2.13) to express the inner product and Theorem 1 to compute
the projector. Then, (3.5) is developed as

‖r − Prefr‖2L2
= cTΨ(I−Pref)c

= cTΨ(I−C(CTΨC)−1CTΨ)c

= cTSc,

(3.6)

where S = Ψ(I −C(CTΨC)−1CTΨ). In Figure 3.5, we illustrate how such prior
knowledge improves robustness in a segmentation setting.

3.5 Robustness

An artificial image (8 bit, i.e. intensity values between 0 and 255) simulating a
culture of rod-shaped cells has been created as shown in figure 3.5. To objectively
validate the quality of the proposed energy term, the cells have different sizes,
intensities and orientation. Because isolated cells are easier to segment we have
also simulated cell clumps. The snakes have been initialized with different levels of
overlap with the cells and they were optimized with and without the prior energy
term. In an additional experiment the segmentation was repeated on the image
corrupted by additive Gaussian white noise (std = 25, SNR = 0.44). The results
shown in figure 3.5 clearly show the advantage of using the proposed shape prior
for constructing snake energies. Most cells were correctly segmented using our
approach. Besides, in the proposed implementation the user can manually correct
inaccurate results.

3.6 Summary

We provide an explicit formulation to compute the minimal distance between an
arbitrary query curve and a vector space defined by a reference. Our solution is
generically characterized for landmark-based spline curves as a projection opera-
tor once the basis of the vector space is defined. This allows us to compute the
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initialization no prior

affine prior similarity prior

Figure 3.4: Segmentation of rod-shaped yeast cells [5]. Several snakes are
initialized (top left) and a standard image-energy term is optimized without
(top right) and with an affine (bottom left) as well as similarity (bottom
right) prior. The shape prior corresponds to an approximate rod-shape.

continuous-domain distance as a fast matrix-vector operation. It can be used to
efficiently characterize shape priors for landmark-based segmentation models. The
spline-based solution has the additional advantage that the proposed construction
can also be applied to curves that are defined by a set of discrete points or land-
marks, by simply interpolating them with a linear B-spline. In Appendix 3.7.3 we
show how the framework is extended to compute shape priors for 3D parametric
spline surfaces.
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Figure 3.5: Snake segmentation using shape priors. Top left: Initializa-
tion of the snakes; top right: result of segmentation without shape prior
and (bottom left) result of segmentation with shape prior; bottom right:
result of segmentation with shape prior on noisy data.
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3.7 Appendix

3.7.1 Derivation of Proposition 2

Proposition 2 follows from a standard result in functional analysis which states that
the kernel of P is computed by

Pφ(t) =
I∑
i=1

ei(t)〈ẽi,φ〉 = 〈
I∑
i=1

ei(t)ẽ
T
i (·),φ〉

= 〈KP(t, ·),φ〉
(3.7)

and therefore, KP(t, s) =
∑I
i=1 ei(t)⊗ ẽi(s).

3.7.2 Proof of Theorem 1

Proof. If P is an orthogonal projector w.r.t. span{ei}i=1,...,I , then a curve r can
always be decomposed as

r(t) = Pr(t) + (I − P)r(t)︸ ︷︷ ︸
error

, (3.8)

where I is the identity operator and the error between the curve and the projective
plane is orthogonal to the projective plane, so that error ⊥ span{ei}. By expressing
Pr =

∑
i〈ẽi, r〉L2ei(t) =

∑
i uiei(t) in (3.8) and taking the inner product on both

sides w.r.t. ek, we obtain the normal equation

〈r, ek〉L2
=
∑
i

ui〈ei, ek〉L2
+ 〈I − P)r(t), ek〉L2︸ ︷︷ ︸

0

. (3.9)

Evaluating (3.9) for all elements of the basis {ek} and writing all the equations in
matrix form, we obtain〈r, e1〉L2

...
〈r, eI〉L2

 = Gu⇔ u = G−1

〈r, e1〉L2

...
〈r, eI〉L2

 .
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Using the notation E = [e1 · · · eI ], G = CTΨC being the Gram matrix with respect
to the basis {ei} and g = (〈e1, r〉L2

, . . . , 〈eI , r〉L2
), the orthogonal projection of r

is expressed as

Pr(t) = EG−1g

=

I∑
i=1

ei(t) 〈G−1
i,1e1 + · · ·+ G−1

i,I eI , r︸ ︷︷ ︸
〈ẽi,r〉L2

〉L2 ,
(3.10)

where {ẽi} forms the dual basis of {ei} and is defined as Ẽ = E(G−1)T = [ẽ1 · · · ẽI ].
Because ϕ generates a Riesz basis, each coordinate function of a spline curve r
given by (2.1) is uniquely specified by its control points {c[k]}k∈Z. This implies
that there is a one-to-one relation between the coordinate functions of the curve
and its spline coefficients. Hence, the matrix E in (3.10) that defines the basis {ei}
for the subspace S (not to be confused with the Riesz basis generated by ϕ) is fully
specified by C = [c1 · · · cI ] which is the matrix that contains all the control points
of the basis {ei}. Using (2.13), we rewrite (3.10) as

Pr(t) = EG−1g = EG−1

〈e1, r〉L2

...
〈eI , r〉L2

 ,

which is equivalent to

CG−1

cT1 Ψ
...

cTIΨ

 c = CG−1CTΨc = Pc.

Hence, P = C(CTΨC)−1CTΨ. It is easily verified that P is a projector, charac-
terized by the idempotent relation P2 = P.

3.7.3 Orthogonal Spline Projectors for Parametric Surfaces

We refer to the notation defined in Section 2.3.4. Then, the matrix E that defines
the basis {ei} for the subspace S is fully specified by C = [Γ1 . . .ΓI ] which is the
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matrix that contains all the control points of the basis {ei}. Using the simplified
expression (2.15) to compute spline-based inner products, the expression (3.10),
i.e.,

Pσ(u, v) = EG−1g = EG−1

〈e1,σ〉
...

〈eI ,σ〉


is equivalent to

CG−1

ΓT
1β
...

ΓT
I β

Γ = CG−1CTβΓ = PΓ,

where G = CTβC is the Gram matrix of the basis {ei}. Hence, P = C(CTβC)−1CTβ.
It is easily verified that P is a projector characterized by the idempotent relation
P2 = P.

Prior Shape Energies for Surfaces

We develop the term that depends on the surface σ in Eprior as

‖σ − Prefσ‖2L2
= ‖(I − Pref)σ‖2L2

= 〈(I − Pref)σ, (I − Pref)σ〉
= 〈σ, (I − Pref)∗(I − Pref)σ〉
= 〈σ, (I − Pref)2σ〉
= 〈σ, (I − Pref)σ〉,

(3.11)

where I denotes the identity operator and where we have used the fact that, since
Pref is orthogonal and, hence, self-adjoint, then (I − Pref) is also an orthogonal
projector. By using (2.15) to compute a spline-based inner product and combining



3.7 Appendix 35

it with the expression for a spline projector, (3.11) simplifies to

‖σ − Prefσ‖2L2
= ΓTβ(I−Pref)Γ

= ΓTβ(I−C(CTβC)−1CTβ)Γ

= ΓTSΓ,

(3.12)

where S = β(I−C(CTβC)−1CTβ).
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Chapter 4

Shape Encoding and Sparse
Dictionary Learning in the
Continuous Domain

Overview

We provide a generic framework to learn shape dictionaries for landmark-based
curves that are defined in the continuous domain 1. We first present an unbiased
alignment method that involves the construction of a mean shape as well as training
sets whose elements are subspaces that contain all affine transformations of the
training samples. The alignment relies on the orthogonal projection operators that
we have constructed in Chapter 3 and that have a closed form. Secondly, we
present algorithms to learn shape dictionaries according to the structure of the
data that needs to be encoded: a) projection-based functional principal component
analysis for homogeneous data and b) continuous-domain sparse shape encoding to
learn dictionaries that contain imbalanced data, outliers or different types of shape
structures. We then provide a detailed and exact implementation of our method by
making use of parametric spline curves. We demonstrate that our method requires
fewer parameters than pure discrete methods, and that it is computationally more

1The chapter is based on our publication [74]

37
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efficient and accurate. We illustrate the use of our framework to learn dictionaries
on biomedical images as well as for shape analysis in bioimaging.

4.1 Introduction

Given a training set of K parametric curves {rk}k=1,...,K , rk(t) ∈ L2([0, 1],R2),
with K shapes defined by a set of landmarks, we aim at learning a dictionary
whose atoms best capture the shape variability of the training set. We first define
for each curve rk a subspace Sk = {Ark + b : A ∈ R2×2, b ∈ R2} that contains
all allowable affine or similarity transformations of rk. Next, we compute the
mean shape rmean that is closest to all subspaces Sk and project it back onto
each Sk (see Figure 4.1) to obtain an aligned training set {r̃k = Pkr}k=1,...,K ,
where Pk : L2([0, 1],R2) → Sk is the orthogonal projection operator that projects
a query curve r onto Sk. We use the aligned training data to learn dictionaries
by either computing a continuous-domain functional principal component analysis
(fPCA) or for sparse shape encoding, depending on the structure of the data. Our
approach allows one to construct dictionaries that contain atoms that are invariant
to the specific affine transformation that is used. For instance, if the geometric
transformation is chosen to be a similarity transform, the resutling PCA does not
depend on the location, size, or orientation of the original curves {rk}k=1,...,K . [23].

4.1.1 Contribution

Construction of Mean Shape and Alignment of Curves

We use the projectors defined in Chapter 3 to compute a mean shape, which we
use to align a training set by “removing” from the data the corresponding affine
transformation that is used to construct the vector space. The specificity of our
alignment method is that it does not depend on the particular choice of a reference
shape or template and in that sense, is unbiased. We also provide a closed-form
solution instead of an iterative method.

Dictionary Learning with Projection-based functional PCA

We show how to compute a functional PCA for parametric curves with the aligned
training set. The principal components are used as atoms to construct the learned
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r1
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r3
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r̃1

r̃2

r̃3rmean

Figure 4.1: Unbiased shape alignment of curves. For each curve rk the
vector space Sk is computed w.r.t. an allowable geometric transformation.
The closest shape, rmean, to all subspaces Sk, is computed and projected
back to each subspace, which yields the aligned shapes r̃k which define the
data that we use to compute the shape dictionary

dictionary.

Exact Implementation using Spline Curves

We provide formulas for the exact implementation of our continuous-domain frame-
work using splines. We derive the equivalent spline-based representation of the
fPCA and show how our model is implemented at now additional cost compared to
a purely discrete approach. Yet, we benefit from the fact that spline curves need
fewer parameters than common landmark-based methods to accurately describe a
shape.
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Sparse Shape Encoding

We present a method that enforces sparsity to learn dictionaries that can be applied
to training data unsuitable to be analyzed with L2 methods. We provide formulas
to express the continuous-domain L2 norm of any spline curve as a discrete l2 norm.
We show how to exploit these forumlas to convert the continuous domain L2 − l1
sparse coding problem into a discrete l2− l1 optimization problem; the crucial step
for sparse shape encoding.

4.2 Related Work

4.2.1 Sparse Learning Methods

Sparse signal representation models that typically involve the minimum of an l1-
norm provide more flexibility than l2-based methods for the encoding of train-
ing data because, 1) unlike PCA-related methods, they do not enforce orthog-
onality on the basis vectors, and 2), they are less sensitive to outliers or in-
homogeneous data [97]. Methods for sparse dictionary learning, such as sparse
PCA [98, 99, 100] have been proposed for image denoising [101] or to solve image
classification tasks [97]. In the context of shape analysis, sparse learning methods
have been applied to medical imaging [102, 103]. However, since these algorithms
are formulated in the discrete domain they are also limited by the compromise that
is requried to achieve an accurate description of the shape while keeping the number
of shape descriptors, i.e., landmarks, low.

4.2.2 Statistical Shape Models

l2-based learning methods to characterize shape data and capture shape variability
can be traced back to the classical point distribution model (PDM), which is the
basis of the active shape model (ASM) [71, 73]. Landmark-based curves are aligned
by minimizing the variance of the distance between corresponding points. Originally
the ASM was introduced to segment images: its main difference with active contour
models [90, 1, 49] is that it only allows for deformation to fit data such that it is
consistent with the training set. The ASM and related statistical shape models [72]
usually require that the training set be aligned or registered to a common reference
prior to the statistical analysis. Iterative methods, such as the popular procrustes
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analysis [70] are used to compute a mean shape from a properly aligned set of
training data. A PCA is then applied to the renormalized training data to compute
the modes that describe the variation within the data. Although different alignment
strategies exist, it remains a challenge to reduce the bias that is introduced when
computing the mean shape [104]. Furthermore, these algorithms are iterative which
can be a limitation if fast online methods are required. Moreover, they do not allow
for a flexible choice of the particular geometric transformation (e.g., rigid-body,
similarity, scaling) that is removed when renormalizing which makes the models
only applicable to a specific class of shapes. The methods mentioned above are
considered as discrete methods. Attempts to construct statistical shape models
in the continuous domain have been proposed by making use of B-splines [105];
however, they do not fully exploit the L2 Hilbert-space structure of parametric
spline shapes.

Statistical shape models are closely related to shape analysis [106] or segmen-
tation models because they are often used to incorporate prior information about
shapes into an algorithm [107, 46, 108, 92]. In this context, spline-based curve
representations are convenient because they enable to implement smooth shapes in
the continuous domain [21, 20, 22] with only few parameters.

4.3 Curve Projectors

Given a training set {rk}k=1,...,K of curves, it is necessary to first align the shapes
in order to construct a dictionary. This step corresponds to the centering of the
data vectors in a classical PCA. To guarantee an unbiased alignment, we propose
to associate to each sample curve rk a subspace Sk as defined in Chapter 3 that
contains all allowable affine transformation of rk as described in Section 3.2.1.
Then, we compute the curve rmean that is the closest to all subspaces, and project
it back to them to obtain the aligned curves {r̃k}k=1,...,K (see Figure 4.1).

4.4 Mean Shape and Alignment

In the case where we are dealing with several reference curves (i.e., a training
set of reference shapes), we define one vector space Sk := Sref

k for each curve
rk := rref

k . Merging all these subspaces results in a large space of transformations
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of different curves. Since in the training set some shape configurations occur more
frequently than others, we want to construct the dominant or mean shape given
the training data and a class of transformations. We assume that all the subspaces
have the same dimension I and formalize the problem as finding the curve that is
closest to all the subspaces Sk, each being specified by its corresponding projector

Pk := Pref
k : r 7→

I∑
i=1

eki (t)〈ẽki , r〉 (see Figure 4.1). This problem can be formulated

in a variational form if we impose the condition that the mean shape should have
unit norm. Although this condition is arbitrary, it does not influence the result; in
practice, we are only interested in the shape up to a scaling factor. The principal
curve is determined as follows.

The curve rmean that is closest to all subspaces Sk for k = 1, . . . ,K is obtained
by solving

arg max
rmean

K∑
k=1

‖Pkrmean‖2L2
s.t. ‖rmean‖2L2

= 1, (4.1)

which is equivalent to the eigenvalue problem

K∑
k=1

Pkrmean(t) = λrmean(t) s.t. 〈rmean,p, rmean,q〉 = δp−q, (4.2)

where we have used the fact that all the Pk are orthogonal, which implies that
P∗kPk = Pk, where P∗k is the adjoint of Pk.

Solutions of the Eigenequation

To solve (4.1), we invoke Propositon 2 and reformulate problem (4.2) as

K∑
k=1

Pkrmean(t) =
K∑
k=1

〈KPk(t, ·), rmean〉 = λrmean(t). (4.3)

Equation (4.3) is a Volterra equation whose kernel KP consists of a finite sum. In
Theorem 2, we characterize the solutions of (4.3) as the principal components of
the eigenequation (4.2).
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Theorem 2. Let the (K · I)× (K · I) matrix Γ be defined as

[Γ](k−1)·I+i,(j−1)·K+l = 〈ẽ(k)
i , e

(l)
j 〉, (4.4)

where k, l ∈ [1, . . . ,K] and i, j ∈ [1, . . . , I]. Then, the pth eigencurve of (4.2) is
given as

rmean,p(t) =

K∑
k=1

I∑
i=1

ei(t)
(k)γ

(p)
ik , (4.5)

where γ
(p)
ik is the entry indexed by (i − 1) ·K + k of the pth eigenvector of the

matrix Γ.

The proof is given in Appendix 4.11.1. We show in Appendix 4.11.2 how to interpret
this result in practice.

4.4.1 Unbiased Curve Alignment

Now we associate to the training set {rk}k=1,...,K the aligned curves

{r̃k = Pkrmean}k=1,...,K (4.6)

as illustrated in Figure 4.1 , where rmean is the mean shape computed above. It is
worth noticing that the proposed method for aligning the curves is independent of
the location of each member of the training set within each subspace Sk.

4.5 Projection-Based Functional PCA for Curves

We now construct a functional PCA on the aligned training set (4.6). Since the
curves r ∈ H are defined in the continous domain it is not possible to apply a
discrete-domain PCA to our data. In the discrete domain a training set with K
curves - each curve defined by Q landmarks or samples given by their x and y
coordinates - is represented as a 2Q ×K data matrix and then a discrete domain
PCA is performed [109]. Here, our data is of dimension “2∞×K” and therefore,
we use operators instead of matrices to perform a functional PCA.
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Definition 3. We define the (compact) data operator X : RK → L2([0, 1],R2) as
the operator whose kernel consists of K aligned curves as

X = [r̃1(t) · · · r̃K(t)],

where r̃k is defined in (4.6). The adjoint X∗ : L2([0, 1],R2)→ RK satisfies

〈r,Xv〉L2(R,R2) = 〈X∗r,v〉l2(RK), (4.7)

with v ∈ RK and r ∈ L2([0, 1],R2) and we emphasize that the two inner
products in (4.7) have two distinct definitions.

We are looking for the optimal orthogonal base curves {ξ1(t), . . . , ξK(t)}, ξk ∈
H for k = 1, . . . ,K, that decorrelate the training set. They are given by the
eigencurves of the scatter operator XX∗ : L2([0, 1],R2)→ L2([0, 1],R2). Analogous
to the discrete PCA, we can exploit the property that

• the non-zero eigenvalues of the scatter operator XX∗ and the Gram matrix
X∗X ∈ RK×K (which corresponds to the correlation matrix in discrete PCA)
are identical,

• the eigencurves {ξk(t)}k=1,...,K of XX∗ are immediately obtained from the
eigenvectors v ∈ RK as specified in Proposition 3.

Proposition 3. The eigencurves ξk ∈ L2([0, 1],R2) of the scatter operator XX∗ :
L2([0, 1],R2)→ L2([0, 1],R2) are specified by

XX∗{ξk}(t) = λkξk(t)

and are related to the eigenvectors vk ∈ RK of the Gram matrix X∗X by

ξk = 1√
λk

Xvk

vk = 1√
λk

X∗ξk,

such that

(X∗X)vk = λkvk,
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where the λk are the non-zero eigenvalues of X∗X which are identical to the
non-zero eigenvalues of XX∗. Furthermore, the relation

vT
k vl = 〈ξk, ξl〉 = δk−l

holds.

The Gram matrix of size K ×K is computed as

X∗X =

 〈r̃1, r̃1〉 . . . 〈r̃1, r̃K〉
...

. . .
...

〈r̃K , r̃1〉 . . . 〈r̃K , r̃K〉

 .

Now, we can easily compute the principal curves by specifying the data array Z as

Z = XV, (4.8)

where

Z = [z1(t) · · · zK(t)]

and V = [v1 . . .vK ] is the orthogonal matrix containing the eigenvectors of the
Gram matrix. They can also be computed via the relation

Z = [
√
λ1ξ1(t) . . .

√
λIξK(t)].

For a more in-depth description of functional PCA using compact operators we
refer the reader to [110].

4.6 Implementation with Landmark-based Spline
Curves

We now illustrate how the presented framework can be implemented using spline
curves. For simplicity, we consider that the curves all have the same number N of
control points and are constructed with the same basis function ϕ.
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4.6.1 Mean Spline Shape

To compute the mean shape rmean using splines, we take advantage of the fact that
the spline coefficients uniquely specify a spline curve (Riesz basis property). We
directly compute the vector of control points that defines rmean. Proposition 4 char-
acterizes spline-based solution that corresponds to the eigenvalue problem stated
in (4.1) in the case where the training set consists of spline curves.

Proposition 4. Assume a training set of K spline curves rref
k of the form (2.1),

where each curve defines a vector space Sref
k through the spline coefficients given by

the (2N × I) matrix Ck := Cref
k as specified by (3.2). Then, the vector of control

points cmean of the spline curve rmean is given as the solution of the eigenequation

K∑
k=1

Ck(CT
kΨCk)−1CT

kΨcmean = λcmean.

The proof is provided in Appendix 4.11.3.

4.6.2 Functional PCA for Spline Curves

Since {ϕn}n=0,...,N−1 forms a Riesz basis, the data array X defined in Definition 4
is fully specified by the matrix of control points

Ω = [c1 . . . cK ] (4.9)

that define the curves {r̃k}k=1,...,K . Using (2.13), the Gram matrix of X is com-
puted as

X∗X = ΩTΨΩ (4.10)

and hence, the (2N×K)-matrix ΩZ that contains the control points of the principal
curves is immediately computed by

ΩZ = ΩV, (4.11)

where as detailed in Section 4.5, V is the orthogonal matrix that contains the
eigenvectors of the Gram matrix. The principal curves zk(t) are finally obtained
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by

zk(t) = ([ΩZ]All,k)T

(
ϕ(t) 0

0 ϕ(t)

)
, (4.12)

where we have adopted mathematica notation to describe [ΩZ]All,k as the kth col-
umn of ΩZ. More generally, we have

Z = ΩT
Z

(
ϕ(t) 0

0 ϕ(t)

)
. (4.13)

4.7 Sparse Shape Encoding

PCA uses all of the data curves to compute the principal curves. This makes it
prone to outliers which might compromise the robustness when learning a shape
dictionary. We propose a dictionary learning approach that only uses a sparse
subset of the data to encode the shapes. For this purpose, we first derive a prop-
erty specific to the spline representation of curves, which allows us to express the
continuous domain L2 norm as a discrete domain l2 norm.

4.7.1 L2-l2 Norm Equality

Theorem 3. For any data array D = [d1(t) . . .dK(t)] whose elements are para-
metric spline curves described by the matrix of control points ΩD = [cd1

. . . cdK ]
and any spline curve r specified by the vector of control points c, we have the norm
equality

‖r −Dα‖2L2
= ‖c̃− D̃α‖l2 ,

where α ∈ RK ,

c̃ = QΛ1/2Q−1c, (4.14)

D̃ = QΛ1/2Q−1ΩD (4.15)

and

Ψ = QΛQ−1, (4.16)



48Shape Encoding and Sparse Dictionary Learning in the Continuous Domain

such that Q is an orthogonal matrix, whose columns are the eigenvectors of Ψ,
and Λ is the diagonal matrix that contains the eigenvalues of Ψ defined by (2.14).

Proof. We develop the L2 norm as follows.

‖r −Dα‖2L2
=
∥∥∥(ϕ(t) 0

0 ϕ(t)

)T

(c−ΩDα)
∥∥∥2

L2

= (c−ΩDα)TΨ(c−ΩDα),

(4.17)

where ϕ is defined in (3.3). Since Ψ is a positive-definite symmetric matrix it
admits an eigendecomposition of the form

Ψ = QΛQ−1 = QΛ1/2Q−1QΛ1/2Q−1, (4.18)

where Q is an orthogonal matrix, i.e., Q−1 = QT , whose columns are the
eigenvectors of Ψ, and Λ is the diagonal matrix that contains the eigenvalues of Ψ.
Therefore, we have

QΛ1/2Q−1 =
(
QΛ1/2Q−1

)T
, (4.19)

which allows us to re-express (4.17) as

‖(c−ΩDα)Tϕ‖2L2

= ‖QΛ1/2Q−1(c−ΩDα)‖2l2
= ‖QΛ1/2Q−1c︸ ︷︷ ︸

c̃

−QΛ1/2Q−1ΩD︸ ︷︷ ︸
D̃

α‖2l2 .
(4.20)

4.7.2 Continuous-Domain Sparse Dictionary Learning

The projection-based functional PCA described in Section 4.5 is a pure L2-based
method. It is well known that such methods are sensitive to outliers, as well as
imbalanced, or inhomogeneous data sets. Hence, there exist practical settings where
those models are less suitable. Another limitation of the fPCA is the orthogonality
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constraint on the eigencurves, which might be unnecessary and too restrictive in
certain scenarios.

Here, again we consider a training set of parametric curves X = [x1(t) . . .xK(t)]
that are defined in the continuous domain as specified in Theorem 3. However, now
we aim at constructing a dictionary D = D(t) = [d1(t) . . .dJ(t)] with J <= K and
where the {dj(t)}j=1,...,J are parametric curves, such that D yields the optimal
value of the continuous domain sparse coding problem which is defined in analogy
to its discrete counterpart [111, 112] as

arg min
α∈RJ

{1

2
‖xk −Dαk‖2L2

+ λ‖αk‖l1
}

(4.21)

for all the xk(t) in the training set, where λ ∈ R is a regularization parameter.
The problem (4.21) is well studied [113] and known as the Lasso [114] method
or basis pursuit [115]. If we enforce orthonormality on α instead of sparsity, i.e.,
〈αk,αl, 〉 = δk−l and λ = 0, we recover the exact functional PCA solution (4.8)
with αk = vk. On the other hand, for λ > 0 we obtain a sparse vector αk.

However, here the goal in the construction of D is that it yields an accurate
approximation of a shape x(t) ≈ D(t)α such that each curve x only uses a few
elements of D in its representation. By making use of spline curves we invoke
Theorem 3, which allows us to formulate the continuous domain sparse coding
problem in the discrete domain as

arg min
α∈RJ

{1

2
‖xk −Dαk‖2L2

+ λ‖αk‖l1
}

(4.22)

= arg min
α∈RJ

{1

2
‖x̃k − D̃αk‖2l2 + λ‖αk‖l1

}
, (4.23)

where

x̃k = QΛ1/2Q−1[Ω]All,k (4.24)

with [Ω]All,k being the vector of control points of the kth curve of X as specified
in (4.9) and

D̃ = QΛ1/2Q−1ΩD = [d̃1 . . . d̃J ], (4.25)
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with ΩD being the matrix of control points that describe the parametric curves,
i.e., the atoms that form the continuous domain dictionary D(t).

To solve the discrete domain sparse coding problem we prevent D̃ from becoming
arbitrarily large by enforcing the l2-norm of its column vectors to be smaller or equal
to one. As suggested in [112, 97] this allows us to define the convex set of possible
dictionaries as

C := {D̃ ∈ R2N×J s.t. ‖d̃j‖l2 ≤ 1, j = 1, . . . , J}, (4.26)

where N is the number of control points used to describe a spline curve (2.1). Now
D̃ is found by solving the joint optimization problem

arg min
D̃∈C,α∈RJ

1

K

K∑
k=1

(1

2
‖x̃k − D̃αk‖2l2 + λ‖αk‖l1

)
, (4.27)

which is convex w.r.t. the two variables D̃ and α when one of them is fixed. Finally,
from (4.25), we see that

ΩD = QΛ−1/2Q−1D̃

and therefore, the continuous-domain dictionary is computed through

D(t) =

(
ϕ(t) 0

0 ϕ(t)

)T

ΩD (4.28)

with ϕ as defined in (3.3).

Optimization

The joint optimization problem (4.27) can be solved by alternating methods which
keep one variable fixed while minimizing the other one as described in [116, 117,
111]. Here we make use of the online optimization algorithm which is based on
stochastic approximations [118, 119] and implemented in the popular SPAMS li-
brary written by Mairal et al. [112, 97]. It minimizes sequentially a quadratic local
approximation of the expected cost function and is well suited for efficient and fast
solving of online dictionary optimization problems with large training sets. Since
the focus of this article is not the optimization itself, we refer the reader to the
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references mentioned above for a detailed description of the algorithm and imple-
mentation details.

4.8 Comparison with Existing Methods

4.8.1 Existing Linear Construction Methods for Dictionaries

The classical approach to learn dictionaries is to consider K shapes that are de-
scribed by an ordered set of N points or landmarks in R2 [71]. The shapes them-
selves are represented as one large vector rk ∈ R2N , where k ∈ [1, . . .K]. They
are geometrically normalized by aligning them to a common reference in order to
remove some effects of rigid-body transforms. The alignment to a reference shape
rref , is computed as r̃k = Ark + b, where A is an affine transformation matrix
and b ∈ R2 a translation vector such that they solve min

A,b
‖rref − Ark − b‖2l2 . A

standard PCA is then applied to the set of aligned shapes {r̃k}k=1,...K . Aside
from only operating with discrete data, the standard approach has the drawback
of being potentially biased because distances between normalized shapes generally
differ from distances between non-normalized shapes. The fundamental difference
between the classical approach and our method lies in the different concepts that
define projective geometry and affine geometry. We exploit the fact that the so-
lution of min

A,b
‖y −Ax − b‖2 can be expressed (in closed form) as the orthogonal

projection Pxy = Ax+ b, a property that holds for both discrete and continuous
domain curves. This allows us to express the affine transformation as a projection
onto a space which does not depend on the specific element x that lives in that
space.

4.8.2 Closed-Form Solution for Continuous and Discrete Curves

The formulas that we present in this manuscript provide solutions in the continuous
domain. In some applications, however, curves are defined by a discrete set of
points. In this case, the solutions for spline-based curves can be applied because
a discretized curve can always be expressed as a parametric curve using the linear
B-spline [20] as basis function (see Section 4.9.1 for an example).
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Equivalent Spline Solution Using Uniform Samples

One of the benefits of using a spline-based representation of curves is that it allows
one to represent curves in the continuous domain with a small number N of control
points. This becomes apparent when noticing that, for a uniformly discretized
curve r given by the ordered set of points {r( qQ )}q=0,...,Q with (Q+ 1) samples, we
have that

lim
Q→∞

1

Q

Q∑
q=0

∣∣∣r1

( q
Q

)
−Ar2

( q
Q

)
− b
∣∣∣2

=

ˆ 1

0

|r1(t)−Ar2(t)− b|2dt.

We see that, while the continuous curve r(t) is expressed with N control points
which corresponds to a projection matrix P of size (2N × 2N), the discrete curve
r( qQ ) is described with Q� N points whose corresponding projection matrix is of

size (2Q×2Q). This shows that a continuous-domain spline-based vector space can
be implemented at no additional cost compared to a discrete curve described with
N points, although the continuous curve is equivalent to a discrete setting where
the number of points tends towards infinity. Hence, to be equivalent, we would
have to use many more discrete points.

4.9 Validation and Experiments

4.9.1 Shape Analysis of Biological Structures

In biology often images acquired through microscopy are studied. Typically, the
different samples of the same organism are studied in an image as for instance a
colony of cells or bacteria. Being able to have representative shapes of such colonies
is important to study for instance the reaction of an organism when exposed to a
certain type of drug or chemical substance or to observe the behavior in specific
environments. Next, we provide an example for shape analysis using real biological
data.
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Learning Shape Priors

We have manually outlined the 20 chromosomes that are shown in the microscopic
image in Figure 4.2 (top). The outlining has been done by placing 12 landmarks on
the contours of the chromosomes and interpolating them with the basis functions
proposed in [76, 77]. This procedure allows us to obtain a spline-based curve de-
scription of each chromosome with landmarks that are corresponding throughout
the data set.

The chromosomes share a similar symmetric approximate rod-shaped structure;
however, they differ in their size, orientation, and location. Using our proposed
framework, we first compute the aligned training set {r̃k}k=1,...,20 and then compute
rmean as given by Theorem 4. The resulting learned shape (Figure 4.2, red shape
in middle row) can be further used for classification (see Section 4.9.2) or also as a
trained shape-prior for segmentation problems [68, 67]. It characterizes the shape
population in terms of its geometry and hence, can be viewed as an “average”
shape.

Learned Shape vs. functional PCA vs. Point Distribution Model

To test the accuracy of the learned shape-prior, we compare it to the first eigenshape
obtained through the projection-based functional PCA described in Section 4.5 and
the mean shape obtained with the classical Point Distribution Model (PDM, see
Section 4.2 for its description). Since the PDM is a discrete method and is only
based on linear interpolation between landmarks we have computed two correspond-
ing mean shapes; one with a low resolution (LR) that corresponds to the number
of landmarks used for the two continuous-domain models and a second with a high
resolution (HR), where we have increased the number of samples by a factor of 50,
i.e., 50 samples between each original landmark (see Figure 4.2, middle row).

For each of the three models we have computed the normalized correlation
〈rmodel,rdata〉

‖rmodel‖L2
‖rdata‖L2

between the most representative shape rmodel obtained with the

corresponding method and each curve rdata in the dataset. Here, rmodel stands for
either 1) rmean, 2) the mean shape obtained with the PDM or 3) the first eigenshape
(“fPCA1”) obtained with the fPCA. The results are shown in Table 4.1. We see
that our method to compute the learned shape rmean as the curve being closest to
all the subspaces generated by the shapes of the dataset, captures best the shape
variability. Further, the continuous domain methods seem to yield higher accuracy
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than the PDM. However, by increasing the resolution of the PDM we can approach
the accuracy of continuous domain models according to the theoretical argument
provided in Section 4.8.2.

Shape Reconstruction: Projection-based Functional PCA vs. Point Dis-
tribution Model

We reconstruct the shapes of the dataset by using our proposed projection-based
fPCA and compare it to the shape approximation procedure given by the PDM.
From (4.8), we see that fPCA allows for a perfect shape reconstruction if all
the eigencurves are used. However, here we approximate the data as rdata(t) ≈
rfPCA

recon (t) =
∑4
i=1 aiz

fPCA
i (t) using the first four eigenvectors of the fPCA. The

ai ∈ R are the coefficients that allow for the optimal approximation. For com-
parison, we compute the approximation obtained with the high resolution PDM
model, also using the first four eigenvectors. The PDM model is expressed as
rdata ≈ rPDMrecon = r +

∑4
i=1 biz

PDM
i (t) with bi ∈ R being the optimal approxima-

tion coefficients and r the mean shape computed with the PDM. Since the PDM
is a discrete model, we can obtain an equivalent continuous-domain representation
by interpolating the landmarks with the uniform linear B-spline. This allows us
to compute and compare the L2 reconstruction errors as reported in Table 4.2.
Again, the results suggest that the continuous domain model, i.e., the functional
PCA yields higher accuracy and thus, captures shape variability more efficiently
than the PDM. The reconstructed shapes are shown in Figure 4.3.
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fPCA1!
96%

PDM!
mean!
(HR)

PDM!
mean!
(LR)

fPCA2!
1.6%

fPCA3!
0.8%

PDM (HR)!
PC1, 94%

PDM (HR)!
PC2, 2.5%

PDM (HR)!
PC3, 1.3%

PDM (HR)!
 PC4, 0.8%

rmean

Figure 4.2: Shape analysis of chromosome data. The data set that
consists of 20 chromosomes is shown in the top. The chromosomes have
been manually outlined by placing landmarks on the contours followed by
spline interpolation. Theorem 4 yields rmean; the red shape (middle row,
curve on the left). The orange curve, “fPCA1” (bottom row) corresponds
to the first eigenshape obtained through fPCA. It captures 96% of the shape
variability found in the data set, computed as λ1/

∑
λi, where λi denotes

the eigenvalues obtained through fPCA for the i-th eigenshape. The two
green shapes in the middle row represent the mean shapes obtained with
the PDM with high (HR) and low (LR) resolution. The bottom row shows
the result of the eigenanalysis w.r.t. fPCA (orange curves) as well as the
first 4 eigenshapes obtained with the high resolution (HR) PDM. Again,
the percentage numbers indicated the shape variability captured by each
eigenshape as given by the corresponding eigenvalues.
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Table 4.1: Normalized correlation between principal shapes and chromo-
some data.

Data rmean fPCA PDM (HR) PDM (LR)

1 0.958 0.955 0.954 0.844
2 0.986 0.988 0.955 0.845
3 0.986 0.972 0.956 0.845
4 0.984 0.962 0.955 0.845
5 0.970 0.974 0.953 0.840
6 0.982 0.974 0.954 0.843
7 0.995 0.985 0.957 0.847
8 0.987 0.983 0.955 0.843
9 0.985 0.984 0.956 0.843
10 0.985 0.986 0.954 0.844
11 0.981 0.974 0.953 0.842
12 0.960 0.946 0.954 0.844
13 0.973 0.969 0.952 0.839
14 0.965 0.948 0.953 0.841
15 0.981 0.980 0.957 0.846
16 0.973 0.983 0.954 0.842
17 0.977 0.955 0.956 0.844
18 0.986 0.987 0.957 0.846
19 0.996 0.989 0.958 0.847
20 0.994 0.984 0.958 0.847

Mean 0.980 0.974 0.955 0.844
STD 0.010 0.013 0.001 0.002
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Table 4.2: Reconstruction error ‖rdata − rrecon‖2L2
/(‖rdata‖L2‖rrecon‖L2)

for chromosome data.

Data fPCA (4) PDM (4,HR)

1 0.016 0.085
2 0.004 0.047
3 0.004 0.036
4 0.009 0.036
5 0.013 0.072
6 0.007 0.052
7 0.001 0.022
8 0.005 0.042
9 0.002 0.050
10 0.002 0.050
11 0.002 0.057
12 0.016 0.075
13 0.012 0.064
14 0.014 0.065
15 0.005 0.048
16 0.012 0.075
17 0.015 0.047
18 0.006 0.042
19 0.003 0.021
20 0.002 0.019

Mean 0.008 0.050
STD 0.005 0.018
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4.9.2 Shape Classification

If different “groups” of shapes are compared with each other, then the learned shape
as described in Section 4.4 can be used to compute and compare principal shapes
that represent the different groups. In a standard shape-classification setting, the
computation of the mean shape rmean can be viewed as a “trained” shape, where
the curves used to compute this shape constitute the training set.

Classification of Shapes in Medical Imaging

This experiment is part of a clinical study where the structural and potential func-
tional changes of the pelvic floor hiatus (PFH) are examined after a woman has
given birth to one or several children [120]. 3D ultrasound volumes of 245 women
were acquired and grouped into 61 nulliparae (women who did not give birth to
children) and 184 multiparae (women who gave birth to one or several children).
For both groups, images were acquired when the women were “at rest” and while
“contracting” the PFH. The PFH is outlined on a specific 2D section of the ul-
trasound volume using the following procedure: A clinician draws key points on
the image which have particular anatomical meaning. Curves are then computed
by interpolating the ordered set of keypoints using spline interpolators [76, 77], as
shown in Figure 4.4 (top row).

The interpolation property of a basis function is particularly useful in user-
interactive applications. Aside from comparing surface area and perimeter of the
closed curves, a qualitative analysis w.r.t. shape differences is performed. This
comparison between different patient groups is important to clinicians because it
reveals similarities (or differences) while at the same time removing within-group
variability that is “absorbed” by the linear transform that is used. In this case,
we constructed spline-based affine vector spaces using the affine transformation of
the spline curves combined with translation (i.e., vector space of dimension six).
The mean shapes are computed for the four subgroups (nulliparae and multiparae,
“at rest” or “contraction”). They are shown in the bottom row of Figure 4.4 and
strongly indicate that the shape of the PFH probably does not change after giving
birth to one or several children although its size, perimeter, and surface do [121].
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Original Data

fPCA reconstruction (4 components)

PDM reconstruction (4 components)

Figure 4.3: Reconstruction of chromosome data set. In the top (first and
second row) the original data is shown (blue). The orange-colored shapes
(3rd and 4th row) represent the shapes that have been reconstructed using
our proposed projection-based functional PCA. The green shapes (last two
rows) correspond to the reconstruction using the PDM.
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multiparaenulliparae

— rest 
— contraction

— rest 
— contraction

Figure 4.4: Top row: Examples of 3D ultrasound volumetric data. The
top-left image shows the PFH area of a patient at contraction, whereas the
middle and right images show two different patients’ PFH area at rest. The
blue curves represent the outline of the PFH that has been constructed by
spline interpolation of an ordered set of points drawn by a clinician on the
image. Bottom row: The comparison of nulliparae vs. mutliparae women
reveals that there is no qualitative difference in the shapes rnulliparae

mean and
rmutliparae

mean between the two groups (although the sizes are different), in-
dependently from the state (“at rest” or “contraction”) of the PFH area.
(Image courtesy Dr. med. Sylvain Meyer, Urogynaecology Unit and Ob-
stetrics Department, CHUV Lausanne, EHC, Morges, Switzerland.)
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Sagittal !
Ventricle

Sagittal !
Corpus Callosum

Sagittal !
Brain Stem

Coronal !
Ventricle

Axial !
Ventricle

Figure 4.5: Shape library representing different brain structures. Each
row represents a shape type. In order to illustrate the shape variability that
occurs within a group of the same type, four samples per type are shown.
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av cc bs cv sv

a1 a2 a3 a4 a5

a1 a2 a3 a4 a5

a6 a7 a8 a9 a10

pc1 pc2 pc3 pc4 pc5

testing set

sparse !
encoding!!
D=5 atoms

sparse !
encoding!!
D=10 atoms

functional !
PCA!!
10 principal!
components

�1 = 67% �2 = 21% �4 = 3% �5 = 1%�3 = 2%

�6 = 0.2% �7 = 0.1% �8 = 0.1% �9 = 0.1% �10 = 0.05%

pc6 pc7 pc8 pc9 pc10

Figure 4.6: Atoms of the learned shape dictionaries. Some samples of
the training set are shown (green, top row) together with the atoms, ai of
both dictionaries, D5 (orange, second row) and D10 (red, third and fourth
row). The last two rows (purple) correspond to the principal components
(pc) obtained with the projection-based fPCA. The values of the λi are
computed as described in the caption of Figure 4.2
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data D10 D5 fPCA10 fPCA5

av

cv

cc

Figure 4.7: Reconstructed testing set. The first column shows the test-
ing set, whereas the second (D10) and third (D5) columns show the recon-
struction with the sparse methods. The last two columns correspond to
the reconstruction using fPCA.
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4.9.3 Sparse Dictionary Learning in Medical Imaging

We are interested in the construction of a shape dictionary which encodes curves
that represent several types of shapes. We have constructed a training set that
contains 150 outlines of brain structures, each representing one among the follow-
ing five different types of shapes: Sagittal Ventricle (sv), Sagittal Corpus Callosum
(cc), Sagittal Brain Stem (bs), Coronal Ventricle (cv), Axial Ventricle (av). Sam-
ples of each brain structure are shown in Figure 4.5. The data set consists of 30
samples per brain structure. Within each group represented by a particular type
we have correspondence between landmarks. However, between shapes that belong
to different groups, such a correspondence is no longer guaranteed. Furthermore,
the types that represent the Coronal Ventricle and the Axial Ventricle appear to be
similar up to a (anisotropic) scaling factor and a rotation (see Figure 4.5). Hence,
the data set can also be considered as imbalanced besides being inhomogeneous. It
is well known that L2-based methods are error-prone when dealing with imbalance
or inhomogeneity in a data set. Thus, sparse or l1-based methods tend to be more
efficient in such cases. We have applied our method to learn a dictionary for sparse
shape encoding, where we compute a dictionary (D5) with only 5 atoms and a sec-
ond one with 10 atoms (D10). Since the method allows for sparse shape encoding,
we expect to find a dicitonary D5, where each atom resembles one of the five shape
types. The atoms of the two dictionaries, D5 and D10, are shown in Figure 4.6. The
regularization parameter λ has been chosen empirically. As a control experiment
we also perform a (L2-based) functional PCA and use it to construct a dictionary
that consists of the first 10 eigencurves.

To validate our method we have built a testing set which consists in 25 shapes
which all differ from the shapes of the training set. Each group represented by a
shape type contains 5 samples (denoted as “test 1”, “test 2”, . . . , “test 5”). In
a first step, we compute the correlation between the “best” atom, i.e., the most
similar atom of the dictionary (for the three dictionaries D5, D10, and fPCA) and
each of the 25 samples. The results are summarized in Table 4.3. It becomes appar-
ent that the L2-method fails when dealing with inhomogeneous data as expected.
The accuracy of the D5 and the D10 dictionary is similar and both qualitatively
(Figure 4.6) and quantitatively high.

In a second step we reconstruct 15 shapes among the testing set corresponding
to three different types; 5 axial ventricles, 5 coronal ventricles, and 5 corpi callosi.
We use the learned dictionaries and the corresponding sparse codes for the recon-
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struction process. We compute the reconstruction error ‖rdata−rrecon‖2L2
and also

compare it to the “pure” L2 method, i.e., the projection-based fPCA, where we
use 5 as well as 10 eigenshapes for the approximation. The reconstructed testing
set is shown in Figure 4.7 (appended to this article) and the errors are listed in
Table 4.4. We notice that the reconstruction with D10 tends to yield more accurate
results as with D5, which is expected. Again, the projection-based fPCA fails to
yield satisfying results.

4.10 Summary

We have presented a unified framework for dictionary learning in the continuous
domain for shape encoding where the data consists of landmark-based parametric
curves. We provide closed-form solutions for the unbiased alignment of the training
data and show how shapes and dictionaries are learned for different types of appli-
cations such as the characterization of homogeneous, inhomogeneous or imbalanced
data. The alignment is based on a new method to compute mean shapes, which can
also be used to construct shape priors for further use in segmentation problems. We
derive formulas for an exact and fast implementation of the proposed framework
using spline curves. Our examples and validation experiments highlight the advan-
tages of our model compared to state-of-the-art discrete frameworks. Furthermore,
our model can be easily extended to 3D parametric curves that are defined by
landmarks.
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Table 4.4: Reconstruction error ‖rdata − rrecon‖2L2
/(‖rdata‖L2

‖rrecon‖L2
).

data D10 D5 fPCA5 fPCA10
av1 0.007 0.063 0.223 0.777
av2 0.013 0.054 0.213743 0.65489
av3 0.0195 0.004 0.241 0.711
av4 0.006 0.127 0.196 0.558
av5 0.008 0.029 0.259 0.755

av mean 0.010 0.056 0.226 0.691
av std 0.005 0.046 0.024 0.087

cv1 0.008 0.065 0.218 0.218
cv2 0.010 0.003 0.205 0.205
cv3 0.022 0.002 0.214 0.214
cv4 0.009 0.011 0.191 0.191
cv5 0.009 0.057 0.447 0.447

cv mean 0.011 0.028 0.255 0.255
cv std 0.005 0.030 0.107 0.107

cc1 0.005 0.003 0.664 0.664
cc2 0.010 0.004 0.705 0.705
cc3 0.009 0.035 0.736 0.736
cc4 0.012 0.024 0.365 0.365
cc5 0.008 0.021 0.637 0.637

cc mean 0.009 0.018 0.621 0.621
cc std 0.002 0.013 0.148 0.148



68Shape Encoding and Sparse Dictionary Learning in the Continuous Domain

4.11 Appendix

4.11.1 Proof of Theorem 2

Proof. The eigenequation (4.2) is developed as

∑
k

Pkφ(t) = 〈
K∑
k=1

KPk(t, ·),φ〉

= 〈
K∑
k=1

I∑
i=1

ei(t)
(k) ⊗ ẽ(k)

i (·),φ〉 = λφ(t).

We identify

φ(t) =
1

λ
〈
K∑
k=1

I∑
i=1

ei(t)
(k) ⊗ ẽ(k)

i (·),φ〉

=
1

λ

K∑
k=1

I∑
i=1

ei(t)
(k)〈ẽ(k)

i ,φ〉 =
K∑
k=1

I∑
i=1

ei(t)
(k)γik,

where γik =
〈ẽ(k)i ,φ〉

λ . Hence,

λγik = 〈ẽ(k)
i ,

K∑
l=1

I∑
j=1

ej(·)(l)γjl〉 =
K∑
l=1

I∑
j=1

γjl〈ẽ(k)
i , e

(l)
j 〉.

This leads to the eigenvalue problem given by (4.29) whose solution is φ(t) =∑K
k=1

∑I
i=1 ei(t)

(k)γik.
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〈ẽ

(K
)

2
,e

(K
)

1
〉
〈ẽ
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4.11.2 Vector Space Including a Translation

If in the construction of the K projectors a basis that includes a translation b given

by {ebx , eby} = {
(

1
0

)
,

(
0
1

)
} is used, then both ebx and eby are eigencurves and

hence, solutions of the eigenequation (4.2) with eigenvalue equal to K. This is easy

to see, since for such a projector, Pebx = 1 · ebx and, therefore,
∑K
k=1 Pkebx =

K · ebx . The same result holds true for eby. In this case, rmean is chosen to be the
third eigencurve, since the first two are constants, i.e., 2D points.

4.11.3 Proof of Theorem 4

Using (2.13) we develop

K∑
k=1

〈Pkr, r〉 = λ〈r, r〉 ⇔
K∑
k=1

cTPT
kΨc = λcTΨc

⇔
K∑
k=1

PT
kΨc = λΨc⇔ Ψ−1

K∑
k=1

PT
kΨc = λc,

(4.30)

where c is the vector of control points of r. Maximizing (4.30) w.r.t. c and using
the expression provided by Theorem 1 for the spline projector, (4.30) boils down

to the eigenvalue problem
K∑
k=1

Ck(CkΨCT
k )−1CT

kΨc = λc. �



Chapter 5

Closed-form Alignment of
Active Surface Models Using
Splines

Overview

In this chapter 1, we propose a new formulation of the active surface model in
3D. Thereby, we use the surface projectors constructed in Section 3.7.3 and extend
our formulation of the functional PCA (see Chapter 4) to 3D surfaces. Instead of
aligning a shape dictionary through the similarity transform as is the case for the
classical active shape model, we consider more flexible affine transformations and
use our alignment method that is unbiased in the sense that it implicitly constructs
a common reference shape. Our formulation is expressed in the continuous domain
and we provide an algorithm to exactly implement the framework using spline-
based parametric surfaces. We test our model on real 3D MRI data. A comparison
with the classical active shape model shows that our method allows us to capture
shape variability in a dictionary in a more precise way.

1The chapter is based on our publication [75]

71
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Figure 5.1: Real data set consisting of 14 3D MRI scans. The red meshes
outline the segmented descending thoracic aorta.

5.1 Introduction

The classical active shape model (ASM) [71, 73] is a popular method to align dis-
crete 2D curves given by an ordered set of points. It is typically used to characterize
shape variability and to construct shape dictionaries. Thereby, the curves of the
dictionary {ri} are first aligned to a reference shape r by optimally rotating and
translating each ri w.r.t. r, which amounts to removing a similarity transform.
Afterwards, a principal component analysis (PCA) is computed with the aligned
curves in order to statistically analyze the data set. The computation of the refer-
ence shape is done iteratively: first, all the shapes are aligned to the first shape of
the data set, then the mean shape is computed, and, in a third step, all the aligned
shapes are realigned again with the mean shape. This process is repeated until
convergence. Variants exist to compute the reference shape, the main challenge
being to reduce the bias of the model that is caused by the choice of an initial
reference. A shape in the dictionary is then approximated as ri ≈ Vw, where V
is the matrix containing a subset of eigenvectors computed through the PCA and
w is a corresponding vector of weights.

The same methodology is also applicable to the analysis of 3D shapes [122, 123].
Such active shape models are widely used to characterize structures in medical
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images [124] as well as for biomedical image segmentation [125]. There exist also
variants of the technique that make use of non-linear algorithms [126].

In this chapter, we propose a novel 3D active surface model as an extension of the
classical ASM. Instead of applying a similarity transform to normalize the data,
we consider a more general and flexible affine transformation while formulating the
surface registration problem in the continuous domain. Our method is unbiased
because it does not require to ”choose” a reference shape to start the alignment
process. We further propose an implementation using spline surfaces; this has the
advantage that a shape is fully specified in the continuous domain by a discrete set of
control points. Hence, no discretization of the surfaces is needed. We then express
the PCA in the continuous domain as a functional surface PCA and use splines
to derive a closed-form solution, which lends itself to a direct implementation. We
have applied our method to real data in order to characterize a set of segmented
descending thoracic aortas in 3D MRI (Figure 5.1). The experimental comparison
with the classical ASM suggests that our model captures shape variability more
accurately.

The theoretical concepts presented in this chapter are based on extending the theory
presented in Chapter 4. Therefore, we focus on the presentation of results and we
do not derive all the corresponding proofs; they can easily be obtained by adapting
the proofs presented in Chapter 4 to the case of surfaces.

5.2 Unbiased Alignment

Prior to performing the functional surface PCA, the surfaces need to be aligned.
This corresponds to the centering of the data vectors in the classical (discrete) PCA.
To guarantee an unbiased alignment of the surfaces, we first specify the subspace Si
that is spanned by all the affine transformations (including translation) of any given
surface σi within our initial shape dictionary {σi} (Figure 5.2). Then we compute
the surface σref which is closest to all subspaces Si and project it back onto Si to
obtain the dictionary which contains the aligned surfaces {σ̃i} (Figure 5.3). Instead
of explicitly characterizing the space of affine transformations as the collection of
all parametric surfaces σ ∈ R3, {σ|Aσ(u, v) + b, u, v ∈ R,A ∈ R3×3, b ∈ R3}, we
implicitly characterize the affine spaces by the orthogonal projection onto them. A
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basis to construct a projector onto an affine shape space of a surface σ is given by

{e1, . . . , e12}

= {

σx0
0

 ,

σy0
0

 ,

σz0
0

 ,

 0
σx
0

 ,

 0
σy
0

 ,

 0
σz
0

 ,

 0
0
σx

 ,

 0
0
σy

 ,

 0
0
σz

 ,

1
0
0

 ,

0
1
0

 ,

0
1
1

}.
(5.1)

The orthogonal projection of σ onto Si is expressed as

Piσ(u, v) =
K∑
k=1

ek(u, v)〈ẽk,σ〉, (5.2)

where {ẽk} is the dual basis of {ek} such that 〈ek, ẽl〉 = δk−l , where δk−l denotes
the Kronecker Delta. Hence, the projector Pi in (5.2) orthogonally projects an
arbitrary query shape σ onto the affine space given by a surface σi (Figure 5.3).

Figure 5.2: 3D Renderings of the segmented surfaces shown in Figure 5.1.
The orange surfaces correspond to the dictionary {σi}.
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5.2.1 Aligned Shape Dictionary

To the shape dictionary {σi} we can associate the dictionary {Piσ}, where σ is an
arbitrary query surface and whose elements are the best fitting affine transforma-
tions of the σi.

Definition 4. We define the data array X ∈ L2(R2,R3)×RI which takes a query
surface σ and outputs I projections as

X = [P1σ(u, v) · · · PIσ(u, v)]

= [σ̃1(u, v) · · · σ̃I(u, v)],

where Pi is the projector onto the subspace Si, σ is a parametric surface and
σ̃i = Piσ.

Next, we define σref , which is closest to all subspaces Si.

Definition 5. The optimal surface σref that is closest to all subspaces Si in the
L2-sense is obtained by maximizing the Frobenius norm of X subject to ‖σ‖ = 1,
i.e.,

arg min
Ai,bi,σref

I∑
i=1

‖σref −Aiσi − bi‖2L2
= arg max

σref

I∑
i=1

‖Piσref‖2L2

subject to ‖σref‖ = 1.

The exact computation of σref is specified by Proposition 5.

Proposition 5. The optimal surface σref in the sense of Definition 5 is given as
the solution of the eigenequation

I∑
i=1

Piσref = λσref , (5.3)

where λ ∈ R is the largest eigenvalue of the eigenequation (5.3).
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S1
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�̃1
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Figure 5.3: Unbiased shape alignment. For each surface σi (green) in the
dictionary {σi}, the space Si containing all its affine transformations is
defined. The surface σref (blue) that is closest to all spaces Si is computed
and projected back onto the Si to obtain the dictionary of aligned shapes
{σ̃i} (red).

5.3 Application: Functional Surface PCA

We compute the aligned data array X specified by Definition 4, where we chose
σ := σref as illustrated in Figures 5.3 and 5.4. Since we consider surfaces that are
described in the continuous domain, we apply a functional (instead of a discrete)
PCA to X. For this purpose, we define X∗ : L2(R2,R3) → RI , which satisfies
〈σ,Xv〉 = 〈X∗σ,v〉, where v ∈ RI . The eigensurfaces φi ∈ L2(R2,R3) of the
scatter operator XX∗ : L2(R2,R3)→ L2(R2,R3) are then specified by

XX∗{φi} = λiφi,

where the λi are the non-zero eigenvalues of X∗X. The derivation of these results
will be presented elsewhere.
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Figure 5.4: Aligned shape dictionary {σ̃i}. The pink surface in the bot-
tom right corresponds to the reference shape, σref , computed with Propo-
sition 5.

5.4 Spline-based Implementation

We consider surfaces of the form

σ(u, v) =
∑
k

∑
l

c[k, l]ϕ(u− k)ψ(v − l), (5.4)

where the sums in (5.4) are finite and the total number, M , of control points,
c[k, l] = (cx[k, l], cy[k, l], cz[k, l]) ∈ R3 is finite, and ϕ and ψ are spline basis func-
tions that satisfy the Riesz basis condition [81]. For the explicit expressions of ϕ
and ψ to construct a cylindrical surface, we refer the reader to [80]. Expression (5.4)
allows us to fully represent a surface in the continuous domain with only few con-
trol points. Further, we can express the projector (5.2) w.r.t. to the spline control
points as specified by Proposition 6.

Proposition 6. The matrix P ∈ (R3M × R3M ) : R3M 7→ R3M is a (3M × 3M)
projection matrix defined as P = CG−1CTβ, where C is a matrix containing the
control points of a spline surface (5.4), G is the Gram matrix w.r.t. the basis (5.1)
describing the affine shape space of a surface σ, and β is a sparse matrix containing
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the autocorrelation integrals of the integer-shifted basis functions ϕ and ψ as detailed
in Section 3.7.3.

It can be shown that if all the control points of an arbitrary surface σ are arranged
in a vector Γ, then the control points of the projected surface are computed as
σ̃i = Piσ = PiΓ. A direct consequence of Proposition 6 is that the continuous-
domain principal shapes can be computed through an exact but simple matrix-
vector multiplication as given by Proposition 7.

Proposition 7. The matrix that contains the control points of the principal shapes
is computed by

CZ = CV, (5.5)

where V contains the eigenvectors of X∗X = CTβC.

5.5 Results and Conclusion

Since V is orthogonal, any shape in the dictionary can be approximated as C ≈
CZṼ, where Ṽ only contains a subset of eigenvectors. We compare our method with
the classical ASM, where the shapes in the dictionary are approximated as σi ≈
ṼASMw and computed with the iterative algorithm described in the introduction,
where a similarity transform is removed from the original surfaces and ṼASM is
the subset of eigenvectors computed with the corresponding PCA. Our data set
consists of 14 MRI scans where the descending thoracic aorta has been segmented
(Figure 5.1). We measure the L2-error between the aligned shapes and the first
principal shape φ1, for both the classical ASM and our method. The results in
Table 5.1 show that our method captures shape variability with a higher accuracy
than the classical method which is due to the fact that only removing a similarity
in 3D is too restrictive to align the shapes in a precise way. In Figure 5.5, we show
a comparison of the first five principal surfaces. In the case of the ASM, the higher
modes do not capture the shape variability in an intuitive way and make it difficult
to interpret their physical meaning. Furthermore, our method is formulated in the
continuous domain, which allows us to describe the shapes in an exact way; thereby
the spline-based implementation keeps the computational cost low compared to a
prior discretization of the shapes as is the case for the classical ASM. As a next step,
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�1 �2 �3 �4 �5
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Figure 5.5: Principal surfaces computed with our proposed method (top)
and the classical ASM model (bottom). The λi are the normalized eigen-
values. They describe the amount of information that the corresponding
φi carries.
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Table 5.1: L2-error comparison

‖φ1 − σ̃i‖2L2
‖φASM

1 − σ̃ASM
i ‖2L2

0.0223 0.0388
0.0212 0.0395
0.0216 0.0392
0.0199 0.0395
0.0217 0.0393
0.0209 0.0392
0.0205 0.0391
0.0217 0.0387
0.0210 0.0389
0.0240 0.0383
0.0227 0.0391
0.0206 0.0396
0.0216 0.0396
0.0224 0.0393

we will use the presented results to include prior knowledge into 3D segmentation
algorithms in order to increase robustness and speed in interactive settings.



Chapter 6

Characterization of
Interpolators for Shape
Modeling

Overview

In this chapter we present the construction of interpolators to be used in interactive
applications. The chapter is based on our following three publications:

• In Section 6.1 we generalize the Keys interpolation kernel [127] to be able to
represent trigonometric shapes such as ellipses and spheres 1.

• In Section 6.2 we present a family of interpolators 2, which is an extension of
the work presented in Section 6.1

• Finally, in Section 6.3 we go one step further and construct families of inter-
polators that allow one to vary the resolution of the reconstructed shapes 3.

1Our related publication is [76].
2Our related publication is [77]
3Our related publication is [78]

81
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6.1 Trigonometric Interpolation Kernel for Deformable
Shapes

We present a new trigonometric generator function that is capable of perfectly
reproducing circles, spheres and ellipsoids while at the same time being interpola-
tory. Such basis functions have the advantage that they allow to construct shapes
through a sequence of control points that lie on their contour (2D) or surface (3D)
which facilitates user-interaction, especially in 3D. Our piece-wise exponential ba-
sis function has finite support, which enables local control for shape modification.
We derive and prove all the necessary properties of the kernel to represent shapes
that can be smoothly deformed and show how idealized shapes such as ellipses and
spheres can be constructed.

6.1.1 Introduction

Shape representation and deformation is an ongoing research topic in the fields
where shapes need to be constructed, visualized, approximated or segmented. Re-
lated research domains include shape modeling for industrial design [128, 129, 130],
or segmentation in biomedical imaging [131, 132, 13], such as the design of active
contour models [83]. Applications involving such modeling are often user-interactive
allowing a user to modify the shape by directly interacting with it. Desirable prop-
erties of such models are summarized as follows: 1) Intuitive user-interaction: the
shape must be deformable by letting a user to directly interact with its bound-
ary in a simple manner; e.g. dragging with a computer mouse the contour of a
curve or surface. 2) Local deformation: through user-interaction the shape should
only deform in the neighborhood where the interaction takes place. 3) Smooth
deformation: a small perturbation of the shape must result in a small deformation
of the shape. 4) Reproduction of particular shapes: typically the model must be
able to represent particular types of idealized shapes (e.g. polynomial curves, el-
lipses, spheres) and have good approximation properties. 5) Continuity: depending
on the application it can be required that the shape be everywhere differentiable.
6) Numerically stable implementation: usually this requires that the underlying
mathematical functions are well-defined. 7) Allowing fast optimization: in semi-
automatic applications, optimization schemes related to shape deformation might
need to be included in the model.
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Because it is not always possible to satisfy all of the constraints, in practice
usually a trade-off between the above mentioned requirements needs to be done.
Existing methods can generally be categorized by either using a discrete or a
continuous-domain model. Discrete approaches use polygonal meshes [40, 42] or
subdivision-based models [32, 38, 133] to represent shapes. They show high flex-
ibility, but require a large amount of parameters for shape modeling, which is a
drawback in optimization schemes. On the other hand, continuous-domain models
are mostly based on Bézier curves [24, 54], spherical harmonics [134] or on com-
pactly supported basis functions such as B-splines [53, 51, 52, 25, 135] which have
an explicit analytical expression. However, B-splines are only able to represent
polynomial shapes [55, 136] and therefore, do not allow for the construction of
ellipses and spheres.

We present a new trigonometric basis function that enables the parametric rep-
resentation and deformation of idealized shapes, such as ellipses and spheres. It
allows to generate shape models that meet all of the requirements listed above and
is particularly useful for simplified user-interaction because it is compactly sup-
ported and verifies the interpolation property. This means that the control points
of the shape, which are accessible to the user, directly lie on its boundary.

The main contributions of this article are the derivation of the proposed inter-
polation kernel together with all the necessary properties to construct deformable
models for shape representation. The motivation behind this work is the construc-
tion of 2D [90, 83] and 3D [137, 43, 26, 86] active contour models for the segmen-
tation of sphere-like structures in biomedical images such as roundish cells [86] or
organs [79](Figure 6.1).

6.1.2 Construction of the Interpolator

In [84], ellipse-reproducing basis functions are proposed that are defined as ψM (t) =∑2
n=0 λn

dn

dtn βα1
(t), where M is the number of control points used to construct a

given function and βα1
is the 3-th order causal exponential B-spline defined in the

Fourier domain as β̂α1
(ω) =

3∏
k=1

1−eαk−jω
jω−αk . Thereby, the vector α1 = (0, j2πM ,− j2πM )

specifies the poles of the B-spline. We have shown that ψM is of minimal support
and can be either smooth or interpolatory but not both at the same time. Finite
support is important to implement fast optimization schemes [138].
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Proposed Interpolator

Definition 6. Our piece-wise exponential basis function φM is expressed in its
causal form as

φM = βα1 ∗ φ0
M , (6.1)

where φ0
M = γ1(M)β(0) +γ2(M)(δ+ δ(·−1)) is a smoothing kernel of unit support,

β(0) is the zeroth-degree B-spline, and γ1, γ2 are chosen such that the centered
generator φM (·+ a), satisfies the interpolation condition

φM (k + a) = δk. (6.2)

Here, a is the appropriate shifting constant to center the generator, the dot in the
argument of a function is a placeholder for its parameter, and δk is the Kronecker
delta. Because βα1 is of support equal to 3 and φ0

M has unit support, the resulting
support of φM is equal to 4 and hence a = 2. The unique weights γ1 and γ2 used to
compute φ0

M in (6.1) are computed by solving (7.13) while additionally enforcing
φM to be symmetric, i.e., φM (t + a) = φM (−t + a); a property that is especially
convenient in practice. We find

γ1(M) =
π3 sec2

(
π
M

)
M2

(
M tan

(
π
M

)
− π

)
and

γ2(M) =
π2 csc

(
π
M

)
csc
(

2π
M

) (
M − 2π csc

(
2π
M

))
M2

(
M sec

(
π
M

)
− π csc

(
π
M

)) .

The explicit expression of the proposed interpolator ϕM (t) = φM (t + a) is given
by (6.3), where the interpolator ϕM is the centered (i.e., shifted) version of the
causal generator φM . In the following we derive the properties of the proposed
interpolator that are useful in practical applications.
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Figure 6.1: Reproduction and approximation of shapes. Top row: Repro-
duction of the exact sphere using the proposed interpolatory (left) and the
non-interpolatory function (right) from [84]. Bottom row: Segmentation of
a brain volume. On the left a rendering of a brain is shown that has been
extracted from a 3D MRI scan as described in [79]. The 3D brain struc-
ture has been segmented with a deformable model using our interpolatory
(middle) as well as the non-interpolatory (right) basis function [84]. In both
cases the results are C1-diffeomorphic to the sphere, which has been used
to initialize them. The blue dots are the control points. They directly lie
on the shape boundary for the interpolatory scheme. The segmented brain
shape on the bottom right shows that user-interactive shape modification
is difficult and non-intuitive for the non-interpolatory case, because it is
unclear which part of the surface is affected by moving a control point.
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Reproduction of Trigonometric Functions

To be able to represent shapes that are deformations and translations of ellipses or
spheres our generator ϕM must reproduce sines and cosines, as well as constants.

Proposition 8. The interpolatory basis function ϕM reproduces constants as well
as cos( 2π·

M ) and sin( 2π·
M ) independently of the number of control points M ≥ 3.

This result follows from [63, Proposition 2], where it was shown that reproduc-
tion properties are preserved through convolution. In [84] it was shown that βα1

reproduces the functions stated in Proposition 19 if and only if M ≥ 3 and hence,
by (6.1) ϕM inherits from βα1 its ellipse-reproducing properties.

Smoothness and Regularity

A fundamental requirement for the construction of the basis function is that it must
be everywhere differentiable. This is important w.r.t. shape deformation in order
to avoid discontinuities when perturbing an ideally reproduced shape, such as an
ellipse or sphere.

Proposition 9. The interpolator ϕM belongs to C1 and has bounded second deriva-
tives.

Proof: We re-express (6.1) in terms of exponential B-splines of different order
as

ϕM = βα1 ∗ ϕ0
M

= βα1
∗
(
γ1(M)β(0) + γ2(M)(δ + δ(· − 1))

)
= γ1(M)βα1∪(0) + γ2(M)(βα1

+ βα1
(· − 1)),

(6.4)

where we have used the property that the convolution between two exponential
B-splines specified by βαm and βαn yields another exponential B-spline specified
by α = αm ∪ αn, i.e., the union of the sets of poles defining the functions to
be convolved. Now we use the fact that the order N of an exponential B-spline
corresponds to the number of poles defining it. The number of times a B-spline is
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everywhere continuously differentiable is equal to N − 2. From (6.4) we see that
the lowest order of B-spline involved in the construction of ϕM is N = 3 and hence,
due to the linearity of the derivative ϕM ∈ C1. The second part of Proposition 9
follows from the fact that (exponential) B-splines of order N are Hölder-continuous
of order N − 1 with bounded derivatives [63]. �

Convergence and Order of Approximation

The order of approximation of the interpolator is of importance because it describes
how fast an approximated function or shape converges towards the object being
interpolated.

Proposition 10. The interpolator ϕM converges to the (polynomial) Keys interpo-
lator [127] (which in computer graphics is known as the Catmull-Rom spline [16]).
It is given by

φKeys = 3β3 − (β2 + β2(· − 1)) (6.5)

and has an order of approximation of L = 3. Thereby, β3 and β2 are the cubic and
quadratic polynomial B-splines.

Proof: We observe that asM grows large, i.e., M →∞ the 3rd order exponential
B-spline defined by α1 converges to the 3rd order polynomial B-spline that is defined
by its poles α = (0, 0, 0). Since limM→+∞ γ1(M) = 3 and limM→+∞ γ2(M) = −1
we obtain limM→+∞ ϕM = φKeys. �
Furthermore, ϕM is able to approximate any curve with arbitrary precision by
chosing M sufficiently large [139].

Riesz Basis

It is desirable that the curves and surfaces given by (7.1) and (7.2) are uniquely
specified by their sequence of control points {c[k]}k∈Z and {c[k, l]}k,l∈Z respec-
tively. Therefore, the shifted basis functions {ϕM (· − k)}k∈Z should be linearly
independent. Additionally, for practical reasons, the interpolation process must
be numerically stable. These requirements are fullfilled if the generating function
satisfies the Riesz-basis condition [63].
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Proposition 11. For M ≥ 3 the function ϕM generates a Riesz basis, i.e., there
exist two constants 0 < A ≤ B <∞, such that

0 ≤ A‖c‖2l2(Z) ≤ ‖
∑
k∈Z

c[k]ϕM (· − k)‖2L2(R) ≤ B‖c‖2l2(Z) <∞ (6.6)

for all c ∈ l2(Z).

We only outline a sketch of proof. It is based on the fact that (6.6) is expressed in

the Fourier domain as A ≤∑∞k=−∞ |ϕ̂M (ω + 2π k)|2 ≤ B, and that using (6.4) the

Fourier transform of ϕM is given by ϕ̂M (ω) = γ1β̂α1∪(0)(ω)+γ2(β̂α1)(ω)(1+e−jω).
The complete proof is similar to the one of [140, Theorem 6.2].

Affine Invariance and Partition of Unity

Affine invariance holds if and only if
∑
k∈Z ϕM (t− k) = 1, which is called partition

of unity. Furthermore, from Proposition 19 we know that ϕM reproduces constants.
As a consequence and using the fact that ϕM is an interpolator the partition of
unity is verified and hence, also affine invariance.

6.1.3 Reproduction of Ellipses

A direct consequence of Proposition 1 is that ϕM allows us to construct ellipses
independently from the number of control points M ≥ 3. In this section we ex-
plicitly show how ellipses can be reproduced using the proposed basis functions.
Because ellipses can be constructed by applying an affine transformation to a circle
and using the property of our model to be affine invariant it suffices to show that
we can generate circles.

Proposition 12. Using the generator ϕM the unit circle is parametrized as

r(t) =

(
cos(2πt)
sin(2πt)

)
=
M−1∑
k=0

(
ccM [k]
csM [k]

)
ϕM,per(Mt− k), (6.7)

where ϕM,per =
∑+∞
n=−∞ ϕM (t −Mn − k) is the M -periodization of ϕM , ccM [·] =

cos[ 2π·
M ], csM [·] = sin[2π·

M ], and t ∈ [0, 1).
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Proof: Using Proposition 19 combining with the fact that ϕM is an interpolator
and cos( 2πt

M ) is M -periodic we write

cos(
2πt

M
) =

∑
k∈Z

cos[
2πk

M
]ϕM (t− k)

=

M−1∑
k=0

+∞∑
n=−∞

cos[
2π(Mn+ k)

M
]ϕM (t−Mn− k)

=
M−1∑
k=0

cos[
2πk

M
]

+∞∑
n=−∞

ϕM (t−Mn− k)︸ ︷︷ ︸
ϕM,per(t−k)

⇒ cos(2πt) =
M−1∑
k=0

ϕM,per(Mt− k).

(6.8)

Combining (6.8) with a similar derivation for sin(2πt
M ) proves the claim. �

Plots of the reconstructed trigonometric functions are shown in Figure 7.21 as well
as the unit circle that has been reconstructed by ϕM with the smallest possible
number of control points M = 3 (Riesz-basis condition).

6.1.4 Reproduction of spheres

In this section, we outline our proposed construction of the sphere. Its parameteri-
zation as a tensor-product surface (7.2) results as a corollary from Proposition 12.

Corollary 1. Using the generator ϕM the unit sphere is parameterized as

σ(u, v) =

x(u, v)
y(u, v)
z(u, v)

 =

cos(2πu) sin(πv)
sin(2πu) sin(πv)

cos(πv)


=

M1−1∑
k=0

M2+1∑
l=−1

c[k, l]ϕM1,per(M1u− k)ϕ2M2
(M2v − l),

(6.9)
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Figure 6.2: Top left: The proposed trigonometric interpolator (blue),
Keys interpolator (purple) and the non-interpolatory ellipse reproducing
basis function from [84] (yellow). Top right: the circle obtained with
the parametric equation r(t) = (cos(2πt), sin(2πt)). Bottom: cos(2πt)
(left) and sin(2πt) (right) are shown together with the basis functions
(colored dashed lines) corresponding to ccM [k] and csM [k], for M = 3 and
k ∈ [0 . . .M − 1] respectively.

where u, v ∈ [0, 1), and the control points are given by

c[k, l] =

ccM1
[k]cs2M2

[l]
csM1

[k]cs2M2
[l]

cc2M2
[l]

 . (6.10)

The limits of the second sum in (7.4) are due to the fact that v ∈ [0, 1) and
the support of ϕ2M2

is limited to the interval [−2, 2]. Therefore, we have l /∈
[−1, . . . ,M2 + 1] ⇔ ϕ2M2

(M2v − l) = 0. The other terms in (7.4) follow from
inserting M = 2M2 in (6.8). Plots of a reconstructed sphere and a deformation of
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it are shown in Figure 6.1, as well as a comparison with shapes constructed with
the non-interpolatory basis function from [84].

6.1.5 Conclusion

We present a new trigonometric kernel to construct deformable shape models. We
show that the kernel satisfies the necessary requirements needed for their construc-
tion such as: interpolation condition, compact support, smoothness, reproduction
properties, Riesz-basis condition. The main advantage of the proposed basis func-
tions is that they are smooth while also being interpolatory, therefore allowing the
control points of a constructed shape to lie directly on the shape boundary; a feature
that allows for intuitive shape manipulation in user-interactive applications. We
explicitly show how to construct idealized shapes such as circles and spheres. We
illustrate the use of such models in demo-videos showing 2D and 3D user-interactive
deformable models that are constructed using (7.5) and (7.4). They are avialble at
http://bigwww.epfl.ch/demo/interpolated-shapes/.

6.2 A Family of Smooth Interpolators

In this section, we generalize the result presented in the previous Section 6.1 to
construct interpolators of any order.

Interpolatory basis functions are helpful to specify parametric curves or surfaces
that can be modified by simple user-interaction. Their main advantage is a char-
acterization of the object by a set of control points that lie on the shape itself
(i.e., curve or surface). Here, we characterize a new family of compactly supported
piece-wise-exponential basis functions that are smooth and satisfy the interpolation
property. They can be seen as a generalization and extension of the Keys interpo-
lation kernel using cardinal exponential B-splines. The proposed interpolators can
be designed to reproduce trigonometric, hyperbolic, and polynomial functions or
combinations of them. We illustrate the construction and give concrete examples
on how to use such functions to construct parametric curves and surfaces.
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6.2.1 Introduction

The representation of shapes using parametric curves and surfaces is widely used
in domains that make use of computer graphics [141, 54] such as industrial de-
sign [128, 129, 130], the animation industry [30], as well as for the analysis of
biomedical images [68, 79, 86]. In that context, it is often important to be able to
interactively change the shape of the curve or surface. The spline-based represen-
tation of parametric shapes has proven to be a convenient choice to include user
interactivity in shape modeling due to the underlying control-point-based nature
of spline functions. If the basis functions are compactly supported, the change of
position of a control point modifies the shape only locally. This allows for a local
control by the user. Commonly used basis functions such as NURBS or B-splines
have this locality property but are in general not interpolatory (except for example
zeroth and first degree B-splines, which are not smooth) [25]. This has the dis-
advantage that the control points do not directly lie on the contour or surface of
the shape. Especially in 3D applications, this can be inconvenient because it is no
longer intuitive to interactively modify complex shapes. More recently a method
to construct piecewise polynomial interpolators has been presented in [55, 142].

In this paper, we propose a new family of piecewise exponential basis functions
that are interpolatory and are at least in C1. They are compactly supported and
their order can be chosen to be arbitrarily high. We show that they are able to
reproduce exponential polynomials which include the pure polynomials as a subset.
This convenient property is particularly relevant for the exact rendering of conic
sections such as circles, ellipses, or parabolas, as well as other trigonometric and
hyperbolic curves and surfaces [84]. In its absence, one must resort to subdivision to
tackle this aspect [32, 35, 38, 133, 143]. However, existing comparable subdivision
schemes usually rely on basis functions that are defined as a limit process and do
not have a closed-form expression [144].

Our proposed family generalizes the piecewise-polynomial Keys interpolator [127,
16, 145] to higher degrees and can be seen as its extension using exponential B-
splines [63, 146].

The paper is organized as follows. In section 2 we give a brief review on ex-
ponential B-splines and their relation with differential operators. This is needed
to understand the reproduction properties of our proposed interpolators since they
are based on exponential B-splines. In Section 3 we present the proposed family
of interpolators. We present the relevant properties and prove that they reproduce
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exponential polynomials. We also provide a generic algorithm to construct specific
interpolators that belong to the proposed family. In Section 4 we give specific ex-
amples of interpolators and we explicitly show how parametric curves and surfaces
with desirable reproduction properties are constructed.

6.2.2 Exponential B-splines

In this section, we briefly review the link between exponential B-splines and differ-
ential operators which is crucial to understand the reproduction properties of the
proposed spline family. (For a more in-depth characterization of exponential B-
splines, we refer the reader to [63, 146].) These reproduction properties are needed
for the exact representation of elementary shapes (see Section 6.3.3 for examples)
and are automatically enforced by our construction.

Notation

We describe the list of roots α1, . . . , αN using the vector notationα = (α1, α2, . . . , αN ).
To assert the inclusion of a list of roots α1 into another list α2, we use the set no-
tation α1 ⊂ α2. If α1 must be excluded from α2, we write α2 \ α1. Similarly,
we denote the union of the two lists of roots α1 and α2 by α1 ∪ α2. Likewise,
we write αn ∈ α to signify that one of the components of α is αn. Furthermore,
the nth-order derivative operator is denoted by Dn = dn

dtn with D0 = I (identity
operator).

Operator Properties and Reproduction of Null-Space Components

Consider the generic differential operator L of order N

L = DN + aN−1D
N−1 + · · ·+ a0I. (6.11)

Its characteristic polynomial with variable s ∈ C is given by

L(s) = sN + aN−1s
N−1 + · · ·+ a0 =

N∏
n=1

(s− αn). (6.12)
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By evaluating L(s) at s = jω, where j2 = −1, we obtain that the frequency response

of the differential operator is L̂(jω) =
∏N
n=1(jω − αn). This allows us to factorize

the operator L as

Lα := L = (D − α1I)(D − α2I) · · · (D − αNI). (6.13)

It follows that the nullspace, which contains all the solutions of the homogeneous
differential equation Lα{f0}(t) = 0, is given by

NLα = span{tn−1eα(m)t}m=1,...,Nd;n=1,...,n(m)
, (6.14)

where theNd distinct roots of the characteristic polynomial are denoted by α(1), . . . , α(Nd)

with the multiplicity of α(m) being n(m) and
∑Nd
m=1 n(m) = N . There exists a unique

causal Green’s function ρα (ρα(t) < 0 for t < 0) associated to the operator Lα that
satisfies Lα{ρα}(t) = δ(t), where δ is the Dirac distribution.
Its explicit form is

ρα(t) =

Nd∑
m=1

n(m)∑
n=1

cm,n
tn−1
+

(n− 1)!
eα(m)t, (6.15)

with suitable constants cm,n. We see that (6.15) is a causal exponential polynomial.
The discrete counterpart of Lα is denoted by ∆α. It is specified by its symbol
∆̂α(z) =

∏N
n=1(1 − eαnz−1). An exponential B-spline is then defined as βα(t) =

∆α{ρα}(t), which is equivalent to the Fourier-domain definition

β̂α(ω) =
∆̂α(ejω)

L̂α(jω)
=

n∏
k=1

1− eαk−jω

jω − αk
. (6.16)

Since ∆α is defined on the integer grid, the exponential B-splines reproduce the
causal Green’s function (6.15) associated to Lα

ρα(t) = ∆−1
α {βα}(t) =

+∞∑
k=0

pα[k]βα(t− k), (6.17)

where pα is a unique causal sequence as has been shown in [63]. Extrapolating the
Green’s function (6.15) for t < 0 is equivalent to extrapolating the sum in (6.17) for
negative k, which results in the reproduction of an exponential polynomial. More



96 Characterization of Interpolators for Shape Modeling

generally, it can be shown that βα is able to reproduce any component P0(t) ∈ NL
that is in the null space of L = Lα.

6.2.3 Construction of Interpolatory Basis Functions

Desirable Properties of the Basis Functions

We want to construct an interpolator based on a suitable linear combination of
exponential B-splines of different orders. The following characteristics should be
met:

• Smoothness
We want the interpolation functions to be at least continuously differentiable
and, hence, the minimum order of the B-spline involved is 3 (i.e., degree 2).

• Support
The interpolator should be compactly supported and the support of the func-
tion should not be larger than the support of the B-spline of highest order N
involved. Therefore, the support of the resulting function is an integer and is
equal to N .

• Symmetry
We want the interpolator to be symmetric. This can be achieved if the non-
zero poles of the exponential spline are grouped in pairs of opposite sign [63].
Furthermore, except for the highest-order B-spline involved, the B-splines in
the sum have to come in pairs and be shifted accordingly.

• Interpolation Condition
The constructed function has to satisfy the interpolation condition

ϕ(t)|t=k = δ[k], k ∈ Z, (6.18)

where δ[k] represents the Kronecker delta.

• Reproduction of Exponential Polynomials
We are interested in representing shapes that do not only rely on polynomial
but also on trigonometric and hyperbolic coordinate functions. Thus, the
interpolators must reproduce exponential polynomials.
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Characterization of the Family of Interpolators

Taking all of the above considerations into account we characterize an N th order
smooth and piece-wise exponential interpolator as

ϕ(t) := λNβαN (t+
N

2
) +

N−1∑
n=n0

λn

(
βαn(t+

N

2
) + βαn(t− N

2
+ n)

)
, (6.19)

where αn0
has at least n0 = 3 poles (smoothness constraint) and N ≥ 2(n0−1) is an

integer that defines the highest-order exponential B-spline involved. Furthermore,
in order for ϕ to reproduce exponential polynomials, we enforce αn ⊂ αN for
n ∈ [n0, N − 1] (see Section 6.2.3). Here, the notation αn implies that the list
of poles αn contains n elements. Hence, using the fact that the support of an
exponential B-spline is equal to the number of poles that specifies it, we see that ϕ
is of support equal to N .

The weights λn are computed by making use of the symmetry of the interpolator,
i.e., ϕ(t) = ϕ(−t) and by imposing the interpolation constraints (7.13), which we
achieve by solving the system of equations

1 = ϕ(0)

0 = ϕ(1)
...

0 = ϕ(bN/2c).

(6.20)

From (6.20) we see that, N/2 (even case) respectively N/2 + 1 (odd case) interpo-
lation constraints have to be met to construct the function. This follows from the
fact that ϕ can only be non-zero within the interval [−N/2, N/2]. If N is even,
N/2 is integer and since the interpolator is smooth ϕ(N/2) = 0 and hence, does
not explicitly need to be imposed in (6.20).

Construction of Basis Functions

The proposed interpolatory basis functions are constructed as follows:



98 Characterization of Interpolators for Shape Modeling

1. Define an exponential spline type with desirable reproduction properties; that
is, select the list αn0

that contains the featured poles and whose total number
of elements is n0 ≥ 3.

2. Given αn0 , N must be no smaller than Nmin = 2(n0 − 1). This restriction is
directly related to the interpolation constraints.

3. The N th-order interpolator is given by (6.19), where αn = αn0
∪ 0n−n0

with
n > n0 and 0K is the K-element vector filled with zeros.

4. The weights λn can be computed by solving (6.20).

The system (6.20) is over-determined when N > Nmin. In that case, the weights
λn for (N − Nmin) terms in (6.19) can be chosen arbitrarily (see Section 6.2.4 for
examples). Conversely, we see that, in order to satisfy the interpolation constraints
for a given order N , the smallest possible number of poles is n0 = bN/2c+ 1. Oth-
erwise, when the system of equations is overdetermined, one can always construct
αn′0 = αn0

∪ 0(bN/2c+1)−n0
with n′0 poles. The resulting exponential B-spline βαn′0

preserves the reproduction properties of βαn0
but has increased order of approxima-

tion and regularity [63] (see Section 6.2.3) Based on our experiments we conjecture
that the system of equations (6.20) always has a solution.

Reproduction Properties and Regularity

Reproduction of Exponential Polynomials.

Proposition 13. The interpolator defined by (6.19) reproduces exponential poly-
nomials up to degree q and exponent α if and only if αn0

contains q + 1 copies of
α.

Proof. We first show that exponential polynomials can be reproduced with expo-
nential B-splines and then conclude that ϕ preserves these reproduction properties.

An exponential polynomial of exponent α and degree q can always be written
as a linear combination of exponential monomials Qnα(t) = eαttn for n = 0, . . . , q.
The exponential polynomial is expressed as

P qα(t) =

q∑
k=0

akeαttn. (6.21)
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For n ≥ n0 in (6.19) and n ∈ [n0, N ], every exponential B-spline βαn is defined
through a list αn that contains αn0

. Furthermore, from [63] we know that, for
α ∈ αn0

of multiplicity q + 1, there exist sequences pn such that

eαttn =
∑
k∈Z

pn[k]βαn0
(t− k) (6.22)

for n = 0, . . . , q, which is equivalent to saying that βαn0
reproduces exponential

monomials up to degree q and exponent α. The shifted exponential B-splines
in (6.19) also have the same reproduction property. By combining (6.21) and (6.22)
and considering an arbitrary shift m, we see that

Pnα (t−m) =
n∑
k=0

akQ
k
α(t−m)

=

n∑
k=0

ak
∑
l∈Z

pk[l]βαn0
(t−m− l)

=

n∑
k=0

akeα(t−m)(t−m)k

= eαt
n∑
k=0

ake−αm
k∑
l=0

(
k

l

)
tl(−1)k−lmk−l,

(6.23)

which is a linear combination of polynomials in t of degree up to n that are multi-
plied by eαt. Thus, we can collect all the factors multiplying tk and rewrite them
as bk to express (6.23) as

Pnα (t−m) = eαt
n∑
k=0

bkt
k := Pnα,m(t) (6.24)

for n = 0, . . . , q, which is also an exponential polynomial of exponent α and degree
n.

In the next step, we first show that exponential polynomials can be reproduced if
ϕ is composed of exponential B-splines of identical degree and containing the same
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poles. Then we conclude that, because the reproduction of exponential polynomials
is preserved through convolution, ϕ also reproduces these exponential polynomials.

By (6.22) and (6.24) and using exponential B-splines of the same degree, we
write

p∑
k=0

ak
∑
l∈Z

pk[l]

(
λNβαn0

(t+
N

2
− l) +

N−1∑
n=bN/2c+1

λn
(
βαn0

(t+
N

2
− l) + βαn0

(t− N

2
− l)

))

= P p
α,−N2

(t)

(
λN +

N−1∑
n=bN/2c+1

λn

)
+

N−1∑
n=bN/2c+1

λnP
p

α,N2 −n
(t)

(6.25)

for p = 0, . . . , q, which is also an exponential polynomial with the same degree and
exponent as its constituents.

The next step of the proof relies on a proposition originally stated by Unser and
Blu in [63], which we recall here for the sake of completeness.

Proposition 14 (Unser and Blu [63]). Let ψα be a function that reproduces the
exponential polynomials in span{eαt, . . . , tpeαt}. Then, for any compactly supported
function ψ such that

´
R ψ(t)e−αtdt 6= 0, the composite function ψ ∗ ψα also repro-

duces these exponential polynomials (where ∗ denotes the convolution product).

Using this proposition, we deduce that, for n ∈ [n0, N ], the convolution product

βαn\αn0
∗ βαn0

(6.26)

preserves the exponential reproduction properties of βαn0
. Note that in (6.26), the

term βαn0\αn0
= 1.

From the definition of the interpolatory basis function (6.19) and by combin-
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ing (6.25) and (6.26), we obtain

p∑
k=0

ak
∑
l∈Z

p̃k[l]ϕ(t− l) =

p∑
k=0

ak
∑
l∈Z

p̃k[l]

(
λNβαN (t+

N

2
− l) +

N−1∑
n=bN/2c+1

λn
(
βαn(t+

N

2
− l) + βαn(t− N

2
− l)

))

=

p∑
k=0

ak
∑
l∈Z

p̃k[l]

(
λN
(
βαN\αn0

∗ βαn0

)
(t+

N

2
− l)

+
N−1∑

n=bN/2c+1

λn

(
βαn\αn0

∗
(
βαn0

+ βαn0
(· −N)

))
(t+

N

2
− l)

)
,

(6.27)

where p̃k is a suitable sequence of coefficients. Therefore, from (6.27) we see that
ϕ also reproduces the exponential polynomials given by (6.25) up to degree q and
exponent α, where α ∈ αn0

is of multiplicity q + 1.

Regularity The regularity of the proposed interpolator depends on the exponen-
tial B-spline of lowest order that is involved in the construction of ϕ. Hence, ϕ
belongs to Cn0−2.

Order of Approximation. If the poles of the constructed interpolators are of
the form α = πx

M , x ∈ C, and if M is related to the number of control points, then
the definition of the interpolator (6.19) implies that, as M → ∞, ϕ converges to
piecewise-polynomial interpolators that have an (n0)th order of approximation (by
the Strang-Fix equivalence [147, 61]). Such interpolators are of special interest for
the construction of particular shapes (see Section 6.3.3).

In the following, we give concrete examples of interpolatory basis functions that
are derived from (6.19).
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6.2.4 Examples of Interpolators and Applications

Polynomial Bases

If the pole vector entirely consists of zeroes, the basis function is a sum of polynomial
B-splines and hence is piecewise polynomial. For example, the 4th-order basis
corresponds to the Keys interpolation kernel [127]. These basis functions are all
symmetric. Some examples are shown in Figure 6.3.
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Figure 6.3: Examples of polynomial-reproducing interpolators. Their
poles are all equal to zero and their respective order corresponds to N =
4, . . . , 7, and is equal to their support. The basis function that corresponds
to N = 4 represents the Keys interpolator [127].

Trigonometric and Hyperbolic Bases

Trigonometric and hyperbolic functions take special relevance within computational
geometry. Exponential splines that are able to reproduce (hyberbolic) sines and
cosines can be used to construct the desired interpolatory basis functions. Because
the exponents involved in the representation of (hyperbolic) sinusoidal functions
come in pairs of opposite sign, the resulting basis functions are symmetric as a
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consequence of the symmetry of their elementary constituents. Some hyperbolic
and trigonometric interpolators are shown in Figure 6.4.
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Figure 6.4: Hyperbolic (left) and trigonometric (right) interpolators.
Left: 4th-order interpolating functions are shown that were constructed
with different lists of poles indicated by α. Right: Trigonometric inter-
polators. The two interpolators correspond to 4th and 5th order with
αn0

= (0, 2jπ
3 ,− 2jπ

3 ).

Larger Support Interpolators

For the sake of completeness, we also provide an example of how to construct in-
terpolators by choosing n0 and N such that the corresponding system of equations
is over-determined (see Section 6.2.3). Such situations arise if either for a given
αn0

a corresponding N > Nmin = 2(n0 − 1) is chosen or if for a given N a corre-
sponding n0 < bN/2c+ 1 is chosen. In both cases, the weights λn for (N −Nmin)
terms in (6.19) can be chosen arbitrarily. Our experiments show that such inter-
polators that are constructed by solving an overdetermined system of equations
tend to oscillate more than their “smallest” support counterparts. Examples are
shown in Figure 6.6 (middle and right), where we constructed 6th- and 7th-order
interpolators.

6.2.5 Applications

In this section, we show how idealized parametric curves and surfaces (such as el-
lipses and ellipsoids) can be reproduced using the proposed interpolators. Such
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shapes can be constructed independently of the number of control points, which
makes them particularly useful for deformable models where, when starting from
an initial configuration, it is desirable to approximate shapes with arbitrary preci-
sion [84, 85, 86, 79]. We construct symmetric interpolators that have the smallest
support given αn0

as described in Section 6.2.3.

Reproduction of Parametric Curves

Reproduction of Ellipses. Here we explicitly show how ellipses are reproduced
within our framework. We consider the lowest order, which is N = 4. The condition
for being able to reconstruct an ellipse with M control points is αn0 = α3 :=
(0, j2π

M ,− j2π
M ). Therefore, by applying (6.19), the interpolator is

ϕ(t) = λ4βα4(t+ 2) + λ3

(
βα3(t+ 2) + βα3(t+ 1)

)
(6.28)

with α4 = (0, 0, j2π
M ,− j2π

M ) and the λn which are found by solving (6.20). Specifi-
cally, we end up with the system of equations

{
0 = λ4βα4

(1) + λ3

(
βα3

(1) + βα3
(0)
)

= λ4βα4
(1) + λ3βα3

(1)

1 = λ4βα4
(2) + λ3

(
βα3

(2) + βα3
(1)
)

= λ4βα4
(2) + 2λ3βα3

(2)
(6.29)

whose solution is

λ3(M) =
π2 csc

(
π
M

)
csc
(

2π
M

) (
M − 2π csc

(
2π
M

))
M2

(
M sec

(
π
M

)
− π csc

(
π
M

)) (6.30)

and

λ4(M) =
π3 sec2

(
π
M

)
M2

(
M tan

(
π
M

)
− π

) . (6.31)

To reproduce cos(2π
M ·), we take advantage of the interpolation property which yields

cos(
2π

M
t) =

∑
k∈Z

ej 2πM k + e−j 2πM k

2
ϕ(t− k), (6.32)
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where the coefficients are the integer samples of the curve. Normalizing the period
of the cosine and using the M -periodized basis functions

ϕM (Mt− k) =
+∞∑

n=−∞
ϕ(M(t− n)− k), (6.33)

we express the cosine as

cos(2πt) =
M−1∑
k=0

cos

[
2πk

M

]
ϕM (Mt− k). (6.34)

In a similar way we obtain

sin(2πt) =
M−1∑
k=0

sin

[
2πk

M

]
ϕM (Mt− k). (6.35)

Plots of the trigonometric functions are shown in Figure 6.6 as well as the circle
obtained through the parametric equation r(t) = (cos(2πt), sin(2πt)).
Due to the choice of αn0

, we see that, as we increase the number M of control
points, ϕ converges to the 4th-order polynomial basis, which corresponds to the
Keys interpolator.
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Figure 6.5: Larger support interpolators. Left: Hyperbolic interpola-
tors; 5th-order interpolators are shown that were constructed with differ-
ent lists of poles α. Regarding the number of elements in α which is
equal to 3, their “smallest” support counterparts (which are shown in Fig-
ure 2) are constructed with Nmin = 2(3 − 1) = 4, whereas here N = 5
was chosen. Middle and right: Effect of including lower-order B-splines
in the construction of the interpolating function. If the order of the in-
terpolator is N , then the lowest-order B-spline involved in its construc-
tion must be at least n = bN/2c+ 1 (blue curves). If splines of lower or-
der than n = bN/2c+ 1 are used in the construction, the interpolating
function shows an oscillatory behaviour (red and magenta curves respec-
tively). Here we have used N = 6 (middle) and N = 7 (right) respectively
and hence, the required minimum-order B-spline involved corresponds to
n = n′0 = b6/2c+ 1 = b7/2c + 1 = 4 and the corresponding list of poles is
α = (0, 0, 0, 0) = αn′0 = αn0

∪ 0(bN/2c+1)−n0
= αn0

∪ 04−3 = (0, 0, 0)∪ (0).
In the construction of the red and magenta interpolators we have addition-
ally used a B-spline of order n = 3 which corresponds to α = (0, 0, 0) =
αn0 .
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Figure 5: cos(2⇡t) (top left) and sin(2⇡t) (top right) are shown together with the underlying

shifted basis functions corresponding to M = 3 and a shift k. Bottom: the circle obtained

with the parametric equation r(t) = (cos(2⇡t), sin(2⇡t)).

24

Figure 6.6: The functions cos(2πt) (top left) and sin(2πt) (top right) are
shown together respectively (blue curves) with the underlying shifted basis
functions (dashed curves) that correspond to M = 3 and the shift k. Note
that in the construction of the sine, the contribution of the basis function
corresponding to the shift k = 0 is zero because in (6.72) it is computed
through sin

[
2πk
M

]
ϕM (Mt− k) = 0 ·ϕM (Mt) = 0. Bottom: Circle obtained

with the parametric equation r(t) = (cos(2πt), sin(2πt)).
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Reproduction of Parametric Surfaces

Sphere. We can also reproduce spheres or ellipsoids by using the basis function
defined in (6.28). Similar to [86], a possible parameterization of the sphere is given
by

σ(u, v) =

x(u, v)
y(u, v)
z(u, v)

 =

cos(2πu) sin(πv)
sin(2πu) sin(πv)

cos(πv)


=

M1−1∑
k=0

M2+1∑
l=−1

c[k, l]ϕM1(M1u− k)ϕ(M2v − l)

(6.36)

where u, v ∈ [0, 1] and the control points are given by

c[k, l] =

cos
[

2πk
M1

]
sin
[

2πl
2M2

]
sin
[

2πk
M1

]
sin
[

2πl
2M2

]
cos
[

2πl
2M2

]
 . (6.37)

We choose M1 = 2M2 because the term that depends on u is 1-periodic while the
term that dependends on v is 2-periodic. The fact that l only needs to run from −1
to M2 +1 is due to the support of ϕ, which is equal to 4. The result is shown in the
top-left image of Figure 6.7. For comparison, we are also displaying the solutions
obtained by the non-interpolatory scheme described in [86]. While the displayed
shapes are the same in both cases, the essential difference is that the control points
of our proposed interpolators lie on the surface; a property that is useful if the
shape needs to be modified interactively. Because each control point is associated
to a limited number of compactly supported basis functions, moving its location
results in a local modification of the surface.

Torus. The torus can be reproduced in a way similar to the sphere. Again,
using the same basis function of our working example (6.28) and the standard
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parameterization of the torus, we obtain

σ(u, v) =

x(u, v)
y(u, v)
z(u, v)

 =

(R+ r cos(2πv)) cos(2πu)
(R+ r cos(2πv)) sin(2πu)

r sin(2πv)


=
M−1∑
k=0

M−1∑
l=0

c[k, l]ϕM (Mu− k)ϕM (Mv − l),

(6.38)

where u, v ∈ [0, 1] and the control points are obtained by sampling as(R+ r cos(2πv)) cos(2πu)
(R+ r cos(2πv)) sin(2πu)

r sin(2πv)

∣∣∣∣∣
u= k

M ,v= l
M

. (6.39)

The radii R and r of the torus can be chosen in an arbitrary way, without affecting
the shape but only the size of the surface. The resulting surface is shown in the
middle-left image in Figure 6.7.

“Figure 8” Immersion. The so-called “figure 8” immersion has a slightly more
complicated parameterization than the two previous examples. It is given by

σ(u, v) =

x(u, v)
y(u, v)
z(u, v)

 =

(r + cos(πu) sin(2πv)− sin(πu) sin(4πv)) cos(2πu)
(r + cos(πu) sin(2πv)− sin(πu) sin(4πv)) sin(2πu)

sin(πu) sin(2πv) + cos(πu) sin(4πv)


=

r cos(2πu) + 1
2 sin(2πv)

(
cos(πu) + cos(3πu)

)
− 1

2 sin(4πv)
(

sin(3πu)− sin(πu)
)

r sin(2πu) + 1
2 sin(2πv)

(
sin(πu) + sin(3πu)

)
− 1

2 sin(4πv)
(

cos(πu)− cos(3πu)
)

sin(πu) sin(πv) + cos(πu) sin(4πv)


(6.40)

where u, v ∈ [0, 1] and r > 2 is a constant. Hence, we notice that the frequencies
associated with the parameter u are π, 2π, and 3π, whereas the frequencies asso-
ciated with v are 2π and 4π. Therefore, we construct two interpolators, ϕ1 with
αϕ1 = ( jπ

M ,− jπ
M , j2π

M ,− j2π
M , j3π

M ,− j3π
M ) and ϕ2 with αϕ2 = ( j2π

M ,− j2π
M , j4π

M ,− j4π
M ).
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The expression for the tensor-product spline surface is then given by

σ(u, v) =

M1−1∑
k=0

M2−1∑
l=0

c[k, l]ϕ1,M1
(M1u− k)ϕ2,M2

(M2v − l), (6.41)

where ϕ1 and ϕ2 have been periodized and c[k, l] = σ(u, v)
∣∣
u=k,v=l

.

The resulting surface is shown at the bottom left in Figure 6.7.

6.2.6 Conclusion

We have characterized a new family of compactly supported interpolators that are
based on exponential B-splines. We have shown that they reproduce exponential
polynomials while being interpolating. We have illustrated how different members
of the family, such as polynomial, trigonometric, or hyperbolic interpolators of dif-
ferent orders can be constructed according to desirable reproduction properties. We
have also shown how the proposed interpolators can be used to represent parametric
curves and surfaces. The interpolation property ensures that the control points lie
on the curve or surface itself. This property is particularly useful for shape repre-
sentation or manipulation in user-interactive applications. The proposed family of
interpolating functions can be seen as a generalization of the polynomial Keys in-
terpolator to higher orders as well as its extension with respect to the reproduction
of exponential polynomials.
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Figure 6.7: Shape comparison. Interpolatory (left, blue) and non-
interpolatory control points (right, green). The basis functions that were
used to construct the non-interpolatory surfaces correspond to the ones
presented in [84]. For the non-interpolatory surfaces it is difficult and non-
intuitive to associate a given control point to the specific surface patch that
is modified when moving the control point through user-interaction.
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6.3 Interpolators for Shape Modeling with Vary-
ing Resolution

In this section, we present a modified version of the spline generators constructed
in the previous Section 6.2 that allow to modify the resolution of a shape.

In applications that involve interactive curve and surface modeling, the intuitive
manipulation of shapes is crucial. For instance, user interaction is facilitated if a
geometrical object can be manipulated through control points that interpolate the
shape itself. Additionally, models for shape representation often need to provide
local shape control and they need to be able to reproduce common shape primitives
such as ellipsoids, spheres, cylinders, or tori. We present a general framework to con-
struct families of compactly supported interpolators that are piece-wise-exponential
polynomial. They can be designed to satisfy regularity constraints of any order.
They enable one to build parametric deformable shape models by suitable com-
binations of interpolators that form a Riesz basis. The proposed generators are
obtained as a sum of exponential B-splines on the half-integer grid. They allow to
change the resolution of shapes based on the refinability of B-splines. Our proposed
family of generators can be designed to reproduce trigonometric, hyperbolic, and
polynomial functions, or combinations of them. We illustrate their use on exam-
ples to construct shape models that involve curves and surfaces with applications
to interactive modeling and character design.

6.3.1 Introduction

The interactive modeling of curves and surfaces is often desirable in applications
that involve the visualization of shapes. Related domains include computer graph-
ics [134, 54, 143, 148, 141, 42], image analysis in biomedical imaging [86, 43, 26, 79],
industrial shape design [128, 129, 130] or the modeling of animated surfaces [30].
Shape-modeling frameworks that allow for user interaction can usually be catego-
rized in either discrete or continuous-domain models. Discrete models are typically
based on interpolating polygon meshes or subdivision [32, 149, 35, 38, 133, 150] and
they easily allow to locally refine a shape. Subdivision models are also considered
as hybrids between discrete and continous-domain models because they iteratively
define continuous functions in the limit. However, the limit functions do not al-
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ways have a closed-form expression [144]. Continuous-domain models allow for
organic shape modeling and consist of Bézier shapes or spline-based models such
as NURBS [17, 25, 151]. They allow one to control shapes locally due to their com-
pactly supported basis functions. However, NURBS generally cannot be smooth
and interpolating at the same time, which leads to a non-intuitive manipulation of
shapes because NURBS control points do not lie on the boundary of the object.

Motivation and Contribution

Our motivation is the practical need for interpolating functions to be used in user-
interactive applications4 (see Figures 6.8 and 6.9). In this article, we present
a general framework that combines the best of the discrete and continuous world:
smooth and compactly supported basis functions, which are defined in the continuous
domain satisfying the interpolation condition and allowing to vary the resolution of
a constructed shape. In interactive shape modeling these properties allow for the
following key attributes:

• Organic shape modeling: smoothness enables a continuously defined tangent
plane and Gaussian curvature at any point on the surface, which facilitates
realistic texturing and rendering of shapes;

• Local shape control: compact support combined with the interpolation prop-
erty of the basis functions guarantees precise and direct shape interaction and
an intuitive modeling process.

• Detailed surfacing: few parameters are required at the initial stage of model-
ing, while varying the resolution of the shape allows the user to increase the
number of control points when more details are to be modeled.

4Videos that illustrate the use and advantage of our proposed framework can be found at
http://bigwww.epfl.ch/demo/varying-resolution-interpolator/.
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initial designadding details!
(3 iterations)

Figure 6.8: Interactive shape modeling for character design. Remodel-
ing of the foot of the “T-rex” is shown. A bone of the middle toe of the
right foot is modeled; first, an initial design is achieved with few control
points that interpolate the shape (bottom, right). Then, the resolution
is increased by applying three refinement iterations in order to have more
flexibility to add details to the bone (bottom, middle). Due to conver-
gence of our modified refinement scheme, after three iterations it behaves
interpolatory-like.

The “T-rex” has been remodeled after the character designed by Joel Anderson, source: http://joel3d.com/
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(a) Torus. (b) “Figure 8” immersion.

(c) Helicoid. (d) Pinched torus.

Figure 6.9: Parametric surfaces constructed with the proposed family of
interpolators. If the parameterization of a shape is known, we provide the
formulae to construct the corresponding interpolator in order to represent
the shape as detailed in Section 6.3.3. The interpolation property ensures
that the control points (blue points) interpolate the surface. This property
is particularly useful in user-interactive applications, where a surface is
modified by dragging control points (e.g. as previously demonstrated in
[76, 77, 27, 28])
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Our framework consists of a new family of compactly supported interpolators that
are linear combinations of shifted exponential B-splines on the half-integer grid.
This allows us to harness useful properties of B-splines which can be transferred to
the interpolators. We first derive general results and define the construction prob-
lem together with necessary constraints and conditions. We then establish relevant
reproduction properties and show that, under suitable conditions, the integer shifts
of the generators form a Riesz basis, which guarantees a unique and stable repre-
sentation of the parametric shapes used in practice. The generators are compactly
supported. Their degree of regularity can be increased at will.

We further propose an algorithm to change the resolution of the generators
which, in turn, allows us to change the resolution of the shapes. This demands
that the generators be expressed as a linear combination of finer-resolution basis
functions. For this purpose, we propose a refinement scheme associated to our
generators by introducing a “pre-refinement” step such that the resulting refinement
converges to the interpolator itself. We finally apply the derived general results to
characterize a family of symmetric and smooth interpolators that are at least in C1

and have minimum support.

Finally, we present detailed applications that involve character design (Fig-
ure 6.8) as well as the design of idealized parametric shapes (Figure 6.9).

More specifically, Sections 6.3.3 and 6.3.3 are the main technical contributions,
whereas in Section 6.3.3 we present practical applications which motivate this ar-
ticle.

Related Work

Recently, a method to build piecewise-polynomial interpolators has been presented
in [55, 142]. The present work is the continuation of our previous efforts to, first,
generalize the popular Catmull-Rom [16] and Keys [127, 145] interpolators for prac-
tical applications [76, 77, 80, 27, 28] and, next, to go one step further and construct
families of interpolators that allow for varying the resolution of a shape [152, 153].
Here, the novelty w.r.t. [77] is that the presented framework allows one to vary
the resolution of shapes which facilitates shape design in practice as illustrated in
Section 6.3.3.
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6.3.2 Exponential B-Splines

As in Section 6.2.2, again we exploit the link between exponential B-splines and
differential operators. This is crucial to understand the properties of the proposed
family of splines. For a more in-depth characterization of exponential B-splines, we
refer the reader to [63].

Operators and Reproduction of Null-Space Components

We use a similar notation as introduced in Section 6.2.2. With a slight abuse of
notation we denote by βα the centered (hence, non-causal) exponential B-spline,
whose support is [−n0/2, n0/2]. We have therefore

βα(t) = β+
α(t+ n0/2), (6.42)

with β+
α being the causal B-spline defined in (6.16). Similarly, we denote by ∆α the

centered discrete operator, whose impulse response is equal to the one of its causal
counterpart ∆+

α shifted by (−n0/2). The reason for introducing centered B-splines
and operators is that we shall define interpolators that are symmetric around the
origin and, hence, centered.

6.3.3 General Characterization of the Interpolator

We consider generators that are constructed as a sum of half-integer shifted versions
of a given exponential B-spline βα.

Definition 7. For a sequence λ ∈ `1(Z) and α a vector of roots, we define

φλ,α(t) :=
∑
n∈Z

λ[n]βα

(
t− n

2

)
. (6.43)

In the frequency domain, we then have

φ̂λ,α(ω) =

(∑
n∈Z

λ[n]e−jωn/2

)
β̂α(ω). (6.44)

In what follows, we state the desired mathematical properties that the generator
φλ,α should satisfy.
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I The generator φλ,α is interpolatory, in the sense that, for any function f ∈
span{φλ,α(·−k)}k∈Z, we have f(t) =

∑
k∈Z f(k)φλ,α(t−k). This is equivalent

to the interpolation condition

φλ,α(t)
∣∣
t=k

= δ[k], (6.45)

where δ[k] represents the Kronecker delta.

II The generator φλ,α is compactly supported, which implies that λ has a finite
number of non-zero values.

III The function φλ,α is smooth with at least a continuous derivative.

IV The family of the integer shifts of the generator {φλ,α(·−k)}k∈Z forms a Riesz
basis.

V The generator φλ,α preserves the reproduction properties of the associated
exponential B-spline βα, in the sense that it is capable of reproducing the
null-space components of the operator Lα defined in (6.13).

VI The generator φλ,α allows one to represent shapes at various resolutions.

We choose equi-spaced half-integer shifts of the exponential B-splines in Defini-
tion 7. The reason is that our problem has no solution using only integer shifts
under Conditions I), II), and III): There is no smooth and compactly supported
interpolator of the form

∑
k∈Z λ[k]βα(t− k). This can easily be verified, for exam-

ple by plugging any polynomial B-spline into Definition 7 and using integer shifts
while imposing the interpolation conditions: It turns out that there are not enough
degrees of freedom to solve the problem due to the compact support of the B-splines
as well as the smoothness condition, which forces the degree of the B-spline to be
greater than 1. Furthermore, by using half-integer shifts, we guarantee that our
solution lives in the spline space of the next finer resolution; a property that can
be exploited in practice, as detailed in Section 6.3.3.
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Riesz Basis

We consider the space

V (φλ,α) =

{∑
n∈Z

c[n]φλ,α(· − n), c ∈ `2(Z)

}
(6.46)

of functions that is generated by the integer shifts of φλ,α. The Riesz basis property
ensures that the representation of a function in V (φλ,α) is stable and unique. Thus,
the family of functions {φλ,α(· − n)}n∈Z should form a Riesz basis of V (φλ,α). We
show in this section that this is the case if {βα(·−n)}n∈Z is itself a Riesz basis and
if φλ,α is interpolatory.

Definition 8. The family {ϕn}n∈Z of functions forms a Riesz basis if

A‖c‖`2(Z) ≤
∥∥∥∥∥∑
n∈Z

c[n]ϕn

∥∥∥∥∥
L2(R)

≤ B‖c‖`2(Z) (6.47)

for some constants A,B > 0 and any sequence c = (c[n])n∈Z ∈ `2(Z).

When ϕn = ϕ(· − n), (6.47) is equivalent to the Fourier-domain condition

A2 ≤
∑
k∈Z
|ϕ̂(ω − 2kπ)|2 ≤ B2 (6.48)

for any ω ∈ R [81]. The family {βα(· −n)}n∈Z is a Riesz basis when α is such that
αn−αm 6= 2kπj, k ∈ Z, for any pair of distinct purely imaginary roots αm, αn ∈ α
[63, Theorem 1].

Proposition 15. Let α be such that αn − αm 6= 2kπj, k ∈ Z, for any pair of
distinct purely imaginary roots αm, αn ∈ α. For any sequence λ ∈ `1(Z), if the
basis function φλ,α is interpolatory, then the family {φλ,α(· − n)}n∈Z is a Riesz
basis.

The proof is given in 6.4.1 as well as an estimate of the Riesz Bounds.
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Reproduction Properties

Proposition 16. Let α be a vector of roots. We assume that λ ∈ `1(Z) satisfies
the conditions

∑
n∈Z
|λ[n]|e−αn/2 <∞, (6.49)∑

n∈Z
λ[n]e−αn/2 6= 0 (6.50)

for every α ∈ α. Then, the basis function φλ,α has the same reproduction proper-
ties as the corresponding exponential B-spline βα. In particular, it reproduces the
exponential polynomials

tn−1eα(m)t (6.51)

for m = 1, . . . , nd and n = 1, . . . , n(m), where we use the notations defined in
Section 6.2.2.

Note that (6.49) is always satisfied as soon as φλ,α is compactly supported. The
proof of Proposition 16 is given in Appendix 6.4.2.

Regularity

From Definition 7, it immediately follows that φλ,α has the same regularity as the
exponential B-spline βα if λ 6= 0. Hence, φλ,α belongs to Cn0−2 [63, Section III-A].

Varying the Resolution of the Generator

The causal exponential B-spline β+
α is refinable, in the sense that its dilation by an

integer m can be expressed as a linear combination of β+
α/m(· − k). This is what

we refer to as the resolution of the basis function. We shall see how this prop-
erty translates for the function φλ,α. For this purpose, we first revisit the m-scale
relation for exponential B-splines. For convenience, we express the corresponding
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terms with respect to causal (non-centered) B-splines. In practice, we always con-
sider symmetric interpolators φλ,α with support [−(n0 − 1), n0 − 1] (see Section
6.3.3). Therefore, we define the shifted and causal version of the interpolator as

φ+
λ,α(t) = φλ,α(t− (n0 − 1)). (6.52)

Every causal formula is easily adapted to the centered case by applying a shift
operation similar to (6.52). We follow the notations of [63], where an in-depth
discussion on the refinability of exponential B-splines can be found.

As shown in [63, Section IV-D], the dilation by an integer m ∈ N \ {0} of an
exponential B-spline is expressed in the space domain as

β+
α

(
t

m

)
=
∑
k∈Z

h α
m ,m

[k]β+
α
m

(t− k), (6.53)

where the refinement filter hα,m is specified by its Fourier transform

Hα,m(ejω) =
1

mn0−1

n0∏
n=1

(m−1∑
k=0

eαnke−jkω

)
. (6.54)

As we shall see, it is impossible to establish a similar relation for the interpolator
φ+
λ,α. However, we can exploit the refinability of the corresponding spline β+

α to

express the dilation of φ+
λ,α.

For α a vector of roots, λ ∈ `1(Z), and m0 an even integer, we define the digital
pre-filter gλ,α,m0 by its Fourier transform

Gλ,α,m0
(ejω) = e−jωm0(n0/2−1)

(∑
n∈Z

λ[n]e−jωnm0/2

)
H α

m0
,m0

(ejω). (6.55)

The term e−jωm0(n0/2−1) is due to the fact that βα and φλ,α do not have the same
support in general. The pre-filter allows us to express φ+

λ,α dilated by m0 as a

linear combination of the refined shifted B-splines β+
α
m0

(· − k). Note that Gλ,α,m0

is a valid Fourier transform of a digital filter (i.e., a function of ejω) only for even
m0.
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Proposition 17. Let α be a vector of roots, λ ∈ `1(Z), and m0 be an even integer.
Then, we have

φ+
λ,α

(
t

m0

)
=
∑
k∈Z

gλ, α
m0

,m0
[k]β+

α
m0

(t− k). (6.56)

The proof is given in Appendix 6.4.3.

Modified Refinement Scheme Based on Exponential B-Splines. Using
Proposition 17, we are able to express a function which is constructed with the
interpolator φ+

λ,α in an exponential B-spline basis. Starting with the samples
c[k] = f(t)|t=k∈Z of a continuously defined function f(·) that can be perfectly re-
constructed, i.e., f ∈ span{φ+

λ,α(· − k)}k∈Z, we have

f(t) =
∑
k∈Z

c[k]φ+
λ,α(t− k)

=
∑
k∈Z

c[k]
∑
l∈Z

gλ, α
m0

,m0
[l]β+

α
m0

(m0(t− k)− l)

=
∑
k∈Z

∑
l∈Z

c[k]gλ, α
m0

,m0
[l]β+

α
m0

(m0t−m0k − l)

=
∑
l∈Z

c0[l]β+
α
m0

(m0t− l) (6.57)

with

c0[l] =

(
c↑m0 ∗ gλ, α

m0
,m0

)
[l], (6.58)

where ↑ m0 denotes the upsampling by a factor m0.
Equation (6.57) shows that a function that is originally expressed in the basis

generated by φ+
λ,α can be expressed in a corresponding exponential B-spline basis

with respect to a finer grid. This suggests that, after having performed the change of
basis described by (6.57), the resolution of f can be further refined by applying the
standard iterative B-spline refinement rules. At this point, it is interesting to take a
deeper look into the relation between the interpolated function f and the sequence
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c of samples as we iteratively refine it. As will become apparent in the application-
oriented Section 6.3.3, a parametric shape is described by coordinate functions
whose samples build 2D or 3D vectors of control points. Repositioning of these
control points allows us to locally modify the shape, while the iterative refinement
of the control points allows us to iteratively increase the local control over the
shape. Hence, for practical purposes, it is convenient to study the convergence of
the refinement process as the number of iterations becomes large. Proposition 18
describes the refinement scheme and provides the corresponding convergence result.

Proposition 18. Let α be a vector of roots and λ ∈ `1(Z). For a continuous
function f with samples f(t)|t=k∈Z = c[k] and the integers m,m0, with m0 being
even, we consider the iterative scheme specified by

1. pre-filter step: c0[k] = (gλ, α
m0

,m0
∗ c↑m0

)[k];

2. iterative steps: for n ≥ 1, cn[k] = (h α
m0m

n ,m ∗ (cn−1)↑m)[k].

Then, the iterative scheme is convergent, in the sense that∑
k∈Z

cn[k]δ (m0m
nt− k) −→

n→∞
f(t). (6.59)

The proof is given in Appendix 6.4.4.

Example. We illustrate how to refine the resolution of a circle by applying Propo-
sition 18. To efficiently take advantage of the interpolation property, we apply
the “pre-refinement” step (6.58) at the first iteration. For the subsequent itera-
tions, we apply the standard refinement given by (6.54) as described by Proposi-
tion 18. By doing so, we see that the iterative scheme converges towards the circle
r(t) =

∑
l∈Z c0[l]β+

α
m0

(m0t− l) =
∑
k∈Z r[k]φ+

α(t− k). The result of the algorithm

is shown in Figure 6.10. In Section 6.3.3, we provide the exact details on how to
reconstruct the circle with our framwork.
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Figure 6.10: Refined circle. The parametric circle is first constructed
using the proposed interpolator and α = (0, 2jπ

3 ,− 2jπ
3 ) (top left). At the

first iteration, the “pre-refinement” mask is applied to the initial control
points according to (6.58) (top right), whereas at the subsequent iterations
the standard refinement mask for exponential B-splines (6.54) is applied
(bottom, from left to right). In the bottom right, we see how the iterative
process converges towards the continuously defined circle.
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Construction of a Family of Compactly Supported Interpolators in Prac-
tice

There exists no exponential B-spline βα that is interpolatory and smooth (i.e., at
least in C1) at the same time. Our goal is to construct a compactly supported
generator function that has the same smoothness and reproduction properties as
βα while also being interpolatory. In order to meet the smoothness constraints,
we require the number of elements of α to be n0 ≥ 3 in accordance with Section
6.3.3. Furthermore, we want the interpolator to be symmetric, which implies that
the elements of α are either zero or come in pairs with opposite signs [63]. Using
Definition 7 and the conditions described in Section 6.3.3, we are looking for the
interpolator with minimal support.

Introductory Example: The Quadratic B-Spline. We illustrate the con-
cept with a simple example that uses quadratic polynomial B-splines, which are
constructed with α = α0 = (0, 0, 0) in (6.16) and whose support is of size 3. The
interpolation constraint combined with the half-integer shifts demand that λ con-
tains at least three non-zero values to have enough degrees of freedom. This also
implies that the minimum-support interpolator is constructed with no more than
three non-zero elements of λ. To satisfy the symmetry constraints, we center the
shifted B-splines around the origin and enforce λ[1] = λ[−1]. Hence, our generator
must take the form

φλ,α0(t) = λ[1]βα0(t− 1

2
) + λ[0]βα0(t) + λ[−1]βα0(t+

1

2
)

= λ[0]βα0(t) + λ[1]
(
βα0(t− 1

2
) + βα0(t+

1

2
)
)
.

(6.60)

Since α0 has n0 = 3 elements, the support of the interpolator is N = 2(n0 − 1) =
4. The interpolator itself is supported in [−(n0 − 1), (n0 − 1)] = [−2, 2]. The
interpolation condition is expressed as{

φλ,α0(0) = 1

φλ,α0(1) = 0.

We define the matrix
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Aα0 =

(
βα0(0) βα0(−1/2) + βα0(1/2)
βα0(1) βα0(1− 1/2) + βα0(1 + 1/2)

)
=

(
3
4 1
1
8

1
2

)
and rewrite the interpolation constraint as (λ[0], λ[1]) = A−1

α0
(1, 0) = (1,− 1

2 ). The
resulting interpolator is shown in Figure 6.11.

The General Case. In what follows, we only consider vector of poles α for which
αn −αm 6= 2kπj, k ∈ Z for all pairs of distinct, purely imaginary roots αm, αn ∈ α
(Riesz Basis property). We generalize the above example to construct symmetric
and compactly supported interpolators of any order and that are of the form

φλ,α(t) := λ[0]βα(t) +

n0−2∑
n=1

λ[n] (βα(t− n/2) + βα(t+ n/2)) , (6.61)

whose support is included5 in [−N/2, N/2] = [−(n0 − 1), n0 − 1]. We easily pass
from the general representation (6.43) to (6.61), adapted to the symmetric and
compactly supported case, by setting λ[n] = 0 when |n| ≥ n0−1 (support condition)
and λ[−n] = λ[n] for every n (symmetry condition).

The function φλ,α is interpolatory if and only if

φλ,α(0) = 1 and φλ,α(1) = · · · = φλ,α(n0 − 2) = 0. (6.62)

This defines a linear system with (n0−1) unknown non-zero elements of λ, {λ[0], . . . , λ[n0−
2]}, and (n0 − 1) equations. The system (6.62) has a solution if the matrix

Aα ∈ R(n0−1)2 defined for k, l = 0, . . . , (n0 − 2) by

[Aα]k+1,l+1 =

{
βα(k) if l = 0

βα(k − l/2) + βα(k + l/2) else
(6.63)

is invertible. In this case, we have

λ = (λ[0], . . . , λ[n0 − 2]) = A−1
α (1, 0, . . . , 0). (6.64)

5The support is exactly [−N/2, N/2] when λ[n] is non-zero for n = 0, . . . , (n0 − 2), which is
always the case in the examples we have considered.
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Knowing α, we can easily check if the matrix Aα is invertible, which is the case for
all the examples that we tested (we have already seen that it is true for α = (0, 0, 0)
is Section 6.3.3). From (6.64), we see that λ is completely determined by α. This
motivates Definition 9.

Definition 9. Let α be a vector of roots whose elements are either zero or come
in pairs with opposite signs. If the matrix Aα defined in (6.63) is invertible, then
the interpolatory basis function φα is defined as

φα := φλ,α, (6.65)

with λ defined by (6.64).

We conjecture that the matrix Aα is always invertible, and that we always can
define an interpolator φα for any list of roots α. In the remaining of this article,
we assume that Aα is invertible and, therefore, that φα is well-defined. Under
this assumption, the unicity of the vector λ ensures that the interpolator φα in
Definition 9 has minimal support among the interpolators of the form (6.43).

In practice, the type of interpolator that needs to be constructed depends on
the parametric shape that is represented. For instance, for a rectangular surface,
a polynomial interpolator is required and the vector α of roots will have to con-
sist of zeros. If instead we aim at representing circles, spheres, or ellipsoids (see
Section 6.3.3), whose coordinate functions are trigonometric, we need to construct
interpolators that preserve sinusoids. Therefore, α will contain pairs of purely
imaginary roots with opposite signs. Similarly, we can reproduce hyperbolic shapes
by picking an α that contains pairs of real roots with opposite signs. If an inter-
polator is required to reproduce both trigonometric and polynomial shapes, e.g.,
to construct a cylinder, then the corresponding polynomial and trigonometric root
vectors are concatenated to construct α. Examples of different interpolators are
shown in Figure 6.11.
We now summarize the properties of the generator φα for α a vector of roots of size
n0 ≥ 3 such that αn − αm 6= 2kπj, k ∈ Z, for any pair of distinct purely imaginary
roots αm, αn ∈ α . These properties are in accordance with Conditions I to VI in
Section 6.3.3.

• The function φα is interpolatory.

• The function φα is compactly supported in [−(n0 − 1), n0 − 1].
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Figure 6.11: Different types of interpolators: polynomial interpola-
tor (black, solid curve) with α = (0, 0, 0). The number of poles is
equal to 3. Trigonometric interpolator (red, dashed curve): the non-zero
poles are purely imaginary and come in pairs with opposite signs (e.g.,
α = (0, 0, j2π

3 ,− j2π
3 )). Hyperbolic interpolator (blue, dot-dashed curve):

the non-zero poles are real and come in pairs with opposite signs (e.g.,
α = (0, 2π

3 ,− 2π
3 )).

• The function φα has the minimal support among the interpolators that are
linear combinations of shifted exponential B-splines on the half-integer grid.

• The function φα is in Cn0−2 and therefore, at least in C1.

• The family {φα(· − n)}n∈Z is a Riesz basis.

• The family {φα(· − n)}n∈Z reproduces the null-space components of the op-
erator Lα (see Section 6.3.2).

• The function φα is refinable in the sense explained in Section 6.3.3.
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Remark. The presented interpolators are not (entirely) positive (see Figure 6.11)
and thus, do not satisfy the convex-hull-property. However, the popularity of the
Catmull-Rom splines [16] in computer graphics shows that in interactive shape
modeling, one prefers to use interpolators at the expense of the convex-hull property.
As a side note, our experiments have shown that when using more than 90’000
control points, oscillations on the surface of a shape might start to appear. Since in
a typical interactive shape modeling process the number of control points is much
smaller, e.g., between 10 and 500, the oscillating phenomena are negligible.

Applications

In this section, we show how parametric curves and surfaces are constructed using
the proposed spline bases. Such shapes can be constructed independently of the
number of control points. This makes them particularly useful for deformable
models where, starting from an initial configuration, one aims at approximating a
target shape with arbitrary precision [81].

Reproduction of Idealized Shapes. We consider curves and surfaces that are
described by the coordinate functions rx(t), ry(t), and rz(t), with t ∈ R. The
coordinate functions are expressed by a linear combination of weighted integer
shifts of the generator φα. Due to the interpolation property of the generator,
the weights simply correspond to the samples of the coordinate functions. Such a
parametric curve is expressed as

r(t) =

rx(t)
ry(t)
rz(t)

 =
∑
k∈Z

r[k]φα(t− k), (6.66)

where the coefficients r[k] = (rx[k], ry[k], rz[k]) with k ∈ Z are the control points.
The curve (7.1) can be locally modified by changing the position of a single control
point. The shapes that r can adopt (e.g., polynomial, circular, elliptic) depend on
the properties of the generator.

One can also extend the curve model (7.1) to represent separable tensor-product
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surfaces. In this case, a surface σ is parameterized by u, v ∈ R as

σ(u, v) =

σx(u, v)
σy(u, v)
σz(u, v)

 =

r1,x(u) · r2,x(v)
r1,y(u) · r2,y(v)
r1,z(u) · r2,z(v)


=
∑
k∈Z

r1[k]φα1
(u− k)×

∑
l∈Z

r2[l]φα2
(v − l)

=
∑
k∈Z

∑
l∈Z

r1[k]× r2[l]︸ ︷︷ ︸
σ[k,l]

φα1
(u− k)φα2

(v − l),

(6.67)

where “×” denotes the element-wise multiplication of two vectors. Finally, one
generalizes (7.2) to represent surfaces with a non-separable parameterization as

σ(u, v) =
∑
k∈Z

∑
l∈Z

σ[k, l]φα1
(u− k)φα2

(v − l). (6.68)

Reproduction of Ellipses. We now explicitly show how ellipses can be repro-
duced using our proposed interpolatory basis functions. To construct the ellipses
as a function of the number of control points M , we choose α =

(
0, j2πM ,− j2πM

)
and, hence, n0 = 3. The interpolator is obtained by Definition 9 and by solving
the corresponding system of equations (6.62). The non-zero values of the sequence
λ are

λ[0] =
π2 csc2

(
π

2M

)
sec
(
π
M

)
4M2

and

λ[1] = λ[−1] = −π
2 csc

(
π
M

)
csc
(

2π
M

)
M2

.

To reproduce cos
(

2π
M ·
)
, we take advantage of the interpolation property, which

yields

cos

(
2π

M
t

)
=
∑
k∈Z

ej 2πM k + e−j 2πM k

2
φα(t− k), (6.69)
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where the coefficients are the integer samples of the curve. Normalizing the period
of the cosine and using the M -periodized basis functions

φα,M (t) =
∑
k∈Z

φα(t−Mk), (6.70)

we express the cosine as

cos(2πt) =
M−1∑
k=0

cos

(
2πk

M

)
φα,M (Mt− k). (6.71)

In a similar way we obtain

sin(2πt) =
M−1∑
k=0

sin

(
2πk

M

)
φα,M (Mt− k). (6.72)

Plots of the trigonometric functions are shown in Figure 6.12 as well as the circle
obtained through the parametric equation r(t) = (cos(2πt), sin(2πt)). Ellipses can
be constructed by simply applying an affine transformation to the circle r. In order
to guarantee a representation that does not depend on the location and orientation
of the curve, it must be affine invariant. This is ensured if the interpolator satisfies
the partition of unity

∑
k∈Z φα,M (· − k) = 1, which implies that it must reproduce

zero-degree polynomials (i.e., the constants). Hence, we need that 0 ∈ α.
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Figure 6.12: Top row: reproduction of the cosine (left) and sine (right)
for M = 3. The weighted and shifted basis functions are represented by
dashed lines. The reconstructed parametric circle is shown in the bottom
row (black) with the interpolatory control points (shown in red on the
boundary of the circle).
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Reproduction of the Roman surface. The standard parameterization of the
Roman surface is specified by

σ(u, v) =

 1
2r

2 cos(2πu) sin(4πv)
1
2r

2 sin(2πu) sin(4πv)
r2 cos(2πu) sin(2πu) cos2(2πv)

 (6.73)

=

 1
2r

2 cos(2πu) sin(4πv)
1
2r

2 sin(2πu) sin(4πv)
1
4r

2 sin(4πu)(1 + cos(4πv)

 , (u, v) ∈ R2. (6.74)

We parameterize (6.73) as a tensor-product surface of the form (7.2) and denote
by M1 and M2 the number of control points related to φα1 and φα2 , respectively.
The surface is trigonometric in u and v. Hence, we choose to construct the inter-

polators φα1 and φα2 with α1 =
(

2jπ
M1

, −2jπ
M1

, 4jπ
M1

, −4jπ
M1

)
and α2 =

(
0, 4jπ

M2
, −4jπ
M2

)
to express (6.73) as

σ(u, v) =
∑
k∈Z

∑
l∈Z

σ[k, l]φα1
(M1u− k)φα2

(M2v − l). (6.75)

In order to satisfy the relation αn − αm 6= 2kπj, k ∈ Z for all pairs of distinct,
purely imaginary roots, we choose M1 = M2 = 5. To construct φα1

, we see that
n0 = 4 and N = 2(n0 − 1) = 6. Hence, the support of φα1

is of size 6. Following
(6.61), the interpolator is expressed as

φα1(t) = λ[0]βα1(t)+λ[1]

(
βα1(t− 1

2
)+βα1(t+

1

2
)

)
+λ[2]

(
βα1(t−1)+βα1(t+1)

)
.

By solving the corresponding system of equations (6.62) for the non-zero entries of
λ, we find λ[0] = 18.118, λ[1] = −10.128, and λ[2] = 1.730. For the construction of
φα2 , we have that n0 = 3 and N = 2(n0 − 1) = 4. The support of φα2 is therefore
equal to 4 and the interpolator is expressed as

φα2
(t) = λ[0]βα2

(t) + λ[1]

(
βα2

(t− 1

2
) + βα2

(t+
1

2
)

)
.

By solving (6.62), we find that λ[0] = 7.396 and λ[1] = −2.825.
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Since the generator is an interpolator, the control points of the surface are given
by its samples, specified by

σ(u, v)
∣∣
u=k,v=l

=

 1
2r

2 cos( 2πk
M1

) sin( 4πl
M2

)
1
2r

2 sin( 2πk
M1

) sin( 4πl
M2

)

r2 cos( 2πk
M1

) sin(2πk
M1

) cos2( 2πl
M2

)

 .

We choose (u, v) ∈ [0, 1]2 and r = 3. Then, the sums in (7.2) are finite due to the
compact support of the generators. The parameterization of the surface is given by

σ(u, v) =

M1+2∑
k=−2

M2+1∑
l=−1

σ[k, l]φα1(M1u− k)φα2(M2v − l).

The Roman surface is illustrated in Figure 6.13.
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Figure 6.13: Roman surface. The interpolators φα1 (blue) and φα2 (yel-
low) are shown as well as the reconstructed surface (right). The interpola-
tory control points are shown as blue dots on the surface.

Reproduction of a Hyperbolic Paraboloid. A parameterization of a hyper-
bolic paraboloid is given by
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σ(u, v) =

au cosh(v)
bu sinh(v)

hu2

 , (u, v) ∈ R2, (6.76)

where a, b, and h are constants. The paraboloid (6.76) is polynomial in u and

hyperbolic in v. Hence, we choose α1 = (0, 0, 0) and α2 =
(

0, 1
M2
, −1
M2

)
when

expressing (6.76) as the tensor-product surface

σ(u, v) =
∑
k∈Z

∑
l∈Z

σ[k, l]φα1
(M1u− k)φα2

(M2v − l).

To construct φα1 , we have that n0 = 3 and its support is equal to N = 2(n0−1) = 4.
The interpolator is expressed as

φα1
(t) = λ[0]βα1

(t) + λ[1]

(
βα1

(t− 1

2
) + βα1

(t+
1

2
)

)
.

Solving (6.62), we obtain λ[0] = 2 and λ[1] = − 1
2 .

For the construction of φα2 , we see that n0 = 3, N = 2(n0−1) = 4, and its support
is also of size 4. The interpolator is given by

φα2
(t) = λ[0]βα2

(t) + λ[1]

(
βα2

(t− 1

2
) + βα2

(t+
1

2
)

)
.

Solving (6.62) yields λ[0] = 1.968 and λ[1] = −0.489. As in the previous example,
the control points are obtained by sampling the surface, which leads to

σ(u, v)
∣∣
u=k,v=l

=

a k
M1

cosh( l
M2

)

b k
M1

sinh( l
M2

)

h( k
M1

)2

 .

We choose (u, v) ∈ [−1, 1]2, M1 = M2 = 3, a = b = 4 and h = 8. The corresponding
parameterization is

σ(u, v) =

M1+1∑
k=−M1−1

M2+1∑
l=−M2−1

σ[k, l]φα1
(M1u− k)φα2

(M2v − l).

The hyperbolic paraboloid is illustrated in Figure 6.14.
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Figure 6.14: Hyperbolic paraboloid. On the left the interpolator φα2

is shown. (φα1
is shown in Figure 6.11.) On the right the reconstructed

hyperbolic paraboloid with its interpolatory control points (blue dots) is
shown.

Interactive Shape Modeling. The presented interpolators are well suited to
be implemented in an interactive shape modeling framework, for instance, for CAD
design. The key properties in such a context are

• interpolation property: it allows to easily interact with the surface by displac-
ing control points with a computer mouse;

• varying resolution: once the “rough” outline of the shape is designed, the
details are modeled by increasing the resolution at specific locations.

Example: Character Design. The interpolation property is convenient to de-
sign complex shapes as shown in the first column in Figure 6.8 in order to obtain
a low resolution model. To increase the level of detail of the shape, we increase
the resolution of the surface by first applying the pre-refinement step (6.58) and
then the standard refinement mask for (exponential) B-splines (6.54). These two
steps increase the number of control points, however, at the expense of being in-
terpolatory. This increase in the number of control points allows one to have more
flexibility in the modeling process. Furthermore, after few iterations the conver-
gence of the proposed modified refinement scheme allows for an interpolatory-like
behavior (see Figure 6.8).
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6.3.4 Summary

We have presented a general framework to construct interpolators as linear combina-
tions of exponential B-splines of the same order n0. The interpolators are compactly
supported and their integer shifts form a Riesz basis whenever the corresponding
B-spline does. Since the underlying building blocks are exponential B-splines, we
can exploit the refinability property of the B-splines to resample the model. Based
on these general properties, we have constructed a new family of interpolators to
represent parametric shapes. The new interpolators are smooth and they can be
designed to perfectly reproduce polynomial, trigonometric, and hyperbolic shapes.
We provide explicit examples of such generators and show in detail how idealized
parametric curves and surfaces are constructed. The reconstructed shapes have
the property that the control points directly lie on their boundary. This enables
an intuitive manipulation of shapes by changing the location of a control point.
Since the interpolators have compact support, this displacement of control points
allows one to locally control the deformation of a shape6. In a next step, we plan
to further investigate the refinability properties for practical applications such as
real-time rendering or zooming of images.

6.4 Appendix

6.4.1 Proof of Proposition 15

Proof. We split the proof into two parts: the existence of an upper bound, relying
on the one for the corresponding exponential B-spline, and the lower bound, based
on the fact that the function is interpolatory.

Upper Bound We first show that one can find Bα < ∞ such that, for every
ω ∈ R, ∑

k∈Z
|β̂α(ω − 2kπ)|2 ≤ B2

α. (6.77)

6Demo videos illustrating an implementation of our framework are found at
http://bigwww.epfl.ch/demo/varying-resolution-interpolator/.
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This result is well-known (see for instance [63, Theorem 1]); we prove it for the
sake of completeness. A more precise estimation of Bα is given in [63, Proposition
3]. The function βα ∗ β∨α, where β∨α(t) = βα(−t), is continuous and compactly
supported. Therefore, the sequence c = (c[n])n∈Z = (βα ∗ β∨α(n))n∈Z of its samples

is in `1(Z). Since the Fourier transform of βα ∗ β∨α(t) is |β̂α(ω)|2, we have that

∑
k∈Z
|β̂α(ω − 2kπ)|2 =

∑
k∈Z

c[k]e−jωk ≤ ‖c‖`1(Z) := B2
α <∞. (6.78)

Using (6.44), we moreover have that

∑
k∈Z
|φ̂λ,α(ω − 2kπ)|2 =

∑
k∈Z

(∑
n∈Z

λ[n]e−j(ω−2kπ)n/2

)2

|β̂α(ω − 2kπ)|2. (6.79)

By splitting the sum with respect to k odd or even and since e−j(ω−2kπ)n/2 =
((−1)k)ne−jωn/2, we have that

∑
k∈Z
|φ̂λ,α(ω− 2kπ)|2 = |G0(ω)|2

∑
k even

|β̂α(ω− 2kπ)|2 + |G1(ω)|2
∑
k odd

|β̂α(ω− 2kπ)|2

(6.80)

with G0(ω) =
∑
n∈Z λ[n]e−jωn/2 and G1(ω) =

∑
n∈Z(−1)nλ[n]e−jωn/2. Clearly, for

i = 0, 1, |Gi(ω)| ≤∑n∈Z |λ[n]| = ‖λ‖`1(Z) and thus,

∑
k∈Z
|φ̂λ,α(ω − 2kπ)|2 ≤ ‖λ‖2`1(Z)

( ∑
k even

|β̂α(ω − 2kπ)|2 +
∑
k odd

|β̂α(ω − 2kπ)|2
)

= ‖λ‖2`1(Z)

∑
k∈Z
|β̂α(ω − 2kπ)|2

≤ ‖λ‖2`1(Z)B
2
α,

so that the constant Bλ,α = ‖λ‖`1(Z)Bα <∞ acts as an upper bound in (6.48).
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Lower Bound The function φλ,α is assumed to be interpolatory; in the frequency
domain, this condition is expressed as∑

k∈Z
φ̂λ,α(ω − 2kπ) = 1 for all ω ∈ R. (6.81)

Moreover, the functions ω 7→ ∑
k∈Z|β̂α(ω − 2kπ)|2, G0, and G1 above are also

continuous and periodic (for G0 and G1, this comes from λ ∈ `1(Z)). Therefore,

the function ω 7→∑
k∈Z|φ̂λ,α(ω − 2kπ)|2 is also continuous and periodic. As such,

it reaches its minimum at some frequency ω0 ∈ [0, 2π]. Further, the inequality

A2
λ,α :=

∑
k∈Z|φ̂λ,α(ω0 − 2kπ)|2 ≥ 0 holds. Assume now that Aλ,α = 0, then we

have φ̂α(ω0 − 2kπ) = 0 for every k ∈ Z, and therefore,
∑
k∈Z φ̂λ,α(ω0 − 2kπ) = 0,

which contradicts (6.81). Hence, Aλ,α > 0 acts as a lower bound in (6.48).

Remark. Based on (6.80), we deduce the following estimates for the Riesz con-
stants Aλ,α and Bλ,α associated to φλ,α:

Aλ,α = Aα min
[0,2π]
|λ̂(ejω)|, (6.82)

Bλ,α = Bα max
[0,2π]
|λ̂(ejω)|, (6.83)

where Aα and Bα are the constants for the Riesz basis condition for βα (given

in Proposition 4 and Proposition 3 in [63]), and λ̂(ejω) =
∑
n∈Z λ[n]e−jωn/2 is the

discrete Fourier transform of λ.

6.4.2 Proof of Proposition 16

Proof. This follows from Proposition 2 in [63] which states that reproduction prop-

erties are preserved through convolution. More precisely, if f is such that
´ +∞
−∞ f(t)e−αtdt 6=

0 for all α ∈ α, then f ∗βα inherits the reproduction properties of βα. In our case,
we have φλ,α(t) = (f ∗ βα)(t) with f(t) =

∑
n∈Z λ[n]δ(t − n/2). Then, for every

α ∈ α,

ˆ +∞

−∞
f(t)e−αtdt =

∑
n∈Z

λ[n]e−αn/2, (6.84)
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which is bounded and nonzero by assumption.

6.4.3 Proof of Proposition 17

Proof. For the causal generator, we use (6.42) and (6.52) to express (6.44) as

φ̂+
λ,α(ω) = e−jω(n0/2−1)

(∑
n∈Z

λ[n]e−jωn/2

)
β̂+
α(ω). (6.85)

Then, we have

m0φ̂
+
λ,α(m0ω) = e−jωm0(n0/2−1)

(∑
n∈Z

λ[n]e−jm0ωn/2

)
m0β̂

+
α(m0ω)

= e−jωm0(n0/2−1)

(∑
n∈Z

λ[n]e−jm0ωn/2

)
H α

m0
,m0

(ejω)β̂+
α
m0

(ω)

= Gλ, α
m0

,m0(ejω)β̂+
α
m0

(ω), (6.86)

where we used the relation (6.53) expressed in the frequency domain. Finally, we
take the inverse Fourier transform of (6.86) and obtain (6.56) in the time domain.

6.4.4 Proof of Proposition 18

Proof. Equation (6.59) is equivalent to the frequency domain relation

lim
n→∞

1

m0mn
Cn(e

jω
m0m

n ) = f̂(ω). (6.87)

The iterative step between cn and cn−1 in the frequency domain becomes

Cn(e
jω

m0m
n ) = H α

m0m
n ,m(e

jω
m0m

n )Cn−1(e
jω

m0m
n−1 ). (6.88)

Iterating this relation, we obtain

Cn(e
jω

m0m
n ) =

(
n∏
k=1

H α

m0m
k ,m

(e
jω

m0m
k )

)
C0(e

jω
m0 ). (6.89)
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By expressing (6.53) iteratively in the frequency domain and replacing α by α/m0,
we see that

β̂+
α
m0

(ω) =
1

m
H α

m0m
,m(e

jω
m )β̂+

α
m0m

( ω
m

)
=

(
n∏
k=1

1

m
H α

m0m
k ,m

(e
jω

mk )

)
β̂+

α
m0m

n

( ω

mn

)
= lim
n→∞

n∏
k=1

1

m
H α

m0m
k ,m

(e
jω

mk ),

(6.90)

where in the last line we have used the well-known convergence result from spline
theory [35, 31, 154]

lim
n→∞

β̂+
α

m0m
n

( ω

mn

)
= β̂(0, . . . , 0)︸ ︷︷ ︸

n0times

(0) = sincn0(0) = 1. (6.91)

Expressing (6.57) in the frequency domain, we finally have

f̂(ω) =
1

m0
C0(e

jω
m0 )β̂+

α
m0

(
ω

m0

)
= lim
n→∞

1

m0mn

(
n∏
k=1

H α

m0m
k ,m

(e
jω

m0m
k )

)
C0(e

jω
m0 ) (6.92)

= lim
n→∞

1

m0mn
Cn(e

jω
m0m

n ),

where we have used (6.91) and (6.89) for the second and third equality, respec-
tively.
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Chapter 7

Deformable Spline Shapes in
Practice

Overview

We present the construction, use, and implementation of spline shapes in practice
using the theory developed in Chapter 6.

• In Section 7.1, we present applications that involve deformable spheres 1.

• In Section 7.2, we specifically show how the spherical model presented in
Section 7.1 is applied for the automatic and atlas-free segmentation of the
brain in 3D MRI 2

• In Section 7.3 we construct a deformable model with cylindrical topology and
use it to segment the aorta and spinal cord in 3D MRI 3.

1Our related publications are [27, 28].
2Our related publication is [79].
3Our related publication is [80].
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7.1 Shapes with Spherical Topology: Modeling,
Deformation, Interaction

Existing shape models with spherical topology are typically designed either in the
discrete domain using interpolating polygon meshes or in the continuous domain
using smooth but non-interpolating schemes such as subdivision or NURBS. Both
polygon models and subdivision methods require a large number of parameters to
model smooth surfaces. NURBS need fewer parameters but have a complicated
rational expression and non-uniform shifts in their formulation. We present a new
method to construct deformable closed surfaces, which includes the exact sphere,
by combining the best of two worlds: a smooth and interpolating model with a con-
tinuously varying tangent plane and well-defined curvature at every point on the
surface. Our formulation is considerably simpler than NURBS and requires fewer
parameters than polygon meshes. We demonstrate the generality of our method
with applications including intuitive user-interactive shape modeling, continuous
surface deformation, shape morphing, reconstruction of shapes from parameterized
point clouds, and fast iterative shape optimization for image segmentation. Com-
parisons with discrete methods and with non-interpolating approaches highlight the
advantages of our framework.

7.1.1 Introduction

The representation of shapes with spherical topology has been an ongoing research
topic in computer graphics for more than three decades. The principal reason is
the massive demand for closed genus-zero surfaces in industrial, architectural, and
animation design as well as in biomedical imaging. Designing spherical models that
are simultaneously optimal with respect to several different shape characteristics
still remains a challenge. Depending on whether an application involves user in-
teraction, shape deformation or optimization schemes, different aspects of a model
are more important than others.

In user-interactive applications, a fundamental requirement is the ability to
intuitively manipulate the shape. Typically, this requirement presupposes an easy
way to interact directly with the surface as well as to control shapes locally. It
is linked to the topic of surface deformation because the deformation should be
stable: a small perturbation of the surface should result in a small change of the
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Figure 7.1: Smooth modeling of shapes with spherical toplogy. A contin-
uous deformation of the sphere into the Gargoyle is shown in the top row,
where a wood texture has been added to the surface. The shapes in the
bottom row consist of a single surface patch and are constructed through
interactive deformation of the sphere. The interpolating structure of the
model allows us to intuitively design surfaces that can adopt shapes be-
yond the classical spherical topology. Our framework is inherently smooth,
which facilitates natural texturing.

shape. Numerical stability is crucial too: a theoretical model must remain useful in
practice. On the other hand, the application might involve shape deformation as an
optimization process. For example, in real-time shape recognition, approximation,
and segmentation, the fast evaluation of derivative- and integral-based quantities
in iterative settings is required. Further, the smoothness of the surface and the
number of parameters that are involved can also play an important role. Usually, it
is impossible to find a model that is optimal with respect to all of these requirements.
In practice, a compromise is made favoring the most important needs for a specific
application. Existing models are based on polygon meshes, NURBS or subdivision.
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Overview and Contribution. In this article, we present the full theory of a
model to construct deformable shapes with spherical topology, along with applica-
tions. This work was first introduced in a condensed form as a “technical brief”
at SIGGRAPH ASIA 2016 [27]. Our framework is based on interpolatory control
points, similar to polygon meshes, while at the same time being smooth and formu-
lated in the continuous domain as is the case with NURBS. The resulting surface
allows for local control, is everywhere differentiable, and has a continuously vary-
ing tangent plane at every point on the surface as well as a well-defined Gaussian
curvature. A major contribution is the explicit formulation of necessary conditions
for the poles of the sphere to remain closed and smooth when deforming. We il-
lustrate the use of our method with several applications: 1) User-interactive shape
modeling: because the basis functions satisfy the interpolation property, the con-
trol points lie directly on the surface of the object, which facilitates intuitive shape
modeling. The basis is also finitely supported to enable local surface control and
allows us to model a broad range of shapes by deforming a single spherical surface
patch; 2) Smooth surface reconstruction from parameterized point clouds: if the
underlying spherical parameterization of the samples is known, they can be easily
interpolated with our model to reconstruct a smooth surface; 3) Efficient surface
deformation: by exploiting the affine invariance of our model, we illustrate how a
fast implementation of deformation algorithms is achieved in the case of minimum-
energy deformation; 4) Fast iterative optimization of deformation algorithms: we
show how the iterative evaluation of surface and volume integrals is implemented
in an efficient way for real-time optimization and provide an example of a segmen-
tation algorithm for 3D medical images.
Our construction involves a class of smooth basis functions that are non-rational
and have uniform shifts, which leads to a considerably simpler formulation than
for traditional parametric methods. A control-point-based structure allows us to
use fewer parameters than polygon or subdivision methods to achieve smoothness.
Examples of the use of our method are shown in Figure 7.1.

7.1.2 Related Work

Continuous Closed Surfaces. The most widely used technique to construct
deformable spheres in the continuous domain is NURBS [17, 25] which are a sub-
familiy of T-splines [56]. Parametric NURBS surfaces are based on polynomial
B-splines and are defined by a set of control points which allow local shape con-
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trol [53, 51, 52, 25, 135]. The main reason for using the rational NURBS expres-
sion instead of the (non-rational) polynomial B-splines is that NURBS are able
to exactly reproduce conic sections [19]. Conceptually, this property is equivalent
to reproducing trigonometric functions, which is a necessary requirement for con-
structing spheres. There exist several ways to construct NURBS spheres, e.g., by
constructing quarter or half circles and exploiting the properties of tensor-product
splines or by constructing surfaces of revolution [151]. NURBS typically involve
the explicit characterization of non-uniform knot vectors with double knots. A
drawback of NURBS is the rational form, which leads to complicate expressions
of related integrals and derivatives [135]. Furthermore, the NURBS formulation
depends on additional weight parameters, which have no intuitive interpretation.
Other constructions to approximate sphere-like surfaces based on B-splines have
been studied in [155, 156], whereas in [86] an exact approach using exponential
splines is proposed. Other models use (rational) Bézier surfaces [24], which are also
related to splines [54].

Discrete Closed Surfaces. Popular discrete methods are based on polygon
meshes [40, 42]. With these models it is possible to represent shapes of arbi-
trary topology and hence, closed surfaces with spherical topology can be easily
generated. There exists a vast amount of literature on mesh optimization, process-
ing and discretizing continuous-domain operators (e.g., see [62] and [41]). Polygon
models are usually interpolating, where the control points coincide with the vertices
of the mesh; this property implies that the shape is modified by points which di-
rectly lie on the boundary of the object. Related to polygon models are subdivision
methods [29, 32] used to construct surfaces [157, 30, 18, 33, 34]. These methods are
characterized by refinement operations that are iteratively applied to a set of points
leading to a continuous limit surface with a certain regularity. Hence, subdivision
can be seen as a hybrid method combining the discrete and the continuous-domain
approach. Although in theory they are continuous, in practice, a finite number
of iterations are applied, leading to a discrete mesh (which is the reason why we
list subdivision as a discrete method). As opposed to polygon mesh models, sub-
division methods do not necessarily have interpolating control points. Different
methods that are based on non-stationary refinement rules have been proposed to
approximate a sphere using subdivision [31, 38, 133]. One drawback of polygon
and subdivision methods is that they require a large number of parameters which
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can be a challenge when computational speed is required (e.g., in finite element
models [158]).

Spherical Parameterization. The problem of finding a parameterization of an
object with spherical topology is not trivial and has been tackled in [159, 160]. It
is linked to the problem of ordering an unorganized set of points or a point cloud,
which in 3D is significantly harder than in 2D. In [134] a method is presented to
generate a spherical parameterization of closed surfaces in the continuous domain
by expressing them in a basis of spherical harmonics. A related problem is surface
reconstruction from a point cloud [161, 162].

Interpolation. A widely used interpolating spline in computer graphics is the
Catmull-Rom spline [16]. However, its nature is polynomial and hence, it cannot
be used to exactly parameterize the sphere. A variant of the Catmull-Rom spline
used in signal processing is the Keys cubic convolution interpolator [127] which has
been generalized by [76, 77] to construct a trigonometric interpolation kernel that is
able to reproduce conic sections. Other variants have been presented in [163, 55, 80].
An interpolating subdivision scheme was originally introduced by Deslaurier and
Dubuc [58]. Variants of this scheme have been proposed in [164] which have also
been used to construct conic sections [165].

7.1.3 Parametric Shape Representation

Notation. We use boldfont for vectors and regular font for scalars, e.g., c =

(cx, cy, cz). To denote partial derivatives, we use the notation ∂σ(u,v)
∂u = σu(u, v).

Note that, throughout this article we will use the terms “spherical topology”
and “closed surface” to describe the same kind of objects, namely connected sur-
faces without holes or boundaries. Using these terms to describe equivalent ob-
jects makes sense in computer graphics because in a digital environment, even
continuous-domain objects can only be represented by a discretized approximation.
However, in the field of mathematical topology a more rigorous definition of these
terms would be required.

Tensor-product Surfaces. We construct parametric shapes using integer shifts
of a (non-rational) generator function ϕ. A 3D curve r(t) that is described by the
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coordinate functions x(t), y(t) and z(t) with t ∈ R is then represented by a linear
combination of integer shifts of ϕ as

r(t) =

x(t)
y(t)
z(t)

 =
∑
k∈Z

c[k]ϕ(t− k), (7.1)

where the {c[k] = (cx[k], cy[k], cz[k])}k∈Z are the 3D control points. The model (7.1)
is extended in order to construct a separable parametric tensor product surface
σ(u, v) with u, v ∈ R, that is represented as the component-wise product (described
by the symbol “×”) of two curves r1 × r2, i.e.,

σ(u, v) =

x(u, v)
y(u, v)
z(u, v)

 =

x1(u) · x2(v)
y1(u) · y2(v)
z1(u) · z2(v)


=
∑
k∈Z

c1[k]ϕ1(u− k)︸ ︷︷ ︸
r1

×
∑
l∈Z

c2[l]ϕ2(v − l)︸ ︷︷ ︸
r2

=
∑
k∈Z

∑
l∈Z

c1[k]× c2[l]︸ ︷︷ ︸
c[k,l]

ϕ1(u− k)ϕ2(v − l).

(7.2)

Based on this equation, an arbitrary non-separable surface with control points c[k, l]
can be constructed whose expression corresponds to the last line of (7.2).

Generator function ϕ. The shapes that the model (7.2) can adopt depend on
the generator ϕ. For example, if ϕ is a B-spline the resulting shapes are polynomial.
In our case, we are interested in generating trigonometric shapes in order to be
able to construct exact spheres. For this purpose, we use the piecewise exponential
generator proposed by [76], which reproduces sines and cosines. It is defined as
ϕ = β ∗ ψ, where β is a third order exponential B-spline, ψ is an appropriate
smoothing kernel and “∗” denotes a convolution. We provide the explicit expression
of ϕ in (6.3). The relevant characteristics of ϕ for our construction, besides its
sphere-reproduction property, are that it is twice differentiable with bounded second
derivatives and satisfies the interpolation property ϕ(t = k) = δk, where δk denotes
the Kronecker delta, t ∈ R and k ∈ Z. Our generator constitutes a partition
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of unity, i.e.,
∑
k ϕ(t − k) = 1, which is a necessary and sufficient condition for

the represented shapes to be affine invariant. Because this generator depends on
the number M of control points that are used to construct a curve r, we use the
notation ϕM instead of ϕ. The support of ϕM is equal to 4.

Definition 10. As a simplification to indicate the M1-periodized basis function,
we write

φ1(t) := ϕM1,per(t) =

+∞∑
n=−∞

ϕM1(t−M1n) (7.3)

and φ2 := ϕ2M2
. To denote the integer shifts of the basis functions on the normal-

ized parameter domain we use φ1,k(t) := φ1(M1t− k) and φ2,k(t) := φ2(M2t− k).

7.1.4 Spherical Parameterization

Figure 7.2: Reconstructed sphere with the interpolatory control points
shown in light green. The two directions of the parameterizations are in-
dicated by the blue and red arrow.

In this section, we outline our proposed construction of the deformable sphere.
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Without loss of generality, we parameterize its surface as

σ(u, v) =

x(u, v)
y(u, v)
z(u, v)

 =

cos(2πu) sin(πv)
sin(2πu) sin(πv)

cos(πv)


= r1(u)× r2(v)

(7.4)

with u, v ∈ [0, 1]. In [76], it has been shown that

r1

( u
M1

)
=

cos( 2πu
M1

)

sin( 2πu
M1

)

1

 =

M1−1∑
k=0

cos
(

2πk
M1

)
sin
(

2πk
M1

)
1

φ1,k(
u

M1
). (7.5)

The periodization of φ1 as defined in (7.3) allows us to express the u-dependent
1-periodic trigonometric functions in (7.4) using a finite sum and M1 ∈ Z control
points. The v-dependent trigonometric functions in (7.4) are not periodic and are
expressed as

r2

( v

M2

)
=

sin( πvM2
)

sin( πvM2
)

cos( πvM2
)

 =

M2+1∑
l=−1

sin
(
πk
M2

)
sin
(
πk
M2

)
cos
(
πk
M2

)
φ2,l(

v

M2
). (7.6)

Because the support of ϕM is equal to 4, for v ∈ [0, 1], we have ϕM2
(v − l) = 0 if

l 6∈ [−1, . . . ,M2 + 1], which explains the limits of the sum in (7.6). Following the
construction given by (7.2), we finally parameterize the sphere as

σ(u, v) = r1(u)× r2(v)

=

M1−1∑
k=0

M2+1∑
l=−1

c[k, l]φ1,k(u)φ2,l(v),
(7.7)

where the control points of the surface are given by its samples

c[k, l] =

cx[k, l]
cy[k, l]
cz[k, l]

 =

cos
(

2πk
M1

)
sin
(
πl
M2

)
sin
(

2πk
M1

)
sin
(
πl
M2

)
cos
(
πl
M2

)
 . (7.8)
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Note that, M1 and M2 are the number of control points used in the u- and v-
directions. Hence, this representation allows us to construct a perfect sphere with
any number of control points M1,M2. The only condition for the integer shifts of
ϕM to form a stable basis, i.e., to guarantee a stable implementation, is M ≥ 3 [76].
The reconstructed sphere with interpolatory control points is shown in Figure 7.2.

Figure 7.3: Closed and smooth deformable sphere. If no smoothness
conditions are imposed the surface is non-differentiable at the poles (left). If
no pole-interpolation conditions are imposed the surface looses its spherical
topology (middle) when deforming. On the right, the closed and deformed
sphere is shown with smoothly varying tangent planes at the poles.

Smoothness Conditions at the Poles. Since ϕ ∈ C1, continuity is guaranteed
nearly everywhere on the surface as long as the control points do not overlap.
However, for the deformed sphere, smoothness is not guaranteed at the poles of the
sphere unless we take appropriate measures. In [155], it is shown that continuity
at the poles is ensured if the deformable sphere is constructed with continuously
varying tangent planes at these points. This condition is expressed mathematically
as

σv(u, v)|v=0 = T 1,N cos(2πu) + T 2,N sin(2πu), (7.9)



7.1 Shapes with Spherical Topology: Modeling, Deformation, Interaction153

for the north pole and

σv(u, v)|v=1 = T 1,S cos(2πu) + T 2,S sin(2πu), (7.10)

for the south pole, where T 1,N , T 2,N , T 1,S , and T 2,S are vector parameters that
can be freely chosen. In Appendix 7.4.1, we show that both sides of the equality
in (7.9) can be simplified independently and we end up with the condition

c[k,−1] =
T 1,N cos

(
2πk
M1

)
+ T 2,N sin

(
2πk
M1

)
M2ϕ′2M2

(1)
+ c[k, 1]. (7.11)

Similarly, (7.10) simplifies to

c[k,M2 + 1] = c[k,M2 − 1]−
T 1,S cos

(
2πk
M1

)
+ T 2,S sin

(
2πk
M1

)
M2ϕ′2M2

(1)
. (7.12)

The tangent plane at the poles is then spanned by the vectors T 1,N , T 2,N and
T 1,S , T 2,S . In Figure 7.3, the effect of imposing the smoothness conditions at the
poles is illustrated.

Interpolation Conditions at the Poles. The sphere needs to remain closed
when deforming in order to maintain spherical topology. Again, special attention
needs to be paid to the poles; we require that all the circles of longitude of the
original sphere originate and end at the poles of the surface. In accordance with
the parameterization (7.4), this condition is expressed as

σ(u, 0) = cN (north pole),

σ(u, 1) = cS (south pole).

In Appendix 7.4.2, we show that condition (7.13) translates directly into

c[k, 0] = cN (north pole),

c[k,M2] = cS (south pole) (7.13)

∀k ∈ [0 . . .M1 − 1]. In Figure 7.3, we compare a deformed sphere with and
without imposing the closeness conditions at the poles.
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Main Result. We combine all of the above considerations together in order to
state the main result of this article: A locally and smoothly deformable sphere is
expressed by the parameterization (7.7) subject to the smoothness conditions (7.11)
and (7.12) and the closeness condition (7.13).

Useful Properties of σ in Practice. Our deformable sphere σ is affine invari-
ant. Hence, its construction is independent of location and orientation, i.e.,

Aσ(u, v) + b =
∑
k∈Z

∑
l∈Z

(Ac[k, l] + b)φ1,k(u)φ2,l(v),

where A is a 3× 3 matrix and b a constant vector in 3D.
Furthermore, since φ is twice differentiable, the surface has everywhere a well-
defined tangent plane and Gaussian curvature. This property, for instance, allows us
to compute the normal vector at any point on the surface; an important requirement
to render a textured surface.

7.1.5 Results and Applications

Interactive Modeling

It is crucial in interactive shape modeling that the modeling process is intuitive.
Standard modeling applications allow a user to modify a shape by dragging its
control points with the mouse in order to displace them. If the control points lie
directly on the surface of the shape, the modeling task is significantly simplified.
This is the case for polygon models, but then the underlying shape is not smooth.
On the other hand, NURBS allow for the construction of smooth shapes, but the
control points do not interpolate the shape. This makes the modeling task less
intuitive. Local shape control is difficult as the surface becomes more complex
because it is no longer clear which part of the surface is affected by a specific
control point. Our proposed construction solves this problem since ϕM satisfies
the interpolation condition and is also smooth. Hence, even if the modeled surface
is of great complexity the modeling process remains intuitive and simple since the
control points always lie on the boundary of the shape. Furthermore, thanks to
the compact support of ϕM , local shape control is guaranteed. In Figure 7.4, we
illustrate the interactive shape modeling process.
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smooth!
north pole

smooth!
south pole

Figure 7.4: Interactive Modeling. On the left, the region (yellow) that
is affected by moving a single control point (blue) is shown, which corre-
sponds to a patch of size 4×4 due to the support of the generator ϕM . On
the right, a brain (green) has been modeled using our interpolatory con-
struction (bottom) and compared to the process where a non-interpolatory
basis function is used (top) similar to NURBS. The coordinate system indi-
cates a control point that is about to be interactively displaced in 3D space.
In the top right image, it is no longer clear which region of the surface is
controlled by a certain control point. The two poles are indicated in the
figure to show the importance of the smoothness property in practice. In
the middle, a smooth brain model has been rendered based on the modeling
process illustrated on the right.
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Intuitive User Interaction. Our proposed framework can be exploited to make
user-interactive shape modeling more intuitive and compelling. It is ideally suited
to be implemented in interactive shape modeling software, where the user modifies
the shape by displacing the control points with the computer mouse. With rela-
tively few control points, complex structures are easily constructed and modified. In
Figure 7.5, we show examples of the use of our framework in an interactive model-
ing environment. Final renderings, where texture is added to a shape, are achieved
without discretization artifacts independent of the number of control points chosen
since the underlying structure is smooth, (see Figure 7.1, bottom row). In Fig-
ure 7.6, the effect of enforcing the poles to be smooth is illustrated in the case of
interactive modeling.
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mug

rocket

bullet

Figure 7.5: Implementation of the framework in a shape modeling envi-
ronment. Different shapes are interactively designed starting from a sphere
(from left to right). The interpolatory control points allow us to easily
model surfaces that can adopt shapes beyond traditional spherical topol-
ogy, such as the mug, rocket or bullet. The last two rows show shapes
where only the closeness condition has been imposed in order to allow for
the construction of sharp kinks.
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smooth pole sharp pole

Figure 7.6: Poles with continuously varying tangent plane. The effect
of imposing the smoothness condition on the poles in interactive shape
modeling is illustrated. Left: smooth pole; right: sharp discontinuity at
the pole resulting in a singularity.

Shape Interpolation

When dealing with a parameterized point cloud whose points correspond to the
samples of a surface with spherical topology, our formulation allows for an imme-
diate reconstruction of the smooth shape. Several algorithms have been proposed
to obtain such a parameterization (c.f. Section 7.1.2). In this case, for each point
p ∈ R3 of the point cloud, a pair (uk, vl) of coordinates is assigned in the parame-
ter domain and we can establish the relation σ(uk, vl) = pk,l = c[k, l]. For a fixed
number of points, M1, M2, in the u- and v-direction, the parametric coordinates
for the normalized parametric domain, i.e., u, v ∈ [0, 1], are given by uk = k

M1

and vl = l
M2

. The resulting continuously defined surface σ(u, v) is immediately
reconstructed since it is fully specified by its control points subject to the smooth-
ness and pole-interpolation conditions described above. An example is shown in
Figure 7.7.

Smooth Modeling at Arbitrary Resolution. Because our construction of σ
is inherently smooth, even with few control points the tangent plane and Gaus-
sian curvature are everywhere well-defined. This property can be an advantage to
construct textured models with few parameters, for example, in applications in-
volving real time rendering. As an example, we have parameterized the point cloud
of the Gargoyle model using the algorithm described by [159], which allows us to
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Figure 7.7: Interpolation of a parameterized point cloud. The dinosaurs
(middle and right) are smooth reconstructions obtained by interpolating
the point cloud on the left. Our surface construction is affine invariant and
hence, rotating the shape is simply obtained by rotating the point cloud.

reconstruct a smooth surface by interpolating the points. Additionally, we have
subsampled the point cloud at different resolutions to obtain an approximation of
the Gargoyle with varying levels of accuracy. In Figure 7.8, we illustrate the result
and show a comparison with polygons.

Compression. Related to the previous example is the problem of shape com-
pression. Typically, the fewer coefficients are used in order to compress a shape,
the more discontinuous its representation becomes, which influences texturing and
rendering of smooth surfaces. The advantage of our model is that smoothness is
always preserved, even with few coefficients as shown in Figure 7.8.

Efficient Shape Deformation

An advantage of using continuous-domain models that are based on control points
is that the shapes are described by a finite number of control points, whereas
the corresponding coordinate functions x, y, and z live in an infinite dimensional
space; this allows us to describe a shape deformation process in the continuous
domain just by displacing the control points. In the following, we provide two
examples that illustrate how the minimization of distance criteria in the continuous
domain can be efficiently formulated as conditions with respect to the control points.
Other deformation criteria which can be minimized in a similar way were studied
in [166, 167] and [168].
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M = 10 M = 20 M = 40 M = 80

Figure 7.8: Interpolation of shapes with spherical topology: Smooth
Gargoyle reconstructions at different resolutions. The same number of
control points is used in both directions of the parameter domain, i.e.,
M = M1 = M2. In the top row, the results obtained with our construction
are shown, whereas in the bottom row a (linear) polygon reconstruction
method is applied. Note that with our approach the smoothness of the
model does not depend on the number of parameters.

Minimum-Energy Deformation

We illustrate two deformation processes which correspond to minimum-energy de-
formation in L2([0, 1]2,R3). Both processes are formulated entirely with respect
to the control points. Thereby, we can parameterize the path, which describes the
deformation in the space that contains all parametric shapes. An immediate appli-
cation is the construction of interpolated or extrapolated shapes, where the terms
“interpolated” and “extrapolated” refer to a shape lying on the path in some shape
space. Typically, such a shape space is described by a metric that provides a notion
of “distance” between two points that lie in the space. Hence, in a given shape
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space, a shape is treated as a single point. Here we are interested in describing
the deformation such that a minimum amount of energy is required in order to
deform one shape into another. This translates into describing the deformation as
the shortest path between two points in the shape space according to its underlying
metric.

The Hilbert Plane as a Shape Space. Given two surfaces σ1 and σ2 liv-
ing in the Hilbert plane L2([0, 1]2,R3), the shortest path connecting them can be
parameterized by the “intermediate” surface σ, that minimizes

F (τ,σ) = τ‖σ1 − σ‖2L2
+ (1− τ)‖σ2 − σ‖2L2

(7.14)

for a given τ ∈ [0, 1]. We see immediately that, for τ = 0, the minimizer is σ = σ2,
whereas for τ = 1 it is σ = σ1. For values of τ ∈ R \ [0, 1], the path F describes
extrapolated shapes, i.e., shapes that do not lie between the two surfaces σ1 and
σ2. The L2-norm in (7.14) is induced by the L2-inner product

〈σ1,σ2〉 =

ˆ
R

ˆ
R
σ1(u, v)Tσ2(u, v)dudv. (7.15)

Using the property that our parameterization is affine invariant, it is easy to show
that the solution of min

σ
F (τ,σ) is given by

C(τ) = τC1 + (1− τ)C2, (7.16)

where C,C1,C2 are the matrices which contain all the control points of the corre-
sponding surfaces. As an example that illustrates the deformation process and also
the effect of imposing the closeness-condition on the poles, we have deformed a disk
into a sphere. In Figure 7.9, we illustrate this process and compare it to the case
where no pole-interpolation conditions are imposed. In Figure 7.1, the deformation
of a sphere into a Gargoyle is shown.

The Hilbert Sphere as a Shape Space. Every parametric shape can be pro-
jected onto the unit Hilbert sphere by normalizing it such that ‖σ‖L2 =

√
〈σ,σ〉 =

1. The shortest distance between two points σ1 and σ2 on the sphere, lies on the
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Figure 7.9: Minimum-energy deformation in the Hilbert plane. In the
top row, a disk is deformed into a sphere through equation (7.16). In the
bottom row, the same process is illustrated but without imposing the pole-
interpolation conditions given by (7.13). Hence, the surface does not remain
closed when deforming and (7.16) describes the deformation between a
circle and a sphere.

great circle that passes through them. A possible parameterization of this great
circle is

Γ(τ) =
1

sin(θ)
[sin(θ(1− τ))σ1 + sin(θτ)σ2] (7.17)

where θ = cos−1(〈σ1,σ2〉) and Γ(0) = σ1 and Γ(1) = σ2. Again, if τ ∈]0, 1[,
equation (7.17) describes interpolated shapes, whereas for τ ∈ R\ [0, 1], τ describes
extrapolated shapes. As in the previous example, we exploit the affine invariance
of our parameterization in order to describe the deformation as a function of the
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control points. The interpolating control points are given by

C(τ) =
1

sin(θ)
[sin(θ(1− τ))C1 + sin(θτ)C2]. (7.18)

An example invoking this deformation is shown in Figure 7.10.

Figure 7.10: Minimum-energy deformation on the Hilbert sphere. The
sphere and Venus (top row) as well as the Stanford Bunny and Gargoyle
(bottom row) have been mapped through normalization onto the Hilbert
sphere. A deformation is then described by equation (7.18), where the
values of τ correspond to τ = 0, 1

3 ,
2
3 , 1 (from left to right).

Morphing. Computing morphs between two or several shapes is similar to com-
puting the deformation between shapes. The difference is that the deformation
is expressed as a parameterized weighted linear combination between two shapes,
whereas a morph corresponds to a particular instance of the parameterized func-
tion. Concretely, if equation (7.16) or (7.18) is evaluated for a specific value of τ , we
obtain a morph between σ1 and σ2. Examples of such smooth morph constructions
are shown in Figure 7.10, which correspond to morphed point clouds similar to the
ones shown in Figure 7.11.
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Parameterization. An important aspect to consider when using our model is
that the parameterization which describes the shape is not unique. This is natural
in the case of surfaces with spherical topology and originates from the fact that there
exist an infinite number of ways to place the two poles (with the constraint that
they must be opposite to each other). However, w.r.t. (7.16) and (7.18) we see that
there is a unique correspondence between two given spherical parameterizations,
which implies that given two surfaces, σ1 and σ2, each control point c1[k0, l0]
will be transformed into c2[k0, l0]. If a different parameterization is chosen for at
least one of the two surfaces (i.e., if the poles are placed differently), then the
resulting deformation will inevitably be different. This process is illustrated in
Figure 7.11. Insights into finding an optimal correspondence between shapes can
be found in [169] and [170].

Fast Computation of Surface and Volume Integrals

In certain applications that require iterative optimization, it is necessary to rapidly
compute surface or volume integrals efficiently. An example is the deformation of
a surface guided by optimizing an energy functional in real time.

Flux Across Surface

We illustrate how a flux E across a surface S, parameterized by σ(u, v), is computed
rapidly and efficiently. Given a vector field f , one way of expressing the flux E is
by

E(σ) =

‹
S

f · dS =

ˆ 1

0

ˆ 1

0

gx(σ)dy ∧ dz, (7.19)

where dS represents the vector differential of the surface area, ∧ denotes the wedge
product, and gx(x, y, z) =

´ x
−∞ divf(τ, y, z)dτ is the pre-integrated divergence of

the vector field f along the x-dimension. Typically, f does not depend on the
surface and hence, gx can be precomputed and stored in a look-up table to signif-
icantly speed up the computation. We derive (7.19) in Appendix 7.4.3. The use
of pre-integrated functions is only possible because we define the surface σ in the
continuous domain. Next, the flux E can be efficiently optimized by computing the
gradient of E w.r.t. the control points using a gradient-based iterative method. An
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Figure 7.11: Influence of the parameterization on the deformation. The
point clouds (with M = M1 = M2 = 270) that define the control points
of the dinosaur and the Gargoyle are parameterized and the location of
the poles is indicated with red arrows. The dinosaur (top left) is deformed
into the Gargoyle (top right). The two intermediate shapes in the top row
illustrate the deformation. In the bottom row, we illustrate this concept
by pointing out that the poles on the sphere can be placed at different
locations. For instance, if a different parameterization of the dinosaur is
chosen such that the the north pole cN and south pole cS are exchanged,
then the deformation process is different.

explicit expression of the gradient can be obtained easily and hence, implemented
in an exact way.

Example. We illustrate the above computation by segmenting the surface of
a human brain in a 3D MRI image. We first compute an edgemap of the 3D
image using a standard surface extraction algorithm [171] and construct an energy
functional E that depends on the gradient of the edge-map. Hence, in (7.19),
the gradient becomes f . By minimizing (7.19), σ deforms iteratively in order
to approximate the edge map as shown in Figure 7.12. The result can easily be
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manually adjusted by a clinician (see Figure 7.4), which is an additional advantage
of our algorithm compared to existing methods.

Figure 7.12: Brain segmentation in a 3D medical MRI image. The red
surface is a rendered edgemap that has been extracted from medical data.
An ellipsoidal surface is initialized inside the brain surface (left) and evolves
by iteratively minimizing (7.19) (from left to right). The final result (right)
corresponds to a smooth and continuous closed surface shape.

Exact Volume Computation

For ki ∈ [0, . . . ,M1−1] and li ∈ [−1, . . . ,M2 +1] the volume enclosed by the surface
σ is computed by

Vol(σ) =
∑

k1,k2,k3
l1,l2,l3

cx[k1, l1]cy[k2, l2]cz[k3, l3]

× α(k1, k2, k3, l1, l2, l3)

(7.20)

where cx, cy and cz are the x, y, and z coordinates of the control points of σ and

α(k1, k2, k3, l1, l2, l3)

= M1M2

(ˆ 1

0

φ1,k1φ
′
1,k2φ1,k3du

ˆ 1

0

φ2,l1φ2,l2φ
′
2,l3dv

−
ˆ 1

0

φ1,k1φ1,k2φ
′
1,k3du

ˆ 1

0

φ2,l1φ
′
2,l2φ2,l3dv

)
.

(7.21)

Since α does not depend on the control points c, it can be precomputed and stored
in a look-up table in order to quickly evaluate the volume in interactive optimization
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schemes. Furthermore, because φ and its derivative φ′ have compact support, the
number of non-zero elements in the sum (7.20) is small, which additionally simplifies
the computation. We derive the formula for the volume in Appendix 7.4.4. The
integrals in (7.21) can be further simplified and exactly evaluated using techniques
from spline theory similar to the approaches described in [172, 82].

7.1.6 Implementation

In this section, we describe some important details regarding the implementation.

Choice of Free Parameters

Exact Sphere. The orientation of the sphere is given by (7.4) and therefore, the
coordinates of the poles are cN = (0, 0, 1) for the north pole and cS = (0, 0,−1) for
the south pole. Since by construction, the vectors T 1,N and T 2,N span the tangent
plane at the north pole of the sphere, a natural choice is to set T 1,N = (1, 0, 1) −
cN = (1, 0, 0) and T 2,N = (0, 1, 1) − cN = (0, 1, 0). With the same approach we
also obtain T 1,S = (1, 0, 0) and T 2,S = (0, 1, 0) for the south tangent plane. Note
that because our construction is affine invariant, for a sphere with a different size
or orientation the new coordinates are found by applying the corresponding affine
transformation to the existing control points.

Arbitrary Shape with Spherical Topology. A simple method to estimate the
tangent plane is to compute the plane that best approximates the points lying on
the first circle of latitude next to the north or south pole. Any two vectors spanning
this plane can be chosen as T 1,N , T 2,N and T 1,S and T 2,S .

Discretization of Basis Functions

Because our construction is formulated in the continuous domain, the shape repre-
sentation can be discretized with arbitrary precision in order to implement it. An
efficient way is to discretize the interpolator ϕ rather than the surface, which be-
comes highly beneficial, for example, in interactive applications where the shapes
to be constructed are not known beforehand. By discretizing ϕ prior to surface
construction, the samples of the interpolator can be stored in a look-up table to
speed up the surface reconstruction. Thus, the sampling rate is freely chosen. In
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Figures 7.13 and 7.14, we show the effect of the different sampling rates. A sam-
pling rate equal to one corresponds to a polygon model (i.e., linear interpolation
between points), which means only the blue sample in Figure 7.13 is considered
to be non-zero. The higher the sampling rate, the closer the approximation of the
continuous domain model is. Its effect on the surface reconstruction is shown in
Figure 7.14. In practice, if a large number of control points is used one can already
obtain satisfactory smoothness of the surface with a low sampling rate, whereas
with a small number of control points, the sampling rate must be higher to obtain
a smooth surface.

-2 -1 1 2
t

-0.2

0.2

0.4

0.6

0.8

1.0

φ

Figure 7.13: Sampling of the interpolator ϕ. Because ϕ is formulated in
the continuous domain, it can be discretized with arbitrary precision. If
only one sample is considered (blue sample), then the result corresponds to
linear interpolation, which is equivalent to a polygon model. The samples
denoted by orange circles correspond to a lower sampling rate than the
green samples.

7.1.7 Discussion and Future Work

Comparison with NURBS. There are several advantages of our formulation
compared to an approach using NURBS. With the NURBS formulation, a sphere
can only be represented using multiple surfaces patches. The NURBS formula-
tion requires not only more control points to represent a sphere, but also more
total parameters due to the weights used in their formulation. Further, because
the basis functions of NURBS are rational terms, the computation of derivatives
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Figure 7.14: Effect of different sampling rates. The surfaces are con-
structed with M = M1 = M2. The red wireframe corresponds to a lower
number of control points used (M = 20) to reconstruct the bunny com-
pared to the blue wireframe (M = 40) and from left to right the sampling
rate (SR) is increased.

and integrals result in complicated expressions. This can become a problem when
integral-dependent quantities need to be computed, such as in the evaluation of
surface or volume integrals in optimization schemes. Also, the optimization it-
self must be carried out simultaneously with respect to the control points and the
weight parameters, which introduces additional complexity. For interactive shape
design, the interpolation property of our framework makes the modeling task more
intuitive. Especially, complex shapes that require more detail, and hence, more
control points, are modeled more easily with our solution (see Figure 7.4). Further-
more, interpolating parameterized point clouds with spherical topology is difficult
with NURBS due to their non-interpolatory nature; it involves complex NURBS
approximation techniques or inverse filtering, which is not straight-forward because
of the smoothness conditions at the poles. The only NURBS that are interpolatory
are zero and first degree NURBS, which are non-smooth.
Moreover, our formulation allows for a shape representation using only integer
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shifts. NURBS usually have non-uniform shifts. The advantage of considering in-
teger shifts is that it allows us to use convolution and filtering techniques as well
as frequency domain calculus. This can be useful when doing surface resampling,
projections onto other spline spaces, and evaluation of inner products, for example
to compute L2-distances between surfaces. It also allows for a simpler formulation
of the surface by specifying its control points instead of non-uniform knot vectors
including double knots.

Comparison with Polygon Models. Polygon models are inherent interpola-
tory schemes because the control points coincide with the vertices of the mesh.
Similar to subdivision schemes, these models require more parameters than our
model in order to achieve a higher degree of smoothness (see Figure 7.8). Geomet-
ric operators and quantities, such as tangent planes, normals, curvatures, or the
Laplacian have to be approximated by polygon mesh processing techniques. The
same holds true for integral and derivative-based quantities. However, polygon
meshes do not require an underlying parameterization of the model.

Comparison with the Catmull-Rom Interpolator. The Catmull-Rom [16] or
Keys interpolator [127] are interpolating and smooth. Because they are polynomial
it is not possible to construct the exact sphere with these functions. However, a
construction of a model with spherical topology (which excludes exact spheres and
ellipsoids) is possible by replacing ϕ in our framework with the Catmull-Rom spline.
Because its support is the same as for ϕ our formulation for the smoothness and
interpolation conditions at the poles can easily be adapted to the purely polynomial
case.

Extending the Framework to Other Topologies. Our concept can be ex-
tended to surfaces with other topologies (e.g., cylindrical or rectangular) in order
to create a unifying framework for smooth shape modeling with interpolatory con-
trol points. These topologies do not require special attention to poles and are easier
to parameterize using tensor-products and a suitable interpolator. One way to pa-
rameterize the rectangle is with the polynomial Keys interpolator [127], whereas
the cylinder is parameterized using ϕ for the trigonometric part (i.e., the circles in
one direction) and the Keys interpolator for the linear part (i.e. the direction of the
axis). Another example is the torus which is easily parameterized using ϕ since it is
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periodic in u and v. In Figure 7.15, examples of these topologies are shown as well
as how they can be smoothly deformed by exploiting the interpolation property in
interactive settings.

idealized!
shapes

user-interactive!
deformation

cylinder rectangle torus

cylindrical !
topology

rectangular !
topology

Figure 7.15: Smooth modeling of different topologies with interpolatory
control points. In the top row, the idealized shapes that define the topolo-
gies are shown. The red points indicate the interpolatory control points.
In the bottom row, a smooth deformation of the shapes is illustrated.

7.1.8 Conclusion

The standard method for smooth, parametric shape modeling in industry is NURBS.
In this paper, we presented an alternative method to model smooth shapes with
spherical topology. The fundamental difference with the existing standard is that
our basis functions are interpolatory and non-rational and we only use uniform
shifts. Our formulation is simpler than NURBS and thus, has several advantages
in practical applications including immediate reconstruction of smooth surfaces by
interpolating parameterized point clouds, more intuitive shape modeling or a sim-
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plified formulation of optimization algorithms that involve integral- and derivative-
dependent quantities. Our framework indicates promising future directions by ex-
tending it to a richer family of topologies. A video illustrating the use of our
framework in practice is available at http://bigwww.epfl.ch/demo/siggraph2016/.
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7.2 Atlas-free Brain Segmentation in MRI

We present a new method for the atlas-free brain segmentation of proton-density-
like 3D MRI images. We show how steerable filters can be efficiently combined
with parametric spline surfaces to produce a fast and robust 3D brain segmentation
algorithm. The novelty lies in the computation of brain edge maps through optimal
steerable surface detectors which provide efficient energies for the rapid optimization
of snakes. Our experimental results show the promising potential of the method
for fast and accurate brain extraction.

7.2.1 Introduction

Brain-segmentation algorithms are extensively used to examine disease-related struc-
tural and morphological changes that occur in the brain. Such methods tend to
be computationally expensive because 3D volumes need to be processed. Most of
the algorithms rely on atlas-based registration methods, which make the overall
algorithm computationally expensive [173, 174]. Furthermore, they might bias the
outcome if either the patient scan or the registration algorithm do not match the
template image well [175].

Active contours and surfaces (a.k.a. snakes) provide an alternative to atlas-
based segmentation. They have been widely used to segment simple biomedical
structures in 2D [176, 177]. However, snakes often require user interaction, which
makes snakes less suitable for 3D medical imaging. We propose to make use of a
3D parametric spline snake for the atlas-free segmentation of the brain surface. Its
parameterization allows us to implement a fast algorithm that has been proven to
be competitive with the state of the art [86]. The segmentation is formulated as an
energy-minimization problem [90]. Defining an efficient energy function is crucial
for fast segmentation because it determines the speed of the optimization process
as well as the accuracy of the result. In 3D, edge maps provide a convenient way to
compute energy terms because they allow one to bypass the expensive evaluation
of volume integrals at each iteration by replacing them by surface-based terms
[86]. We show how steerable filters [178] combined with Canny-like criteria [179]
can be used to compute edge maps through the implementation of optimal 3D
steerable surface detectors [180, 171]. We have tested the efficiency of our proposed
framework of steerable filters and parametric spline snakes for brain segmentation
on realistic brain phantoms [181] and show its capability to be fast and robust.
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7.2.2 Feature Detection With 3D Steerable Filters

To compute the 3D edge maps we make use of steerable filters. They were first in-
troduced in [178] as a family of filters that can be efficiently rotated by representing
them through a linear combination of appropriate basis filters. Therefore, steerable
filters provide a convenient framework for rotation-invariant feature detection. We
use Mth order steerable derivative-based filters whose impulse response takes the
form

h(x) =

M∑
m=1

m∑
n=0

m−n∑
p=0

αm,n,p
∂n

∂xn
∂p

∂yp
∂m−n−p

∂zm−n−p
g(x)︸ ︷︷ ︸

hm,n,p(x)

where g is an isotropic 3D Gaussian function and αm,n,p are the weights of the
basis functions. In this paper, we use x to describe a point (x, y, z) in 3D space.

Defining the rotation matrixRθ,φ, a feature with a particular orientation located
in 3D space can be detected by a rotated version of the feature template h(−x)
through estimation of its Euler angles by

(θ∗(x), φ∗(x)) = argmax
θ,φ

(f(x) ∗ h(Rθ,φx)).

The response of the filter is given by

r∗(x) = f(x) ∗ h(Rθ∗,φ∗x).

Figure 7.16: Isosurface representation of the optimal surface detector.
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Designing the Optimal Surface Detector

The generalized optimality criterion to derive a feature detector was originally
proposed in 2D in [180] and extended to 3D in [171]. We use it to derive an
optimal 2nd-order surface detector. We choose f0(x) = δ(x) as our idealized surface
template, where δ denotes the Dirac delta. The response of the filter to the surface
template centered at the origin is given by

S = (f0 ∗ h)(0) =

ˆ
R3

f0(x)h(−x)dx.

The localization error (due to the presence of noise) in the direction orthogonal
to the surface is quantified by

Loc = −
ˆ
R3

f0(x)
∂2

∂x2
h(−x)dx.

We maximize (S · Loc) using Lagrangian optimization, while imposing unit
energy on the filter as

´
R3 |h(x)|2dx = 1.

This yields the optimal surface detector

h(x) =
σ

8π
√

3
(∆g(‖x‖)− 5gxx(x)) (7.22)

where ∆ denotes the Laplacian operator, σ is the standard deviation of the

Gaussian and gxx = ∂2g
∂x2 . An isosurface representation of (7.22) is shown in Figure

7.16.

Surface Detection

To express the rotated version of (7.22), we make use of the property D2
vf =

vTHfv, where Dv denotes the operator describing the directional derivative, Hf

is the 3D Hessian matrix of f , and v = (cos θ sinφ, sin θ sinφ, cosφ) is a unit
vector specifying an arbitrary orientation in 3D. Thus, h(Rθ,φx) ∝ ∆g(‖x‖) −
5vTHg(x)v = βg(x) and

(f ∗ h(Rθ,φ·))(x) ∝ vTβf∗g(x)v. (7.23)

Applying the constraint vTv = 1 on the unit vector v and maximizing (7.23),
we obtain βf∗gv = λv. The optimal orientation is given by the eigenvector vmax
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corresponding to the largest eigenvalue λmax of βf∗g, which also yields the max-
imum response of the detector. The result of the surface detection is shown in
Figure 7.17 (top right).

Figure 7.17: 2D sagittal cross section of the detected 3D surface. Top
row: Original proton-density image (left) and result of steerable filtering
(right). Bottom row: Result of NMS and thresholding (left) and extracted
largest component (right).

Surface Refinement

In order to better delineate the surface, a classical non-maximum suppression
(NMS) in the direction orthogonal to the surface is applied followed by a thresh-
olding step in order to obtain a binary image (Figure 7.17, bottom right). The
direction orthogonal to the surface is given by vmax described above. In Figure
7.17 (bottom left) we see that the brain appears as the innermost surface and is
almost closed. To ensure additional robustness, we extract this inner surface before
segmenting it. For this purpose we roughly estimate the center of the brain. Then,
we iterate over all foreground voxels, and keep only the ones closest to the center
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(in the direction orthogonal to the surface). Among the retained voxels we extract
the largest component, whose 2D representation is shown in Figure 7.17 (bottom
right).

7.2.3 3D Parametric Spline Snake

We use the continuously defined 3D spline snake proposed in [86] to segment the
extracted brain surface. It is a parametric surface whose expression is

σ(u, v) =

M1−1∑
i=0

M2+1∑
j=−1

c[i, j]φ1,per(M1u− i)φ2(M2v − j) (7.24)

where φ1,per(u) =
∑∞
n=−∞ φ1(u−M1n),∀u ∈ R, and c[i, j] ∈ R3 are the control

points in 3D. In (7.24), the basis functions φ are made of exponential B-splines and
are defined as

φ1(u) =



cos
(

2π|u|
M1

)
cos

(
π
M1

)
−cos

(
2π
M1

)
1−cos

(
2π
M1

) 0 ≤ |u| < 1
2

1−cos
(

2π(3/2−|u|)
M1

)
2
(

1−cos
(

2π
M1

)) 1
2 ≤ |u| < 3

2

0 3
2 ≤ |u|

φ2(v) =



cos
(
π|v|
M2

)
cos

(
π

2M2

)
−cos

(
π
M2

)
1−cos

(
π
M2

) 0 ≤ |v| < 1
2

1−cos
(
π(3/2−|v|)

M2

)
2
(

1−cos
(
π
M2

)) 1
2 ≤ |v| < 3

2

0 3
2 ≤ |v|.

Considering additional conditions on the poles of the surface, a total of M1(M2−
1) + 4 control points are necessary to define the snake in a continuous way. Due
to its spline-based structure, the snake surface can adopt the shape of any kind of
closed surface with arbitrary precision.

Fast Optimization

The segmentation process is formulated as an energy-minimization problem. The
refined surface image (Figure 7.17, bottom right) provides an ideal edge map to



178 Deformable Spline Shapes in Practice

guide the snake towards the desired boundary. We use it to calculate the gradient
energy proposed in [86], which is defined as

Egrad = −
‹
S

∇f · dS = −
‹
S

(
∇f · n‖n‖

)
dS

= −
˚

V

div(∇f)dV =

˚
V

−∆fdV

= −
‹
∂V

(∆f)xdy ∧ dz (7.25)

where (∆f)x =
´ x
−∞∆f(τ, y, z)dτ and ∧ denotes the wedge product. In the

last step of (7.25), Gauss’ theorem has been used. The quantity (∆f)x can be
pre-computed and stored in a look-up table to allow fast energy computation. The
optimization process is visualized in Figure 7.18.

Snake Initialization

We initialized the snake as an ellipsoid lying completely within the brain surface
(Figure 7.18, top row). Therefore, during optimization, the snake will primarily
expand rather than shrink.

7.2.4 Experiments

We validated our algorithm on the BrainWeb PD phantom [181], where the ground
truth is known. Our method was tested with the original bias- and noise-free image,
as well as with increasing radio-frequency (RF) intensity non-uniformities of 20%
and 40% and increasing additive white Gaussian noise levels ranging from 1 to 9%.
Measures of overlap between the segmented brain masks and the gold standard were
calculated according to the Dice and Jaccard similarity indices. Additionally, the
inter-subject variability was evaluated by computing similarity coefficients between
the corrupted images and the bias- and noise-free image. The initial position of the
surface snake was the same throughout the experiments. We used M1 = M2 = 9
to evaluate (7.24). Therefore, 76 control points were used. The experiments were
run without user interaction.
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Figure 7.18: Wireframe representation of the parametric surface. The 3D
spline snake is initialized as an ellipsoid (top row). Through minimization
of the energy term (7.25), it segments the brain surface (middle row). The
final segmentation result is shown in the bottom row.

Robustness, Accuracy, and Computational Aspects

The results of the measures of similarity are given in Table 7.1 and illustrated in
Figure 7.19. The high degree of overlap with respect to the gold standard confirms
the selectivity of the surface detector. Its capacity to detect surface elements is
not hampered by bias or noise in the image. This is due to its property of be-
ing an optimal ’matched’ detector. The measures for inter-subject variability are
even higher and show additional robustness of the method with respect to different
scanning conditions. Worsening the image quality did not significantly affect the
final segmentation, which indicates the reproducibility of the method. Besides, the
algorithm was also tested on 12 real subjects with a satisfying outcome (data not



180 Deformable Spline Shapes in Practice

shown). Furthermore, our algorithm is fast enough to be run in a doctor-patient
encounter. The implementation of our algorithm executes in less than 70 seconds
on average on a standard computer (3.3 GHz, 16GB RAM).

gold standard inter subject
Dice 0.9522± 0.0011 0.9806± 0.0047

Jaccard 0.9087± 0.0020 0.9620± 0.0090

Table 7.1: Dice and Jaccard similarity coefficients.

7.2.5 Conclusion

We provide a new solution for fast brain segmentation in 3D MRI proton-density-
like images. Our study shows how 3D parametric spline snakes can be used for this
purpose. Our method relies on 3D edge maps which allow fast snake optimization
through the computation of surface integrals, thereby avoiding tedious integration
of volumes. Based on steerable filters, we show how an optimal surface detector
can be used to compute such edge maps. We have demonstrated the robustness
of the proposed method with respect to radio-frequency-induced intensity inhomo-
geneities, as well as noise. Our algorithm is fast and atlas-free. No user interaction
is required. It therefore shows the potential to satisfy the requirements needed to
be run in clinical routine.

7.3 Medical Segmentation of Structures with Cylin-
drical Topology

We propose a new parametric 3D snake with cylindrical topology. Its construction
is based on interpolatory spline bases which facilitates user-interaction because the
control points of the snake directly lie on the surface of the deformable cylinder.
We prove that the basis function exactly reproduce a cylinder and propose a new
parametrization as a tensor-product spline surface. We provide explicit formulas
for the energy function which allows to compute a closed-form expression of its
gradient enabling a fast implementation of the optimization algorithm. We have
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Figure 7.19: 2D sagittal cross section of 3D simulated Brainweb data (top
row) and the corresponding segmented images (bottom row). Left column:
noise and bias free images; middle: biased images (40% RF intensity non-
uniformity); right: noisy images (9% additive Gaussian white noise).

implemented the proposed framework as a freely available open-source plugin for
the bioimaging platform Icy. Its utility has been tested on artificial data as well as
on real 3D data to segment the spinal cord and the ascending aorta.

7.3.1 Introduction

The assessement of quantitative parameters of medical structures using 3D imaging
modalities is an active field of research. Accurate measurements of physiological
structures are crucial for correct diagnosis of diseases, risks or malformations. We
propose a new method for the segmentation of structures with cylinder-like topol-
ogy such as the aorta or the spinal cord. Most algorithms that have been proposed
for the aorta segmentation so far target computed tomography (CT) images as
opposed to magnetic resonance images (MRI) because of the significantly better
contrast [182, 183]. However, the MRI modality does not expose the patients to
dangerous radiation. Furthermore, methods to segment cardiovascular structures
are usually fully automatic which means that wrong segmentation results can not
be corrected and intricate self-correction routines are necessary for quality check
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which can be time consuming [184]. Besides, algorithms that are atlas-based need
to deal with the problem of how to construct an accurate atlas representing a whole
patient population [185]. Our new proposed method is atlas-free and accounts for
the possibility of user-interaction. It relies on a new parameterization of the cylin-
der using compactly supported basis functions. We show that the basis perfectly
reproduces the cylinder as a tensor-product spline surfaces. Furthermore, it is inter-
polatory which implies that the control points of the shape, that can be modified by
the user, directly lie on the surface; a property that allows intuitive and easy user-
interaction. Using the new proposed parametric surface we construct a 3D snake
and provide an explicit expression for a contour-based energy function that attracts
the snake towards the boundary of interest [86]. The provided energy function en-
ables an explicit computation of its gradient; a property that can be exploited for
an efficient implementation. Finally, we have tested the robustness w.r.t. to noise
on test data and we have performed an evaluation on real data using a cohort of 14
healthy subjects [186] to segment the ascending thoracic aorta, a region that is can
be of interest to measure hemodynamics after thoracic endovascular aortic repair
as well as aneurisms in this region [187].

Figure 7.20: Segmentation of the aorta with the cylinder snake in 3D
MRI. The red wireframe represents the surface of the snake and the blue
dots are the control points.
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7.3.2 New Parameterization of the Cylinder

In this section we present a new parametrization of the cylinder as a tensor-product
spline surface. For this purpose our basis functions need to be able to reproduce
circles and ellipses as well as first degree polynomials.

Reproduction of circles and ellipses

We consider the basis function ϕ1 of the following form, which belongs to the family
of interpolators presented in Section 6.2:

ϕ1(t) = λ1βα1
(t)− λ2[βα2

(t) + βα2
(t− 1)], (7.26)

where

λ1(M) =
2π3

M2
(
M sin

(
2π
M

)
− π cos

(
2π
M

)
− π

) (7.27)

λ2(M) =
π2
(
2π −M sin

(
2π
M

))
M2

(
cos
(

2π
M

)
− 1
) (
M sin

(
2π
M

)
− π cos

(
2π
M

)
− π

) (7.28)

and β̂α(ω) =
n∏
k=1

1−eαk−jω
jω−αk is the n-th order causal exponential B-spline defined in

the Fourier domain and the poles are given by α1 = (0, 0, j2πM ,− j2πM ) and α2 =

(0, j2πM ,− j2πM ).

Proposition 19. The basis φ1 is an interpolator and is capable of reproducing the
complex exponentials ej2πt and e−j2πt independent of the number of control points
M ≥ 3.

Proof: In order to show that φ1 is an interpolator we notice that the n-th order
exponential B-spline has support n. Thus, ϕ1 has a support equal to 4. By im-
posing the corrsponding interpolation conditions on (7.26) and solving for λ1 and
λ2 we obtain the weights given by (7.27) and (7.28). In order to prove the repro-
duction properties of ϕ1 we use the exponential reproduction properties from the
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exponential B-spline, i.e. if α ∈ α, then there exists a sequence p[k] such that
eαt =

∑
k∈Z p[k]βα(t− k) [63]. Therefore, considering α ∈ α2 ∈ α1 we obtain

∑
k∈Z

p[k]

[
λ1βα2

(t− k)− λ2(βα2
(t− k) + βα2

(t− k − 1))

]
= λ1e

αt − λ2(eαt + eα(t−1))

= eαt(λ1 − λ2(1 + e−α))

(7.29)

From [63] (Proposition 2) we know that if a function ψ reproduces exponential
polynomials then ψ̃ ∗ψ also reproduces these exponential polynomials if ψ̃ satisfies
some mild conditions. Thus, since βα1 = β0 ∗ βα2 and

∑
k∈Z

ϕ1(t− k) =

∑
k∈Z

p[k]

[
λ1(β0 ∗ βα2)(t− k)− λ2(βα2(t− k) + βα2(t− k − 1))

] (7.30)

we see that ϕ1 also reproduces the exponential polynomials given by (7.29). The
last pont of Proposition 1, M ≥ 3 is due to the fact that ϕ1 needs to form a Riesz
basis in order to guarantee a unique and stable representation of the resulting para-
metric surface. It has been shown in [63] that this is only verified if for all pairs of
distinct purely imaginary elements of α we have αm − αn 6= j2πk, k ∈ Z. Hence,
from the definition of α1 and α2 we directly see that M ≥ 3 �

Corollary 2. The interpolator ϕ1 reproduces cos(2πt) and sin(2πt) independent of
the number of control points M ≥ 3.

Proof: By exploiting the exponential reproduction property of B-splines and the
property of ϕ1 of being an interpolator we write

cos(
2πt

M
) =

e
j2πt
M + e−

j2πt
M

2
=
∑
k∈Z

[
e
j2πk
M + e−

j2πk
M

2

]
ϕ1(t− k) (7.31)
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and therefore

cos(2πt) =
∑
k∈Z

cos[2πk]ϕ1(Mt− k) (7.32)

In a similar way we obtain sin(2πt). �

Plots of the reconstructed trigonometric functions are shown in Figure 7.21 as well
as the circle r obtained through the parametric equation r(t) = (cos(2πt), sin(2πt)).

Figure 7.21: Top left: Keys interpolator (blue) and the proposed ellipse
reproducing interpolator (red). Top right: the circle obtained with the
parametric equation r(t) = (cos(2πt), sin(2πt)). Bottom: cos(2πt) (left)
and sin(2πt) (right) are shown together with the basis functions for M = 3.
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Reproduction of 1st degree polynomials

The parametric representation of the cylinder as a spline surface requires that
at least one basis function reproduces 1st degree polynomials. We use the Keys
interpolator which is in C1 and reproduces 2nd degree polynomials. It is given by

ϕ2(t) =


1
2

(
2− t2(3t+ 5)

)
−1 < t ≤ 0

− 1
2 (t− 2)2(t− 1) 1 ≤ t < 2

1
2 (t+ 1)(t+ 2)2 −2 < t ≤ −1
1
2

(
(3t− 5)t2 + 2

)
0 < t < 1

. (7.33)

Its support is also equal to 4 as for ϕ1. A plot of the line that has been reproduced
with ϕ2 is shown in figure 7.22.

Figure 7.22: Reproduction of the line and weighted basis functions.

Reproduction of the cylinder

Proposition 20. The normalized cylinder surface can be expressed as

σ(u, v) =
M−1∑
k=0

M+1∑
k=−1

c[k, l]ϕ1,M (Mu− k)ϕ2(Mv − l), (7.34)
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where u, v ∈ [0, 1] and ϕ1,M is the M -periodization of ϕ1 and the control points of
the surface are given by

c[k, l] =

cos[ 2πk
M ]

sin[ 2πk
M ]
l
M

 . (7.35)

Proof: By using the M−periodized basis function of ϕ1

ϕ1,M (Mt− k) =
+∞∑

n=−∞
ϕ1(M(t− n)− k), we can re-express the cosine in (7.32)

as

cos(2πt) =
M−1∑
k=0

cos[ 2πk
M ]ϕ1,M (Mt− k). In a similar way we obtain

sin(2πt) =
M−1∑
k=0

sin[ 2πk
M ]ϕ1,M (Mt − k). The reproduction of the straight line

can be expressed as
∑
k∈Z

k
Mϕ2(Mt− k). If we enforce t to lie in the interval [0, 1]

and because the support of ϕ2 is limited to [−2, 2] the summation can be restricted
to the indices k ∈ [−1,M + 1]. Since ϕ1 and ϕ2 satisfy the partition of unity
condition, i.e.

∑∞
k=−∞ ϕ(t−k) = 1 (proof ommitted) we can develop the standard

parametrization of the cylinder for u, v ∈ [0, 1] as follows:

σ(u, v) =

cos(2πu)
sin(2πu)

v


=
M−1∑
k=0

cos[ 2πk
M ]

sin[ 2πk
M ]

1

ϕ1,M (Mu− k) ·
M+1∑
k=−1

 1
1
k
M

ϕ2(Mv − k)

=
M−1∑
k=0

M+1∑
k=−1

cos[ 2πk
M ]

sin[ 2πk
M ]
k
M

ϕ1,M (Mu− k)ϕ2(Mv − l)

(7.36)

�
An important property of the surface that we use to construct the snake is that

it must guarantee to be able to outline shapes irrespective of their size, orientation
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and position. It must therefore be invariant to affine transformations, i.e.

Aσ(u, v) + b

=

M−1∑
k=0

M+1∑
l=−1

(Ac[k, l] + b)ϕ1,M (Mu− k)ϕ2(Mv − l), (7.37)

where A is a 3× 3 matrix and b ∈ R3. It is easy to see that equation (7.37) is
automatically satisfied if the basis functions ϕ1 and ϕ satisfy the partition of unity.
A plot of the resulting surface is shown in figure 7.23.

Figure 7.23: Wireframe representation of the cylinder created as a tensor-
product spline surface given by Proposition 2. The blue points are the
control points. Note that the few non-interpolatory control points are due
to the fact that the boundary conditions for the reproduction of the z-
coordinate in (7.34) are not periodic.

7.3.3 3D Parametric Spline Snake

To construct the snake we need to define an energy functional that can be minimized
in order to attract the snake surface towards the boundary of interest. We use a
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gradient-based energy similar to the one proposed by [86]. It is given by

Egrad = −
¨
∂Ω

∆xdy ∧ dz

= −
ˆ 1

0

ˆ 1

0

∆x(σ(u, v))

(
∂y

∂u

∂z

∂v
− ∂y

∂v

∂z

∂u

)
dudv,

(7.38)

where ∆x(x, y, z) =
´ x
−∞∆(τ, y, z)dτ can be pre-integrated and stored in a

lookup table in order to speed up the computational process. The partial derivatives
in (7.38) can be computed through

∂σ

∂u
(u, v) = M

M−1∑
k=0

M+1∑
l=−1

c[k, l]ϕ̇1,M (Mu− k)ϕ2(Mv − l) (7.39)

∂σ

∂u
(u, v) = M

M−1∑
k=0

M+1∑
l=−1

c[k, l]ϕ1,M (Mu− k)ϕ̇2(Mv − l), (7.40)

where ∂σ
∂u = ( ∂x∂u ,

∂y
∂u ,

∂z
∂u ) and ∂σ

∂v = (∂x∂v ,
∂y
∂v ,

∂z
∂v ).

Equation (7.38) allows to compute a closed-form expression of its gradient w.r.t.
to the contorl points, which allows an efficient implementation of the optimization
algorithm.

7.3.4 Experiments

We have implemented and validated our proposed framework on artificial as well as
on real 3D MRI. For the artificial data we have created a perfect 3D hollow cylinder
and corrupted the image with increasing levels of additive Gaussian white noise.
The overlap between the initial position of the snake and the perfect cylinder cor-
responds to a Jaccard index of .12. The signal-to-noise ratios (SNR) and resulting
overlap measures are shown in table 7.2.

In order to validate the snake on real data we have manually segmented the
thoracic ascending aorta on 14 scans taken from healthy subjects. The segmentation
was carried out by an expert clinician and represents the gold standard. The mean
overall measures w.r.t. to the initial position and segmentation results are shown
in table 7.3 as well as the standard deviations (std).
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Table 7.2: Jaccard indices for segmentation of (noisy) data.

SNR [dB] (stdd) Jaccard index
∞ (-) 0.94

9.91 (10) 0.94
0.27 (30) 0.94
−4.17 (50) 0.94
−7.10 (70) 0.92
−9.21 (90) 0.92

Table 7.3: Mean Jaccard indices for segmentation of real data.

− mean Jaccard index (std)
initialization 0.23 (0.23)

result 0.96 (0.02)

The optimization is carried out by a Powell-like line-search method [188]. The
segmentation took less than 4 seconds on average on a 2.3 GHZ processor with 8 GB
RAM. Furthermore, we have also successfully tested the framework for computed
tomography data and for the segmentation of the spinal cord in 3D MRI (results
will be published elsewhere). An illustration of a real 3D MRI scan where the spinal
cord and the thoracic ascending aorta are segmented are shown in figure 7.24.

7.3.5 Conclusion

We have proposed a novel parameterization of the cylinder in order to construct
a 3D snake. We have shown how to perfectly reproduce the cylindrical topology
using interpolatory basis functions. They have the advantage that a tensor-product
spline surface can be constructed where the control points lie on the surface itself; an
advantage for user-interactive applications. We provide an explicit formulation for
a gradient energy and the results obtained on real data are promising. Furthermore,



7.3 Medical Segmentation of Structures with Cylindrical Topology 191

Figure 7.24: Simultaneous segmentation of the spinal cord (blue) and the
thoracic ascending aorta (red).

our experiments on test data show that the proposed algorithm is robust to noise.
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7.4 Appendix

7.4.1 Smoothness Conditions at Poles

The left-hand-side of (7.9) is developed as

∂σ(u, v)

v

∣∣∣∣
v=0

=

M2

M1−1∑
k=0

M2+1∑
l=−1

c[k, l]ϕM1,per(M1u− k)ϕ′2M2
(M2v − l)

∣∣∣∣
v=0

= M2

M1−1∑
k=0

ϕM1,per(M1u− k)

M2+1∑
l=−1

c[k, l]ϕ′2M2
(−l)

= M2

M1−1∑
k=0

ϕM1,per(M1u− k)

×
(
c[k,−1]ϕ′2M2

(1) + c[k, 0]ϕ′2M2
(0) + c[k, 1]ϕ′2M2

(−1)

)
= M2

M1−1∑
k=0

ϕM1,per(M1u− k)

×
(
ϕ′2M2

(−1)(c[k,−1]− c[k, 1])

)
,

(7.41)

where we have used the fact that ϕ′ is odd (ϕ is even). The right-hand-side of (7.9)
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is expressed as

T 1,N cos(2πu) + T 2,N sin(2πu)

= T 1,N

M1−1∑
k=0

cos
(2πk

M1

)
ϕM1,per(M1u− k)

+ T 2,N

M1−1∑
k=0

sin
(2πk

M1

)
ϕM1,per(M1u− k)

=

M1−1∑
k=0

(
T 1,N cos

(2πk

M1

)
+ T 2,N sin

(2πk

M1

))
× ϕM1,per(M1u− k).

(7.42)

By equating (7.41) to (7.42) and by identifying the coefficients, we obtain (7.11)
and (7.12).

7.4.2 Interpolation Conditions at Poles

At the north pole, we compute

σ(u, 0) =

M1−1∑
k=0

M2+1∑
l=−1

c[k, l]ϕM1,per(M1u− k)ϕ2M2(−l). (7.43)

Since ϕM satisfies the interpolation condition, the term that depends on l is always
zero unless l = 0⇔ ϕ2M2

(l = 0) = 1. Hence, (7.43) simplifies to

σ(u, 0) =

M1−1∑
k=0

c[k, 0]ϕM1,per(M1u− k) := cN . (7.44)

Because the integer shifts of ϕM1
build a basis [76] and ϕM1

satisfies the partition
of unity, (7.44) only holds if c[k, 0] = C, with C a constant vector for all k. Thus,
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σ(u, 0) =

M1−1∑
k=0

C · ϕM1,per(M1u− k)

= C ·
M1−1∑
k=0

ϕM1,per(M1u− k)︸ ︷︷ ︸
=1

= C

= c[k, 0] = cN ∀k ∈ [0 . . .M1 − 1].

A similar derivation leads to the interpolation condition at the south pole.

7.4.3 Flux Across Surface

We denote by n the normal vector to the surface and make use of the divergence
theorem to compute

E(σ) =

‹
S

f · dS =

‹
S

(
f · n‖n‖

)
dS

=

˚
V

divf︸︷︷︸
g

dV =

‹

∂V=S

gxdy ∧ dz

=

‹

∂V=S

gydx ∧ dz =

‹

∂V=S

gzdx ∧ dy,

where gx, gy, gz are the pre-integrated functions along the dimensions x, y or z. The
wedge operator is defined as

dy ∧ dz =
∂y

∂u

∂z

∂v
− ∂y

∂v

∂z

∂u
(7.45)
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and is explicitly computed using ∂σ
∂u = ( ∂x∂u ,

∂y
∂u ,

∂z
∂u ) and ∂σ

∂v = (∂x∂v ,
∂y
∂v ,

∂z
∂v ) with

∂σ

∂u
(u, v) =

M1

M1−1∑
k=0

M2+1∑
l=−1

c[k, l]ϕ′M1,per(M1u− k)ϕ2M2
(M2v − l)

(7.46)

and

∂σ

∂v
(u, v) =

M2

M1−1∑
k=0

M2+1∑
l=−1

c[k, l]ϕM1,per(M1u− k)ϕ′2M2
(M2v − l).

(7.47)

7.4.4 Volume Computation

By the divergence theorem, the volume of a parametric surface is computed as

Vol(σ) =

‹
S

(x, 0, 0) · ndS =

‹
S

xdy ∧ dz. (7.48)

By applying the same simplifications to compute the wedge operator (7.45) as in
Appendix 7.4.3 and using

x(u, v) =

M1−1∑
k=0

M2+1∑
l=−1

c[k, l]ϕM1,per(M1u− k)ϕ2M2(M2v − l),

the volume computation simplifies to

Vol(σ)

=

ˆ 1

0

ˆ 1

0

x(u, v)
(∂y(u, v)

∂u

∂z(u, v)

∂v
− ∂y(u, v)

∂v

∂z(u, v)

∂u

)
dudv.

Because only the basis functions depend on u and v, the integral-dependent terms
can be isolated and precomputed to obtain (7.20).
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Chapter 8

Conclusion

In this thesis, we have presented a novel unifying and generic framework for data-
adaptive shape characterization using splines. Our framework is competitive and
applicable to a wide range of practical settings, which includes biomedical imaging,
computer graphics, and shape modeling in general. In this last chapter, we sum-
marize the main contributions and results of this thesis and provide an outlook for
further directions of research and applications.

8.1 Summary of Results

Novel construction of shape projectors onto vector spaces. We provided
a novel generic construction of shape projectors onto functional vector spaces. The
continuous-domain framework is applicable to parametric shapes and we presented
an exact spline-based implementation which can be readily implemented using
vector-matrix multiplications at a low computational cost. Our solution is valid
for any spline-based generator whose integer shifts form a Riesz basis. An advan-
tage of our construction is that it does not depend on a specific reference shape
living in the vector space; a crucial property to compute unbiased shape alignments.

We show how data sets consisting in curves and surfaces are aligned using our
algorithm and how shape priors are constructed for segmentation of biomedical
images. Our results demonstrate that our shape priors provide additional robust-
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ness in noisy segmentation settings compared to the state of the art and that the
flexibility of the chosen transformation of the affine family used to construct the
projection operator improves the segmentation results.

New framework for continuous-domain sparse shape encoding and dic-
tionary learning. We presented a new generic theory for dictionary learning
and shape encoding of spline shapes. Our construction can be applied to datasets
which are imbalanced or which contain outliers. A key element of our method is the
derivation of an L2-`2 norm equality which allows to express the continuous-domain
L2 norm of a spline-shape using its vector of control points and matrices which
contain the correlation integrals of the basis functions. This direct continuous-
discrete domain correspondance related to spline shapes allows us to deploy sparse
`1-based methods w.r.t. spline coefficients and thus, to apply sparsity-methods to
shapes defined in the continuous-domain. We also presented an L2-based func-
tional projector-based PCA for spline shapes, which is a special case of our sparse
dictionary-learning model. We apply and validate our method to classify shapes
in medical imaging, to analyze inhomogeneous datasets of brain structures, and to
construct dictionaries of anatomical medical shapes.

New spline interpolators for data-adaptive and topology-specific shape
representation. We constructed novel families of spline interpolators for smooth
shape modeling and shape characterization. Thereby, we keep ease-of-use and
user-interactivity as a main focus. We show how interpolators are constructed
to represent shapes of different topology, such as cylindrical, rectangular, spher-
ical or toroidal. We provided specific algorithms that allow one to immediately
construct an interpolator if the parameterization of a shape is known. Besides
user-interactivity our interpolators are suitable for local shape control and fast op-
timization due to their compact support. Furthermore, we presented an extension
of the family to construct interpolators that allow one to vary the resolution of a
shape, thereby enabling to add detail in interactive shape design. All our proposed
interpolators form a Riesz basis and we have shown how they are used in practice.

Deformable spline shapes in practice. We have presented several applica-
tions, where we used our new framework in practice. We have provided examples
of the 3D segmentation of medical structures such as the brain, the aorta, and the
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spinal cord. We illustrated how our algorithms are implemented, thereby combin-
ing semi-automatic optimization algorithms with user-interactivity. Furthermore,
we have shown how our model is used in general shape modeling contexts, such
as interactive computer-aided design, shape reconstruction from samples and point
clouds or shape morphing and deformation. We have demonstrated that our frame-
work is applicable beyond biomedical imaging with potential use in fields related
to computer graphics or computer-aided design.

8.2 Outlook

3D extension of continuous-domain sparse dictionary learning. Currently,
discrete methods for sparse coding and dictionary learning are well explored for 1D
signals and images. In this thesis, we have presented a theory for continous-domain
shape encoding and sparse dictionary learning for 2D curves. Our solution can
be fully extended to 3D spline surfaces by noting that the inner product between
spline surfaces can also be expressed as a matrix vector multiplication. Methods
for 3D sparse dictionary learning can offer new possibilities [189], for instance, to
analyze 3D data sets of medical structures or for automatic real-time object recog-
nition in practice. Thereby, the use of spline shapes allows to represent them in an
exact manner but with few coefficients which enables fast processing times and low
computational costs.

Extended segmentation frameworks based on sparse dictionary learning
and shape priors. We have shown how our shape priors and shape encoding
methods are used in practice to improve robustness and to analyze data sets of
shapes. These two models can be combined to construct a segmentation framework
which is robust regarding noise but also flexible with respect to segmenting differ-
ent types of shapes encoded in a dictionary. For example, if dictionaries are con-
structed, which contain several anatomical structures, then related shape priors can
be computed, each representing a population of shape structures. Structure-specific
segmentation energies can be computed using iterative algorithms in an online seg-
mentation setting, which immediately associate the structure of interest to a shape
in the dictionary. Furthermore, our framework can be combined with tracking
algorithms which are related to segmentation with prior knowledge [13, 190].
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Software implementation for unifying shape characterization in biomed-
ical imaging. The motivation of this thesis has been to develop a complete the-
ory for the construction of a geometric kernel that builds the basis for a software
implementation, which allows biologists and clinicians to analyze, segment, and
characterize their data in a single software environment regardless of the shape of
their data and its dimension. We have constructed a unifying theory for shape
characterization which can be used to process different types of shapes, such as
2D and 3D with different topology, user interaction, optimization and we provide
means to construct shape priors and shape dictionaries. Each aspect of our theory
has been tested, validated, and implemented as a software prototype. From the
perspective of biomedical imaging, the next step should be to provide a full soft-
ware implementation of the framework and to make it available to clinicians and
biologists on popular software platforms such as ImageJ [191] or Icy [7].
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[12] D. Schmitter, A. Roche, B. Maréchal, D. Ribes, A. Abdulkadir, M. Bach-
Cuadra, A. Daducci, C. Granziera, S. Klöppel, P. Maeder, R. Meuli, and
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