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ABSTRACT

We construct parametric active contours (snakes) for
outlining cells in histology images. These snakes are de-
fined in terms of cubic B-spline basis functions. We use
a steerable ridge detector for obtaining a reliable map
of the cell boundaries. Using the contour information
thus obtained, we compute a distance map and specify
it as one of the snake energies. To ensure smooth con-
tours, we also introduce a regularization term that fa-
vors smooth contours. A convex combination of the two
cost functions results in smooth contours that lock onto
edges efficiently and consistently. Experimental results
on real histology images show that the snake algorithm
is robust to imperfections in the images such as broken
edges.

1. INTRODUCTION

Active contour models, also known as snakes, have
proven to be effective tools for segmenting objects of in-
terest in a given image. With a growing number of tech-
nological advances in medical and bioimaging modali-
ties, the problem of segmentation has become more im-
portant than ever. Physicians and biologists are highly
interested in semi-automated software that helps them
outline specific organs or cells in medical/biological im-
ages. Computer-assisted segmentation tools reduce the
inter and intra-human variability and can process huge
stacks of images in a semi-automatic fashion with a min-
imal manual effort.

There exists a large variety of snake algorithms—
point-based snakes [1], geometric snakes [2, 3], and para-
metric snakes [4, 5, 6, 7]. In this paper, we promote the
use of parametric snakes where the bases are compactly-
supported spline functions [8]. This choice offers some
advantages such as computational simplicity, sparse rep-
resentation, and flexibility in adapting to different snake
energies. The spline framework also allows one to incor-
porate suitable smoothness criteria, which is somewhat
difficult to ensure in a general curve-evolution approach.
We use cubic B-splines because they have been shown
to be efficient, not only from the point of view of pa-
rameterization, but also for optimization [7].

In this paper, we address the specific task of outlin-
ing cell images in histology measurements. Histology is
a kind of microscopic anatomy in which thin slices of
tissues are studied. The slices are obtained by using a
mechanical instrument called a microtome. The typical
tissue thickness varies from 2 to 25 µm. Histology is an

(a) Primary endothelial cells (b) Stained fat cells

Figure 1: Some examples of images used in histology
studies.

essential tool of biological studies, in particular for dis-
ease diagnosis. In some cases, a staining agent is used
to increase the contrast of the tissue being examined,
and to see differences in cell morphology. For example,
agents such as Hematoxylin impart blue color to the
nuclei and pink to the cytoplasm. Figure 1 shows some
examples—(a) is an image of primary endothelial cells
and (b) that of stained fat cells. The image in Fig.1(a)
is shown in grayscale; the primary objective is to out-
line the cells. Cell-outlining enables the computation
of parameters of interest such as the cell size and area,
as well as velocity when a sequence of time-lapse im-
ages is available. This aids in understanding cell growth
when monitored over a period of time. For the results
reported in this paper, we used endothelial cell images.

2. PARAMETRIC REPRESENTATION OF
A CLOSED SNAKE USING B-SPLINES

A curve in the x−y plane can be described in a paramet-
ric fashion as r(t) = (x(t), y(t)), where t is an arbitrary
parameter. The one-dimensional parametric functions
x(t) and y(t) can be described efficiently as a linear com-
bination of suitable bases. We choose bases derived from
a scaling function β(t) and employ a representation that
has a shift-invariant flavor; i.e., an expansion of the type

x(t) =
∞∑

k=−∞

cxkβ(t− k), and (1)

y(t) =
∞∑

k=−∞

cykβ(t− k), (2)

where the coefficients {(cxk, cyk), k ∈ Z} are the weights
attached to the scaling function and its integer trans-
lates. In the spline literature, the coefficients are called



knot points.
The commonly-used active contours are typically

closed curves specified by a finite number of knot points
M . Therefore, the bases are periodized and this reduces
the infinite summation in (1) and (2) to a finite one, as
given below.

x(t) =
M−1∑
k=0

cxkβP (t− k), and (3)

y(t) =
M−1∑
k=0

cykβP (t− k), (4)

where

βP (t− k) =
∞∑

k=−∞

β(t− kM) (5)

is the M -periodized basis function.
We choose β(t) to be the cubic B-spline, which has a
piecewise-polynomial definition:

β(x) =


2
3 − |x|2 + |x|3

2 , 0 ≤ |x| < 1
(2−|x|)3

6 , 1 ≤ |x| < 2
0, 2 ≤ |x| .

(6)

The cubic B-spline is an optimal interpolating function
and satisfies the minimum-curvature property [6].

3. SNAKE FORMULATION

An active contour is a curve described by an ordered set
of points, and it evolves starting from a user-specified
position (the initialization) to some boundary within
the image. The process of evolution is formulated as
an optimization problem, and the associated cost func-
tion is called the snake energy. Broadly, snake energies
comprise the image energy Eimage(Θ), which guides the
snake towards the boundary of interest; and the internal
energy of the curve Ecurve(Θ) to ensure smooth con-
tours. The parameter vector Θ is a collection of the
coefficients {(cxk, cyk), 0 ≤ k ≤ M − 1}. The optimal
snake is thus specified by a parameter Θ∗, which is de-
fined as

Θ∗ = arg min
Θ

(
Eimage(Θ) + Ecurve(Θ)

)
. (7)

The choice of the snake energies is crucial as it directly
determines the quality of image segmentation. It is
widely accepted that any one set of energies is, in gen-
eral, not suitable for all kinds of images. Appropriate
energies have to be defined depending on the type of
images and the application.

4. SNAKE ENERGIES

4.1 Steerable filters for ridge detection

The key to an efficient segmentation algorithm is to ex-
tract good edge information, irrespective of the orien-
tation of the edges, such as the ones in Fig. 1(a). A
ridge detection algorithm based on steerable filters is
the perfect choice for this purpose. In the following, we
describe the details of the steerable filters that we used

in our implementation.
Given an image function f(x) and a template h(x),

the problem of detecting edges is formulated as

θ∗(x) = arg max
θ

(f(x) ∗ h(Rθx)) , (8)

r∗(x) = f(x) ∗ h(Rθ∗x), (9)

where θ∗ and r∗ are the orientation and magnitude of
the edge, respectively; and Rθ is the unitary rotation
matrix:

Rθ =
(

cos θ sin θ
− sin θ cos θ

)
. (10)

Direct implementation of the optimization in (8) is
computationally expensive. It requires an iterative so-
lution that involves the convolution of the orientated
template with the image for every intermediary angle θ,
or alternatively, relies on sampling over θ.

The class of steerable filters first introduced by Free-
man et al. [9] allows to solve the detection problem effi-
ciently. The rotated version of the filters, consisting of
partial derivatives of a Gaussian, is obtained by taking a
linear combination of a small number of base templates,
which are themselves partial derivatives of a Gaussian.
Jacob et al. [10] extended the concept and introduced
a framework for the design of templates that optimally
match a given type of feature (i.e., an idealized edge or
a ridge). The templates consist of a linear combination
of partial derivatives of a Gaussian g(x, y):

h(x, y) =
M∑

k=1

k∑
i=0

αk,i
∂k−i

∂xk−i

∂i

∂yi
g(x, y), (11)

where, by linearity, h(x, y) is steerable, and where the
weights αk,i are optimized to maximize the signal-to-
noise ratio, localization, and regularity of the template,
and where M is the order of the template.

The convolution with the template oriented at an
arbitrary angle is expressed as

f(x) ∗ h(Rθx) =
M∑

k=1

k∑
i=0

bk,i(θ)fk,i(x), (12)

fk,i(x, y) = f(x, y) ∗
(

∂k−i

∂xk−i

∂i

∂yi
g(x, y)

)
, (13)

where the coefficients bk,i(θ) are polynomials in sin θ and
cos θ. The optimal orientation is obtained by solving

M∑
k=1

k∑
i=0

∂

∂θ
bk,i(θ)fk,i(x) = 0 (14)

for θ; for orders up to M = 4, this is achieved analyt-
ically. In this work, we use the fourth-order ridge de-
tector derived from the optimization in [10]. The only
free parameter in this family of detectors is the standard
deviation σ of the Gaussian upon which it is based. In
practice, σ needs to be chosen to match the template
width to the relevant feature width. Figure 2 shows the
results of applying the steerable detector to a sample
histology image. Note that the steerable filter results
in a good detection of the cell walls, and a significant
increase in contrast.



(a) Endothelial cell image (b) Response of the steerable
filter

Figure 2: Cell boundary enhancement using the steer-
able filter.

(a) (b)

Figure 3: (a) Synthesized edge map and (b) the associ-
ated distance map.

4.2 Distance map

The next step is to use the edge information in defin-
ing an energy function that guides the snake to the cell
boundaries. Typically, histology images contain a large
collection of connected cells, where the inter-cell bound-
aries appear as facets. The problem of snake optimiza-
tion is equivalent to moving the nodes of the snake to
the nearest facet. This information is best captured in
the form of a distance map. A distance map is a two-
dimensional function which assigns to each pixel a value
which is the distance from the pixel to the nearest edge.
However, before we can do this, we must suppress the
spurious noisy edges in the steerable filter response as
much as possible. One way to accomplish this objective
is to use a thresholding function. We use the Lloyd-Max
quantization algorithm to determine the optimal thresh-
old value. The result of thresholding is a two-level image
which largely retains the genuine edges, and suppresses
the spurious ones.

To compute the distance map, several algorithms
are available, and we use the simplest of them. Our
computation is based on a finite length two-dimensional
mask whose entries are the Euclidean distances from the
pixel position to the center of the mask. A synthesized
edge map and the associated distance map are shown
in Fig. 3. The distance map itself is used as the image
energy in the snake optimization.

Loosely speaking, the distance map is like a moun-
tain range, with the peak of a mountain lying in the
inside of a cell; the foot of the mountain is likened to
the boundary between adjacent cells. If a snake is ini-
tialized on the top of a mountain, by sheer gravity, it
should go to the foot of the mountain. This philoso-
phy will work perfectly when the images are noise-free
and when the edge information is intact. However, arti-

facts in the images such as blobs or spurious edges that
remain even after thresholding create spurious local op-
tima in the distance map. In the snake optimization
process, these local optima attract the nearest nodes, as
a result of which, the snakes tend to have sharp corners.
In some cases, the snake gets stuck in a local optimum
and further curve evolution ceases. To push the nodes
out of such spurious optima, and to ensure smooth con-
tours, we add a regularizing function, which is described
next.

4.3 Regularization

The regularizing function is based on the curvilinear en-
ergy [7], and is given by

Ecurv =
∫ M

0

∣∣|r′(t)|2 − c
∣∣2 dt, (15)

where

c =
1

M2

(∫ M

0

(x′(t)2 + y′(t)2)
1
2 dt

)2

, (16)

and where
|r′(t)|2 = x′(t)2 + y′(t)2. (17)

When the active contour evolves under the influence of
Ecurv, the knots are moved tangential to the curve, thus
bringing it to the curvilinear abscissa. This particular
energy term also goes well with the choice of the B-spline
scaling function because it yields a minimum curvature
provided that the parameterization is in the curvilinear
abscissa.

4.4 Snake optimization

The total snake energy is a convex combination of the
distance map function and Ecurv. The weights attached
to the energies are flexible and determine the tradeoff
between the adhesion to cell boundaries, and smooth
evolution. To optimize the snake coefficients, we use an
iterative Powell-type algorithm. The partial derivatives
of the energies with respect to the spline coefficients are
computed in the same fashion as proposed in [7].

5. EXPERIMENTAL RESULTS

The optimization software is implemented as a Java plu-
gin for ImageJ [11]. The weights attached to the energies
can be controlled by means of a sliding bar. The plugin
always loads an initial contour, which can be resized,
moved or freely rotated by the user. Since snakes are
known to be attracted to local optima, it is important
to ensure that the initialization is not too far from the
cell boundary of interest.

An example of snake optimization is shown in Fig. 4.
Although the edges are broken, the regularization term
ensures that the contours are smooth. Figure 5 shows
an initialization which is away from the cell boundary.
Even in this case, the snake nodes are driven outwards,
smoothly, to the nearest edges. In this particular exam-
ple, the edge information is not quite reliable and the
snake converges to the best possible solution (Fig. 5(c)).
Our graphical interface enables the user to interact with



(a) (b) (c)

Figure 4: (Color online) Robustness of the snake algorithm to broken edges: (a) manual initialization, (b) evolving
contour, and (c) converged snake.

(a) (b) (c)

(d) (e)

Figure 5: (Color online) Interactability of the snake software: (a) manual initialization, (b) evolving contour, (c)
snake after intermediary convergence, (d) manual readjustment of a knot point, and (e) converged snake.



the active contour. Figure 5(d) shows, for example, how
a user could easily readjust one of the nodes and set the
optimizer running again. The converged snake is shown
in Fig. 5(e).

6. CONCLUSION

In this paper, we have addressed active-contour-based
cell-outlining with applications to histology. Keeping in
view the geometric and intensity structure of the im-
ages, we have defined one of the snake energies as the
distance map function. A novelty of our approach is
that we apply a steerable ridge detector to obtain the
edge information and use it to compute the distance
map. We have also included a regularization term that
drives the contour to the edges in a smooth fashion. Ex-
perimental results show that the new snake algorithm is
robust to broken edges and other artifacts in the image.
Our software also allows for interaction with the active
contour, making it a useful and reliable semi-automatic
tool for the biologists.
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