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Landmark-Based Shape Encoding and Sparse-
Dictionary Learning in the Continuous Domain

Daniel Schmitter and Michael Unser

Abstract— We provide a generic framework to learn shape
dictionaries of landmark-based curves that are defined in the
continuous domain. We first present an unbiased alignment
method that involves the construction of a mean shape as well as
training sets whose elements are subspaces that contain all affine
transformations of the training samples. The alignment relies on
orthogonal projection operators that have a closed form. We then
present algorithms to learn shape dictionaries according to the
structure of the data that needs to be encoded: 1) projection-
based functional principal-component analysis for homogeneous
data and 2) continuous-domain sparse shape encoding to learn
dictionaries that contain imbalanced data, outliers, or different
types of shape structures. Through parametric spline curves,
we provide a detailed and exact implementation of our method.
We demonstrate that it requires fewer parameters than purely
discrete methods and that it is computationally more efficient and
accurate. We illustrate the use of our framework for dictionary
learning of structures in biomedical images as well as for shape
analysis in bioimaging.

Index Terms— Sparse coding, dictionary learning, PCA,
sparsity, splines, segmentation.

I. INTRODUCTION

G IVEN a training set {rk}k=1,...,K of K parametric curves
rk(t) ∈ L2([0, 1], R

2) defined by a set of corresponding
landmarks, we aim at learning a dictionary whose atoms best
capture the shape variability of the training set. We first define
for each curve rk a subspace Sk = {Ark + b : A ∈ R

2×2,
b ∈ R

2} that contains all admissible affine or similarity
transformations of rk . Next, we compute the mean shape rmean
that is closest to all subspaces Sk and project it back onto
each Sk (see Figure 1) to obtain an aligned training set
{r̃k = Pk r}k=1,...,K , where Pk : L2([0, 1], R

2) → Sk is the
orthogonal projection operator that projects a query curve r
onto Sk . We use the aligned training data to learn dictionaries
by either computing a continuous-domain functional principal-
component analysis (fPCA) or for sparse shape encoding,
depending on the structure of the data. Our approach allows
one to construct dictionaries that contain atoms that are
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Fig. 1. Unbiased shape alignment of curves. For each curve rk the
vector space Sk is built w.r.t. an admissible geometric transformation. The
shape rmean that is closest to all subspaces Sk is computed and projected
back to each subspace, which yields the aligned shapes r̃k that define the
data used to construct the shape dictionary.

invariant to the specific affine transformation being used.
For instance, if the geometric transformation is a similarity
transformation, then the resulting fPCA does not depend on the
location, size, or orientation of the original curves {rk}k=1,...,K .

A. Contribution
1) Mean-Shape Construction and Curve Alignment:

We provide a method to construct vector spaces that contain
all admissible affine transformations of a particular curve. Our
model is generic and has the advantage that it allows one to
specify which kind of transformation needs to be used, such
as similarity, shearing, reflection, scaling, or others. Instead of
defining the vector space through its explicit basis, we implic-
itly define it by characterizing the orthogonal projector onto
the vector space. These projectors allow us to compute a mean
shape, which we use to align a training set by “removing”
from the data the affine transformation used to construct the
vector space. The specificity of our alignment method is that
it does not depend on the particular choice of a reference
shape or template. We also provide a closed-form solution
instead of an iterative method.

2) Dictionary Learning With Projection-Based Functional
PCA: We show how to compute an fPCA for parametric
curves with the aligned training set. The principal components
are used as atoms to construct the learned dictionary.

3) Exact Implementation Using Spline Curves: We provide
formulas for the exact implementation of our continuous-
domain framework using splines. We derive the equivalent
spline-based representation of the projectors and fPCA and

1057-7149 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-4688-2809


366 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 1, JANUARY 2018

show how our model is implemented at no additional cost
compared to a purely discrete approach. Yet, we benefit from
the fact that spline curves need fewer parameters than common
landmark-based methods to accurately describe a shape.

4) Sparse Shape Encoding: We present a method that
enforces sparsity to learn dictionaries that can be applied
to training data unsuitable to be analyzed with L2 methods.
We provide formulas to express the continuous-domain
L2 norm of any spline curve as a discrete �2 norm. We show
how to exploit these formulas to convert the continuous
domain L2-�1 sparse coding problem into a discrete �2-�1
optimization problem; this step is crucial for sparse shape
encoding.

II. RELATED WORK

A. Sparsity-Based Learning Methods

Sparse signal representation models that typically involve
the minimum of an �1-norm provide more flexibility than
�2-based methods to encode training data because 1) unlike
methods related to principal component analysis (PCA),
they do not enforce orthogonality on the basis vectors and
2) they are less sensitive to outliers or inhomogeneous
data [1], [2]. Methods to learn sparse dictionaries, such as
sparse PCA [3]–[5] have been proposed for image denois-
ing [6] or to solve image-classification tasks [1]. In the context
of shape analysis, sparse learning methods have been applied
to medical imaging [7], [8]. However, since these algorithms
are formulated in the discrete domain, they are penalized by
the trade-off required to behave accurately and the number of
shape descriptors (such as landmarks).

B. Statistical Shape Models

The �2-based learning methods to characterize shape data
and capture its variability can be traced back to the classical
Point Distribution Model (PDM), which is the basis of the
Active Shape Model (ASM) [9], [10]. Landmark-based curves
are aligned by minimizing the variance of the distance between
corresponding points. Originally, the ASM was introduced
to segment images. Its main difference with active contour
models [11]–[13] is that it enforces deformations that are
consistent with the training set. The ASM and related sta-
tistical shape models [14] usually require that the training
set be aligned or registered to a common reference prior to
the statistical analysis. Iterative methods, such as the popular
Procrustes Analysis [15] are used to compute a mean shape
from a properly aligned set of training data. A PCA is then
applied to the renormalized training data to compute the modes
that describe the variation within the data. Although different
alignment strategies exist, it remains a challenge to reduce the
bias that is introduced when computing the mean shape [16].
Moreover, these algorithms are iterative, which can be incon-
venient if fast online methods are required. Furthermore, they
do not allow for a flexible choice of the particular geometric
transformation (e.g., rigid-body, similarity, scaling) that is
removed upon re-normalization. This restricts their application
to a specific class of shapes.

The methods mentioned above are considered as discrete
methods. Attempts to construct statistical shape models in
the continuous domain have been proposed by making use
of B-splines [17]; however, they do not fully exploit the
L2 Hilbert-space structure of parametric spline shapes.

Statistical shape models are closely related to shape analy-
sis [18] or segmentation models because they are often used
to incorporate prior information about shapes into an algo-
rithm [19]–[22]. In this context, spline-based curve representa-
tions are convenient because they enable to implement smooth
shapes in the continuous domain [23]–[26] with only few
parameters.

III. CURVE PROJECTORS

Given a training set {rk}k=1,...,K of curves, it is necessary
to first align the shapes in order to construct a dictionary.
This step corresponds to the centering of the data vectors
in a classical PCA. To guarantee an unbiased alignment,
we propose to associate to each sample curve rk a subspace
that contains all admissible affine transformations of rk . Then,
we compute the curve rmean that is the closest to all subspaces
and project it back to them to obtain the aligned curves
{r̃k}k=1,...,K (see Figure 1). In the following, we first describe
the theory to formulate affine spaces of curves and projection
operators.

A. The Hilbert Space H Containing All Parametric Curves

We describe a 2D parametric curve as r(t) = (rx (t), ry(t)),
where t ∈ [0, 1]. The normalization of the parameter domain
to [0, 1] can always be done without loss of generality.
We denote by H : L2([0, 1], R

2) the Hilbert space associated
with the standard L2-inner product 〈rk, r l〉 := ∫ 1

0 rT
k (t)r l(t)dt

that contains all 2D parametric curves. The corresponding
norm is defined as ‖r‖L2 := √〈r, r〉.

B. Shape Subspaces of H
We define a subspace as the space that contains all admis-

sible geometric transformations of a reference curve r ref .
Such a subspace can be defined as a finite-dimensional vector
space Sref of dimension I , whose basis {eref

i }i=1,...,I consists
of elements eref

i , which themselves are curves that depend
on r ref . Hence, every element (i.e., curve) living in Sref can
be expressed as a linear combination of the basis elements.
Thus,

Sref =
{ I∑

i=1

ui eref
i (·) : ui ∈ R

}
(1)

is a subspace of the Hilbert space H. We now illustrate this
concept with the following example.

1) Example - Affine Vector Space: The affine transforma-
tion of a 2D curve r can be expressed as Ar + b, where

A =
(

a1 a2
a3 a4

)

is a (2 × 2) matrix with elements ai ∈ R,

i = [1 . . . 4] and b = (b1, b2) ∈ R
2 is a translation vector.
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TABLE I

BASES OF VECTOR SPACES

By evaluating the matrix-vector product explicitly, we obtain

Ar(t) + b = a1

(
rx (t)

0

)

+ a2

(
ry(t)

0

)

+ a3

(
0

rx (t)

)

+ a4

(
0

ry(t)

)

+ b1

(
1
0

)

+ b2

(
0
1

)

.

Therefore, the affine space associated to the 2D reference
curve r ref is a six-dimensional vector space (i.e., I = 6) whose
basis is given by

{eref
i }i=1,...,6 =

{(
r ref

x
0

)

,

(
r ref

y
0

)

,

(
0

r ref
x

)

,

(
0

r ref
y

)

,

(
1
0

)

,

(
0
1

)}

,

where we have omitted the parameter t to shorten the notation.
Note that the choice of the basis is not unique. However,
different bases w.r.t. to a given transformation describe the
same space.

C. Construction of Vector Spaces

The vector spaces that are the most useful are summarized
in Table I. They are defined by the bases {ei }i=1,...,I that
construct a vector space Sref for transformations in 2D. Taking
a reference curve r ref = (r ref

x , r ref
y ) and choosing one of the

transformations given in Table I, the corresponding vector
space is spanned by the indicated basis. While the definition
of those spaces appears to be rather simple a posteriori,
we are not aware of prior work that explicitly exploits this
formulation.

D. Orthogonal Projectors

We now consider the projection operator P : H → S,
r �→ P r, that projects an arbitrary curve in H onto the vector
space S with basis {ei }i=1,...,I and dimension I . Thus, a vector
space can either be explicitly defined by S or implicitly
by P . It is expressed in its most general way as P r(t) =

I∑

i=1
ei (t)〈ẽi , r〉, where {ẽi }i=1,...,I ∈ S is the unique dual basis

with respect to {ei }i=1,...,I such that 〈ei , ẽ j 〉 = δi− j , with δi− j

being the Kronecker delta. The operator P is an orthonormal
projector and belongs to the class of orthogonal projection
operators.

Fig. 2. Illustration of an orthogonal projection onto a vector space. The plane
denoted by Sref represents the subspace defined by the reference shape rref.
Sref represents a subspace that contains all curves rref up to a class of
transformations (e.g., rotations, scaling, or translations of rref). Projecting
a query curve r (green curve) orthogonally onto Sref amounts to identifying
the rotated, scaled, and translated quadrilateral rref that is closest to r w.r.t.
a chosen distance measure. The curve obtained by the orthogonal projection
is denoted as Pref r .

Orthogonal projectors are of special interest to us because
they minimize the distance between the query curve r ∈ H
and its projection P r onto S w.r.t. the norm induced by the
L2-inner product (see Figure 2). Proposition 1 provides a
mean to directly compute the orthogonal projector P given
a basis {ei }i=1,...,I spanning the vector space S.

Proposition 1: The orthogonal projector P ref : H → Sref

that minimizes the distance between the curve r ∈ H and the
I -dimensional vector space Sref is specified by

P ref r(t) = 〈KP ref (t, ·), r〉,
where KP ref (t, s) = ∑I

i=1 eref
i (t) ⊗ ẽref

i (s) is the kernel
of the operator P ref and {ẽi

ref}i=1,...,I is the dual basis
of {eref

i }i=1,...,I . Its elements are given by

ẽi
ref = [

Gref−1]
i,1eref

1 + · · · + [
Gref−1]

i,I eref
I ,

where Gref is the Gram matrix of the basis {eref
i }i=1,...,I . Here,

⊗ denotes the tensor product between two vectors and is
defined as ei (t) ⊗ e j (s) = ei (t)eT

i (s).
The derivation of Proposition 1 is provided in Appendix A.

We say that P ref projects r ∈ H onto the I -dimensional
invariant subspace Sref . In particular, for any rS ref ∈ Sref ,
we have that rS ref = P ref rS ref

.

IV. MEAN SHAPE AND ALIGNMENT

In the case where we are dealing with several reference
curves (i.e., a training set of reference shapes), we define one
vector space Sk := Sref

k for each curve rk := r ref
k . Merging all

these subspaces results in a large space of transformations of
different curves.

Since, in the training set, some shape configurations might
occur more frequently than others, we want to construct the
dominant or mean shape given the training data and a class
of transformations. We assume that all subspaces have the
same dimension I and formalize the problem as finding the
curve that is closest to all the subspaces Sk , each being
specified by its corresponding projector Pk := P ref

k : r �→
I∑

i=1
ek

i (t)〈ẽk
i , r〉 (see Figure 1). This problem can be formulated
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in a variational form if we impose the condition that the
mean shape should have unit norm. Although arbitrary, this
requirement does not influence the result; in practice, we are
only interested in the shape up to a scaling factor. The
mean curve rmean is determined by maximizing the sum of
all k projections of rmean onto the subspaces Sref

k , which is
equivalent to minimizing the sum of distances between rmean
and its projections onto Sref

k .
The curve rmean that is closest to all subspaces Sk for

k = 1, . . . , K is then obtained by solving

rmean = arg max
r

K∑

k=1

‖Pk r‖2
L2

s.t. ‖r‖2
L2

= 1, (2)

which is equivalent to the eigenvalue problem
K∑

k=1

Pk rmean(t) = λrmean(t) s.t. 〈rmean,p, rmean,q〉 = δp−q ,

(3)

where we have used the fact that all the Pk are orthonormal,
which implies that P∗

k Pk = Pk , where P∗
k is the adjoint of Pk .

A derivation of (3) is provided in Appendix B.

A. Solutions of the Eigenequation

To solve (2), we invoke Propositon 1 and reformu-
late Problem (3) as

K∑

k=1

Pk rmean(t) =
K∑

k=1

〈KPk (t, ·), rmean〉 = λrmean(t). (4)

Equation (4) is a Volterra equation whose kernel KP consists
of a finite sum. In Theorem 1, we characterize the solutions
of (4) as the principal components of the eigenequation (3).

Theorem 1: Let the (K · I ) × (K · I ) matrix � be defined
as

[�](k−1)·I+i,( j−1)·K+l = 〈ẽ(k)
i , e(l)

j 〉, (5)

where k, l ∈ [1, . . . , K ] and i, j ∈ [1 . . . I ]. Then, the
pth eigencurve of (3) is given as

rmean,p(t) =
K∑

k=1

I∑

i=1

ei (t)
(k)γ

(p)
ik , (6)

where γ
(p)
ik is the entry indexed by (i − 1) · K + k of the

pth eigenvector of the matrix �.
The proof is given in Appendix C. We show in Appendix D

how to interpret this result in practice.
1) Unbiased Curve Alignment: Finally, we associate to the

training set {rk}k=1,...,K the aligned curves

{r̃k = Pk rmean}k=1,...,K , (7)

as illustrated in Figure 1, where rmean is the mean shape. The
projection of the mean shape onto Sk amounts to choosing
the affine transformation of each data curve rk that brings it
closest to rmean within each vector space Sk (see Figure 2).
It is worth noticing that the proposed method for aligning the
curves does not depend on the location of any member of the
training set within each subspace Sk . Hence, in that sense,
it is unbiased as well as invariant w.r.t. to the geometrical
transformation that is chosen.

V. PROJECTION-BASED FUNCTIONAL PCA FOR CURVES

We now construct an fPCA on the aligned training set (7).
Since the curves r ∈ H are defined in the continous domain,
it is not possible to apply a discrete-domain PCA to our data.1

Here, our data is of dimension “2∞ × K ”. Therefore, we use
operators instead of matrices to perform an fPCA.

Definition 1: The (compact) data operator X : R
K →

L2([0, 1], R
2) is the operator whose kernel consists of K

aligned curves as

X = [r̃1(t) · · · r̃ K (t)],
where r̃k is defined in (7). The adjoint X∗ : L2([0, 1], R

2) →
R

K satisfies

〈r, Xv〉L2([0,1],R2) = 〈X∗r, v〉�2(RK ), (8)

with v ∈ R
K and r ∈ L2([0, 1], R

2). We emphasize that
each of the two inner products in (8) have their own distinct
definition.

We are looking for the optimal orthogonal base curves
{ξ1(t), . . . , ξ K (t)}, ξ k ∈ H for k = 1, . . . , K , that decorrelate
the training set. They are given by the eigencurves of the
scatter operator XX∗ : L2([0, 1], R

2) → L2([0, 1], R
2).

Analogous to the discrete PCA, we can exploit the property
that

• the non-vanishing eigenvalues of the scatter operator XX∗
and of the Gram matrix X∗X ∈ R

K×K , which corre-
sponds to the correlation matrix in discrete PCA, are
identical;

• the eigencurves {ξk (t)}k=1,...,K of XX∗ are immediately
obtained from the eigenvectors v ∈ R

K , as specified
in Proposition 2.

Proposition 2: The eigencurves ξ k ∈ L2([0, 1], R
2) of the

scatter operator XX∗ : L2([0, 1], R
2) → L2([0, 1], R

2) are
specified by

XX∗{ξ k}(t) = λkξ k(t),

while the eigenvectors vk ∈ R
K of the Gram matrix X∗X ∈

R
K×K are given by

(X∗X)vk = λkvk,

where the λk are the non-vanishing eigenvalues of X∗X and
are identical to the non-vanishing eigenvalues of XX∗. These
entities are related by

ξ k = 1√
λk

Xvk and vk = 1√
λk

X∗ξ k .

Furthermore, the relation

vT
k vl = 〈ξ k, ξ l〉 = δk−l

holds.
The Gram matrix has size K × K and is computed as

X∗X =
⎛

⎜
⎝

〈r̃1, r̃1〉 . . . 〈r̃1, r̃ K 〉
...

. . .
...

〈r̃ K , r̃1〉 . . . 〈r̃ K , r̃ K 〉

⎞

⎟
⎠.

1In the discrete domain a training set with K curves — each curve
being defined by Q landmarks or samples given by their coordinates — is
represented as a 2Q × K data matrix and then a discrete domain PCA is
performed [27].
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Now, we can easily compute the principal curves by specifying
the data array Z as

Z = XV, (9)

where Z = [z1(t) · · · zK (t)] and V = [v1 . . . vK ] is the
orthonormal matrix containing the eigenvectors of the Gram
matrix X∗X ∈ R

K×K . They can also be computed via the
relation

Z = [√λ1ξ1(t) · · · √λI ξ K (t)].
For a more in-depth description of fPCA using compact
operators, we refer the reader to [28].

VI. IMPLEMENTATION WITH LANDMARK-BASED

SPLINE CURVES

We now illustrate how our framework can be implemented
using spline curves. For simplicity, we consider that the
curves all have the same number N of control points and are
constructed with the same basis function ϕ.

A. Parametric Spline-Based Curves

We consider spline curves of the form

r(t) =
(

rx (t)
ry(t)

)

=
N−1∑

n=0

c[n]ϕn(t), (10)

where ϕ is a compactly supported spline-based generator
function and N ∈ Z

+ represents the number of control points
of the curve. The spline coefficients are given by {c[n] =
(cx [n], cy[n])}n=0,...,N−1. To guarantee a stable and unique
representation of a spline curve (10) by its control points,
ϕ needs to generate a Riesz basis [29] as, for instance,
polynomial B-splines do.

1) Affine Covariance: To represent a curve independently
from its location and orientation, the representation needs to
be affine covariant so that

A r(t) + b =
N−1∑

n=0

(A c[n] + b) ϕn(t).

It is easy to show that affine invariance is guaranteed
if and only if ϕ satisfies the partition-of-unity condition∑

n∈Z
ϕn(t) = 1 for all t ∈ R.

B. Inner Product of Spline-Based Curves

We use a simple but powerful expression to compute
the L2-inner product 〈r1, r2〉 between spline-based curves.
We first compute it for the 1D case and then generalize it
to higher dimensions.

1) 1D Inner Product: We consider spline-based (coordinate)

functions of the form x(t) =
N−1∑

n=0
cx [n]ϕn(t). The L2-inner

product is then expressed as

〈x1, x2〉 =
∫ 1

0
x1(t)x2(t)dt

=
N−1∑

n=0

N−1∑

m=0

c1x [n]c2x[m]
∫ 1

0
ϕn(t)ϕm(t)dt . (11)

We collect all coefficients of the function xi in the vector of
length N , cix = (cix [0], . . . , cix [N − 1]) with i = 1 or 2.
We then define

[�]n,m :=
∫ 1

0
ϕn(t)ϕm(t)dt . (12)

Now, (11) is expressed as 〈x1, x2〉 = cT
1x�c2x , where � is

the (N × N) correlation matrix of ϕn . For an implementa-
tion (11) can be crucial: since the entries of the matrix �

can be precomputed, the evaluation of the integral associ-
ated with the inner product (11) boils down to a matrix-
vector multiplication, which reduces the computational time
considerably.

2) 2D Inner Products: To simplify the 2D inner product,
we similarly define

ci = (cix , ciy), (13)

which is now a vector of length 2N . The corresponding inner
product is

〈r1, r2〉 = cT
1 �c2 = 〈c1, c2〉�, (14)

where

� =
[
� 0
0 �

]

(15)

and 0 is a null matrix with the same dimensions as � defined
by (12). We show in [30] how (12) is computed when the
curves r are periodic. (We use different fonts to distinguish c
in (14) from c in (10).)

C. Orthogonal Spline Projectors

Using (14) to compute inner products of spline curves,
we now specify the projection operator that corresponds
to Proposition 1. A fundamental aspect of our construction
is that both the query curve r that is being projected and the
basis {eref

i }i=1,...,I of the subspace Sref as defined in (1) are
spline curves of the form given by (10). Hence, each curve
e(t) ∈ H is uniquely determined by its corresponding vector
of control points ce ∈ R

2N . We define the matrix

Cref = [ceref
1

· · · ceref
I

]. (16)

It has dimension (2N × I ) and contains the control points of
the curves {eref

i }i=1,...,I that define a basis of Sref . To simplify
the notation, we collect all basis functions in the vector

ϕ(t) := (ϕ0(t), . . . , ϕN−1(t)). (17)

The corresponding spline projector is then specified
by Theorem 2.

Theorem 2: Let r(t) = ϕ(t)Tc. Then,

P refr(t) =
(

ϕ(t) 0
0 ϕ(t)

)T

Prefc,

where Pref : R
2N → R

2N is the (2N × 2N) projection matrix
defined as

Pref = Cref(Cref T
�Cref)−1Cref T

�

and 0 is an N-dimensional null vector.



370 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 1, JANUARY 2018

Theorem 2 provides a direct method to compute the control
points of the projected curve. Note that the projection of the
vector c of control points is itself not orthogonal. However,
it corresponds to the orthogonal projection of r in the
L2-sense. Therefore, we have (Pref)2 = Pref and Pref T �= Pref .
Theorem 2 shows that Pref is an oblique projector from R

2N

onto the I -dimensional invariant subspace of R
2N defined by

the basis {ceref
1

}i=1,...,I . This means that P ref is an orthogonal
projector in the L2-sense and is efficiently implemented via
the oblique projector Pref in R

2N .
We now provide examples that illustrate how some of

the projectors listed in Table I are implemented using
splines and Theorem 2. Thereby, the vector of control points
cref = (cref

x , cref
y ) of a reference curve rref is specified in

accordance with (13).
1) Scaling Projector (Without Translation): The scaling

projector can be expressed by solving min
a

‖arref − r‖2
L2

such

that P ref r(t) = arref(t), where a ∈ R and r ref is the reference
curve that defines the vector space. Its well-known solution
is a = 〈rref,r〉

〈rref,rref〉 . Using (14), the corresponding spline projector

is specified by Pref = cref crefT�
〈cref,cref〉� , which corresponds to the

solution obtained by the direct application of Theorem 2.
2) Affine Transformation: The example illustrated

in Section III-B corresponds to

{ceref
i

}i∈[1...6]=
{(

cref
x
0

)

,

(
cref

y
0

)

,

(
0

cref
x

)

,

(
0

cref
y

)

,

(
1
0

)

,

(
0
1

)}

,

where 0 and 1 are vectors of size N (which is the size
of cref

x or cref
y ) and whose elements are all 0 or 1, respectively.

The spline projector is then computed by the application
of Theorem 2.

3) Similarity: The similarity transformation is defined as the
scaling of a curve r by a factor a combined with a rotation
described by the rotation matrix Rθ (applied to r ref) and a
translation given by b = (b1, b2). It is expressed as

aRθ r ref + b =
(

a cos(θ)r ref
x − a sin(θ)r ref

y + b1

a sin(θ)r ref
x + a cos(θ)r ref

y + b2

)

= α

(
r ref

x
r ref

y

)

+ β

(−r ref
y

r ref
x

)

+ b1

(
1
0

)

+ b2

(
0
1

)

,

where a ∈ R, α = a cos θ , and β = a sin θ . To construct
the corresponding projector, we choose eref

1 = (r ref
x , r ref

y ),
eref

2 = (−r ref
y , r ref

x ), eref
3 = (1, 0), and eref

4 = (0, 1), which cor-
responds to the basis ceref

1
= (cref

x , cref
y ), ceref

2
= (−cref

y , cref
x ),

ceref
3

= (1, 0), and ceref
4

= (0, 1).

D. Example

We compare the affine space with the space defined by
the similarity transformation. We construct the two corre-
sponding projectors w.r.t. the reference spline curve that
represents the white-matter structure of the brain, as shown
in the left of Figure 3. We then project the curve shown in
the right of Figure 3 (the corpus callosum) separately onto
the affine, as well as onto the vector space defined by the
similarity transformation. Among all shapes enclosed by the

Fig. 3. Left: representation of a white matter segment of a brain.
Right: contour of a corpus callosum (brain structure). The blue contour is rep-
resented as a spline curve and the red dots are its landmarks (i.e., the 2D spline
coefficients given by {c[k]}k∈Z).

Fig. 4. Affine vs. similarity. The corpus callosum (blue) is registered onto
the white matter (green). The orange curve is the closest affine transformation
of the white matter (green) w.r.t. the corpus callosum (blue). The red curve
is the closest deformed white matter (green) w.r.t. the corpus callosum (blue)
using a similarity transformation.

given subspace defined by the reference shape (i.e., white
matter), the projector chooses the one closest to the corpus
callosum (see Figure 4).

E. Mean Spline Shape

To compute the mean shape rmean using splines, we again
take advantage of the unicity of the representation of spline
curves by their coefficients (Riesz-basis property). We directly
compute the vector of control points that defines rmean.
Proposition 3 characterizes the spline-based solution that cor-
responds to the eigenvalue problem stated in (2).

Proposition 3: Assume a training set of K spline
curves rref

k of the form (10), where each curve defines a vector
space Sref

k through the spline coefficients given by the (2N×I )
matrix Ck := Cref

k as specified by (16). Then, the vector of
control points cmean of the spline curve rmean is given as the
solution of the eigenequation

K∑

k=1

Ck(CT
k �Ck)

−1CT
k �cmean = λcmean.

The proof is provided in Appendix E.

F. Functional PCA for Spline Curves

Since {ϕn}n=0,...,N−1 forms a Riesz basis, the data array X
in Definition 1 is fully specified by the matrix

� = [c1 · · · cK ] (18)

of control points that define the curves {r̃k}k=1,...,K .
Using (14), the Gram matrix of X is computed as

X∗X = �T�� (19)

and, hence, the (2N × K ) matrix �Z that contains the control
points of the principal curves is

�Z = �V, (20)
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where V is the orthonormal matrix that contains the eigenvec-
tors of the Gram matrix as detailed in Section V. The principal
curves zk are finally obtained as

zk(t) = ([�Z]∗,k)
T

(
ϕ(t) 0

0 ϕ(t)

)

, (21)

where [�Z]∗,k denotes the kth column of �Z. More generally,
we have

Z = �T
Z

(
ϕ(t) 0

0 ϕ(t)

)

. (22)

VII. SPARSE SHAPE ENCODING

PCA uses the complete data to compute the principal curves.
This makes it prone to outliers which might compromise
robustness when learning a shape dictionary. We now propose
a dictionary learning approach that only uses a sparse subset
of the data to encode the shapes. For this purpose, we first
derive a property specific to the spline representation of curves.
It allows us to exactly measure the continuous-domain L2
norm using a discrete-domain �2 norm.

A. L2-�2 Norm Equality

Theorem 3: For any spline curve r(t) specified by the
vector of control points c, and for any data array D =
[d1(t) · · · d K (t)] whose elements are parametric spline curves
described by the matrix of control points �D = [cd1 · · · cd K ]
and any α ∈ R

K we have the norm equality

‖r − Dα‖2
L2

= ‖c̃ − D̃α‖�2

with

c̃ = Q
1/2Q−1c, (23)

D̃ = Q
1/2Q−1�D, (24)

and

� = Q
Q−1, (25)

where Q is an orthonormal matrix whose columns are the
unit-norm eigenvectors of � and 
 is the diagonal matrix
that contains the eigenvalues of � defined by (15).

Proof: We develop the L2 norm as

‖r − Dα‖2
L2

=
∥
∥
∥

(
ϕ(t) 0

0 ϕ(t)

)T

(c − �Dα)
∥
∥
∥

2

L2

= (c − �Dα)T�(c − �Dα), (26)

with ϕ as defined in (17). Since � is a positive-semidefinite
symmetric matrix, it admits an eigen-decomposition of the
form

� = Q
Q−1 = Q
1/2Q−1Q
1/2Q−1, (27)

where Q is an orthonormal matrix that satisfies Q−1 = QT,
whose columns are the unit-norm eigenvectors of � , and

 is the diagonal matrix that contains the eigenvalues of � .
Therefore, we have

Q
1/2Q−1 = (
Q
1/2Q−1)T

, (28)

which allows us to express (26) as

‖r − Dα‖2
L2

= ‖Q
1/2Q−1(c − �Dα)‖2
�2

= ‖Q
1/2Q−1c
︸ ︷︷ ︸

c̃

− Q
1/2Q−1�D︸ ︷︷ ︸
D̃

α‖2
�2

. (29)

B. Continuous-Domain Sparse Dictionary Learning
The projection-based fPCA described in Section V is a

purely L2-based method. It is well known that such methods
are sensitive to outliers, as well as to imbalanced or inhomo-
geneous data sets. Hence, there exist practical settings where
those models are less suitable. Another limitation of fPCA is
the orthogonality constraint on the eigencurves, which might
be unnecessary and too restrictive in certain scenarios.

Here again, we consider the training set X = [x1(t) · · ·
xK (t)] of parametric curves that are defined in the contin-
uous domain as specified in Theorem 3. However, we now
aim at constructing a dictionary D(t) = [d1(t) · · · d J (t)]
with J ≤ K , where {d j (t)} j=1,...,J is a set of parametric
curves such that D yields the optimal value of the continuous-
domain sparse coding problem. This problem is defined in
analogy to its discrete counterpart [2], [31] as

α∗ = arg min
α∈RJ

{1

2
‖xk − Dαk‖2

L2
+ λ‖αk‖l1

}
(30)

for every xk(t) in the training set, where λ ∈ R is a regular-
ization parameter that controls sparsity. The problem (30) is
well studied [32] and known as the Lasso [33] method or basis
pursuit [34]. On one hand, if we enforce orthonormality on α

instead of sparsity (i.e., 〈αk,αl , 〉 = δk−l and λ = 0), then
we recover the exact fPCA solution (9) with αk = vk . On the
other hand, for λ > 0, we obtain a sparse vector αk .

However, our goal here is to accurately approximate a
shape x(t) ≈ D(t)α such that each curve x only uses a few
elements of D for its representation. We make use of spline
curves and invoke Theorem 3, which allows us to formulate
the continuous-domain sparse-coding problem in the discrete
domain as

α = arg min
α∈RJ

{1

2
‖xk − Dαk‖2

L2
+ λ‖αk‖�1

}
(31)

= arg min
α∈RJ

{1

2
‖x̃k − D̃αk‖2

�2
+ λ‖αk‖�1

}
. (32)

Here,

x̃k = Q
1/2Q−1[�]∗,k (33)

with [�]∗,k being the vector of control points of the kth curve
of X as specified in (18) and

D̃ = Q
1/2Q−1�D = [d̃1 · · · d̃ J ], (34)

with �D being the matrix of control points that describe the
parametric curves, in other words the atoms that form the
continuous domain dictionary D(t).

To solve the discrete-domain sparse-coding problem,
we prevent D̃ from becoming arbitrarily large by enforc-
ing the �2-norm of its column vectors to not exceed unity.
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As suggested in [1], [2], this allows us to define the convex
set of possible dictionaries as

C := {D̃ ∈ R
2N×J s.t. ‖d̃ j‖�2 ≤ 1, j = 1, . . . , J }, (35)

where N is the number of control points of a spline curve (10).
Now, D̃ is found by solving the joint-optimization problem

(D̃∗,α∗) = arg min
D̃∈C,α∈RJ

1

K

K∑

k=1

(1

2
‖x̃k − D̃αk‖2

�2
+ λ‖αk‖�1

)
,

(36)

which is convex w.r.t. the two variables D̃ and α when one of
them is fixed. Finally, from (34), we see that

�D = Q
−1/2Q−1D̃

and therefore, the continuous-domain dictionary is computed
through

D(t) =
(

ϕ(t) 0
0 ϕ(t)

)T

�D (37)

with ϕ as defined in (17).
1) Optimization: The joint-optimization problem (36)

can be solved by alternating methods which keep one
variable fixed while minimizing the other, as described
in [31], [35], [36]. Here we make use of the online opti-
mization algorithm that is based on stochastic approxima-
tions [37], [38] and implemented in the popular SPAMS library
written by Mairal et al. [1], [2]. It minimizes sequentially a
quadratic local approximation of the expected cost function
and is well suited to the efficient handling of large training
sets. Since the focus of this article is not the optimization
itself, we refer the reader to [1], [2] for a detailed description
of the algorithm and its implementation.

VIII. COMPARISON WITH EXISTING METHODS

A. Linear Methods

The classical approach to learn dictionaries is to con-
sider K shapes that are described by an ordered set of N
points or landmarks in R

2 [9]. The shapes themselves are
represented as one large vector rk ∈ R

2N with k ∈ [1 . . . K ].
They are geometrically normalized by aligning them to a com-
mon reference in order to remove some effects of rigid-body
transformations. The alignment to the reference shape r ref is
computed as r̃k = Ark+b, where A is an affine transformation
matrix and b ∈ R

2 a translation vector such that they solve
min
A,b

‖r ref −Ark − b‖2
�2

. A standard PCA is then applied to the

set {r̃k}k=1...K of aligned shapes. Aside from operating with
data that are necessarily discrete, the standard approach has
the drawback of being potentially biased because distances
between normalized shapes generally differ from distances
between non-normalized shapes.

The fundamental difference between the classical approach
and our method lies in the different concepts that define pro-
jective geometry and affine geometry. We exploit the fact that
the solution of min

A,b
‖y−Ax − b‖2 can be expressed (in closed

form) as the orthogonal projection Px y = Ax + b, a property
that holds for both discrete- and continuous-domain curves.

This allows us to express the affine transformation as a
projection onto a space that does not depend on the specific
element x that lives in that space.

B. Closed-Form Solution for Continuous
and Discrete Curves

Our approach in this paper is expressed in the continuous
domain. In some applications, however, curves are defined
by a discrete set of points. In this case, the solutions for
spline-based curves can be applied because a continuously
defined curve can always be built parametrically using the
linear B-spline [24] as basis function (see Section IX-A3 for
an example).

1) Equivalent Spline Solution Using Uniform Samples:
One of the benefits of using a spline-based representation
of curves is that it allows one to represent curves in the
continuous domain with a small number N of control points.
This becomes apparent when noticing that, for a uniformly
discretized curve r given by the ordered set of points
{r( q

Q )}q=0,...,Q with (Q + 1) samples, we have that

lim
Q→∞

1

Q

Q∑

q=0

∣
∣
∣r1

( q

Q

)
− Ar2

( q

Q

)
− b

∣
∣
∣
2

=
∫ 1

0
|r1(t) − Ar2(t) − b|2dt .

We see that, while the continuously defined curve r(t) is
expressed with N control points and corresponds to the pro-
jection matrix P of size (2N ×2N), the discrete curve r( q

Q ) is
described with Q � N points whose corresponding projection
matrix is of size (2Q × 2Q). This shows that a continuous-
domain spline-based approach can be implemented at no
additional cost compared to a discrete approach that would
depend on N points, although the continuously defined curve
is equivalent to a discrete setting where the number of points
tends towards infinity. Hence, to be equivalent, we would have
to use many more discrete points.

IX. VALIDATION AND EXPERIMENTS

A. Shape Analysis of Biological Microscopic Structures

In microscopy, typically, different samples of the same
organism are studied as for instance a colony of cells or
bacteria. Characterizing representative shapes of such colonies
is important to study, for instance, the reaction of an organism
when exposed to a certain type of drug or chemical sub-
stance or to elucidate their behavior in specific environments.
Next, we provide an example of shape analysis using real
biological data.

1) Learning Shape Priors: We have manually outlined
the twenty chromosomes shown in the microscopic image
in Figure 5 (top). The outlining has been done by interpolating
twelve landmarks on the contours of the chromosomes with the
basis functions proposed in [39], [40]. This procedure allowed
us to obtain a spline-based curve description of each chromo-
some with landmarks that are corresponding throughout the
data set.

The chromosomes share a similar symmetric approximate
rod-shaped structure; however, they differ in size, orientation,
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Fig. 5. Shape analysis of chromosome data. Top row: The data set consists
of twenty chromosomes. They have been manually outlined by placing
landmarks on the contours followed by spline interpolation. Middle row,
left curve: rmean obtained by Proposition 3. Middle row, green: Mean shapes
obtained with the PDM with HR and LR. Bottom row: first eigenshapes
obtained with fPCA (orange) and PDM (green). In “%” the shape variability
is indicated, which is computed as λi /

∑
λi , where λi stands for the

ith eigenshape. “PC” stands for “principal component”.

and location. Using our proposed framework, we first com-
puted the aligned training set {r̃k}k=1,...,20 using the sim-
ilarity transformation and then computed rmean as given
by Theorem 3. The resulting learned shape (Figure 5, red
shape in middle row) can be further used either for clas-
sification (see Section IX-B) or as a trained shape prior
for segmentation problems [41], [42]. It characterizes the
population in terms of its shape and, hence, can be viewed
as an average shape.

2) Learned Shape vs. Functional PCA vs. Point Distribution
Model: To test the accuracy of the learned shape prior,
we compared it to the first eigenshape obtained through the
projection-based fPCA described in Section V and the mean
shape obtained with the classical PDM (see Section II). The
PDM being a discrete method based on linear interpolation
between landmarks, we have computed two corresponding
mean shapes: one of low resolution (LR) that corresponds
to the number of landmarks used for the two continuous-
domain models and another of high resolution (HR), where we

TABLE II

NORMALIZED CORRELATION BETWEEN PRINCIPAL
SHAPES AND CHROMOSOME DATA

have increased the number of samples fifty-fold, by inserting
forty-nine samples between each original landmark (Figure 5,
middle row). For each of the three models, fPCA, LR, and HR,
we have computed the normalized correlation 〈rmodel,rdata〉‖rmodel‖L2 ‖rdata‖L2
between the most representative shape rmodel and each
curve rdata in the data set. Here, rmodel stands for either
1) rmean, 2) the mean shape obtained with the PDM, or 3) the
first eigenshape “fPCA1” of the fPCA. The results are shown
in Table II. We see that our method to compute the learned
shape rmean as the curve being closest to all the subspaces
generated by the shapes of the data set, captures best shape
variability. Further, the continuous-domain methods seem to
yield a higher accuracy than the PDM. However, by increasing
the resolution of the PDM we can approach the accuracy of
the continuous-domain models, which validates the theoretical
argument provided in Section VIII-B.

3) Shape Reconstruction Using Projection-Based Func-
tional PCA vs. Point Distribution Model: We now compare
the shapes reconstructed through projection-based fPCA to
those obtained by the PDM. From (9), we see that fPCA
would allow for perfect reconstruction if all the eigencurves
were used. In this section, however, we use the first four
eigenvectors of the fPCA to approximate the data as rdata(t) ≈
rfPCA

recon(t) = ∑4
i=1 ai zfPCA

i (t). The ai ∈ R are the coefficients
that allow for the optimal approximation. The choice of
using 4 eigenvectors is arbitrary but sufficient for our purpose
since we already know from Section IX-A1 and Figure 5
that the first eigenshape captures 96% shape variability. For
comparison, we compute the approximation obtained with the
HR PDM, also using the first four eigenvectors. The PDM
is thus expressed as rdata ≈ r P DM

recon = r + ∑4
i=1 bi zPDM

i (t)
with bi ∈ R being the optimal approximation coefficients and
r the mean shape computed with the PDM. Since the PDM
is discrete, we interpolate the landmarks with the uniform
linear B-spline to obtain a continuous-domain representation.
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TABLE III

RECONSTRUCTION ERROR ‖rdata − rrecon‖2
L2

/(‖rdata‖L2‖rrecon‖L2 )

FOR CHROMOSOME DATA

This allows us to compute and compare L2 reconstruction
errors as reported in Table III. Again, the results suggest
that the continuous-domain model (i.e., fPCA) yields higher
accuracy and captures shape variability more efficiently than
the PDM. The reconstructed shapes are shown in Figure 6.

B. Shape Classification
If different groups of shapes are compared with each other,

then the learned shape described in Section IV can be used as
representative of each group. In a standard shape-classification
setting, the mean shape rmean can be viewed as a trained shape,
where the curves used to compute this shape constitute the
training set.

1) Classification in Medical Imaging: This experiment is
part of a clinical study where the structural and potential func-
tional changes of the pelvic-floor hiatus (PFH) are examined
after a woman has given birth to one or several children [43].
3D ultrasound volumes of 245 women were acquired and
grouped into 61 nulliparae (women who did not give birth
to children) and 184 multiparae (women who gave birth
to one or several children). For both groups, images were
acquired when the women were at rest or while contracting
the PFH. The PFH is outlined on a specific 2D section of the
ultrasound volume using the following procedure: A clinician
draws key points on the image which have particular anatom-
ical meaning. Curves are then computed by interpolating the
ordered set of key points using spline interpolators [39], [40],
as shown in Figure 7 (top row).

The qualitative analysis w.r.t. shape differences of dif-
ferent patient groups is important to clinicians. It reveals
similarities (or differences) and, at the same time, removes
within-group variability. In the present case, we constructed
spline-based vector spaces using an affine transformation of
the spline curves (i.e., a vector space of dimension six).
The mean shapes were computed for the four subgroups
(nulliparae and multiparae, at rest or contraction). They are

Fig. 6. Reconstructions of the chromosome data set. Top rows: original
data. Middle rows: shapes that have been reconstructed using our proposed
projection-based fPCA. Bottom rows: reconstruction using the PDM.

shown in the bottom row of Figure 7 and strongly indicate that
the shape of the PFH probably does not change after giving
birth although its size, perimeter, and surface do [44].

C. Sparse Dictionary Learning in Medical Imaging
We now want to construct a dictionary that encodes curves

of several types. Our training set contains 150 outlines of
brain structures, each representing one among the following
five different types of shapes: sagittal ventricle (SV), sagittal
corpus callosum (CC), sagittal brain stem (BS), coronal
ventricle (CV), axial ventricle (AV). Samples of each brain
structure are shown in Figure 8. The data set consists of thirty
samples per brain structure and within each type, we have
correspondence between landmarks.

However, the correspondence is no longer guaranteed
between types. Furthermore, the types that represent CV
and AV appear to be similar up to scaling and rota-
tion (see Figure 8). Hence, the data set can also be considered
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Fig. 7. Top row: 3D ultrasound volumetric data. The top-left image shows the
PFH area of a patient at contraction, whereas the middle and right images show
two different patients’ PFH area at rest. The blue curves represent the outline
of the PFH that has been constructed by spline interpolation of an ordered set
of points drawn by a clinician on the image. Bottom row: The comparison of
nulliparae vs. multiparae women reveals that there is no qualitative difference

in the shapes rnulliparae
mean and rmultiparae

mean between the two groups (although
the sizes are different), independently from the state (at rest or contraction)
Image courtesy Dr. med. Sylvain Meyer, Urogynaecology Unit and Obstetrics
Department, CHUV Lausanne, EHC, Morges, Switzerland.

Fig. 8. Shape library of brain structures. Each row represents a shape type.
To illustrate the within-group variability, four samples per type are shown.

as imbalanced besides being inhomogeneous. (It is well
known that L2-based methods are error-prone when dealing
with imbalance or inhomogeneity in a data set. Meanwhile,
sparse or �1-based methods tend to be more efficient in such
cases.)

We have applied our method to learn a dictionary for sparse
shape encoding. We computed two dictionaries, a first one with
only 5 atoms (D5) and a second one with ten atoms (D10).
We expect that each atom of D5 resembles one of the five
shape types. The atoms of the two dictionaries are shown
in Figure 9. The regularization parameter λ has been chosen
empirically. As a control experiment, we also performed
a (L2-based) fPCA and used it to construct a dictionary that
consists of the first ten eigencurves.

To validate our method regarding its ability to model unseen
samples we have built a testing set that consists in twenty-five

Fig. 9. Atoms of the learned shape dictionaries. Top row: samples of the
training set. Second and third row: atoms ai of dictionary D5 and D10. Bottom
row: principal components (pc) obtained with the projection-based fPCA. The
values of the λi are computed as described in the caption of Figure 5.

TABLE IV

CORRELATION BETWEEN THE BEST ATOM OF THE LEARNED

DICTIONARY AND THE TESTING SET (ROUNDED VALUES)

shapes which all differ from the shapes of the training set. Each
group contains five samples (denoted as “test 1” to “test 5”).

In a first step, we have computed the correlation between the
most similar atom of the dictionary (for D5, D10, and fPCA)
and every sample. The results are summarized in Table IV.
It becomes apparent that the L2-method fails when deal-
ing with inhomogeneous data, as expected. The accuracy
of the D5 and the D10 dictionary is similar. It is both
qualitatively (Figure 9) and quantitatively high.

In a second step, we have reconstructed fifteen shapes
from the testing set. They correspond to three different types:
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Fig. 10. Reconstructed testing set. The first column shows the testing set,
whereas the second (D10) and third (D5) columns show the reconstruction
with the sparse methods. The last two columns correspond to the reconstruc-
tion using fPCA.

five axial ventricles, five coronal ventricles, and five
corpora callosa. We used the learned dictionaries and the corre-
sponding sparse codes for the reconstruction process. We com-
puted the normalized reconstruction error and compared it to
the pure L2 method (i.e., the projection-based fPCA), where
we used five as well as ten eigenshapes for the approximation.
The reconstructed testing set is shown in Figure 10 and the
errors are listed in Table V. We notice that the reconstruction
with D10 tends to yield more accurate results than D5,

TABLE V

RECONSTRUCTION ERROR ‖rdata − rrecon‖2
L2

/(‖rdata‖L2‖rrecon‖L2 )

Fig. 11. Distributions (within each shape type) of the distances between
the aligned data used to learn the shape dictionary ’D5’ (see Figure 9) and
the mean shape (yellow) or the best atom in ’D5’ (blue). The grey area
indicates the overlap between the two distributions. We see that for each type,
the histograms differ by at most 3 out of 30 samples per type. The result
suggests robustness of our algorithm w.r.t. different kinds of distributions
found in the training data.

which is expected. Again, the projection-based fPCA fails
to yield satisfying results. Furthermore, our solution indicates
robustness w.r.t. the initial distributions of the training data:
A comparison of the distances (within each type) between
the mean shape and the aligned data as well as the distances
between the best atom of ’D5’ and the aligned data show that
the corresponding histograms only differ by at most 3 out
of 30 samples (Figure 11).

X. CONCLUSION

We have presented a unified framework for dictionary
learning in the continuous domain, the data consisting of
landmark-based parametric curves. We have provided closed-
form solutions for the unbiased alignment of the training
data and showed how shapes are learned for different types
of applications such as the characterization of homogeneous,
inhomogeneous, or imbalanced data. The alignment is based
on a new method to compute mean shapes. It can also be
used to construct shape priors in the context of segmenta-
tion problems. We have derived formulas for an exact and
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fast implementation of the proposed framework using spline
curves. Our examples and validation experiments highlight
the advantages of our model compared to state-of-the-art
discrete frameworks. Furthermore, our model can be easily
extended and applied to 3D parametric curves that are defined
by landmarks by noticing that the inner product between
parametric spline surfaces can also be expressed as a matrix-
vector multiplication.

APPENDIX

A. Derivation of Proposition 1

Proposition 1 follows from a standard result in functional
analysis that states that the kernel of P is computed by

Pφ(t) =
I∑

i=1

ei (t)〈ẽi ,φ〉 = 〈
I∑

i=1

ei (t)ẽT
i (·),φ〉

= 〈KP (t, ·),φ〉 (38)

and, therefore, KP (t, s) = ∑I
i=1 ei (t) ⊗ ẽi (s).

B. Derivation of the Eigenequation (3)

We first notice that ‖P r‖2
L2

= 〈P r,P r〉 = 〈P∗P r, r〉 =
〈P r, r〉. Then, the eigenequation follows from a standard
result in functional analysis. It can be shown that P is a
compact operator since it is an orthogonal projector in a
Hilbert space onto the finite dimensional subspace S. Hence,
the functional 〈P r,r〉

〈r,r〉 subject to 〈r, r〉 = ‖r‖2
L2

= 1 has

a maximum. Under this constraint, we set max
r

〈P r,r〉
〈r,r〉 =

λ ⇔ 〈P r, r〉 = λ〈r, r〉 = 〈λr, r〉, which implies that λ is
an eigenvalue of P , i.e., P r = λr . Furthermore, the unit-
norm condition on the eigencurves can be generalized as
〈r p, rq〉 = δp−q , which is based on the fact that eigenfunctions
corresponding to different eigenvalues are orthogonal.

Applying the same derivation to all the projectors Pk yields
the stated eigenequation.

C. Proof of Theorem 1

Proof: The eigenequation (3) is developed as

∑

k

Pkφ(t) = 〈
K∑

k=1

KPk (t, ·),φ〉

= 〈
K∑

k=1

I∑

i=1

ei (t)
(k) ⊗ ẽ(k)

i (·),φ〉 = λφ(t).

We identify

φ(t) = 1

λ
〈

K∑

k=1

I∑

i=1

ei (t)
(k) ⊗ ẽ(k)

i (·),φ〉

= 1

λ

K∑

k=1

I∑

i=1

ei (t)
(k)〈ẽ(k)

i ,φ〉 =
K∑

k=1

I∑

i=1

ei (t)
(k)γik,

where γik = 〈ẽ(k)
i ,φ〉
λ . Hence,

λγik = 〈ẽ(k)
i ,

K∑

l=1

I∑

j=1

e j (·)(l)γ j l〉 =
K∑

l=1

I∑

j=1

γ j l〈ẽ(k)
i , e(l)

j 〉.

(39)

We define the (K · I ) × (K · I ) matrix

[�](k−1)·I+i,( j−1)·K+l = 〈ẽ(k)
i , e(l)

j 〉, (40)

where k, l ∈ [1, . . . , K ] and i, j ∈ [1 . . . I ]. Now, we collect
all the γik in one large vector γ , to establish relation (39) as
eigenvalue problem �γ = λγ and, hence, we can compute
φ(t) = ∑K

k=1
∑I

i=1 ei (t)(k)γik .

D. Vector Space Including a Translation

If in the construction of the K projectors a basis that

includes the translation b given by {ebx , eby } = {
(

1
0

)

,

(
0
1

)

}
is used, then both ebx and eby are eigencurves and, hence,
solutions of the eigenequation (3) with eigenvalue equal to K .
This is easy to see since, for such a projector, Pebx = 1 · ebx

and, therefore,
∑K

k=1 Pk ebx = K · ebx . The same result holds
true for eby. In this case, rmean is chosen to be the third
eigencurve, since the first two are constants (i.e., 2D points).

E. Proof of Theorem 3

Using (14), we develop

( K∑

k=1

〈Pk r, r〉 = λ〈r, r〉
)

⇔
( K∑

k=1

cTPT
k �c = λcT�c

)

⇔
( K∑

k=1

PT
k �c = λ�c

)
⇔

(
�−1

K∑

k=1

PT
k �c = λc

)
, (41)

where c is the vector of control points of r . Maximizing (41)
w.r.t. c and using the expression provided by Theorem 2 for
the spline projector, (41) boils down to the eigenvalue problem

K∑

k=1
Ck(Ck�CT

k )−1CT
k �c = λc. �
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