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We address the problem of exact complex-wave reconstruction in digital holography. We show that, by confining
the object-wave modulation to one quadrant of the frequency domain, and by maintaining a reference-wave in-
tensity higher than that of the object, one can achieve exact complex-wave reconstruction in the absence of noise.
A feature of the proposed technique is that the zero-order artifact, which is commonly encountered in hologram
reconstruction, can be completely suppressed in the absence of noise. The technique is noniterative and nonlinear.
We also establish a connection between the reconstruction technique and homomorphic signal processing, which
enables an interpretation of the technique from the perspective of deconvolution. Another key contribution of this
paper is a direct link between the reconstruction technique and the two-dimensional Hilbert transform formalism
proposed by Hahn. We show that this connection leads to explicit Hilbert transform relations between the mag-
nitude and phase of the complex wave encoded in the hologram. We also provide results on simulated as well as
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experimental data to validate the accuracy of the reconstruction technique. © 2011 Optical Society of America
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1. INTRODUCTION

Digital holography is an efficient interferometric modality sui-
table for imaging the three-dimensional (3D) structure of
specimens. Using this technique, one can reconstruct both the
amplitude and the phase of a wavefront [[HJ]. Its primary
application areas are microscopy, nondestructive testing,
profilometry, and so on [JHIJ]. The feature that distinguishes
digital holography from traditional holography is the method
of acquisition. In digital holography, the acquisition is done by
a charge-coupled device camera and the reconstruction is
performed numerically. The efficacy of standard digital holo-
graphic reconstruction is limited by two artifacts, namely, the
conjugate/twin image and the zero-order. The zero-order leads
to blurring of the desired image. Since the measurements are
intensities, the twin image cannot be eliminated unless one
resorts to phase-shifting techniques [[[J,[J]. One solution to
separating these components was proposed by Leith and
Upatnieks [[J], who recorded holograms in the off-axis geo-
metry. The advantage of this configuration is that the zero-
order, the desired image, and the twin image are physically
separated from one another. The object wave can then be ap-
proximately recovered by using a band-pass filter [[4,[3], or a
high-pass filter [[[d]. This approach is known as spatial filtering
and relies on the critical assumption that the zero-order and
desired diffraction orders are well separated so that the
zero-order can be suppressed by filtering. The basic idea of
separating the three diffraction orders by employing an off-
axis configuration is remarkable; the downside, however, lies
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in two aspects: (i) effectively, only a fraction of the available
hologram spectrum is used for encoding the object wave;
therefore, this scheme is not efficient at utilizing the spectral
resource; and (ii) spatial filtering often requires manual inter-
vention for selecting the desired order. Ideally, one would like
to take maximum advantage of the available spectrum without
distorting the object wave, without manual intervention,
and without having to deploy sophisticated acquisition/
reconstruction techniques.

Recently, we introduced a new nonlinear reconstruction
technique [[4,[], which enables exact zero-order-free recon-
struction in off-axis holography configuration even if the zero-
order and the object-wave spectra overlap. This is in contrast
to spatial filtering methods [[4HI{], which require a clear
separation between the zero-order and desired diffraction
orders. The nonlinear technique works under two realistic
assumptions on the recorded signal: (i) the spectrum of the
object wave should be confined to a quadrant of the Fourier
domain, and (ii) the intensity of the object wave should be
smaller than that of the reference. The goal in [[§] is primarily
the experimental validation of the reconstruction technique,
robustness to deviations in experimental conditions from
the theoretical assumptions, and experimental assessment
of phase stability. In this paper, we focus exclusively on
the mathematical aspects underlying the technique and asso-
ciated signal processing connotations. The contributions of
this paper are as follows:
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e A systematic and complete development of the mathe-
matical components of the nonlinear reconstruction
technique.

e A relationship between the nonlinear reconstruction
technique and homomorphic signal processing: by recogniz-
ing the zero-order as a convolutional term in the frequency
domain, we interpret our reconstruction technique as an exact
deconvolution technique. This link implies that while the cep-
strum, which is a homomorphic signal processing technique,
fits in naturally to solve the deconvolution problem, other
deconvolution techniques may also be developed to suppress
the zero-order.

e A Hilbert transform formalism for analyzing the recon-
struction technique: specifically, we show how particular
forms of the Hilbert transform in two dimensions, namely,
the partial and total Hilbert transforms, play a role in
reconstruction.

e Explicit Hilbert transform relations between the mea-
sured hologram intensity and the phase of the underlying com-
plex wave. These relations show that the technique recovers
the phase starting from the intensity holograms. The proposed
technique is new and is aimed at solving a particular type of
phase-retrieval problem, which arises naturally in the context
of holography, and is quite different from the type of phase-
retrieval techniques proposed in [[J]. More specifically, our
technique is noniterative and exact whereas the techniques
proposed in [[J] are iterative and give rise to an approximate
solution. To the best of our knowledge, such exact results and
magnitude-phase relations have not been reported in the
context of digital holography.

e Evaluation on simulated as well as experimental data to
establish the accuracy of the technique, and comparisons with
the standard Fourier filtering approach used in holographic
reconstruction.

A. Organization of the Paper

In Section f}, we recall some preliminary ideas about hologram
recording, classical reconstruction, and its discrete implemen-
tation. We also highlight the limitations of the conventional
reconstruction. In Section [}, we develop the new reconstruc-
tion technique. The link between the proposed reconstruction
technique and homomorphic signal processing is established
in Section f]. We also report simulation as well as experimental
results to validate the reconstruction technique (Section [).
The Hilbert transform relations are established in Section .
The digital holographic microscopy setup assumed in this
paper is defocused imaging in the off-axis configuration.
However, the reconstruction technique and the conclusions
drawn are also applicable to other off-axis configurations
such as in-focus holography and Fourier holography.

2. PRELIMINARIES

A. Notations

We shall work mainly with two-dimensional (2D) functions
that are defined either in space (argument: x = (x,y)) or in
frequency (argument: @ = (w,,®,)). The Fourier transform
operator is denoted by F. Its definition in 1D or 2D applies
depending on whether its argument is a 1D function or a 2D
function, respectively. The wave-vector is k = (k. k,), where
k., and k, are the wavenumbers in the x and y directions, re-
spectively. The inner product of two index vectors is defined
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in the usual sense and is denoted as (,-); for example,
(k,x) = k,x + k,y. The inner product of functions is defined
in the Ly sense. Two-dimensional sequences are represented
with the square bracket notation; for example, y;[m] where
the argument is m = [m,n| (spatial index); p = [k,{] (fre-
quency index). The discrete Fourier transform operator is
denoted by F,. The indicator function is defined as 15 =1
over region QCR x R, and 0 elsewhere.

B. Off-Axis Hologram Recording

A hologram is formed as a result of the interference between
two mutually coherent waves—one emanating from the
object, denoted by o(x), and the other a reference wave r(x).
The interference pattern has a spatial intensity distribution
i(x) given by

i(x) = [r(x) +o(x)[
= [r@)? +lo(@)P + 7 (x)o(x) + r(x)o*(x). (1)

The first two terms on the right-hand side of () correspond to
the intensities of the reference and object waves, respectively.
The intensity distribution 7(x) is referred to as the hologram.
In classical holography, a photographic plate is used to record
i(x). In state-of-the-art digital holography systems [[1,E0], a
digital acquisition device such as a charge-coupled-device
(CCD) camera placed at the hologram plane captures the
spatial intensity distribution. In the in-line configuration, the
reference and object waves are parallel to one another. In
off-axis holography, the two waves are separated by an angle
0, as shown in Fig. .

C. Hologram Reconstruction

Let us assume that the reference is a plane wave of spatially
constant intensity ¢, = |r(x)|>. Let the intensity of the object
wave be denoted by i,(x); i.e., %,(x) = |o(x)|%. To reconstruct
the hologram, a plane wave u(x) is first used to illuminate the
hologram. The wave u(x) is therefore sometimes referred to
as the tllumination wave. This creates a field y,(x) given as

yo(x) = u(x)i(x)
= Gu(x) +u(x)iy(x) + ulx)r (x)o(x) + u(x)r(x)o* (x).

virtual image

zero-order terms real image

(2)

Reference wave

Hologram

Obiect plane
Object ject wave

Fig. 1. (Color online) Off-axis digital holography—recording.
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The zero-order terms comprise the plane wave 7,u(x) and the
object wave u(x)i, (x), whose spatial variation is a function of
the object. Since the reference and object-wave intensities
modify the amplitude but not the phase of u(x), the zero-order
terms propagate parallel to u(x). The spatial spread of the
zero-order depends on the spectrum of the object wave.
The real image propagates at an angle —0 with respect to the
illumination wave [the minus sign is a consequence of the
complex-conjugation in (f])]. The virtual image is a reflection
of the real image with respect to the hologram plane [cf. Fig. ].
The physical separation between the three images is precisely
the advantage of off-axis holography. The spatial locations of
the three terms are shown in Fig. f|. For the special case where
u(x) = r(x), the real and virtual images are merely scaled by
the intensity of the reference wave. When the distance of pro-
pagation equals the optical path distance d between the object
and the hologram plane in the recording process, the real im-
age comes into focus. In the opposite direction, at a distance
equal to —d, the virtual image comes into focus. Thus, the real
and virtual images are in general out of focus, but one of
them can be brought into focus by appropriately adjusting
the reconstruction distance.

D. Digital Hologram Reconstruction

By employing the Fresnel approximation [[I2]]], the underly-
ing scalar diffraction pattern can be specified up to second-
order accuracy. In practice, it is quite feasible to stay within
the limits of this approximation. In this framework, we have
the following expression for the reconstructed wavefront:

ni© =aesn (@) [worew (50 +49))
wcosp (2 e+ )
— Aexp G—’; (& + n2)>
x}"l{y/(,(x) exp(/il—z (22 +y2))}, 3)

where / is the wavelength and A equals the complex constant
BW, B denoting a real scaling factor. The reconstruc-
tion plane corresponds to x = £ and y = 7. The reconstructed
wavefront is complex-valued and can be decomposed into two
parts—modulus and phase, which are referred to as the
amplitude- and phase-contrast images, respectively.

In digital Fresnel holography, the illumination wave is
replaced by a digitally reproduced version of the physical

X
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D

Virtual image

Fig. 2. (Color online) Off-axis digital holography—reconstruction.

Vol. 28, No. 6 / June 2011 / J. Opt. Soc. Am. A 985

reference wave used in the recording process. The physical
propagation of the illuminated wave is simulated numerically
by employing the Fresnel approximation. Therefore, in
practice, one can only compute a discrete version of the
integral in (B); the continuous-domain Fourier transform op-
erator is replaced by the discrete Fourier transform (DFT) and
the Fresnel approximation is computed efficiently by employ-
ing fast Fourier transform algorithms. In the discrete domain,
the wavefront is given by

in

il = Aexp (2 ()

# {wiblew (07 8up) ) i

where A, — (Aof A0;7> and A, — (on Aoy).The symbol

A associated with a variable denotes the corresponding
sampling period; for example A¢ is the sampling period along
the £ axis. F{-}, denotes that the DFT operator acts along p.
The 2D sequence y,[p] is the digital hologram obtained by
spatial sampling of y,(x) at the detector:

5

x=(mAxnlAy)

ilm] =w,(x)-1
GG

y
Ly

where L, and L, are the dimensions of the detector along the
x and y axes, respectively; 1[0_[1]40‘,1] is the indicator function
Ly Ly

for the detector area; the symbol x is used to denote the tensor
product over intervals. It is common to employ detectors with
square geometry, in which case we have N,=N, =
N.-¥<ktmmns<¥ L, =L,=L;, Ax = Ay =% The sam-
pling intervals along the spatial frequency variables £ and 7
are given as Af = Ap =4,

E. Problems in Conventional Reconstruction

The real image, the virtual image, and the zero-order terms
overlap spatially. Another practical limitation is imposed by
the finite size of the CCD plane, which always results in holo-
grams of finite size. Moreover, within the discrete framework,
we have access to the sampled version of the hologram. Sam-
pling in the hologram plane inherently introduces periodicity
in the reciprocal domain. The period is equal to the spatial
support of the hologram, and within this region, the real, vir-
tual, and zero-order images have to be accommodated. The
support of the zero-order image along each axis is twice that
of the real/virtual images. The virtual image is redundant and
does not carry more information than the real image. Thus, the
useful area is effectively reduced to a small percentage of the
hologram area (for example, the value is 6.25% for the spectral
diagrams shown in Fig. B). It would be highly desirable to
increase the usable area by suppressing the unwanted terms.
The reason for these problems is that, in the conventional ap-
proaches, the measured intensity or its band-pass filtered ver-
sion (i.e., y is first spatially filtered) is subjected to Fresnel
propagation, whereas, ideally, one would like to Fresnel
propagate the exact object wave, provided that it can be some-
how computed from the hologram. This is precisely the phi-
losophy pursued in this paper. Our method relies on some
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Wy Wy
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Fig. 3. (Color online) Spectral occupancy of (a) the object wave,
(b) the modulated object wave, and (c) the hologram (x).

simple assumptions, which are easily fulfilled in practice. For
the purpose of the theoretical developments, we work in the
continuous domain. The implications for a discrete implemen-
tation are addressed separately in [[g].

3. PROPOSED NONLINEAR
RECONSTRUCTION TECHNIQUE

Consider the specific case of a plane wave reference, i.e.,
r(x) = Aexp(-i(k,x)), where A is the complex amplitude.
Corresponding to this choice, () reduces to

i(x) = |Aexp(~ifk.x)) + o(x)[* = |A]*|1 + exp(i(k.x))o(x) 2

4)
Note that multiplication by exp(i(k,x)) corresponds to a com-
plex modulation of the object wave; the effect in the frequency
domain is a translation of the spectrum of o(x) to the location
—k. This is the well-known modulation property of the Fourier
transform and plays a vital role in the subsequent develop-
ments. This property is illustrated in Figs. and B(b}, where
we have considered a 2D band-limited function. Consider the
2D Fourier transform of i(x):

Fi}(@) = |AP{8(w) + F{o}(@ + k) + F{o} (-0 - k)
+q(@)}, ()

where g(®) denotes the 2D autocorrelation of {0} (®). In the
special case where 7 {o}(®) has a compact support [-o,., 0,] X
[-04.0,], the autocorrelation also has compact support
[-26,.20,] x [-20,,20,]. The spectral occupancy of the var-
ious terms in () is shown in Fig. B(c].

We next present the method to isolate the complex object
wave and to suppress the zero-order. The method is based on
the logarithm operator, which is employed to deconvolve the
object wave from its twin image. This key result is presented
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in the form of the following theorem. The proof is constructive
and leads to the reconstruction method.

Theorem 1. If 6 € L?(R x R) has a Fourier transform F{o}
that is identically zero outside [0,+) x [0,+) and |0] <
€ < 1, then |1 + o(x)|? specifies 6(x) almost everywhere.

Proof. To prove the theorem, we first need the following
lemmas.

Lemma 1. If 6 € L?(R x R) has a Fourier transform F{o}
that vanishes outside [0, ) x [0, +) and |0]| < € < 1, then
F{log(1+0)}(®) is also identically zero outside [0, +oo) x
[0, +20) almost everywhere.

Proof. Since |o| < € < 1, we invoke the Taylor series expan-
sion for log(1 + o(x)):

(1!
n

log(1 + 6(x)) = i

n=1

0" (x). (6)
Applying the Fourier transform operator F on both sides of
(@), we get that

(-1
n

F{log(1+6)}(®) = i:

n=1

F{o"}Hw). (7)

Recall that the Fourier transform of a product of n functions
is the n-fold convolution of the Fourier transforms of the
corresponding functions. Stated symbolically,

F{o"Hw) = (F{o} « F{o} x F{o} *---« F{o})(w). (8)

n times

Since F{o} vanishes outside [0, +) x [0, 4), the right-hand
side of (§) also vanishes outside [0,+e) x [0, +c0) almost
everywhere. This property carries over to the right-hand side
of (.

Lemma 2. If 6 € I>(RxR) and F{0} vanishes outside
[0, 40) x [0, 4e) and | 0| < € < 1, then F{log(1 + 6*) }(®) also
vanishes outside (-0, 0] x (-, 0] almost everywhere.

Proof. The proof is similar to that of lemma 1.

We now continue with the proof of theorem 1. Consider the
factorization

log |1 + 0% =log(1 +6) +log(1 + 0*). (9)

Applying the Fourier transform on both sides gives rise to a
new function, popularly known as the cepstrum [B3,23], which
we shall denote by c(®):

o(w) = F{log|1 + o’ }(w)
= F{log(1+0)}(w) + F{log(1 +6*)}(w).  (10)

By applying lemmas 1 and 2, it follows that the functions
F{log(1+0)}(®w) and F{log(l+ 6*)}(w) have nonoverlap-
ping support. By retaining the region corresponding to the
support of F{o}, we have that

F{log(1+0)H(w) = F{log |1 + 0]} (®) - Ljp tcjxfo. ). (11)

where 1jp ;«)x(0,+) IS the associated indicator function for
selecting the first quadrant. Applying the inverse Fourier
transform on both sides of ([I]), we have that

log(1 + 6(x))

= FH{F{10g[1+ 0P} - 1p sjio o) } (x). = 0(x)
= exp(F {F{log[L + 06/} 1 rapapo ) ) = 1. (12)



Seelamantula et al.

Equation ([) summarizes the technique for complex object-
wave reconstruction. The conditions on the support of F{o}
and on its magnitude can be realized in practice by suitably
selecting the design parameters A, k,, and k,. The above fra-
mework also includes the special case where a phase factor
exp(ig(x)) is common to both the object and reference waves,
since it does not affect the intensity of the hologram.

4. EXACT RECONSTRUCTION AND
HOMOMORPHIC SIGNAL PROCESSING

The proof of theorem 1 involves the logarithm and the expo-
nential, which are nonlinear in the conventional sense but
which satisfy a generalized principle of superposition. The
principle forms the basis of homomorphic signal processing.
To explain further, we need to introduce a few definitions
related to the cepstrum, which is of central importance in
homomorphic signal processing. For a detailed treatment of
cepstrum, the reader is referred to [E4]. Our formulation is
in the continuous-space and frequency domains, whereas the
often-used one is a discrete-space, discrete/continuous-
frequency domain formulation. We shall also confine our dis-
cussion to homomorphic operators specifically in the context
of convolution. For a discussion on generalized operators, the
reader is referred to [Z4].

A. Definition of Cepstrum
Letf(x) € L*(R x R). The two-dimensional complex cepstrum
of f(x) is defined as

¢r(x) = FH{log F{f }}(x). (13)

The function c¢,(x) exists and has finite energy if
log F{f}(w) € L>(R x R). The real cepstrum is defined as
the inverse Fourier transform of log |F{f}|(w), i.e.,

¢ (x) = F-1 {log | F{F} ]} (x). (14)

B. Homomorphic Operators

Consider an operator 7 that maps f;(x) and fy(x) into
T{f1}(x) and T{f>}(x), respectively. Let T satisfy the general-
ized principle of superposition:

T{f1*f2}(x) = T{f1} * T{f2}(x)(linearity), ~ (15)

T{c-f1}(x) = c- T{f1}(x) (scaling property).  (16)

where c is a scalar. T is said to be homomorphic with convo-
lution as both input and output operation, and is denoted by
T{x, +}. A homomorphic system T'{x,*} can be decomposed
as a cascade of three homomorphic systems [B4]: D{x,+},
L{+,+}, and D"{+, %} [cf. Fig. f]]. Such a representation is
referred to as the canonical decomposition of 7. The operator
D{x,+} is referred to as the characteristic system associated
with the input operation *; D1 {+, x} is the inverse character-
istic system associated with the output operation x; and
L{+,+} is a linear system in the usual sense, i.e., it satisfies
the classical principle of superposition. Block diagrams of the
characteristic system and its inverse are shown in Fig. .
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L, T _*> (a)
T
* p B L Bl o B

Fig. 4. (a) Homomorphic system with convolution operation at the
input as well as at the output, (b) its canonical representation.

C. Nonlinear Reconstruction Technique and
Homomorphic Equivalence

We next show that the proposed nonlinear reconstruction
technique (NRT) is a homomorphic signal processing techni-
que. To proceed, consider the hologram i(x) = |1 4 o(x)[?,
which is the product of (1+0o(x)) and (1+ 0*(x)). Since
the Fourier transform converts products to convolutions
and vice versa, we have that F{i}(®)= F{(1+0)}(®)*
F{(1+0*)}(w), that is, the spectra of the object wave and
its conjugate are convolved. With reference to Fig. [, letf (®) =
F{(1+0)Ho)* F{(1 + 6*)} (o). Considering the transforma-
tions given in Figs. f] and [, we have the following:

D{x,+}:

1. Inverse Fourier transformation: f(w)— i(x)= |1+
6(x)|?, which is the hologram;

2. logarithm: i(x) — logi(x); and

3. Fourier transformation: logi(x) — ¢(®) = F{logi}(®).

L{+,+}:

1. Selection of the first quadrant: c¢"(®) = c(®)-
1[0 teo)x[0.+w)- The operator L{+,+} is referred to as liftering
in homomorphic signal processing literature.

D+, %}:

1. Inverse Fourier transformation: c¢"(®w)— C*(x)=
F Yo"} (x);

2. exponentiation: C*(x) —» exp(C*(x)) =1+ 6(x); and

3. Fourier transformation: 1+ o(x) - F{1 + 0}(®).

Since the hologram is available in the spatial domain, we
have the output of step 1 of D{x,+} directly to start with.
Since the complex wave is required in the spatial domain,
we stop with step 2 of D"1{+,x} in NRT. Therefore, effec-
tively, NRT starts with step 2 of D{x, +} and stops with step 2
of DM+, x}.

_________ D{x+}y .
for—=5 o P o) P i)
Lo - - ==== - (a)
jw) =5 1 oo Pl P )
e T ! b
D_l{+ *} ®)

Fig. 5. (a) Characteristic system D{*,+} for convolution, (b) its
inverse D1 {4, x}.
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From the above correspondence, we infer that the recon-
struction technique embedded in theorem 1 is equivalent to
homomorphic deconvolution. More specifically, the spectrum
of the object wave is deconvolved from that of its conjugate,
which would otherwise give rise to the twin image and
zero-order. The key property aiding deconvolution is that
the cepstra of the object wave and its complex conjugate have
disjoint supports (cf. lemmas 1 and 2). As a result of applying
the proposed reconstruction technique, the complex object
wave is obtained, which is then Fresnel propagated to perform
reconstruction.

The above analysis transposes the problem of zero-order
suppression and complex object-wave recovery to one of de-
convolution. The implication is that alternative deconvolution
algorithms may also potentially solve the zero-order problem
provided that they are appropriately designed.

5. PERFORMANCE VALIDATION

In this section, we present results on simulated data as well as
experimental data to validate the accuracy of the reconstruc-
tion technique.

A. Simulation Results

We designed a phantom representing cell culture in amplitude
and phase [cf. Fig. p(a]]. The amplitude profile is chosen to
create large spatial frequencies. Further, some phase noise
is added to simulate the actual measurement conditions.
The phase noise is chosen to follow a uniform distribution
over [- £, %] radians. The simulation parameters are chosen
so that the two conditions required by the proposed recon-
struction technique are satisfied. The reference intensity is
chosen to be three times stronger than the constant back-
ground of the object; the average intensity ratio in the image
is 4.3, and the minimum ratio is 1.45.

The other parameters are taken as approximately identical
to the experimental ones of Section p.B (1 =680nm,
Ax = Ay = 6.45 um). The simulated hologram is then created
by applying the following steps to the synthesized complex
wave field:

e A lowpass filter with a circular spectral support is ap-
plied to the complex wave field. The diameter of the circle
is chosen as 117 pixels, corresponding to an imaging system

- f

el J

V
&

4

(@) (b)

Fig. 6. (Color online) Phase of the phantom used in simulations. (a) Ground truth phase used in hologram simulation, (b) phase obtained by the
standard Fourier method, and (c) phase of the nonlinear reconstruction.
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with a magnification M =5x and a numerical aperture
NA =0.12.

e The low-pass filtered complex wave field is digitally pro-
pagated to the Fresnel zone, according to (), with a propaga-
tion distance d = 4.9 cm.

e The simulated hologram is then obtained by calculating
the coherent addition of the propagated complex wave field
with a tilted reference plane wave and by taking the modulus,
according to (). The angle 0 between the propagation vectors
of the two waves is chosen as 2°, so as to ensure that the
desired imaging order and the twin image are separated,
but they overlap with the zero-order.

¢ Finally, the hologram is saved as an 8 bit image, to take
quantization also into account.

Since the object simulated contains more informative phase
than amplitude, we focus on the accuracy of phase recon-
struction. The reconstruction results are shown in Fig. [,
where the phase of the original object used for generating the
hologram [Fig. E(a]] is compared with that given by the stan-
dard Fourier method [Fig. E(b]] and the proposed technique
[Fig. B(c]]. We note that there are strong artifacts in the stan-
dard Fourier reconstruction, which are primarily due to the
zero-order disturbance. The NRT suppresses those artifacts
and retrieves the phase information accurately. To quantify
the accuracy of reconstruction, we calculated the differences
between the various reconstructions and the ideal ground
truth, which is generated by using a zero-order-free hologram
computed as b;geq (X) =1 (x) - |7(x) >~ |o(x)|?, where both |r(x)|?
and |o(x)[> are known in this simulation. The phase differ-
ences between the ideal reconstruction and the phase images
of Fig. fl are presented in Fig. []. In the standard reconstruction
[Fig. [[(a]], strong phase variations of the order of £ were
found to occur. Such variations are suppressed by the NRT
[cf. Fig. [[(D]]; indeed, no strong artifacts are visible even when
the signal dynamic range is zoomed in by a factor of 5. One can
identify a mild pattern in the reconstruction of Fig. [[{b], which
is due to the harmonics generated by the nonlinear operations.
The intensities of the harmonics can be further reduced by
increasing the intensity ratio between the reference and ob-
ject waves. In this experiment, the minimum intensity ratio
is 1.45, which is slightly above unity.
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Fig. 7. (Color online) Phase difference between the ground truth and that obtained by (a) the standard Fourier reconstruction, and (b) the

nonlinear reconstruction technique.

B. Experiments on Real Data

To experimentally demonstrate the capability of the NRT, we
measured a solution of yew pollens with a standard transmis-
sion digital holographic microscope [[J]. The specimen is il-
luminated with a laser diode (1 = 680nm), and the light is
collected with a 5x microscope objective (NA = 0.12). The ho-
logram is recorded by a CCD (Ax = 6.45um) with a shutter
time of the order of a few milliseconds. To ensure that the
reference intensity is higher than that of the object, the inten-
sity ratio of the beams is controlled through polarizing optical
elements. In our experiments, the average ratio of the refer-
ence-wave intensity to that of the object wave is measured to
be 13.3, and the minimum ratio in the field of view is 4.29. The
differences in the intensity ratios across pixels is due to the
fact that the specimen is not uniformly diffractive. Compo-
nents such as cell walls lead to strong diffraction and result
in spatially different intensity ratios. The object wave field is
reconstructed by first filtering the relevant quadrant of the
Fourier spectrum [cf. Fig. ] and then demodulating the signal
to suppress the linear phase term introduced by the off-axis
configuration employed during acquisition. Finally, the wave
field is Fresnel propagated and the best focus is achieved at
the recording distance of d = 4.9 cm. The reconstructions
obtained are shown in Fig. f], for the standard linear Fourier
filtering [cf. Figs. and P(c]] and the proposed nonlinear
technique [cf. Figs. and P(d]]. The phase maps are un-
wrapped in order to suppress the phase jumps. The dynamic
range of the phase in the case of Figs. and is 6.61
radians. Using a small magnification factor ensures that spec-
tral overlap occurs between the zero-order and the imaging
terms. Since one full quadrant of the hologram is employed in
reconstruction, a part of the zero-order is contained in the
reconstructed wave field in the case of linear reconstruction.
This term can be readily identified as a high-frequency oscilla-
tion in both the amplitude [cf. Fig. P(2]] and phase images [cf.
Fig. P(c]]. The zero-order appears as a high-frequency oscilla-
tion because of the demodulation step involved in the process
of hologram reconstruction. The NRT, on the other hand, sup-
presses the zero-order artifacts [cf. Figs. and P(d]]. The
reconstructed amplitude shown in Fig. has a nearly con-
stant background, which corresponds to the solution in which
the specimen is contained. The oscillating components in the
phase image [cf. Fig. P{d]] are also much reduced. In addition,
the contrast of the phase image is better than that of the

standard linear reconstruction. The improvement in quality
is due to the suppression of the nearly constant phase com-
ponent contributed by the zero-order. The parameters of
the experimental setup employed in this paper are slightly dif-
ferent from those in [[§]. A 5 x MO(NA = 0.12) is used here
whereas a 10 x MO(NA = 0.25) was used in [[J]. Measure-
ments with lower numerical apertures result in more overlap
between various orders if one wants to keep the full resolution
provided by the optical system. As the results in Fig. [
show, the NRT offers good reconstruction performance and
results in high-contrast phase images even for low NA
measurements.

6. A HILBERT TRANSFORM PERSPECTIVE

In this section, we establish a connection between the pro-
posed reconstruction technique and one particular extension
of the Hilbert transform in higher-dimensional spaces devel-
oped by Hahn [EHE4].

A. Preliminaries

The Hilbert transform of a real-valued square-integrable 1D
function h(x), denoted by H{k}(x) is best described in the
Fourier domain as

Fig. 8. (Color online) Fourier transform of a hologram of yew
pollens. The dashed zone highlights the filtered region used in the
reconstructions of Fig. f.
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Fig. 9. Specimen: solution of yew pollens. The hologram is reconstructed with (a), (c) standard Fourier filtering and (b), (d) with the proposed
nonlinear technique, where amplitude (a), (b) and phase (c), (d) images are shown.

H{k} (¥)S - i sign(@)F {1} (o), (17)

where sign(w) is the signum function. H{k}(x) has the same
magnitude spectrum as k(x) but its phase spectrum is offset
by 7 for negative frequencies and -7 for positive frequencies.
The 1D analytic signal is defined as a;,(x) = h(x) +1 H{R}(x);
its Fourier transform is

Flap}(w) = (1 + sign(w)) F{h}(w). (18)

The frequency domain specification of the operator that re-
lates the function to its analytic counterpart is (1 + sign(w)) =
2 -1}y o) (w). Computing the analytic signal corresponds to
retaining only the positive half of the spectrum. Based on this
observation, Hahn [P] extended the definition of the Hilbert
transform to 2D signals in such a way that the complex signal
has a nonzero spectrum in the positive quadrant. In the
general multidimensional case, the spectrum of the complex
signal is nonzero in the positive orthant. Hahn’s generalization

is based on a separable extension of the Hilbert transform.
The corresponding 2D complex signal (counterpart of the
1D analytic signal) is defined in the Fourier domain as

Fa} (o) = (1+sign(w,))(1 + sign(w,)) F{h}(®)
= (1 4+ sign(w,,) + sign(w,)
+ sign(w,)sign(w, ) F {1} (@)
=4 1 1o se) (@) F{} (@), (19)

which is nonzero only in the first quadrant. The corresponding
complex signal a;(x) is said to possess a single-quadrant
spectrum, a term coined by Hahn. By splitting the operator
on the right-hand side of ([J), we have that

Flap} (o) = F{h} (o) +i{-i sign(w,) - i sign(w,)
- 1 sign(w,)sign(w,) }F{k}(®), (20)

where -i sign(w,), and -i sign(w,) are the frequency re-
sponses associated with the Hilbert transform operators
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acting along x and y directions, respectively. The correspond-
ing operators are denoted by H, and H,, respectively, and are
referred to as partial Hilbert transform operators. The func-
tion —i sign(w, )sign(w, ) is the frequency response associated
with the total Hilbert transform operator denoted by H,,.
These operators are skew-adjoint; i.e., H,oH, = -Z, H,oH, =
-7, and ‘H,,°H,, = -Z, where Z denotes the identity operator
and o is the symbol for the composition of operators. These
properties can be readily proved by working in the Fourier
domain.

B. Partial Hilbert Transform Relations
Consider the following representation for a;,(x):

an(x) = Re{ay, }(x) + i Im{a, } (x), (21)

where Re{-} and Im{-} correspond to the real and imaginary
parts, respectively, of the argument. Based on the definition of
ay(x), we have that

Re{a,}(x) = h(x) = (HpoH,y)h(x), (22)

Im{ay, }(x) = H,h(x) + H,h(x). (23)

It can be shown that the real and imaginary parts are ortho-
gonal to each other, i.e., their inner product is zero:

(Re{ay}, Im{ah}>L2(RxR) =0. (24)

In addition, there are primary Hilbert transform relations
between the real and imaginary parts:

Ho{Re{ay}}(x) = H,y{Re{a,}}(x) = Im{a, }(x).  (25)

From (BH), we derive the pair of secondary relations:

Ho{lm{ay }}(x) = H,{Im{a, } }(x) = -Re{a, }(x). ~ (26)

The proofs for (B4)-(E9) can be given by invoking the spectral
properties of the partial Hilbert transform operators. Although
(B9 and (EQ) follow from the definitions of the operators, it
does not seem to have been explicitly remarked in the litera-
ture that such relations exist in the 2D case. In our view, these
relations are the 2D counterpart of the well-known Hilbert in-
tegral equations, Titchmarsh theorem, or Dispersion relations
in the 1D case [F72]], which state that if a finite-energy 1D
function is analytic, then its real and imaginary parts form
a Hilbert transform pair.

C. Relations Between Magnitude and Phase

Having listed some important properties of functions with a
single-quadrant spectrum, we next establish the connection
with the nonlinear reconstruction technique. Recall from

([ that
log(1 +6(x)) = FH{F{log|1 + 6} - 1p seapxfo o) } (%), (27)
which clearly shows that log(1+06) has a single-quadrant

spectrum and is therefore complex. Therefore, its real and
imaginary parts must obey the partial Hilbert transform rela-
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tions stated in (E§) and (B@). Note, however, that log(1 + o(x))
can also be rewritten as

log(1+06(x)) =log |1 +o(x)| +iZ(1 + o(x)), (28)

where £ denotes the unwrapped phase angle of its argument;
the real part is the log magnitude and the imaginary part is the
phase. Thus, the partial Hilbert transform relations apply to
the log magnitude and phase of the complex wave. Since the
magnitude is the measured quantity, exploiting this relation
amounts to retrieving the phase from the logarithm of the
magnitude spectrum. Such a relation is known for a special
class of causal signals in 1D known as minimum-phase signals.
However, it does not seem to have been transposed to 2D or
exploited for the special case of signals with single orthant
spectra. This connection also places the new reconstruction
technique in the general context of phase retrieval with a
sound theoretical basis.

The above formalism also fits naturally into the framework
of single-quadrant modulation proposed by Hahn [BJ]. In his
paper, Hahn makes a concluding remark that applications of
2D or higher-dimensional modulation have to be found. As we
have shown in this paper, single-quadrant modulation turns
out to be the natural choice in digital holography, mainly from
the point of view of zero-order free reconstruction. This type
of modulation also has the added advantage of better preser-
ving the spatial resolution of fringes.

7. CONCLUSIONS

We have laid the theoretical foundations for a new reconstruc-
tion technique for digital hologram reconstruction. We have
shown that, under realistic conditions, it is possible to achieve
exact complex-wave reconstruction by a combination of lin-
ear and nonlinear operations. As a result, the zero-order is
suppressed. The operations involved satisfy the generalized
principle of superposition, which forms the basis for homo-
morphic signal processing. By recognizing this equivalence,
we have interpreted the reconstruction technique from the
perspective of homomorphic deconvolution. We have also es-
tablished connections with Hahn’s multidimensional general-
ization of the Hilbert transform. The proposed theory
naturally fits into Hahn’s framework of single-quadrant mod-
ulation. This connection leads to new partial Hilbert transform
relations between the logarithm of the measured magnitude
and the unknown phase, thus implying that one can be com-
puted from the other. It must be noted that, although Fresnel
holography was considered in the development of the recon-
struction technique and the experiments, the technique is not
limited to this specific holographic modality. Since the tech-
nique deals with complex wave field recovery and is based on
the fundamental equations of interference between two
waves, it can be applied to any type of off-axis holography
provided that the associated conditions are fulfilled. Through-
out our analysis in this paper, we employed planar reference
waves. Extending the results reported in this paper to the
general case of nonplanar waves appears to be an interesting
but nontrivial problem.
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