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Abstract:

We address the problem of generalized sampling and re-
construction of finite-rate-of-innovation signals. Specif-
ically, we consider the problem of sampling streams of
Dirac impulses and propose a two-channel method that en-
ables fast, local reconstruction under some suitable condi-
tions. We also specify some acquisition kernels and give
the associated reconstruction formulas. It turns out that
these kernels can also be combined into one kernel, which
can be employed in the single-channel sampling scenario.
The single-kernel approach carries over all the advantages
of the two-channel counterpart. Simulation results are pre-
sented to validate the theoretical calculations.

1. Introduction and prior art

Sampling theory is the foundation on which digital sig-
nal processing has been built. The popular flavor of the
sampling theory is due to Shannon [1] and deals exclu-
sively with bandlimited signals. Shannon’s theory was
generalized in several ways, the most prominent one be-
ing the theory of multichannel sampling developed by Pa-
poulis [3]—his theory is known as the Generalized Sam-
pling Theory. Papoulis’ formalism, however, deals only
with bandlimited signals. To accommodate the more gen-
eral class of finite-energy signals, Unser and Zerubia [4]
developed a theory, which does not rely on the bandlim-
iting constraint. Another important extension is the sam-
pling and reconstruction of signals that lie in some shift-
invariant subspace spanned by the integer-shifted versions
of a generator kernel (see [2] and the references therein).
The specific case of bandlimited sampling corresponds to
a sinc kernel and is subsumed by this formalism.
Recently, Vetterli et al. [5] extended sampling theory in
a new direction to answer a question that has not been
addressed before—that of sampling and reconstructing
streams of Dirac impulses and signals derived therefrom.
These signals are not constrained to lie in the space of
finite-energy functions nor in the space of bandlimited
functions. They may also not lie in some shift-invariant
subspace generated by a kernel. Typically, such signals
are specified by a set of discrete parameters per time unit,
also known as their rate of innovation. We are interested in

signals that have a finite rate of innovation (FRI). Specifi-
cally, consider the stream of time-ordered Dirac impulses:

x(t) =
L∑

!=1

a!δD(t− t!), (1)

where δD(·) denotes the Dirac impulse. The problem is
to compute the parameters {a!, t!; 1 ≤ " ≤ L} based
on some measurements on x(t). The parametric nature
of the problem has resulted in the development of tech-
niques that are quite different from those that sampling
theorists have been familiar with. Typically, the recon-
struction techniques developed by Vetterli et al. [5] and
Dragotti et al. [6] have a flavor of parametric spectral es-
timation [7]. They also employ in a novel fashion spline
kernels [8, 9] that reproduce polynomials or exponentials.
It is remarkable that these kernels, which play a vital role
in wavelet theory, are also quite useful for sampling FRI
signals.
In the techniques mentioned above, the focus is ex-
clusively on the single-channel case. Recently, some
new multichannel approaches have also been developed.
Kusuma and Goyal proposed a new technique for recon-
structing an unknown number of impulses over a finite in-
terval of time by using a successive approximation crite-
rion [10]. Their technique can be implemented using a
bank of integrators and B-splines. Baboulaz and Dragotti
proposed a distributed acquisition scheme for FRI sig-
nals and demonstrated applications to image registration
and super-resolution image restoration [11]. In [12], we
have proposed a two-channel sampling method for the
FRI problem (cf. Fig. 1). We have employed first-order
resistor-capacitor networks to sample streams of Dirac im-
pulses and piecewise-constant functions. The reconstruc-
tion technique boils down to solving a system of two equa-
tions containing the unknown parameters in decoupled
form. The key result in [12] is given below:

Proposition 1 The stream of Dirac impulses in (1) is
uniquely specified by the samples yα(nT ) = (x∗hα)(nT )
and yγ(nT ) = (x ∗ hγ)(nT ), n ∈ Z, where hα(t) =
α e−α tu(t), hγ(t) = γ e−γ tu(t), and α %= γ, provided
that min

2≤!≤L
{t! − t!−1} ≥ T .



1.1 Motivation for the present work
The above proposition relies on causal exponential func-
tions for sampling. Working with exponentials has the
practical advantage that they can be easily generated by
employing first-order resistor-capacitor circuits. From a
mathematical viewpoint, however, exponentials are prob-
ably not the only class of functions that enable accurate
reconstruction. The main motivation behind the present
paper is the quest for alternative kernels hα(t) and hγ(t)
that would fit into the framework of the above proposi-
tion (also cf. Fig. 1). To that end, we first reformulate the
method proposed in [12] in a more general framework and
specify some kernels that enable exact reconstruction.

2. Generalized sampling formulation

Consider the two-channel sampling scenario shown in
Fig. 1. Let hα(t) and hγ(t), α, γ ∈ C, denote the im-
pulse responses of two causal linear shift-invariant sys-
tems, compactly supported on [0, T ] and nonzero over that
interval. Consider the stream of Dirac impulses in (1),
where the impulses are separated by at least T ; i.e.,

min
2≤!≤L

{t! − t!−1} ≥ T. (2)

Deviations from this condition shall be addressed later.
The output of the system to the input x(t) is given by

yα(t) ∆= (x ∗ hα)(t) =
L∑

!=1

a!hα(t− t!).

Let us next consider the samples of yα(t) taken on a uni-
form grid with a sampling step T . Note that we have
chosen the sampling period to be equal to the support
of hα(t); otherwise, we are likely to miss some closely-
spaced impulses as the following analysis shows. The
samples of yα(t) are given by

yα(nT ) =
L∑

!=1

a! hα (nT − t!) δK [nT − r(t!)] ,

where r(t!) =
⌈

t!
T

⌉
T is the operator that performs the

ceiling of t! with respect to the sampling grid and δK de-
notes the Kronecker impulse. The sequence yα(nT ) com-
prises Kronecker impulses, each corresponding to a Dirac
impulse in x(t) under the condition (2). Note that the sam-
pling period T equals the support of the kernel. Similarly,
corresponding to a system with impulse response hγ(t),
γ %= α, we have

yγ(nT ) =
L∑

!=1

a! hγ (nT − t!) δK [nT − r(t!)] .

Note that these sampling instants correspond to the
nonzero values in the sequences yα(nT ) and yγ(nT ) and
are therefore known. Consider the "th nonzero samples in
the sequences yα(nT ) and yγ(nT ):

yα(r(t!)) = a! hα[r(t!)− t!] and (3)
yγ(r(t!)) = a! hγ [r(t!)− t!]. (4)
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Figure 1: Two-channel sampling of a stream of dirac im-
pulses.

In (3) and (4), the indices r(t!) and the values on the left
hand side are known. The impulse responses hα and hγ

are also known; their design shall be explained below. The
amplitude and position parameters {t!, a!} are unknown
and have to be determined. The amplitude of the "th Dirac
impulse appears as a multiplicative factor. The position
of the Dirac impulse is encoded in the amplitude of the
Kronecker impulse. Dividing (3) by (4) eliminates a! and
gives rise to an equation in the unknown t!, which can
be computed if and only if (hα/hγ)(t) is invertible on its
range. The value of t! thus obtained can then be substi-
tuted in (3) or (4) to obtain the value of a!. Some specific
functions that fit into the above reconstruction paradigm
are presented next.

3. Kernels for two-channel sampling

We specify only the kernel hα(t); unless otherwise men-
tioned, hγ(t) is obtained by replacing α with γ; i.e., both
kernels have the same functional form. The kernels in-
volve gating by the B-spline of order zero, at scale T :
β(t) = u(t)− u(t− T ), where u(t) is the unit step func-
tion. We specify the kernel definitions and give the ex-
pressions for {t!, a!} directly. The intermediate calcula-
tions are omitted but it is straightforward to supply them
starting from the definition of the kernel.

1. Exponential spline (E-spline) kernels [9]: hα(t) =
e−α tβ(t), α ∈ R, where u(t) is the unit-step func-
tion. The parameters of "th impulse are given by

t! = r(t!) +
1

α− γ
log

(
yα(r(t!))
yγ(r(t!))

)
and

a! = yα(r(t!)) exp
(
− α

α− γ
log

(
yα(r(t!))
yγ(r(t!))

))
.

This kernel choice has been analyzed in sufficient
detail in [12]. The specific kernel given above is
a first-order E-spline kernel. One could, in princi-
ple, also employ higher-order kernels. The advantage
of first-order E-spline kernels over the higher-order
ones, however, is that they always give rise to closed-
form solutions. The higher-order kernels exhibit this
property only for certain values of the spline parame-
ters. For further discussion on this issue, we refer the
reader to [12].

2. Power functions: hα(t) = tαβ(t), α ∈ R. Corre-



spondingly, the parameters of x(t) are given by

t! = r(t!)−
(

yα(r(t!))
yγ(r(t!))

) 1
α−γ

and

a! = yα(r(t!))
(

yα(r(t!))
yγ(r(t!))

) −α
α−γ

.

For α ∈ Z+, the power function becomes a mono-
mial of degree α. Since B-splines of order α can re-
produce polynomials (and naturally, monomials too)
up to degree α, they are included as special elements
of this class. Therefore, power functions, which play
a vital role in moment-based sampling approaches
[6, 11] for the FRI problem, are also useful in the
generalized sampling approach. Also, note that frac-
tional powers are admissible in the kernel definition.

3. Gaussian functions: hα(t) = e−α t2β(t), where α ∈
R. Correspondingly, we have that

t! = r(t!)−

√
1

α− γ
log

(
yγ(r(t!))
yα(r(t!))

)
, and

a! = exp
(

α

α− γ
log

(
yγ(r(t!))
yα(r(t!))

))
.

4. Complex E-splines: hα(t) = e−jα tβ(t), α ∈ R.
This kernel cannot be treated as a special case of the
E-spline kernels with an imaginary parameter. The
reason is that there is an issue related to parameter
identifiability that deserves special attention. The po-
tential problem is that this kernel may give rise to
more than one solution for t!; there is, however, no
ambiguity in the solution for a!. We further explain
this issue and also state a condition that helps over-
come the non-uniqueness hurdle.
The cause of ambiguity is essentially the quasi-
periodicity of the complex exponential over the sup-
port [0, T ]:

e−jα (r(t!)−t!) = e−jα (r(t!)−t!+
2mπ

α ),

for m ∈ Z such that 0 ≤ (r(t!)−t!+ 2mπ
α ) ≤ T . The

restriction on m is due to the fact that we are consid-
ering a truncated complex exponential. The inequal-
ity gives rise to multiple solutions for t!. The solution
to this problem lies in tying up the choices of the val-
ues of α and T such that m = 0 is the only possibil-
ity in the above inequality. This amounts to requiring
that the complex exponential have at maximum one

period within a sampling interval; i.e.,
2π

α
> T . Un-

der this condition, we have the reconstruction formu-
lae:

t! = −j log
(

yα(r(t!))ejα r(t!)

yγ(r(t!))ejγ r(t!)

)
, and

a! = yα(r(t!)) exp (jα(r(t!)− t!)) .

Similarly, a truncated Fresnel kernel can be employed
by considering purely imaginary parameters in the

definition of the Gaussian above. For complex pa-
rameters, the E-spline and Fresnel kernels have an
exponential and Gaussian decay, respectively.

5. Hybrid sampling kernels: In the kernels considered
above, we have enforced the same functional form for
both hα(t) and hγ(t). By relaxing this property, we
can make the reconstruction technique more efficient.
For example, if we set one of the parameters (but not
both), say α to zero, the kernel reduces to a causal
B-spline of order 0: hα(t) = β(t). The second ker-
nel can be taken from any of the choices listed above.
The samples from the zeroth-order B-spline channel
then directly yield a! = yα(r(t!)). Using the sam-
ples from the second channel, we can compute the
positions of the Dirac impulses. For example, if we
employ the truncated power function in the second

channel, we have that t! = r(t!) −
(

yγ(r(t!))
a!

) 1
γ

.

Note that r(t!) and yγ(r(t!)) are known.

Having listed a few kernel choices, we reiterate that, in
the present formalism, the condition stated in (2) is cru-
cial for the super-resolution localization of impulses. If
two successive Dirac impulses are spaced closer apart than
the sampling period, then they give rise to overlapping
Kronecker impulses and resolving them is not possible
within the proposed formulation. The existing approaches
[5, 6, 10, 11] do not suffer from this limitation.

4. Kernels for single-channel sampling

The principal advantage offered by the two-channel
method equipped with the choice of a proper kernel is
the decoupling between the amplitudes and positions of
the impulses. As shown next, this advantage can be car-
ried over to the single-channel case by suitably integrat-
ing the previously listed kernels into a single function.
For example, consider the kernel: hα,γ(t) = e−α tβ(t) +
e−γ (t−T )β(t − T ), which has the same properties as the
hybrid kernel in the two-channel case (kernel (1) in Sec-
tion 3.). This choice would give rise to two nonzero sam-
ples per Dirac impulse, which can be used to solve for a!

and t!. Again, if α = 0, the first sample would straight-
away give the amplitude, which can then be used together
with the second sample to compute the position. Thus, we
have a similar algorithm as in the two-channel case, the
only difference being that, in the two-channel case, these
samples are acquired one per channel whereas in the one-
channel case, they are acquired in the same channel—the
overall sampling rate, however, is the same in both the
cases. In general, the kernels for the single-channel case
can be defined as: hα,γ(t) = hα(t) + hγ(t − T ). Since
the support of the kernel hα,γ(t) is double that of hα(t) or
hγ(t), impulses that are farther apart by at least 2T

(
i.e.,

min
2≤!≤L

{t! − t!−1} ≥ 2T
)

only can be resolved. The ker-

nels defined in this paper are shown in Fig. 2.
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Figure 2: Sampling kernels. The parameters α = 2, γ =
1, and T = 1, are chosen for the sake of illustration.

5. Simulations

We next validate the theoretical findings by numerical ex-
periments. We simulate the two-channel sampling of nine
Dirac impulses shown in Fig. 3(a); the amplitudes and po-
sitions are chosen for the purpose of illustration. The min-
imum spacing between two impulses is 0.0076 seconds.
The sampling period T is chosen to be 0.0038 seconds to
ensure that (2) is satisfied. The impulses are sampled using
the power function kernels with parameters α = 3, γ = 2,
and T = 0.0038 seconds. These values are chosen for
the purpose of illustration. The reconstructed stream of
Dirac impulses is shown in Fig. 3(b). The reconstruction
is accurate to numerical precision. Identical results were
obtained with the other kernel choices.

6. Conclusions

We have extended the results developed in [12] and
proposed new kernels for both single-channel and two-
channel sampling scenarios. The kernels are built using
functions known in system theory such as the exponen-
tial, power function, Gaussian, etc. The main advantage
of the proposed formulation is that, under the condition
of minimum separation between consecutive impulses, a
fast local reconstruction algorithm can be developed. This
advantage, however, comes with the shortcoming that im-
pulses spaced farther apart than the sampling period only
can be resolved. It would be a challenging task to de-
velop local reconstruction algorithms without imposing
constraints on the minimum/average separation between
impulses or groups thereof.
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Figure 3: (a) Ground truth, (b) Reconstructed signal.
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